Order Polynomials

March 31, 2021

Slides available at: www-math.mit.edu/~rstan/transparencies/ordpoly.pdf

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

### **Basic notation**

$$\mathbb{N} = \{0, 1, 2, \dots\}$$
$$\mathbb{P} = \{1, 2, 3, \dots\}$$
$$[n] = \{1, 2, \dots, n\}, \text{ for } n \in \mathbb{N}$$

In particular,  $[0] = \emptyset$ .

### **Background on Eulerian polynomials**

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

**descent** of *w*: an index  $1 \le i \le n-1$  such that  $a_i > a_{i+1}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

des(w): number of descents of w

### **Background on Eulerian polynomials**

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

**descent** of *w*: an index  $1 \le i \le n-1$  such that  $a_i > a_{i+1}$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

des(w): number of descents of w

 $w = 692478513 \in \mathfrak{S}_9$ 

### **Background on Eulerian polynomials**

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

**descent** of *w*: an index  $1 \le i \le n-1$  such that  $a_i > a_{i+1}$ 

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

des(w): number of descents of w

 $w = 692478513 \in \mathfrak{S}_9$ : des(w) = 3

## **Eulerian polynomials**

**Definition.** Let  $n \ge 1$ . Define the **Eulerian polynomial**  $A_n(x)$  by

$$\boldsymbol{A_n(x)} = \sum_{w \in \mathfrak{S}_n} x^{\operatorname{des}(w)}.$$

### **Eulerian polynomials**

**Definition.** Let  $n \ge 1$ . Define the **Eulerian polynomial**  $A_n(x)$  by

$$\boldsymbol{A_n(\boldsymbol{x})} = \sum_{\boldsymbol{w}\in\mathfrak{S}_n} \boldsymbol{x}^{\operatorname{des}(\boldsymbol{w})}.$$

**Example.** n = 3

| W                  | $\operatorname{des}(w)$ |
|--------------------|-------------------------|
| 123                | 0                       |
| <mark>2</mark> 13  | 1                       |
| <mark>3</mark> 12  | 1                       |
| 1 <mark>3</mark> 2 | 1                       |
| 2 <mark>3</mark> 1 | 1                       |
| 321                | 2                       |

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

### **Eulerian polynomials**

**Definition.** Let  $n \ge 1$ . Define the **Eulerian polynomial**  $A_n(x)$  by

$$\boldsymbol{A_n(\boldsymbol{x})} = \sum_{\boldsymbol{w}\in\mathfrak{S}_n} \boldsymbol{x}^{\operatorname{des}(\boldsymbol{w})}.$$

**Example.** n = 3

| W                  | $\operatorname{des}(w)$ |
|--------------------|-------------------------|
| 123                | 0                       |
| <mark>2</mark> 13  | 1                       |
| <mark>3</mark> 12  | 1                       |
| 1 <mark>3</mark> 2 | 1                       |
| 2 <mark>3</mark> 1 | 1                       |
| 321                | 2                       |

$$\Rightarrow A_3(x) = 1 + 4x + x^2$$

### Slight alternative definition

Note. Some people define

$$A_n(x) = \sum_{w \in \mathfrak{S}_n} x^{1 + \operatorname{des}(w)}.$$

# **Eulerian numbers**

$$A_{1}(x) = 1$$

$$A_{2}(x) = 1 + x$$

$$A_{3}(x) = 1 + 4x + x^{2}$$

$$A_{4}(x) = 1 + 11x + 11x^{2} + x^{3}$$

$$A_{5}(x) = 1 + 26x + 66x^{2} + 26x^{3} + x^{4}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### **Eulerian numbers**

$$A_{1}(x) = 1$$

$$A_{2}(x) = 1 + x$$

$$A_{3}(x) = 1 + 4x + x^{2}$$

$$A_{4}(x) = 1 + 11x + 11x^{2} + x^{3}$$

$$A_{5}(x) = 1 + 26x + 66x^{2} + 26x^{3} + x^{4}$$

Define  $A_n(x) = \sum_{m=0}^{n-1} A(n, m) x^m$ . Call A(n, m) an Eulerian number (the number of  $w \in \mathfrak{S}_n$  with *m* descents).

### Symmetry of Eulerian polynomials

**Proposition.**  $x^{n-1}A_n(1/x) = A_n(x)$ 

Equivalently, A(n,m) = A(n,n-1-m).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

### Symmetry of Eulerian polynomials

**Proposition.**  $x^{n-1}A_n(1/x) = A_n(x)$ 

Equivalently, A(n,m) = A(n,n-1-m).

**Proof.** des $(a_1a_2\cdots a_n) = n - 1 - des(a_n, \dots, a_2, a_1)$ 

Note also

 $des(a_1a_2\cdots a_n) = n - 1 - des(n + 1 - a_1, n + 1 - a_2, \dots, n + 1 - a_n).$ 

Some generating functions

$$\sum_{k\geq 0} x^k = \frac{1}{1-x}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Some generating functions

$$\sum_{k\geq 0} x^k = \frac{1}{1-x}$$

Apply 
$$x \frac{d}{dx}$$
:

$$\sum_{k\geq 0} (k+1)x^k = \frac{1}{(1-x)^2}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## Some generating functions

$$\sum_{k\geq 0} x^{k} = \frac{1}{1-x}$$
Apply  $x\frac{d}{dx}$ :
$$\sum_{k\geq 0} (k+1)x^{k} = \frac{1}{(1-x)^{2}}.$$
Apply  $x\frac{d}{dx}$ :

$$\sum_{k\geq 0} (k+1)^2 x^k = \frac{d}{dx} \frac{x}{(1-x)^2}$$
$$= \frac{1+x}{(1-x)^3}.$$

1

▲□▶▲御▶★臣▶★臣▶ 臣 の�?

## More generating functions

#### Similarly,

$$\sum_{k\geq 0} (k+1)^3 x^k = \frac{1+4x+x^2}{(1-x)^4}$$
$$\sum_{k\geq 0} (k+1)^4 x^k = \frac{1+11x+11x^2+x^3}{(1-x)^5},$$

etc.

### More generating functions

#### Similarly,

$$\sum_{k\geq 0} (k+1)^3 x^k = \frac{1+4x+x^2}{(1-x)^4}$$
$$\sum_{k\geq 0} (k+1)^4 x^k = \frac{1+11x+11x^2+x^3}{(1-x)^5},$$

etc.

Numerators are the Eulerian polynomials!.

### Generating function for $(k+1)^n$

**Theorem (Carlitz-Riordan**, 1953, though "essentially" known earlier). For all  $n \ge 1$ , we have

$$\sum_{k\geq 0} (k+1)^n x^k = \frac{A_n(x)}{(1-x)^{n+1}}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

### Generating function for $(k+1)^n$

**Theorem (Carlitz-Riordan**, 1953, though "essentially" known earlier). For all  $n \ge 1$ , we have

$$\sum_{k\geq 0} (k+1)^n x^k = \frac{A_n(x)}{(1-x)^{n+1}}$$

**Naive proof.** Induction on *n*. True for n = 1. Assume for *n*, i.e.,

$$\sum_{k\geq 0} (k+1)^n x^k = \frac{A_n(x)}{(1-x)^{n+1}}$$

Apply  $\frac{d}{dx}x$ . Get (after some computation)

$$\sum_{k\geq 0} (k+1)^{n+1} x^k = \frac{(1+nx)A_n(x) + (x-x^2)A'_n(x)}{(1-x)^{n+2}}$$

$$\sum_{k\geq 0} (k+1)^{n+1} x^k = \frac{(1+nx)A_n(x) + (x-x^2)A'_n(x)}{(1-x)^{n+2}}$$

.

Multiply by  $(1-x)^{n+2}$  and take coefficient of  $x^m$ . On the right-hand side we get

$$A(n,m) + nA(n,m-1) + mA(n,m) - (m-1)A(n,m-1)$$
  
= (m+1)A(n,m) + (n-m+1)A(n,m-1).

$$\sum_{k\geq 0} (k+1)^{n+1} x^k = \frac{(1+nx)A_n(x) + (x-x^2)A_n'(x)}{(1-x)^{n+2}}$$

Multiply by  $(1-x)^{n+2}$  and take coefficient of  $x^m$ . On the right-hand side we get

$$A(n,m) + nA(n,m-1) + mA(n,m) - (m-1)A(n,m-1)$$
  
= (m+1)A(n,m) + (n-m+1)A(n,m-1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

**To show:** this expression equals A(n+1, m).

$$\sum_{k\geq 0} (k+1)^{n+1} x^k = \frac{(1+nx)A_n(x) + (x-x^2)A_n'(x)}{(1-x)^{n+2}}$$

Multiply by  $(1-x)^{n+2}$  and take coefficient of  $x^m$ . On the right-hand side we get

$$A(n,m) + nA(n,m-1) + mA(n,m) - (m-1)A(n,m-1)$$
  
= (m+1)A(n,m) + (n-m+1)A(n,m-1).

**To show:** this expression equals A(n+1, m).

How to get a permutation  $\mathfrak{S}_{n+1}$  with *m* descents by inserting n+1 into a permutation  $w = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ ?

$$(m+1)A(n,m) + (n-m+1)A(n,m-1).$$

If a<sub>i</sub> > a<sub>i+1</sub>, then inserting n + 1 between a<sub>i</sub> and a<sub>i+1</sub> leaves the number of descents the same, as does inserting n + 1 after a<sub>n</sub>. To get m descents, we have des(w) = m. This gives
 (m+1)A(n,m) choices.

$$(m+1)A(n,m) + (n-m+1)A(n,m-1).$$

- If a<sub>i</sub> > a<sub>i+1</sub>, then inserting n + 1 between a<sub>i</sub> and a<sub>i+1</sub> leaves the number of descents the same, as does inserting n + 1 after a<sub>n</sub>. To get m descents, we have des(w) = m. This gives
   (m+1)A(n,m) choices.
- If a<sub>i</sub> < a<sub>i+1</sub>, then inserting n + 1 between a<sub>i</sub> and a<sub>i+1</sub> increases by one the number of descents, as does inserting n + 1 before a<sub>1</sub>. To get m descents, we have des(w) = m − 1. This gives (n − m + 1)A(n, m − 1) choices.

$$(m+1)A(n,m) + (n-m+1)A(n,m-1).$$

- If a<sub>i</sub> > a<sub>i+1</sub>, then inserting n + 1 between a<sub>i</sub> and a<sub>i+1</sub> leaves the number of descents the same, as does inserting n + 1 after a<sub>n</sub>. To get m descents, we have des(w) = m. This gives
   (m+1)A(n,m) choices.
- If a<sub>i</sub> < a<sub>i+1</sub>, then inserting n + 1 between a<sub>i</sub> and a<sub>i+1</sub> increases by one the number of descents, as does inserting n + 1 before a<sub>1</sub>. To get m descents, we have des(w) = m − 1. This gives (n − m + 1)A(n, m − 1) choices.

Thus (m+1)A(n,m) + (n-m+1)A(n,m-1) = A(n+1,m). The proof follows by induction.  $\Box$ 

### A better proof.

**Definition.** Let  $\mathbf{w} = a_1 \cdots a_n \in \mathfrak{S}_n$ . Define a function  $\mathbf{f}: [n] \to \mathbb{N} = \{0, 1, ...\}$  to be *w***-compatible** if the following two conditions hold:

- (a)  $f(a_1) \le f(a_2) \le \dots \le f(a_n)$  (i.e., f is weakly increasing along w)
- (b) f(a<sub>i</sub>) < f(a<sub>i+1</sub>) if a<sub>i</sub> > a<sub>i+1</sub> (i.e., f is strictly increasing along descents)

### A better proof.

**Definition.** Let  $\mathbf{w} = a_1 \cdots a_n \in \mathfrak{S}_n$ . Define a function  $\mathbf{f}: [n] \to \mathbb{N} = \{0, 1, ...\}$  to be *w***-compatible** if the following two conditions hold:

- (a)  $f(a_1) \le f(a_2) \le \dots \le f(a_n)$  (i.e., f is weakly increasing along w)
- (b) f(a<sub>i</sub>) < f(a<sub>i+1</sub>) if a<sub>i</sub> > a<sub>i+1</sub> (i.e., f is strictly increasing along descents)

**Fundamental theorem on descents (P. A. MacMahon)**. Every function  $f : [n] \rightarrow \mathbb{N}$  is compatible with a unique  $w \in \mathfrak{S}_n$ .

### **Proof of fundamental theorem**

**Fundamental theorem on descents.** Every function  $f : [n] \rightarrow \mathbb{N}$  is compatible with a unique  $w \in \mathfrak{S}_n$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

#### **Proof of fundamental theorem**

**Fundamental theorem on descents.** Every function  $f : [n] \rightarrow \mathbb{N}$  is compatible with a unique  $w \in \mathfrak{S}_n$ .

In order for  $f(a_1) \leq f(a_2) \leq \cdots \leq f(a_n)$ , we must have

 $w = \{2,7\}, 6, \{1,4,9\}, 3, \{5,8\}.$ 

#### Proof of fundamental theorem

**Fundamental theorem on descents.** Every function  $f : [n] \rightarrow \mathbb{N}$  is compatible with a unique  $w \in \mathfrak{S}_n$ .

Proof by example. 
$$\frac{i}{f(i)}$$
  $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline f(i) & 4 & 1 & 7 & 4 & 8 & 3 & 1 & 8 & 4 \\ \end{pmatrix}$ 

In order for  $f(a_1) \leq f(a_2) \leq \cdots \leq f(a_n)$ , we must have

 $w = \{2,7\}, 6, \{1,4,9\}, 3, \{5,8\}.$ 

In order for  $f(a_i) < f(a_{i+1})$  if  $a_i < a_{i+1}$ , we must arrange the sets on which f is constant in increasing order. Thus

$$w = 2, 7, 6, 1, 4, 9, 3, 5, 8.$$

## Number of *w*-compatible $f:[n] \rightarrow [m]$

Let  $w \in \mathfrak{S}_n$  and  $m \ge 0$ .

 $\mathcal{A}_m(w)$ : set of all w-compatible functions  $f:[n] \rightarrow [m]$  (finite set)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

### Number of *w*-compatible $f:[n] \rightarrow [m]$

Let  $w \in \mathfrak{S}_n$  and  $m \ge 0$ .

 $\mathcal{A}_m(w)$ : set of all w-compatible functions  $f:[n] \to [m]$  (finite set)

Recall  $\binom{a}{b}$  denotes the number of *b* element multisets whose elements belong to some *a*-element set. We have (Combinatorics 101)  $\binom{a}{b} = \binom{a+b-1}{b}$ .

Theorem. We have

$$\#\mathcal{A}_m(w) = \binom{m+n-1-\operatorname{des}(w)}{n} = \binom{m-\operatorname{des}(w)}{n},$$

a polynomial in m of degree n. Moreover,

$$\sum_{k\geq 0} \#\mathcal{A}_{k+1}(w) x^k = \frac{x^{\operatorname{des}(w)}}{(1-x)^{n+1}}.$$

#### **Proof by example**

Let w = 2751634. Then  $\#\mathcal{A}_m(w) =$  $\#\{1 \le f(2) \le f(7) < \underbrace{f(5)}_{-1} < \underbrace{f(1) \le f(6)}_{-2} < \underbrace{f(3) \le f(4)}_{-3 = -\operatorname{des}(w)} \le m\}$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### **Proof by example**

Let w = 2751634. Then  $\#A_m(w) =$ 

$$\#\{1 \le f(2) \le f(7) < \underbrace{f(5)}_{-1} < \underbrace{f(1) \le f(6)}_{-2} < \underbrace{f(3) \le f(4)}_{-3 = -\operatorname{des}(w)} \le m\}$$

Let g(2) = f(2), g(7) = f(7), g(5) = f(5) - 1, g(1) = f(1) - 2, etc. (compression). Thus  $\#A_m(w) =$ 

$$\# \{ 1 \le g(2) \le g(7) \le g(5) \le g(1) \le g(6) \le g(3) \le g(4) \le m - 3 \}$$
$$= \left( \binom{m-3}{7} \right).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

#### **Proof by example**

Let w = 2751634. Then  $\#A_m(w) =$ 

$$\#\{1 \le f(2) \le f(7) < \underbrace{f(5)}_{-1} < \underbrace{f(1) \le f(6)}_{-2} < \underbrace{f(3) \le f(4)}_{-3=-\operatorname{des}(w)} \le m\}$$

Let g(2) = f(2), g(7) = f(7), g(5) = f(5) - 1, g(1) = f(1) - 2, etc. (compression). Thus  $\#A_m(w) =$ 

$$\#\{1 \le g(2) \le g(7) \le g(5) \le g(1) \le g(6) \le g(3) \le g(4) \le m-3\}$$
$$= \left(\binom{m-3}{7}\right).$$
In general, 
$$\#\mathcal{A}_m(w) = \left(\binom{m-\operatorname{des}(w)}{n}\right).$$

To prove: 
$$\sum_{k\geq 0} \# \mathcal{A}_{k+1}(w) x^k = \frac{x^{\operatorname{des}(w)}}{(1-x)^{n+1}}$$

Recall  $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+b-1 \\ b \end{pmatrix}$ . Then  $\sum_{k\geq 0} \#\mathcal{A}_{k+1}(w) x^k = \sum_{k>0} \left( \binom{k+1-\operatorname{des}(w)}{n} \right) x^k$  $= \sum_{k} \binom{k+n-\operatorname{des}(w)}{n} x^{k}$  $= \sum_{i} {\binom{j+n}{i}} x^{j+\operatorname{des}(w)} \quad (k=j+\operatorname{des}(w))$  $= x^{\operatorname{des}(w)} \sum_{i} \binom{-(n+1)}{j} (-1)^{j} x^{j}$  $= \frac{x^{\operatorname{des}(w)}}{(1-x)^{n+1}}. \quad \Box$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

# $\sum_{k\geq 0} (k+1)^n x^k$ demystified

Recall

$$\sum_{k\geq 0} (k+1)^n x^k = \frac{A_n(x)}{(1-x)^{n+1}}.$$

# $\sum_{k\geq 0} (k+1)^n x^k$ demystified

Recall

$$\sum_{k\geq 0} (k+1)^n x^k = \frac{A_n(x)}{(1-x)^{n+1}}.$$

 $[m]^{[n]}$ : set of all  $f:[n] \to [m]$ 

Since every such f is compatible with a unique  $w \in \mathfrak{S}_n$ , we have

$$[k+1]^{[n]} = \bigcup_{w \in \mathfrak{S}_n} \mathcal{A}_{k+1}(w).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# $\sum_{k\geq 0} (k+1)^n x^k$ demystified

Recall

$$\sum_{k\geq 0} (k+1)^n x^k = \frac{A_n(x)}{(1-x)^{n+1}}.$$

 $[m]^{[n]}$ : set of all  $f:[n] \to [m]$ 

Since every such f is compatible with a unique  $w \in \mathfrak{S}_n$ , we have

$$[k+1]^{[n]} = \bigcup_{w \in \mathfrak{S}_n} \mathcal{A}_{k+1}(w).$$

Take cardinality of both sides, multiply by  $x^k$ , and sum on  $k \ge 0$ :

$$\sum_{k\geq 0} (k+1)^n x^n = \sum_{w\in\mathfrak{S}_n} \sum_{k\geq 0} \#\mathcal{A}_{k+1}(w) x^k$$
$$= \frac{\sum_{w\in\mathfrak{S}_n} x^{\operatorname{des}(w)}}{(1-x)^{n+1}}.$$

#### **Real zeros**

**Theorem (Frobenius)**. Every zero (or root) of  $A_n(x)$  is real, simple and negative.

**Theorem (Frobenius)**. Every zero (or root) of  $A_n(x)$  is real, simple and negative.

**Proof.** Note that every real zero is negative since  $A_n(x)$  has positive coefficients and constant term 1.

Induction on n. True for n = 1. Assume for n. Recall

$$\sum_{k\geq 0} (k+1)^{n+1} x^k = \frac{(1+nx)A_n(x) + (x-x^2)A'_n(x)}{(1-x)^{n+2}}$$

Hence

$$A_{n+1}(x) = (1 + nx)A_n(x) + (x - x^2)A'_n(x).$$

NOTE.  $x - x^2 < 0$  for x < 0.

### **Interlacing zeros**



#### Newton's theorem

Theorem (I. Newton). Let

$$\mathbf{P}(\mathbf{x}) = \sum_{j=0}^{n} \binom{n}{j} a_{j} x^{j} \in \mathbb{R}[x].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

If every zero of P(x) is real, then  $a_j^2 \ge a_{j-1}a_{j+1}$ .

#### Newton's theorem

Theorem (I. Newton). Let

$$\mathbf{P}(\mathbf{x}) = \sum_{j=0}^{n} {n \choose j} a_j x^j \in \mathbb{R}[x].$$

If every zero of P(x) is real, then  $a_j^2 \ge a_{j-1}a_{j+1}$ .

**Note.** Write  $P(x) = \sum b_j x^j$ , so  $b_j = {n \choose j} a_j$ . Then  $a_j^2 \ge a_{j-1}a_{j+1}$  becomes

$$b_j^2 \ge b_{j-1}b_{j+1}\left(1+\frac{1}{j}\right)\left(1+\frac{1}{n-j}\right),$$

which is stronger than  $b_j^2 \ge b_{j-1}b_{j+1}$ .

#### Newton's theorem

Theorem (I. Newton). Let

$$\mathbf{P}(\mathbf{x}) = \sum_{j=0}^{n} {n \choose j} a_j x^j \in \mathbb{R}[x].$$

If every zero of P(x) is real, then  $a_j^2 \ge a_{j-1}a_{j+1}$ .

**Note.** Write  $P(x) = \sum b_j x^j$ , so  $b_j = {n \choose j} a_j$ . Then  $a_j^2 \ge a_{j-1} a_{j+1}$  becomes

$$b_j^2 \ge b_{j-1}b_{j+1}\left(1+\frac{1}{j}\right)\left(1+\frac{1}{n-j}\right),$$

which is stronger than  $b_j^2 \ge b_{j-1}b_{j+1}$ .

**Corollary.** If each  $a_j > 0$  then the sequence  $a_0, a_1, \ldots, a_n$  (or  $b_0, b_1, \ldots, b_n$ ) is unimodal.

#### Proof of Newton's theorem

Let  $D = \frac{d}{dx}$ . By Rolle's theorem,  $Q(x) = D^{j-1}P(x)$  has only real zeros, and thus also  $R(x) = x^{n-j+1}Q(1/x)$ . Again by Rolle's theorem,  $D^{n-j-1}R(x)$  has only real zeros. Easy to compute:

$$D^{n-j-1}R(x) = \frac{n!}{2} \left( a_{j-1}x^2 + 2a_jx + a_{j+1} \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This quadratic polynomial has real zeros if and only if  $a_j^2 \ge a_{j-1}a_{j+1}$ .  $\Box$ 

# **Application to Eulerian polynomials**

Recall: 
$$A_n(x) = \sum_{m=0}^{n-1} \underbrace{A(n,m)}_{\text{Eulerian number}} x^m$$
.

Since  $A_n(x)$  has only real zeros (and has positive coefficients), we get:

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

**Corollary.** The sequence  $A(n,0), A(n,1), \ldots, A(n,n-1)$  is log-concave, and hence unimodal.

# **Application to Eulerian polynomials**

Recall: 
$$A_n(x) = \sum_{m=0}^{n-1} \underbrace{A(n,m)}_{\text{Eulerian number}} x^m$$
.

Since  $A_n(x)$  has only real zeros (and has positive coefficients), we get:

**Corollary.** The sequence  $A(n,0), A(n,1), \ldots, A(n,n-1)$  is log-concave, and hence unimodal.

Note. Combinatorial proof due to Bóna and Ehrenborg, 2000.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

**P**: *p*-element poset

For  $n \ge 1$ , define the order polynomial  $\Omega_P(n)$  of P by

$$\Omega_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s \leq_P t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t) \right\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

**P**: *p*-element poset

For  $n \ge 1$ , define the order polynomial  $\Omega_P(n)$  of P by

$$\Omega_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s \leq_P t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t) \right\}.$$

For  $n \ge 1$ , define the strict order polynomial  $\overline{\Omega}_{P}(n)$  of P by

$$\overline{\Omega}_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t) \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

**P**: *p*-element poset

For  $n \ge 1$ , define the order polynomial  $\Omega_P(n)$  of P by

$$\Omega_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s \leq_P t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t) \right\}.$$

For  $n \ge 1$ , define the strict order polynomial  $\overline{\Omega}_{P}(n)$  of P by

$$\overline{\Omega}_{P}(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s <_{P} t \Rightarrow f(s) <_{\mathbb{Z}} f(t) \right\}.$$

**Reciprocity for order polynomials.**  $\overline{\Omega}_{P}(n) = (-1)^{p} \Omega_{P}(-n)$ .

**P**: *p*-element poset

For  $n \ge 1$ , define the order polynomial  $\Omega_P(n)$  of P by

$$\Omega_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s \leq_P t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t) \right\}.$$

For  $n \ge 1$ , define the strict order polynomial  $\overline{\Omega}_{P}(n)$  of P by

$$\overline{\Omega}_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t) \right\}.$$

**Reciprocity for order polynomials.**  $\overline{\Omega}_{P}(n) = (-1)^{p} \Omega_{P}(-n)$ .

**Goal:** a nice formula for  $\sum_{n\geq 0} \Omega_P(n) x^n = x + \cdots$ .

#### Reminders

**Definition.** Let  $w = a_1 \cdots a_n \in \mathfrak{S}_n$ . Define a function  $f: [n] \to \mathbb{N} = \{0, 1, ...\}$  to be *w*-compatible if the following two conditions hold:

- (a)  $f(a_1) \ge f(a_2) \ge \cdots \ge f(a_n)$  (i.e., f is weakly decreasing along w)
- (b) f(a<sub>i</sub>) > f(a<sub>i+1</sub>) if a<sub>i</sub> > a<sub>i+1</sub> (i.e., f is strictly decreasing along descents)

**Fundamental theorem on descents.** Every function  $f : [n] \rightarrow \mathbb{N}$  is compatible with a unique  $w \in \mathfrak{S}_n$ .

#### Fundamental theorem on *P*-partitions

**P**: a **naturally labelled** poset on the set [p], i.e., if  $i <_P j$  then  $i <_{\mathbb{Z}} j$ . Equivalently, the permutation  $12\cdots p$  is a linear extension of P.

**P-partition**: an order-preserving map  $f: P \to \mathbb{N}$ , i.e.,  $i \leq_P j \Rightarrow f(i) \leq_{\mathbb{Z}} f(j)$ .

 $\mathcal{L}(P)$ : set of linear extensions of P, regarded as permutations  $a_1a_2\cdots a_p \in \mathfrak{S}_p$  of the elements of P

**Theorem.** A function  $f: P \rightarrow [n]$  is order-preserving if and only if it is compatible with some  $w \in \mathcal{L}(P)$ .

# Proof of fundamental theorem

**Theorem.** A function  $f: P \rightarrow [n]$  is order-preserving if and only if it is compatible with some  $w \in \mathcal{L}(P)$ .

**Proof.** ("If" part) Clear. In fact, if  $w = a_1a_2\cdots a_p \in \mathcal{L}(P)$  and  $f(a_1) \leq f(a_2) \leq \cdots \leq f(a_p)$  (no condition on strict inequalities), then f is order-preserving.

"Only if" part of proof

**To show:** if f is compatible with some  $w \notin \mathcal{L}(P)$ , then f is not order-preserving.

# "Only if" part of proof

**To show:** if f is compatible with some  $w \notin \mathcal{L}(P)$ , then f is not order-preserving.

Let  $w = a_1 a_2 \cdots a_p$ . Since  $w \notin \mathcal{L}(P)$ , there exists i < j such that  $a_i >_P a_j$ . Thus also  $a_i >_{\mathbb{Z}} a_j$ . Hence there exists  $i \le k < j$  such that  $a_k >_{\mathbb{Z}} a_{k+1}$ , so  $f(a_k) < f(a_{k+1})$  (by compatibility).

Now  $f(a_i) \le f(a_{i+1}) \le \dots \le f(a_j)$  (by compatibility), so  $f(a_i) < f(a_j)$ . Hence f is not order preserving.  $\Box$ 

# **Corollaries to fundamental theorem**

$$\mathcal{A}_m(P) \coloneqq \{P \text{-partitions } f \colon P \to [m]\}, \ \#\mathcal{A}_m(P) = \Omega_P(m)$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

**Corollary 1.** 
$$\mathcal{A}_m(P) = \bigcup_{w \in \mathcal{L}(P)} \mathcal{A}_m(w)$$

# **Corollaries to fundamental theorem**

$$\mathcal{A}_m(P) \coloneqq \{P \text{-partitions } f \colon P \to [m]\}, \ \#\mathcal{A}_m(P) = \Omega_P(m)$$

**Corollary 1.** 
$$\mathcal{A}_m(P) = \bigcup_{w \in \mathcal{L}(P)} \mathcal{A}_m(w)$$

Corollary 2. 
$$\sum_{m\geq 0} \Omega_P(m) x^m = \frac{\sum_{w\in \mathcal{L}(P)} x^{1+\operatorname{des}(w)}}{(1-x)^{p+1}}$$

Proof. Follows from Corollary 1 and

$$\sum_{k\geq 0} \#\mathcal{A}_{k+1}(w) x^k = \frac{x^{\mathrm{des}(w)}}{(1-x)^{p+1}}$$

#### An example



$$\sum_{m \ge 0} \Omega_P(m) x^m = \frac{x + 3x^2 + x^3}{(1 - x)^5}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

#### **Eulerian polynomials redux**

Note. If P is a P-element antichain, then we get

$$\sum_{m \ge 0} m^p x^m = \frac{\sum_{w \in \mathfrak{S}_p} x^{1 + \operatorname{des}(w)}}{(1 - x)^{p + 1}}.$$

#### **Eulerian polynomials redux**

Note. If P is a P-element antichain, then we get

$$\sum_{m\geq 0} m^p x^m = \frac{\sum_{w\in\mathfrak{S}_p} x^{1+\operatorname{des}(w)}}{(1-x)^{p+1}}.$$

Equivalent to previous result:

$$\sum_{m\geq 0} (m+1)^p x^m = \frac{\sum_{w\in\mathfrak{S}_p} x^{\operatorname{des}(w)}}{(1-x)^{p+1}}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### Symmetry and real-rootedness

**Recall:** Eulerian polynomials  $A_n(x)$  are symmetric (i.e.,  $x^{n-1}A_n(1/x) = A_n(x)$ ) and have only real roots (or zeros). What about  $A_P(x) \coloneqq \sum_{w \in \mathcal{L}(P)} x^{\operatorname{des}(w)}$ ?

#### Symmetry and real-rootedness

**Recall:** Eulerian polynomials  $A_n(x)$  are symmetric (i.e.,  $x^{n-1}A_n(1/x) = A_n(x)$ ) and have only real roots (or zeros). What about  $A_P(x) \coloneqq \sum_{w \in \mathcal{L}(P)} x^{\operatorname{des}(w)}$ ?

**Note.**  $A_P(x)$  is called the *P***-Eulerian polynomial**. It is independent of choice of natural labeling, since  $\Omega_P(m)$  has this property.

#### Symmetry and real-rootedness

**Recall:** Eulerian polynomials  $A_n(x)$  are symmetric (i.e.,  $x^{n-1}A_n(1/x) = A_n(x)$ ) and have only real roots (or zeros). What about  $A_P(x) \coloneqq \sum_{w \in \mathcal{L}(P)} x^{\operatorname{des}(w)}$ ?

**Note.**  $A_P(x)$  is called the *P***-Eulerian polynomial**. It is independent of choice of natural labeling, since  $\Omega_P(m)$  has this property.

Easy consequence of reciprocity:

**Theorem.**  $x^k A_P(1/x) = A_P(x)$  if and only if every maximal chain of *P* has p - k elements. In other words, *P* is graded of rank p - k - 1.

Let  $A_P(x) = \sum_{m=0}^{p-1} A(P, m) x^m$ , so  $A(P, m) = \#\{w \in \mathcal{L}(P) : \operatorname{des}(w) = m\},$ a *P***-Eulerian number**.  $A_P(x)$  is **unimodal** if  $A(P, 0) \le A(P, 1) \le \dots \le A(P, j) \ge A(P, j + 1) \ge \dots \ge A(P, p - 1)$ for some *j*.

Let  $A_P(x) = \sum_{m=0}^{p-1} A(P, m) x^m$ , so  $A(P, m) = \#\{w \in \mathcal{L}(P) : \operatorname{des}(w) = m\},\$ a *P***-Eulerian number**.  $A_P(x)$  is **unimodal** if  $A(P, 0) \le A(P, 1) \le \cdots \le A(P, j) \ge A(P, j + 1) \ge \cdots \ge A(P, p - 1)$ for some *j*.

**Theorem.** If P is graded (all maximal chains have the same length) then  $A_P(x)$  is unimodal.

Let  $A_P(x) = \sum_{m=0}^{p-1} A(P, m) x^m$ , so  $A(P, m) = \#\{w \in \mathcal{L}(P) : \operatorname{des}(w) = m\},$ a *P*-Eulerian number.  $A_P(x)$  is unimodal if  $A(P, 0) \le A(P, 1) \le \cdots \le A(P, j) \ge A(P, j + 1) \ge \cdots \ge A(P, p - 1)$ for some *j*.

**Theorem.** If P is graded (all maximal chains have the same length) then  $A_P(x)$  is unimodal.

**Proof** #1 (Reiner-Welker, 2005). Based on *g*-theorem for simplicial polytopes.

Let  $A_P(x) = \sum_{m=0}^{p-1} A(P, m) x^m$ , so  $A(P, m) = \#\{w \in \mathcal{L}(P) : \operatorname{des}(w) = m\},$ a *P***-Eulerian number**.  $A_P(x)$  is **unimodal** if  $A(P, 0) \le A(P, 1) \le \cdots \le A(P, j) \ge A(P, j + 1) \ge \cdots \ge A(P, p - 1)$ for some *j*.

**Theorem.** If P is graded (all maximal chains have the same length) then  $A_P(x)$  is unimodal.

**Proof** #1 (Reiner-Welker, 2005). Based on *g*-theorem for simplicial polytopes.

**Proof #2 (Brändén**, 2004). Beautiful combinatorial argument. See EC1, Exercise 3.173.

Let  $A_P(x) = \sum_{m=0}^{p-1} A(P, m) x^m$ , so  $A(P, m) = \#\{w \in \mathcal{L}(P) : \operatorname{des}(w) = m\},$ a *P*-Eulerian number.  $A_P(x)$  is unimodal if  $A(P, 0) \le A(P, 1) \le \cdots \le A(P, j) \ge A(P, j + 1) \ge \cdots \ge A(P, p - 1)$ for some *j*.

**Theorem.** If P is graded (all maximal chains have the same length) then  $A_P(x)$  is unimodal.

**Proof** #1 (**Reiner-Welker**, 2005). Based on *g*-theorem for simplicial polytopes.

**Proof #2 (Brändén**, 2004). Beautiful combinatorial argument. See EC1, Exercise 3.173.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Is  $A_P(x)$  always unimodal? Open.

**Conjecture** (equivalent problem raised by **Joseph Neggers**, 1978). For any finite poset P, every zero of  $A_P(x)$  is real.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

**Conjecture** (equivalent problem raised by **Joseph Neggers**, 1978). For any finite poset P, every zero of  $A_P(x)$  is real.

More general conjecture by **RS** (1986) disproved by **Petter Brändén**, 2004.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

**Conjecture** (equivalent problem raised by **Joseph Neggers**, 1978). For any finite poset P, every zero of  $A_P(x)$  is real.

More general conjecture by **RS** (1986) disproved by **Petter Brändén**, 2004.

Negger's conjecture disproved by **John Stembridge** (2007). His smallest counterexample has 17 elements.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

**Conjecture** (equivalent problem raised by **Joseph Neggers**, 1978). For any finite poset P, every zero of  $A_P(x)$  is real.

More general conjecture by **RS** (1986) disproved by **Petter Brändén**, 2004.

Negger's conjecture disproved by **John Stembridge** (2007). His smallest counterexample has 17 elements.

Is there a smaller counterexample? A brute force search for 16 elements involves 4483130665195087 posets.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

**Conjecture** (equivalent problem raised by **Joseph Neggers**, 1978). For any finite poset P, every zero of  $A_P(x)$  is real.

More general conjecture by **RS** (1986) disproved by **Petter Brändén**, 2004.

Negger's conjecture disproved by **John Stembridge** (2007). His smallest counterexample has 17 elements.

Is there a smaller counterexample? A brute force search for 16 elements involves 4483130665195087 posets.

Note. Let f(n) be the number of nonisomorphic *n*-element posets. Then f(17) is not known. Moreover,  $f(n) = 2^{\frac{1}{4}n^2 + o(1)}$ .

**Rodica Simion** (1984) showed that  $A_P(x)$  has only real zeros if P is a disjoint union of chains.

# **Rodica Simion** (1984) showed that $A_P(x)$ has only real zeros if P is a disjoint union of chains.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Some other cases are known.

# **Rodica Simion** (1984) showed that $A_P(x)$ has only real zeros if P is a disjoint union of chains.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some other cases are known.

#### END OF LECTURE SERIES

**Rodica Simion** (1984) showed that  $A_P(x)$  has only real zeros if P is a disjoint union of chains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some other cases are known.

