Order Polynomials

March 31, 2021

Slides available at: www-math.mit.edu/~rstan/transparencies/ordpoly.pdf

Basic notation

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2, \ldots\} \\
\mathbb{P} & =\{1,2,3, \ldots\} \\
{[n] } & =\{1,2, \ldots, n\}, \text { for } n \in \mathbb{N}
\end{aligned}
$$

In particular, $[0]=\varnothing$.

Background on Eulerian polynomials

$\boldsymbol{w}=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$
descent of w : an index $1 \leq i \leq n-1$ such that $a_{i}>a_{i+1}$
des($w)$: number of descents of w

Background on Eulerian polynomials

$\boldsymbol{w}=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$
descent of w : an index $1 \leq i \leq n-1$ such that $a_{i}>a_{i+1}$
des($w)$: number of descents of w
$w=692478513 \in \mathfrak{S}_{9}$

Background on Eulerian polynomials

$w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$
descent of w : an index $1 \leq i \leq n-1$ such that $a_{i}>a_{i+1}$
des(w): number of descents of w
$w=692478513 \in \mathfrak{S}_{9}: \operatorname{des}(w)=3$

Eulerian polynomials

Definition. Let $n \geq 1$. Define the Eulerian polynomial $A_{n}(x)$ by

$$
\boldsymbol{A}_{\boldsymbol{n}}(x)=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)}
$$

Eulerian polynomials

Definition. Let $n \geq 1$. Define the Eulerian polynomial $A_{n}(x)$ by

$$
\boldsymbol{A}_{\boldsymbol{n}}(\boldsymbol{x})=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)}
$$

Example. $n=3$

w	$\operatorname{des}(w)$
123	0
213	1
312	1
132	1
231	1
321	2

Eulerian polynomials

Definition. Let $n \geq 1$. Define the Eulerian polynomial $A_{n}(x)$ by

$$
\boldsymbol{A}_{\boldsymbol{n}}(x)=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)}
$$

Example. $n=3$

$$
\begin{array}{cc}
w & \operatorname{des}(w) \\
\hline 123 & 0 \\
213 & 1 \\
312 & 1 \\
132 & 1 \\
231 & 1 \\
321 & 2 \\
\Rightarrow & A_{3}(x)=1+4 x+x^{2}
\end{array}
$$

Slight alternative definition

Note. Some people define

$$
A_{n}(x)=\sum_{w \in \mathfrak{S}_{n}} x^{1+\operatorname{des}(w)}
$$

Eulerian numbers

$$
\begin{aligned}
& A_{1}(x)=1 \\
& A_{2}(x)=1+x \\
& A_{3}(x)=1+4 x+x^{2} \\
& A_{4}(x)=1+11 x+11 x^{2}+x^{3} \\
& A_{5}(x)=1+26 x+66 x^{2}+26 x^{3}+x^{4}
\end{aligned}
$$

Eulerian numbers

$$
\begin{aligned}
& A_{1}(x)=1 \\
& A_{2}(x)=1+x \\
& A_{3}(x)=1+4 x+x^{2} \\
& A_{4}(x)=1+11 x+11 x^{2}+x^{3} \\
& A_{5}(x)=1+26 x+66 x^{2}+26 x^{3}+x^{4}
\end{aligned}
$$

Define $A_{n}(x)=\sum_{m=0}^{n-1} \mathbf{A}(\boldsymbol{n}, \boldsymbol{m}) x^{m}$. Call $A(n, m)$ an Eulerian number (the number of $w \in \mathfrak{S}_{n}$ with m descents).

Symmetry of Eulerian polynomials

Proposition. $x^{n-1} A_{n}(1 / x)=A_{n}(x)$
Equivalently, $A(n, m)=A(n, n-1-m)$.

Symmetry of Eulerian polynomials

Proposition. $x^{n-1} A_{n}(1 / x)=A_{n}(x)$
Equivalently, $A(n, m)=A(n, n-1-m)$.
Proof. $\operatorname{des}\left(a_{1} a_{2} \cdots a_{n}\right)=n-1-\operatorname{des}\left(a_{n}, \ldots, a_{2}, a_{1}\right)$
Note also

$$
\operatorname{des}\left(a_{1} a_{2} \cdots a_{n}\right)=n-1-\operatorname{des}\left(n+1-a_{1}, n+1-a_{2}, \ldots, n+1-a_{n}\right) .
$$

Some generating functions

$$
\sum_{k \geq 0} x^{k}=\frac{1}{1-x}
$$

Some generating functions

$$
\sum_{k \geq 0} x^{k}=\frac{1}{1-x}
$$

Apply $x \frac{d}{d x}$:

$$
\sum_{k \geq 0}(k+1) x^{k}=\frac{1}{(1-x)^{2}} .
$$

Some generating functions

$$
\sum_{k \geq 0} x^{k}=\frac{1}{1-x}
$$

Apply $x \frac{d}{d x}$:

$$
\sum_{k \geq 0}(k+1) x^{k}=\frac{1}{(1-x)^{2}} .
$$

Apply $x \frac{d}{d x}$:

$$
\begin{aligned}
\sum_{k \geq 0}(k+1)^{2} x^{k} & =\frac{d}{d x} \frac{x}{(1-x)^{2}} \\
& =\frac{1+x}{(1-x)^{3}}
\end{aligned}
$$

More generating functions

Similarly,

$$
\begin{aligned}
& \sum_{k \geq 0}(k+1)^{3} x^{k}=\frac{1+4 x+x^{2}}{(1-x)^{4}} \\
& \sum_{k \geq 0}(k+1)^{4} x^{k}=\frac{1+11 x+11 x^{2}+x^{3}}{(1-x)^{5}}
\end{aligned}
$$

etc.

More generating functions

Similarly,

$$
\begin{aligned}
& \sum_{k \geq 0}(k+1)^{3} x^{k}=\frac{1+4 x+x^{2}}{(1-x)^{4}} \\
& \sum_{k \geq 0}(k+1)^{4} x^{k}=\frac{1+11 x+11 x^{2}+x^{3}}{(1-x)^{5}}
\end{aligned}
$$

etc.

Numerators are the Eulerian polynomials!.

Generating function for $(k+1)^{n}$

Theorem (Carlitz-Riordan, 1953, though "essentially" known earlier). For all $n \geq 1$, we have

$$
\sum_{k \geq 0}(k+1)^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

Generating function for $(k+1)^{n}$

Theorem (Carlitz-Riordan, 1953, though "essentially" known earlier). For all $n \geq 1$, we have

$$
\sum_{k \geq 0}(k+1)^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

Naive proof. Induction on n. True for $n=1$. Assume for n, i.e.,

$$
\sum_{k \geq 0}(k+1)^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

Apply $\frac{d}{d x} x$. Get (after some computation)

$$
\sum_{k \geq 0}(k+1)^{n+1} x^{k}=\frac{(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x)}{(1-x)^{n+2}}
$$

Proof (cont.)

$$
\sum_{k \geq 0}(k+1)^{n+1} x^{k}=\frac{(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x)}{(1-x)^{n+2}}
$$

Multiply by $(1-x)^{n+2}$ and take coefficient of x^{m}. On the right-hand side we get

$$
\begin{aligned}
A(n, m) & +n A(n, m-1)+m A(n, m)-(m-1) A(n, m-1) \\
= & (m+1) A(n, m)+(n-m+1) A(n, m-1)
\end{aligned}
$$

Proof (cont.)

$$
\sum_{k \geq 0}(k+1)^{n+1} x^{k}=\frac{(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x)}{(1-x)^{n+2}}
$$

Multiply by $(1-x)^{n+2}$ and take coefficient of x^{m}. On the right-hand side we get

$$
\begin{aligned}
A(n, m) & +n A(n, m-1)+m A(n, m)-(m-1) A(n, m-1) \\
= & (m+1) A(n, m)+(n-m+1) A(n, m-1) .
\end{aligned}
$$

To show: this expression equals $A(n+1, m)$.

Proof (cont.)

$$
\sum_{k \geq 0}(k+1)^{n+1} x^{k}=\frac{(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x)}{(1-x)^{n+2}}
$$

Multiply by $(1-x)^{n+2}$ and take coefficient of x^{m}. On the right-hand side we get

$$
\begin{aligned}
A(n, m) & +n A(n, m-1)+m A(n, m)-(m-1) A(n, m-1) \\
= & (m+1) A(n, m)+(n-m+1) A(n, m-1)
\end{aligned}
$$

To show: this expression equals $A(n+1, m)$.
How to get a permutation \mathfrak{S}_{n+1} with m descents by inserting $n+1$ into a permutation $w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$?

Proof (cont.)

$$
(m+1) A(n, m)+(n-m+1) A(n, m-1) .
$$

- If $a_{i}>a_{i+1}$, then inserting $n+1$ between a_{i} and a_{i+1} leaves the number of descents the same, as does inserting $n+1$ after a_{n}. To get m descents, we have $\operatorname{des}(w)=m$. This gives $(m+1) A(n, m)$ choices.

Proof (cont.)

$$
(m+1) A(n, m)+(n-m+1) A(n, m-1) .
$$

- If $a_{i}>a_{i+1}$, then inserting $n+1$ between a_{i} and a_{i+1} leaves the number of descents the same, as does inserting $n+1$ after a_{n}. To get m descents, we have $\operatorname{des}(w)=m$. This gives $(m+1) A(n, m)$ choices.
- If $a_{i}<a_{i+1}$, then inserting $n+1$ between a_{i} and a_{i+1} increases by one the number of descents, as does inserting $n+1$ before a_{1}. To get m descents, we have $\operatorname{des}(w)=m-1$. This gives

$$
(n-m+1) A(n, m-1) \text { choices. }
$$

Proof (cont.)

$$
(m+1) A(n, m)+(n-m+1) A(n, m-1) .
$$

- If $a_{i}>a_{i+1}$, then inserting $n+1$ between a_{i} and a_{i+1} leaves the number of descents the same, as does inserting $n+1$ after a_{n}. To get m descents, we have $\operatorname{des}(w)=m$. This gives $(m+1) A(n, m)$ choices.
- If $a_{i}<a_{i+1}$, then inserting $n+1$ between a_{i} and a_{i+1} increases by one the number of descents, as does inserting $n+1$ before a_{1}. To get m descents, we have $\operatorname{des}(w)=m-1$. This gives

$$
(n-m+1) A(n, m-1) \text { choices. }
$$

Thus $(m+1) A(n, m)+(n-m+1) A(n, m-1)=A(n+1, m)$.
The proof follows by induction.

A better proof.

Definition. Let $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$. Define a function
$\boldsymbol{f}:[n] \rightarrow \mathbb{N}=\{0,1, \ldots\}$ to be \boldsymbol{w}-compatible if the following two conditions hold:
(a) $f\left(a_{1}\right) \leq f\left(a_{2}\right) \leq \cdots \leq f\left(a_{n}\right)$ (i.e., f is weakly increasing along w)
(b) $f\left(a_{i}\right)<f\left(a_{i+1}\right)$ if $a_{i}>a_{i+1}$ (i.e., f is strictly increasing along descents)

A better proof.

Definition. Let $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$. Define a function $\boldsymbol{f}:[n] \rightarrow \mathbb{N}=\{0,1, \ldots\}$ to be \boldsymbol{w}-compatible if the following two conditions hold:
(a) $f\left(a_{1}\right) \leq f\left(a_{2}\right) \leq \cdots \leq f\left(a_{n}\right)$ (i.e., f is weakly increasing along w)
(b) $f\left(a_{i}\right)<f\left(a_{i+1}\right)$ if $a_{i}>a_{i+1}$ (i.e., f is strictly increasing along descents)

Fundamental theorem on descents (P. A. MacMahon). Every function $f:[n] \rightarrow \mathbb{N}$ is compatible with a unique $w \in \mathfrak{S}_{n}$.

Proof of fundamental theorem

Fundamental theorem on descents. Every function $f:[n] \rightarrow \mathbb{N}$ is compatible with a unique $w \in \mathfrak{S}_{n}$.

Proof by example. | i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(i)$ | 4 | 1 | 7 | 4 | 8 | 3 | 1 | 8 | 4 |

Proof of fundamental theorem

Fundamental theorem on descents. Every function $f:[n] \rightarrow \mathbb{N}$ is compatible with a unique $w \in \mathfrak{S}_{n}$.

Proof by example. | i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(i)$ | 4 | 1 | 7 | 4 | 8 | 3 | 1 | 8 | 4 |

In order for $f\left(a_{1}\right) \leq f\left(a_{2}\right) \leq \cdots \leq f\left(a_{n}\right)$, we must have

$$
w=\{2,7\}, 6,\{1,4,9\}, 3,\{5,8\} .
$$

Proof of fundamental theorem

Fundamental theorem on descents. Every function $f:[n] \rightarrow \mathbb{N}$ is compatible with a unique $w \in \mathfrak{S}_{n}$.

Proof by example. | i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(i)$ | 4 | 1 | 7 | 4 | 8 | 3 | 1 | 8 | 4 |

In order for $f\left(a_{1}\right) \leq f\left(a_{2}\right) \leq \cdots \leq f\left(a_{n}\right)$, we must have

$$
w=\{2,7\}, 6,\{1,4,9\}, 3,\{5,8\} .
$$

In order for $f\left(a_{i}\right)<f\left(a_{i+1}\right)$ if $a_{i}<a_{i+1}$, we must arrange the sets on which f is constant in increasing order. Thus

$$
w=2,7,6,1,4,9,3,5,8 . \square
$$

Number of w-compatible $f:[n] \rightarrow[m]$

Let $w \in \mathfrak{S}_{n}$ and $m \geq 0$.
$\mathcal{A}_{\boldsymbol{m}}(w)$: set of all w-compatible functions $f:[n] \rightarrow[m]$ (finite set)

Number of w-compatible $f:[n] \rightarrow[m]$

Let $w \in \mathfrak{S}_{n}$ and $m \geq 0$.
$\mathcal{A}_{\boldsymbol{m}}(w)$: set of all w-compatible functions $f:[n] \rightarrow[m]$ (finite set)
Recall $\left(\binom{a}{b}\right)$ denotes the number of b element multisets whose elements belong to some a-element set. We have (Combinatorics 101) $\left(\binom{a}{b}\right)=\binom{a+b-1}{b}$.

Theorem. We have

$$
\# \mathcal{A}_{m}(w)=\binom{m+n-1-\operatorname{des}(w)}{n}=\left(\binom{m-\operatorname{des}(w)}{n}\right),
$$

a polynomial in m of degree n. Moreover,

$$
\sum_{k \geq 0} \# \mathcal{A}_{k+1}(w) x^{k}=\frac{x^{\operatorname{des}(w)}}{(1-x)^{n+1}}
$$

Proof by example

Let $w=2751634$. Then $\# \mathcal{A}_{m}(w)=$

$$
\#\{1 \leq f(2) \leq f(7)<\underbrace{f(5)}_{-1}<\underbrace{f(1) \leq f(6)}_{-2}<\underbrace{f(3) \leq f(4)}_{-3=-\operatorname{des}(w)} \leq m\}
$$

Proof by example

Let $w=2751634$. Then $\# \mathcal{A}_{m}(w)=$

$$
\#\{1 \leq f(2) \leq f(7)<\underbrace{f(5)}_{-1}<\underbrace{f(1) \leq f(6)}_{-2}<\underbrace{f(3) \leq f(4)}_{-3=-\operatorname{des}(w)} \leq m\}
$$

Let $g(2)=f(2), g(7)=f(7), g(5)=f(5)-1, g(1)=f(1)-2$, etc. (compression). Thus $\# \mathcal{A}_{m}(w)=$

$$
\left.\begin{array}{rl}
\#\{1 \leq g(2) \leq g(7) \leq g(5) & \leq g(1) \leq g(6) \leq g(3) \leq g(4) \leq m-3\} \\
& =\left(\binom{m-3}{7}\right.
\end{array}\right) .
$$

Proof by example

Let $w=2751634$. Then $\# \mathcal{A}_{m}(w)=$

$$
\#\{1 \leq f(2) \leq f(7)<\underbrace{f(5)}_{-1}<\underbrace{f(1) \leq f(6)}_{-2}<\underbrace{f(3) \leq f(4)}_{-3=-\operatorname{des}(w)} \leq m\}
$$

Let $g(2)=f(2), g(7)=f(7), g(5)=f(5)-1, g(1)=f(1)-2$, etc. (compression). Thus $\# \mathcal{A}_{m}(w)=$

$$
\begin{aligned}
\#\{1 \leq g(2) \leq g(7) \leq g(5) & \leq g(1) \leq g(6) \leq g(3) \leq g(4) \leq m-3\} \\
& =\left(\binom{m-3}{7}\right) .
\end{aligned}
$$

In general, $\# \mathcal{A}_{m}(w)=\left(\binom{m-\operatorname{des}(w)}{n}\right)$.

To prove: $\sum_{k \geq 0} \# \mathcal{A}_{k+1}(w) x^{k}=\frac{x^{\operatorname{des}(w)}}{(1-x)^{n+1}}$
Recall $\left.\binom{a}{b}\right)=\binom{a+b-1}{b}$. Then

$$
\begin{aligned}
\sum_{k \geq 0} \# \mathcal{A}_{k+1}(w) x^{k} & =\sum_{k \geq 0}\left(\binom{k+1-\operatorname{des}(w)}{n}\right) x^{k} \\
& =\sum_{k}\binom{k+n-\operatorname{des}(w)}{n} x^{k} \\
& =\sum_{j}\binom{j+n}{j} x^{j+\operatorname{des}(w)} \quad(k=j+\operatorname{des}(w)) \\
& =x^{\operatorname{des}(w)} \sum_{j}\binom{-(n+1)}{j}(-1)^{j} x^{j} \\
& =\frac{x^{\operatorname{des}(w)}}{(1-x)^{n+1}} .
\end{aligned}
$$

$\sum_{k \geq 0}(k+1)^{n} x^{k}$ demystified

Recall

$$
\sum_{k \geq 0}(k+1)^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

$\sum_{k \geq 0}(k+1)^{n} x^{k}$ demystified

Recall

$$
\sum_{k \geq 0}(k+1)^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

$[m]^{[n]}:$ set of all $f:[n] \rightarrow[m]$
Since every such f is compatible with a unique $w \in \mathfrak{S}_{n}$, we have

$$
[k+1]^{[n]}=\bigcup_{w \in \mathfrak{S}_{n}} \mathcal{A}_{k+1}(w) .
$$

$\sum_{k \geq 0}(k+1)^{n} x^{k}$ demystified

Recall

$$
\sum_{k \geq 0}(k+1)^{n} x^{k}=\frac{A_{n}(x)}{(1-x)^{n+1}}
$$

$[m]^{[n]}$: set of all $f:[n] \rightarrow[m]$
Since every such f is compatible with a unique $w \in \mathfrak{S}_{n}$, we have

$$
[k+1]^{[n]}=\bigcup_{w \in \mathfrak{S}_{n}} \mathcal{A}_{k+1}(w) .
$$

Take cardinality of both sides, multiply by x^{k}, and sum on $k \geq 0$:

$$
\begin{aligned}
\sum_{k \geq 0}(k+1)^{n} x^{n} & =\sum_{w \in \mathfrak{S}_{n}} \sum_{k \geq 0} \# \mathcal{A}_{k+1}(w) x^{k} \\
& =\frac{\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)}}{(1-x)^{n+1}} .
\end{aligned}
$$

Real zeros

Theorem (Frobenius). Every zero (or root) of $A_{n}(x)$ is real, simple and negative.

Real zeros

Theorem (Frobenius). Every zero (or root) of $A_{n}(x)$ is real, simple and negative.

Proof. Note that every real zero is negative since $A_{n}(x)$ has positive coefficients and constant term 1.

Induction on n. True for $n=1$. Assume for n. Recall

$$
\sum_{k \geq 0}(k+1)^{n+1} x^{k}=\frac{(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x)}{(1-x)^{n+2}}
$$

Hence

$$
A_{n+1}(x)=(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x) .
$$

Note. $x-x^{2}<0$ for $x<0$.

Interlacing zeros

$$
A_{n+1}(x)=(1+n x) A_{n}(x)+\left(x-x^{2}\right) A_{n}^{\prime}(x)
$$

Newton's theorem

Theorem (I. Newton). Let

$$
P(x)=\sum_{j=0}^{n}\binom{n}{j} a_{j} x^{j} \in \mathbb{R}[x] .
$$

If every zero of $P(x)$ is real, then $a_{j}^{2} \geq a_{j-1} a_{j+1}$.

Newton's theorem

Theorem (I. Newton). Let

$$
P(x)=\sum_{j=0}^{n}\binom{n}{j} a_{j} x^{j} \in \mathbb{R}[x] .
$$

If every zero of $P(x)$ is real, then $a_{j}^{2} \geq a_{j-1} a_{j+1}$.
Note. Write $P(x)=\sum b_{j} x^{j}$, so $b_{j}=\binom{n}{j} a_{j}$. Then $a_{j}^{2} \geq a_{j-1} a_{j+1}$ becomes

$$
b_{j}^{2} \geq b_{j-1} b_{j+1}\left(1+\frac{1}{j}\right)\left(1+\frac{1}{n-j}\right)
$$

which is stronger than $b_{j}^{2} \geq b_{j-1} b_{j+1}$.

Newton's theorem

Theorem (I. Newton). Let

$$
P(x)=\sum_{j=0}^{n}\binom{n}{j} a_{j} x^{j} \in \mathbb{R}[x] .
$$

If every zero of $P(x)$ is real, then $a_{j}^{2} \geq a_{j-1} a_{j+1}$.
Note. Write $P(x)=\sum b_{j} x^{j}$, so $b_{j}=\binom{n}{j} a_{j}$. Then $a_{j}^{2} \geq a_{j-1} a_{j+1}$ becomes

$$
b_{j}^{2} \geq b_{j-1} b_{j+1}\left(1+\frac{1}{j}\right)\left(1+\frac{1}{n-j}\right)
$$

which is stronger than $b_{j}^{2} \geq b_{j-1} b_{j+1}$.
Corollary. If each $a_{j}>0$ then the sequence $a_{0}, a_{1}, \ldots, a_{n}$ (or $b_{0}, b_{1}, \ldots, b_{n}$) is unimodal.

Proof of Newton's theorem

Let $D=\frac{d}{d x}$. By Rolle's theorem, $Q(x)=D^{j-1} P(x)$ has only real zeros, and thus also $R(x)=x^{n-j+1} Q(1 / x)$. Again by Rolle's theorem, $D^{n-j-1} R(x)$ has only real zeros. Easy to compute:

$$
D^{n-j-1} R(x)=\frac{n!}{2}\left(a_{j-1} x^{2}+2 a_{j} x+a_{j+1}\right)
$$

This quadratic polynomial has real zeros if and only if $a_{j}^{2} \geq a_{j-1} a_{j+1}$.

Application to Eulerian polynomials

Recall: $A_{n}(x)=\sum_{m=0}^{n-1} \underbrace{A(n, m)} x^{m}$.
Eulerian number
Since $A_{n}(x)$ has only real zeros (and has positive coefficients), we get:

Corollary. The sequence $A(n, 0), A(n, 1), \ldots, A(n, n-1)$ is log-concave, and hence unimodal.

Application to Eulerian polynomials

Recall: $A_{n}(x)=\sum_{m=0}^{n-1} \underbrace{A(n, m)}_{\text {Eulerian number }} x^{m}$.
Since $A_{n}(x)$ has only real zeros (and has positive coefficients), we get:

Corollary. The sequence $A(n, 0), A(n, 1), \ldots, A(n, n-1)$ is log-concave, and hence unimodal.

Note. Combinatorial proof due to Bóna and Ehrenborg, 2000.

The order polynomial redux

P : p-element poset
For $n \geq 1$, define the order polynomial $\Omega_{P}(n)$ of P by

$$
\Omega_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s \leq_{P} t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t)\right\} .
$$

The order polynomial redux

P : p-element poset
For $n \geq 1$, define the order polynomial $\Omega_{P}(n)$ of P by

$$
\Omega_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s \leq_{P} t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t)\right\} .
$$

For $n \geq 1$, define the strict order polynomial $\bar{\Omega}_{P}(n)$ of P by

$$
\bar{\Omega}_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s<_{P} t \Rightarrow f(s)<_{\mathbb{Z}} f(t)\right\} .
$$

The order polynomial redux

P : p-element poset
For $n \geq 1$, define the order polynomial $\Omega_{P}(n)$ of P by

$$
\Omega_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s \leq_{P} t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t)\right\} .
$$

For $n \geq 1$, define the strict order polynomial $\bar{\Omega}_{P}(n)$ of P by

$$
\bar{\Omega}_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s<_{P} t \Rightarrow f(s)<_{\mathbb{Z}} f(t)\right\} .
$$

Reciprocity for order polynomials. $\bar{\Omega}_{P}(n)=(-1)^{p} \Omega_{P}(-n)$.

The order polynomial redux

P : p-element poset
For $n \geq 1$, define the order polynomial $\Omega_{P}(n)$ of P by

$$
\Omega_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s \leq_{P} t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t)\right\} .
$$

For $n \geq 1$, define the strict order polynomial $\bar{\Omega}_{P}(n)$ of P by

$$
\bar{\Omega}_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s<_{P} t \Rightarrow f(s)<_{\mathbb{Z}} f(t)\right\} .
$$

Reciprocity for order polynomials. $\bar{\Omega}_{P}(n)=(-1)^{p} \Omega_{P}(-n)$.
Goal: a nice formula for $\sum_{n \geq 0} \Omega_{P}(n) x^{n}=x+\cdots$.

Reminders

Definition. Let $\boldsymbol{w}=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$. Define a function $\boldsymbol{f}:[n] \rightarrow \mathbb{N}=\{0,1, \ldots\}$ to be \boldsymbol{w}-compatible if the following two conditions hold:
(a) $f\left(a_{1}\right) \geq f\left(a_{2}\right) \geq \cdots \geq f\left(a_{n}\right)$ (i.e., f is weakly decreasing along w)
(b) $f\left(a_{i}\right)>f\left(a_{i+1}\right)$ if $a_{i}>a_{i+1}$ (i.e., f is strictly decreasing along descents)

Fundamental theorem on descents. Every function $f:[n] \rightarrow \mathbb{N}$ is compatible with a unique $w \in \mathfrak{S}_{n}$.

Fundamental theorem on P-partitions

P : a naturally labelled poset on the set [p], i.e., if $i<p j$ then $i<_{\mathbb{Z}} j$. Equivalently, the permutation $12 \cdots p$ is a linear extension of P.
\boldsymbol{P}-partition: an order-preserving map $f: P \rightarrow \mathbb{N}$, i.e., $i \leq_{P} j \Rightarrow f(i) \leq_{\mathbb{Z}} f(j)$.
$\mathcal{L}(P)$: set of linear extensions of P, regarded as permutations $a_{1} a_{2} \cdots a_{p} \in \mathfrak{S}_{p}$ of the elements of P

Theorem. A function $f: P \rightarrow[n]$ is order-preserving if and only if it is compatible with some $w \in \mathcal{L}(P)$.

Proof of fundamental theorem

Theorem. A function $f: P \rightarrow[n]$ is order-preserving if and only if it is compatible with some $w \in \mathcal{L}(P)$.

Proof. ("If" part) Clear. In fact, if $w=a_{1} a_{2} \cdots a_{p} \in \mathcal{L}(P)$ and $f\left(a_{1}\right) \leq f\left(a_{2}\right) \leq \cdots \leq f\left(a_{p}\right)$ (no condition on strict inequalities), then f is order-preserving.

"Only if" part of proof

To show: if f is compatible with some $w \notin \mathcal{L}(P)$, then f is not order-preserving.

"Only if" part of proof

To show: if f is compatible with some $w \notin \mathcal{L}(P)$, then f is not order-preserving.

Let $w=a_{1} a_{2} \cdots a_{p}$. Since $w \notin \mathcal{L}(P)$, there exists $i<j$ such that $a_{i}>_{P} a_{j}$. Thus also $a_{i}>_{\mathbb{Z}} a_{j}$. Hence there exists $i \leq k<j$ such that $a_{k}>\mathbb{Z} a_{k+1}$, so $f\left(a_{k}\right)<f\left(a_{k+1}\right)$ (by compatibility).

Now $f\left(a_{i}\right) \leq f\left(a_{i+1}\right) \leq \cdots \leq f\left(a_{j}\right)$ (by compatibility), so $f\left(a_{i}\right)<f\left(a_{j}\right)$. Hence f is not order preserving.

Corollaries to fundamental theorem

$\mathcal{A}_{m}(P):=\{P$-partitions $f: P \rightarrow[m]\}, \# \mathcal{A}_{m}(P)=\Omega_{P}(m)$
Corollary 1. $\mathcal{A}_{m}(P)=\bigcup_{w \in \mathcal{L}(P)} \mathcal{A}_{m}(w)$

Corollaries to fundamental theorem

$\mathcal{A}_{\boldsymbol{m}}(P):=\{P$-partitions $f: P \rightarrow[m]\}, \# \mathcal{A}_{m}(P)=\Omega_{P}(m)$
Corollary 1. $\mathcal{A}_{m}(P)=\bigcup_{w \in \mathcal{L}(P)} \mathcal{A}_{m}(w)$
Corollary 2. $\sum_{m \geq 0} \Omega_{P}(m) x^{m}=\frac{\sum_{w \in \mathcal{L}(P)} x^{1+\operatorname{des}(w)}}{(1-x)^{p+1}}$
Proof. Follows from Corollary 1 and

$$
\sum_{k \geq 0} \# \mathcal{A}_{k+1}(w) x^{k}=\frac{x^{\operatorname{des}(w)}}{(1-x)^{p+1}}
$$

An example

$$
\begin{aligned}
& \text { ~ } \\
& \begin{array}{cc}
w \in \mathcal{L}(P) & \operatorname{des}(w) \\
\hline 1234 & 0 \\
1324 & 1 \\
1342 & 1 \\
3124 & 1 \\
3142 & 2
\end{array} \\
& \sum_{m \geq 0} \Omega_{P}(m) x^{m}=\frac{x+3 x^{2}+x^{3}}{(1-x)^{5}}
\end{aligned}
$$

Eulerian polynomials redux

Note. If P is a P-element antichain, then we get

$$
\sum_{m \geq 0} m^{p} x^{m}=\frac{\sum_{w \in \mathfrak{S}_{p}} x^{1+\operatorname{des}(w)}}{(1-x)^{p+1}}
$$

Eulerian polynomials redux

Note. If P is a P-element antichain, then we get

$$
\sum_{m \geq 0} m^{p} x^{m}=\frac{\sum_{w \in \mathfrak{S}_{p}} x^{1+\operatorname{des}(w)}}{(1-x)^{p+1}}
$$

Equivalent to previous result:

$$
\sum_{m \geq 0}(m+1)^{p} x^{m}=\frac{\sum_{w \in \mathfrak{G}_{p}} x^{\operatorname{des}(w)}}{(1-x)^{p+1}}
$$

Symmetry and real-rootedness

Recall: Eulerian polynomials $A_{n}(x)$ are symmetric (i.e., $\left.x^{n-1} A_{n}(1 / x)=A_{n}(x)\right)$ and have only real roots (or zeros). What about $\boldsymbol{A}_{P}(x):=\sum_{w \in \mathcal{L}(P)} x^{\operatorname{des}(w)}$?

Symmetry and real-rootedness

Recall: Eulerian polynomials $A_{n}(x)$ are symmetric (i.e., $\left.x^{n-1} A_{n}(1 / x)=A_{n}(x)\right)$ and have only real roots (or zeros). What about $\boldsymbol{A}_{P}(x):=\sum_{w \in \mathcal{L}(P)} x^{\operatorname{des}(w)}$?

Note. $A_{P}(x)$ is called the \boldsymbol{P}-Eulerian polynomial. It is independent of choice of natural labeling, since $\Omega_{P}(m)$ has this property.

Symmetry and real-rootedness

Recall: Eulerian polynomials $A_{n}(x)$ are symmetric (i.e., $\left.x^{n-1} A_{n}(1 / x)=A_{n}(x)\right)$ and have only real roots (or zeros). What about $\boldsymbol{A}_{P}(x):=\sum_{w \in \mathcal{L}(P)} x^{\operatorname{des}(w)}$?

Note. $A_{P}(x)$ is called the \boldsymbol{P}-Eulerian polynomial. It is independent of choice of natural labeling, since $\Omega_{P}(m)$ has this property.

Easy consequence of reciprocity:
Theorem. $x^{k} A_{P}(1 / x)=A_{P}(x)$ if and only if every maximal chain of P has $p-k$ elements. In other words, P is graded of rank $p-k-1$.

Unimodality

Let $A_{P}(x)=\sum_{m=0}^{p-1} A(P, m) x^{m}$, so

$$
A(P, m)=\#\{w \in \mathcal{L}(P): \operatorname{des}(w)=m\}
$$

a \boldsymbol{P}-Eulerian number. $A_{P}(x)$ is unimodal if

$$
A(P, 0) \leq A(P, 1) \leq \cdots \leq A(P, j) \geq A(P, j+1) \geq \cdots \geq A(P, p-1)
$$

for some j.

Unimodality

Let $A_{P}(x)=\sum_{m=0}^{p-1} A(P, m) x^{m}$, so

$$
A(P, m)=\#\{w \in \mathcal{L}(P): \operatorname{des}(w)=m\}
$$

a \boldsymbol{P}-Eulerian number. $A_{P}(x)$ is unimodal if

$$
A(P, 0) \leq A(P, 1) \leq \cdots \leq A(P, j) \geq A(P, j+1) \geq \cdots \geq A(P, p-1)
$$

for some j.
Theorem. If P is graded (all maximal chains have the same length) then $A_{P}(x)$ is unimodal.

Unimodality

Let $A_{P}(x)=\sum_{m=0}^{p-1} A(P, m) x^{m}$, so

$$
A(P, m)=\#\{w \in \mathcal{L}(P): \operatorname{des}(w)=m\}
$$

a \boldsymbol{P}-Eulerian number. $A_{P}(x)$ is unimodal if

$$
A(P, 0) \leq A(P, 1) \leq \cdots \leq A(P, j) \geq A(P, j+1) \geq \cdots \geq A(P, p-1)
$$

for some j.
Theorem. If P is graded (all maximal chains have the same length) then $A_{P}(x)$ is unimodal.

Proof \#1 (Reiner-Welker, 2005). Based on g-theorem for simplicial polytopes.

Unimodality

Let $A_{P}(x)=\sum_{m=0}^{p-1} A(P, m) x^{m}$, so

$$
A(P, m)=\#\{w \in \mathcal{L}(P): \operatorname{des}(w)=m\}
$$

a \boldsymbol{P}-Eulerian number. $A_{P}(x)$ is unimodal if

$$
A(P, 0) \leq A(P, 1) \leq \cdots \leq A(P, j) \geq A(P, j+1) \geq \cdots \geq A(P, p-1)
$$

for some j.
Theorem. If P is graded (all maximal chains have the same length) then $A_{P}(x)$ is unimodal.

Proof \#1 (Reiner-Welker, 2005). Based on g-theorem for simplicial polytopes.

Proof \#2 (Brändén, 2004). Beautiful combinatorial argument. See EC1, Exercise 3.173.

Unimodality

Let $A_{P}(x)=\sum_{m=0}^{p-1} A(P, m) x^{m}$, so

$$
A(P, m)=\#\{w \in \mathcal{L}(P): \operatorname{des}(w)=m\}
$$

a \boldsymbol{P}-Eulerian number. $A_{P}(x)$ is unimodal if

$$
A(P, 0) \leq A(P, 1) \leq \cdots \leq A(P, j) \geq A(P, j+1) \geq \cdots \geq A(P, p-1)
$$

for some j.
Theorem. If P is graded (all maximal chains have the same length) then $A_{P}(x)$ is unimodal.

Proof \#1 (Reiner-Welker, 2005). Based on g-theorem for simplicial polytopes.

Proof \#2 (Brändén, 2004). Beautiful combinatorial argument. See EC1, Exercise 3.173.

Is $A_{P}(x)$ always unimodal? Open.

Negger's conjecture

Conjecture (equivalent problem raised by Joseph Neggers, 1978). For any finite poset P, every zero of $A_{P}(x)$ is real.

Negger's conjecture

Conjecture (equivalent problem raised by Joseph Neggers, 1978). For any finite poset P, every zero of $A_{P}(x)$ is real.

More general conjecture by RS (1986) disproved by Petter Brändén, 2004.

Negger's conjecture

Conjecture (equivalent problem raised by Joseph Neggers, 1978). For any finite poset P, every zero of $A_{P}(x)$ is real.

More general conjecture by RS (1986) disproved by Petter Brändén, 2004.

Negger's conjecture disproved by John Stembridge (2007). His smallest counterexample has 17 elements.

Negger's conjecture

Conjecture (equivalent problem raised by Joseph Neggers, 1978). For any finite poset P, every zero of $A_{P}(x)$ is real.

More general conjecture by RS (1986) disproved by Petter Brändén, 2004.

Negger's conjecture disproved by John Stembridge (2007). His smallest counterexample has 17 elements.

Is there a smaller counterexample? A brute force search for 16 elements involves 4483130665195087 posets.

Negger's conjecture

Conjecture (equivalent problem raised by Joseph Neggers, 1978). For any finite poset P, every zero of $A_{P}(x)$ is real.

More general conjecture by RS (1986) disproved by Petter Brändén, 2004.

Negger's conjecture disproved by John Stembridge (2007). His smallest counterexample has 17 elements.

Is there a smaller counterexample? A brute force search for 16 elements involves 4483130665195087 posets.

Note. Let $\boldsymbol{f}(\boldsymbol{n})$ be the number of nonisomorphic n-element posets. Then $f(17)$ is not known. Moreover, $f(n)=2^{\frac{1}{4} n^{2}+o(1)}$.

Good special cases

Rodica Simion (1984) showed that $A_{P}(x)$ has only real zeros if P is a disjoint union of chains.

Good special cases

Rodica Simion (1984) showed that $A_{P}(x)$ has only real zeros if P is a disjoint union of chains.

Some other cases are known.

Good special cases

Rodica Simion (1984) showed that $A_{P}(x)$ has only real zeros if P is a disjoint union of chains.

Some other cases are known.

END OF LECTURE SERIES

Good special cases

Rodica Simion (1984) showed that $A_{P}(x)$ has only real zeros if P is a disjoint union of chains.

Some other cases are known.

END OF LECTURE SERIES

