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Basic notation

N = {0,1,2, . . . }

P = {1,2,3, . . . }

[n] = {1,2, . . . ,n}, for n ∈ N

In particular, [0] = ∅.



Background on Eulerian polynomials

w = a1a2⋯an ∈Sn

descent of w : an index 1 ≤ i ≤ n − 1 such that ai > ai+1

des(w): number of descents of w
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Background on Eulerian polynomials

w = a1a2⋯an ∈Sn

descent of w : an index 1 ≤ i ≤ n − 1 such that ai > ai+1

des(w): number of descents of w

w = 692478513 ∈ S9: des(w) = 3



Eulerian polynomials

Definition. Let n ≥ 1. Define the Eulerian polynomial An(x) by
An(x) = ∑

w∈Sn

xdes(w).



Eulerian polynomials

Definition. Let n ≥ 1. Define the Eulerian polynomial An(x) by
An(x) = ∑

w∈Sn

xdes(w).

Example. n = 3

w des(w)
123 0
213 1
312 1
132 1
231 1
321 2



Eulerian polynomials

Definition. Let n ≥ 1. Define the Eulerian polynomial An(x) by
An(x) = ∑

w∈Sn

xdes(w).

Example. n = 3

w des(w)
123 0
213 1
312 1
132 1
231 1
321 2

⇒ A3(x) = 1 + 4x + x2



Slight alternative definition

Note. Some people define

An(x) = ∑
w∈Sn

x1+des(w).



Eulerian numbers

A1(x) = 1

A2(x) = 1 + x

A3(x) = 1 + 4x + x2

A4(x) = 1 + 11x + 11x2 + x3

A5(x) = 1 + 26x + 66x2 + 26x3 + x4



Eulerian numbers

A1(x) = 1

A2(x) = 1 + x

A3(x) = 1 + 4x + x2

A4(x) = 1 + 11x + 11x2 + x3

A5(x) = 1 + 26x + 66x2 + 26x3 + x4

Define An(x) = n−1

∑
m=0

A(n,m)xm. Call A(n,m) an Eulerian

number (the number of w ∈ Sn with m descents).



Symmetry of Eulerian polynomials

Proposition. xn−1An(1/x) = An(x)
Equivalently, A(n,m) = A(n,n − 1 −m).



Symmetry of Eulerian polynomials

Proposition. xn−1An(1/x) = An(x)
Equivalently, A(n,m) = A(n,n − 1 −m).
Proof. des(a1a2⋯an) = n − 1 − des(an, . . . ,a2,a1)
Note also

des(a1a2⋯an) = n − 1 − des(n + 1 − a1,n + 1 − a2, . . . ,n + 1 − an).



Some generating functions

∑
k≥0

xk =
1

1 − x
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∑
k≥0

xk =
1

1 − x

Apply x d
dx
:

∑
k≥0

(k + 1)xk = 1

(1 − x)2 .



Some generating functions

∑
k≥0

xk =
1

1 − x

Apply x d
dx
:

∑
k≥0

(k + 1)xk = 1

(1 − x)2 .
Apply x d

dx
:

∑
k≥0

(k + 1)2xk =
d

dx

x

(1 − x)2
=

1 + x
(1 − x)3 .



More generating functions

Similarly,

∑
k≥0

(k + 1)3xk =
1 + 4x + x2

(1 − x)4
∑
k≥0

(k + 1)4xk =
1 + 11x + 11x2 + x3

(1 − x)5 ,

etc.



More generating functions

Similarly,

∑
k≥0

(k + 1)3xk =
1 + 4x + x2

(1 − x)4
∑
k≥0

(k + 1)4xk =
1 + 11x + 11x2 + x3

(1 − x)5 ,

etc.

Numerators are the Eulerian polynomials!.



Generating function for (k + 1)n

Theorem (Carlitz-Riordan, 1953, though “essentially” known
earlier). For all n ≥ 1, we have

∑
k≥0

(k + 1)nxk = An(x)(1 − x)n+1 .



Generating function for (k + 1)n

Theorem (Carlitz-Riordan, 1953, though “essentially” known
earlier). For all n ≥ 1, we have

∑
k≥0

(k + 1)nxk = An(x)(1 − x)n+1 .
Naive proof. Induction on n. True for n = 1. Assume for n, i.e.,

∑
k≥0

(k + 1)nxk = An(x)(1 − x)n+1 .
Apply d

dx
x . Get (after some computation)

∑
k≥0

(k + 1)n+1xk = (1 + nx)An(x) + (x − x2)A′n(x)(1 − x)n+2 .



Proof (cont.)

∑
k≥0

(k + 1)n+1xk = (1 + nx)An(x) + (x − x2)A′n(x)(1 − x)n+2 .

Multiply by (1 − x)n+2 and take coefficient of xm. On the
right-hand side we get

A(n,m) + nA(n,m − 1) +mA(n,m) − (m − 1)A(n,m − 1)
= (m + 1)A(n,m) + (n −m + 1)A(n,m − 1).
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To show: this expression equals A(n + 1,m).



Proof (cont.)

∑
k≥0

(k + 1)n+1xk = (1 + nx)An(x) + (x − x2)A′n(x)(1 − x)n+2 .

Multiply by (1 − x)n+2 and take coefficient of xm. On the
right-hand side we get

A(n,m) + nA(n,m − 1) +mA(n,m) − (m − 1)A(n,m − 1)
= (m + 1)A(n,m) + (n −m + 1)A(n,m − 1).

To show: this expression equals A(n + 1,m).
How to get a permutation Sn+1 with m descents by inserting n + 1
into a permutation w = a1a2⋯an ∈ Sn?



Proof (cont.)

(m + 1)A(n,m) + (n −m + 1)A(n,m − 1).

If ai > ai+1, then inserting n + 1 between ai and ai+1 leaves the
number of descents the same, as does inserting n + 1 after an.
To get m descents, we have des(w) = m. This gives

(m + 1)A(n,m) choices.
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To get m descents, we have des(w) = m. This gives

(m + 1)A(n,m) choices.

If ai < ai+1, then inserting n + 1 between ai and ai+1 increases
by one the number of descents, as does inserting n + 1 before
a1. To get m descents, we have des(w) = m − 1. This gives
(n −m + 1)A(n,m − 1) choices.



Proof (cont.)

(m + 1)A(n,m) + (n −m + 1)A(n,m − 1).

If ai > ai+1, then inserting n + 1 between ai and ai+1 leaves the
number of descents the same, as does inserting n + 1 after an.
To get m descents, we have des(w) = m. This gives

(m + 1)A(n,m) choices.

If ai < ai+1, then inserting n + 1 between ai and ai+1 increases
by one the number of descents, as does inserting n + 1 before
a1. To get m descents, we have des(w) = m − 1. This gives
(n −m + 1)A(n,m − 1) choices.

Thus (m + 1)A(n,m) + (n −m + 1)A(n,m − 1) = A(n + 1,m).
The proof follows by induction. ◻



A better proof.

Definition. Let w = a1⋯an ∈ Sn. Define a function
f ∶ [n]→ N = {0,1, . . . } to be w -compatible if the following two
conditions hold:

(a) f (a1) ≤ f (a2) ≤ ⋯ ≤ f (an) (i.e., f is weakly increasing along
w)

(b) f (ai) < f (ai+1) if ai > ai+1 (i.e., f is strictly increasing along
descents)



A better proof.

Definition. Let w = a1⋯an ∈ Sn. Define a function
f ∶ [n]→ N = {0,1, . . . } to be w -compatible if the following two
conditions hold:

(a) f (a1) ≤ f (a2) ≤ ⋯ ≤ f (an) (i.e., f is weakly increasing along
w)

(b) f (ai) < f (ai+1) if ai > ai+1 (i.e., f is strictly increasing along
descents)

Fundamental theorem on descents (P. A. MacMahon). Every
function f ∶ [n]→ N is compatible with a unique w ∈ Sn.
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Fundamental theorem on descents. Every function f ∶ [n]→ N

is compatible with a unique w ∈ Sn.

Proof by example.
i 1 2 3 4 5 6 7 8 9

f (i) 4 1 7 4 8 3 1 8 4

In order for f (a1) ≤ f (a2) ≤ ⋯ ≤ f (an), we must have

w = {2,7},6,{1,4, 9},3, {5,8}.



Proof of fundamental theorem

Fundamental theorem on descents. Every function f ∶ [n]→ N

is compatible with a unique w ∈ Sn.

Proof by example.
i 1 2 3 4 5 6 7 8 9

f (i) 4 1 7 4 8 3 1 8 4

In order for f (a1) ≤ f (a2) ≤ ⋯ ≤ f (an), we must have

w = {2,7},6,{1,4, 9},3, {5,8}.
In order for f (ai) < f (ai+1) if ai < ai+1, we must arrange the sets
on which f is constant in increasing order. Thus

w = 2,7,6,1,4,9, 3, 5, 8. ◻



Number of w -compatible f ∶ [n]→ [m]

Let w ∈ Sn and m ≥ 0.

Am(w): set of all w -compatible functions f ∶ [n]→ [m] (finite set)



Number of w -compatible f ∶ [n]→ [m]

Let w ∈ Sn and m ≥ 0.

Am(w): set of all w -compatible functions f ∶ [n]→ [m] (finite set)

Recall (( a
b
)) denotes the number of b element multisets whose

elements belong to some a-element set. We have (Combinatorics
101) (( a

b
)) = (a+b−1

b
).

Theorem. We have

#Am(w) = (m + n − 1 − des(w)
n

) = ((m − des(w)
n

)) ,
a polynomial in m of degree n. Moreover,

∑
k≥0

#Ak+1(w)xk = xdes(w)

(1 − x)n+1 .



Proof by example

Let w = 2751634. Then #Am(w) =
#{1 ≤ f (2) ≤ f (7) < f (5)´¸¶

−1

< f (1) ≤ f (6)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−2

< f (3) ≤ f (4)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−3=−des(w)

≤ m}
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Let g(2) = f (2),g(7) = f (7),g(5) = f (5) − 1,g(1) = f (1) − 2, etc.
(compression). Thus #Am(w) =
#{1 ≤ g(2) ≤ g(7) ≤ g(5) ≤ g(1) ≤ g(6) ≤ g(3) ≤ g(4) ≤ m − 3}

= ((m − 3
7
)) .



Proof by example

Let w = 2751634. Then #Am(w) =
#{1 ≤ f (2) ≤ f (7) < f (5)´¸¶

−1

< f (1) ≤ f (6)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−2

< f (3) ≤ f (4)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−3=−des(w)

≤ m}

Let g(2) = f (2),g(7) = f (7),g(5) = f (5) − 1,g(1) = f (1) − 2, etc.
(compression). Thus #Am(w) =
#{1 ≤ g(2) ≤ g(7) ≤ g(5) ≤ g(1) ≤ g(6) ≤ g(3) ≤ g(4) ≤ m − 3}

= ((m − 3
7
)) .

In general, #Am(w) = ((m − des(w)
n

)).



To prove: ∑
k≥0

#Ak+1(w)x
k
=

xdes(w)

(1 − x)n+1

Recall (( a
b
)) = (a+b−1

b
). Then

∑
k≥0

#Ak+1(w)xk = ∑
k≥0

((k + 1 − des(w)
n

)) xk

= ∑
k

(k + n − des(w)
n

)xk

= ∑
j

(j + n
j
)x j+des(w) (k = j + des(w))

= xdes(w)∑
j

(−(n + 1)
j
)(−1)jx j

=
xdes(w)

(1 − x)n+1 . ◻



∑k≥0(k + 1)
nxk demystified

Recall

∑
k≥0

(k + 1)nxk = An(x)(1 − x)n+1 .



∑k≥0(k + 1)
nxk demystified

Recall

∑
k≥0

(k + 1)nxk = An(x)(1 − x)n+1 .
[m][n]: set of all f ∶ [n]→ [m]
Since every such f is compatible with a unique w ∈ Sn, we have

[k + 1][n] = ⊍
w∈Sn

Ak+1(w).



∑k≥0(k + 1)
nxk demystified

Recall

∑
k≥0

(k + 1)nxk = An(x)(1 − x)n+1 .
[m][n]: set of all f ∶ [n]→ [m]
Since every such f is compatible with a unique w ∈ Sn, we have

[k + 1][n] = ⊍
w∈Sn

Ak+1(w).
Take cardinality of both sides, multiply by xk , and sum on k ≥ 0:

∑
k≥0

(k + 1)nxn = ∑
w∈Sn

∑
k≥0

#Ak+1(w)xk

=
∑w∈Sn

xdes(w)

(1 − x)n+1 .



Real zeros

Theorem (Frobenius). Every zero (or root) of An(x) is real,
simple and negative.



Real zeros

Theorem (Frobenius). Every zero (or root) of An(x) is real,
simple and negative.

Proof. Note that every real zero is negative since An(x) has
positive coefficients and constant term 1.

Induction on n. True for n = 1. Assume for n. Recall

∑
k≥0

(k + 1)n+1xk = (1 + nx)An(x) + (x − x2)A′n(x)(1 − x)n+2 .

Hence
An+1(x) = (1 + nx)An(x) + (x − x2)A′n(x).

Note. x − x2 < 0 for x < 0.



Interlacing zeros

An+1(x) = (1 + nx)An(x) + (x − x2)A′n(x).
>>

>> A x( )4

+ -

+

+

--

sign of A  x( )5



Newton’s theorem

Theorem (I. Newton). Let

P(x) =
n

∑
j=0

(n
j
)ajx j ∈ R[x].

If every zero of P(x) is real, then a2j ≥ aj−1aj+1.



Newton’s theorem

Theorem (I. Newton). Let

P(x) =
n

∑
j=0

(n
j
)ajx j ∈ R[x].

If every zero of P(x) is real, then a2j ≥ aj−1aj+1.

Note. Write P(x) = ∑bjx
j , so bj = (nj)aj . Then a2j ≥ aj−1aj+1

becomes

b2j ≥ bj−1bj+1 (1 + 1

j
)(1 + 1

n − j
) ,

which is stronger than b2j ≥ bj−1bj+1.



Newton’s theorem

Theorem (I. Newton). Let

P(x) =
n

∑
j=0

(n
j
)ajx j ∈ R[x].

If every zero of P(x) is real, then a2j ≥ aj−1aj+1.

Note. Write P(x) = ∑bjx
j , so bj = (nj)aj . Then a2j ≥ aj−1aj+1

becomes

b2j ≥ bj−1bj+1 (1 + 1

j
)(1 + 1

n − j
) ,

which is stronger than b2j ≥ bj−1bj+1.

Corollary. If each aj > 0 then the sequence a0,a1, . . . ,an (or
b0,b1, . . . ,bn) is unimodal.



Proof of Newton’s theorem

Let D = d
dx
. By Rolle’s theorem, Q(x) = D j−1P(x) has only real

zeros, and thus also R(x) = xn−j+1Q(1/x). Again by Rolle’s
theorem, Dn−j−1R(x) has only real zeros. Easy to compute:

Dn−j−1R(x) = n!

2
(aj−1x2 + 2ajx + aj+1) .

This quadratic polynomial has real zeros if and only if
a2j ≥ aj−1aj+1. ◻



Application to Eulerian polynomials

Recall: An(x) = n−1

∑
m=0

A(n,m)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Eulerian number

xm.

Since An(x) has only real zeros (and has positive coefficients), we
get:

Corollary. The sequence A(n,0),A(n,1), . . . ,A(n,n − 1) is
log-concave, and hence unimodal.



Application to Eulerian polynomials

Recall: An(x) = n−1

∑
m=0

A(n,m)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Eulerian number

xm.

Since An(x) has only real zeros (and has positive coefficients), we
get:

Corollary. The sequence A(n,0),A(n,1), . . . ,A(n,n − 1) is
log-concave, and hence unimodal.

Note. Combinatorial proof due to Bóna and Ehrenborg, 2000.



The order polynomial redux

P: p-element poset

For n ≥ 1, define the order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s ≤P t ⇒ f (s) ≤Z f (t)} .



The order polynomial redux

P: p-element poset

For n ≥ 1, define the order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s ≤P t ⇒ f (s) ≤Z f (t)} .
For n ≥ 1, define the strict order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s <P t ⇒ f (s) <Z f (t)} .



The order polynomial redux

P: p-element poset

For n ≥ 1, define the order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s ≤P t ⇒ f (s) ≤Z f (t)} .
For n ≥ 1, define the strict order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s <P t ⇒ f (s) <Z f (t)} .
Reciprocity for order polynomials. ΩP(n) = (−1)pΩP(−n).



The order polynomial redux

P: p-element poset

For n ≥ 1, define the order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s ≤P t ⇒ f (s) ≤Z f (t)} .
For n ≥ 1, define the strict order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s <P t ⇒ f (s) <Z f (t)} .
Reciprocity for order polynomials. ΩP(n) = (−1)pΩP(−n).
Goal: a nice formula for ∑n≥0ΩP(n)xn = x +⋯.



Reminders

Definition. Let w = a1⋯an ∈ Sn. Define a function
f ∶ [n]→ N = {0,1, . . . } to be w -compatible if the following two
conditions hold:

(a) f (a1) ≥ f (a2) ≥ ⋯ ≥ f (an) (i.e., f is weakly decreasing
along w)

(b) f (ai) > f (ai+1) if ai > ai+1 (i.e., f is strictly decreasing
along descents)

Fundamental theorem on descents. Every function f ∶ [n]→ N

is compatible with a unique w ∈ Sn.



Fundamental theorem on P-partitions

P: a naturally labelled poset on the set [p], i.e., if i <P j then
i <Z j . Equivalently, the permutation 12⋯p is a linear extension of
P .

P-partition: an order-preserving map f ∶P → N, i.e.,
i ≤P j ⇒ f (i) ≤Z f (j).
L(P): set of linear extensions of P , regarded as permutations
a1a2⋯ap ∈ Sp of the elements of P

Theorem. A function f ∶P → [n] is order-preserving if and only if
it is compatible with some w ∈ L(P).



Proof of fundamental theorem

Theorem. A function f ∶P → [n] is order-preserving if and only if
it is compatible with some w ∈ L(P).
Proof. (“If” part) Clear. In fact, if w = a1a2⋯ap ∈ L(P) and
f (a1) ≤ f (a2) ≤ ⋯ ≤ f (ap) (no condition on strict inequalities),
then f is order-preserving.



“Only if” part of proof

To show: if f is compatible with some w /∈ L(P), then f is not
order-preserving.



“Only if” part of proof

To show: if f is compatible with some w /∈ L(P), then f is not
order-preserving.

Let w = a1a2⋯ap. Since w /∈ L(P), there exists i < j such that
ai >P aj . Thus also ai >Z aj . Hence there exists i ≤ k < j such that
ak >Z ak+1, so f (ak) < f (ak+1) (by compatibility).

Now f (ai) ≤ f (ai+1) ≤ ⋯ ≤ f (aj) (by compatibility), so
f (ai) < f (aj). Hence f is not order preserving. ◻



Corollaries to fundamental theorem

Am(P) ∶= {P-partitions f ∶P → [m]}, #Am(P) = ΩP(m)
Corollary 1. Am(P) = ⊍

w∈L(P)

Am(w)



Corollaries to fundamental theorem

Am(P) ∶= {P-partitions f ∶P → [m]}, #Am(P) = ΩP(m)
Corollary 1. Am(P) = ⊍

w∈L(P)

Am(w)

Corollary 2. ∑
m≥0

ΩP(m)xm = ∑w∈L(P) x
1+des(w)

(1 − x)p+1
Proof. Follows from Corollary 1 and

∑
k≥0

#Ak+1(w)xk = xdes(w)

(1 − x)p+1 .



An example

1

2

3

4

w ∈ L(P) des(w)
1 2 3 4 0
1 3 2 4 1
1 3 4 2 1
3 1 2 4 1
3 1 4 2 2

∑
m≥0

ΩP(m)xm = x + 3x2 + x3

(1 − x)5



Eulerian polynomials redux

Note. If P is a P-element antichain, then we get

∑
m≥0

mpxm =
∑w∈Sp

x1+des(w)

(1 − x)p+1 .



Eulerian polynomials redux

Note. If P is a P-element antichain, then we get

∑
m≥0

mpxm =
∑w∈Sp

x1+des(w)

(1 − x)p+1 .

Equivalent to previous result:

∑
m≥0

(m + 1)pxm = ∑w∈Sp
xdes(w)

(1 − x)p+1 .



Symmetry and real-rootedness

Recall: Eulerian polynomials An(x) are symmetric (i.e.,
xn−1An(1/x) = An(x)) and have only real roots (or zeros). What
about AP(x) ∶= ∑w∈L(P) x

des(w)?



Symmetry and real-rootedness

Recall: Eulerian polynomials An(x) are symmetric (i.e.,
xn−1An(1/x) = An(x)) and have only real roots (or zeros). What
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Recall: Eulerian polynomials An(x) are symmetric (i.e.,
xn−1An(1/x) = An(x)) and have only real roots (or zeros). What
about AP(x) ∶= ∑w∈L(P) x

des(w)?

Note. AP(x) is called the P-Eulerian polynomial. It is
independent of choice of natural labeling, since ΩP(m) has this
property.

Easy consequence of reciprocity:

Theorem. xkAP(1/x) = AP(x) if and only if every maximal chain
of P has p − k elements. In other words, P is graded of rank
p − k − 1.
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Is AP(x) always unimodal? Open.



Negger’s conjecture

Conjecture (equivalent problem raised by Joseph Neggers,
1978). For any finite poset P , every zero of AP(x) is real.



Negger’s conjecture

Conjecture (equivalent problem raised by Joseph Neggers,
1978). For any finite poset P , every zero of AP(x) is real.
More general conjecture by RS (1986) disproved by Petter
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Negger’s conjecture

Conjecture (equivalent problem raised by Joseph Neggers,
1978). For any finite poset P , every zero of AP(x) is real.
More general conjecture by RS (1986) disproved by Petter
Brändén, 2004.

Negger’s conjecture disproved by John Stembridge (2007). His
smallest counterexample has 17 elements.

Is there a smaller counterexample? A brute force search for 16
elements involves 4483130665195087 posets.

Note. Let f (n) be the number of nonisomorphic n-element

posets. Then f (17) is not known. Moreover, f (n) = 2 1

4
n2+o(1).
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