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Naive interpretation

(n + 1)n−1 is the number of functions f : [n − 1] → [n + 1]

not so exciting

Variant (will occur later): number of cosets of the subgroup
H = 〈(1, 1, . . . , 1)〉 in G = (Z/(n + 1)Z)n, since

#G = (n + 1)n, #H = n + 1
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Trees

Theorem. The number of trees on the vertex set [n] is nn−2.

Corollary. The number of planted forests (disjoint unions of
rooted trees) on the vertex set [n] is (n + 1)n−1.

Proof. Given a planted forest F on [n], adjoin a new vertex 0 and
connect it to the root of each connected component (tree) of F .
�

first stated by Sylvester, 1857

first proof by Borchardt, 1860

often attributed to Cayley, 1889



The case n = 3
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Three proofs.

Proof #1 (Prüfer, 1918). Remove largest leaf from T and record
its neighbor p1. Continue until only two vertices remain, obtaining
the Prüfer sequence p(T ) = (p1, p2, . . . , pn−2).



Three proofs.

Proof #1 (Prüfer, 1918). Remove largest leaf from T and record
its neighbor p1. Continue until only two vertices remain, obtaining
the Prüfer sequence p(T ) = (p1, p2, . . . , pn−2).
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94
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11

Prüfer sequence: (8, 1, 4, 4, 1, 4, 9, 1, 9).
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Prüfer sequence proof

Theorem. The map T 7→ p(T ) is a bijection from trees T on the
vertex set [n] to sequences (p1, . . . , pn−2) ∈ [n]n−2.

Proof (sketch). Crucial fact: the first vertex v1 to be removed
from T is the largest vertex w1 of T missing from p(T ).

Thus v1 and w1 are adjacent in T . Now remove p1 from p(T ) and
continue recursively, adding one new edge each time. At the end of
this procedure we have n − 2 edges, and the remaining two
unremoved vertices form the final edge. �
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Joyal’s proof

Proof #2 (Joyal, 1981). Doubly rooted tree: a tree on the
vertex set [n] with one vertex labelled S (start) and one vertex
(possibly the same) labelled E (end).

If t(n) is the number of trees on [n], then the number d(n) of
doubly rooted trees on [n] is d(n) = n2t(n).

Given a doubly rooted tree, let S = b1, b2, . . . , bk = E be the
unique path from S to E .



Continuation of proof
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Cycle form

(b1, . . . , b7) = 11, 10, 15, 7, 5, 2, 3

Regard b1, . . . , bk as a permutation w of its elements in increasing
order.

(

2 3 5 7 10 11 15
11 10 15 7 5 2 3

)

,

i.e., 2 → 11, 3 → 10, etc.



Cycle form

(b1, . . . , b7) = 11, 10, 15, 7, 5, 2, 3

Regard b1, . . . , bk as a permutation w of its elements in increasing
order.

(

2 3 5 7 10 11 15
11 10 15 7 5 2 3

)

,

i.e., 2 → 11, 3 → 10, etc.

Digraph Dw of w : i → w(i)

7

2

11 15 5

3 10



A new digraph DT

Attach to each vertex v of Dw the same subgraph Tv that was
attached “below” v in T , and direct the edges of Tv toward v ,
obtaining a digraph DT .



A new digraph DT

Attach to each vertex v of Dw the same subgraph Tv that was
attached “below” v in T , and direct the edges of Tv toward v ,
obtaining a digraph DT .

11 15 5

6

14 13 8
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4 12 17
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Functional digraphs

Crucial property of DT : every vertex has outdegree one, i.e., DT

is the digraph of a function f : [n] → [n] (with edges i → f (i)).

The process can be reversed, going from f to T . Thus the map
T 7→ DT is a bijection from doubly rooted trees on [n] to digraphs
of functions f : [n] → [n].

There are nn functions f : [n] → [n], hence nn doubly rooted trees
on [n].

Since d(n) = n2t(n), we get t(n) = nn−2 .



Pitman’s proof

Proof #3 (Pitman, 1999). Pn: set of all planted forests on [n]

uv : an edge of a forest F ∈ Pn such that u is closer than v to the
root of its component.

F covers F ′: obtain F ′ by removing the edge uv from F , and
rooting the new tree containing v at v . This defines the cover
relations of a partial order on Pn.



The poset P3
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An easy exercise

There are nt(n) maximal elements of Pn.

Every element of rank i covers i elements.

Every element of rank i is covered by (n − i − 1)n elements.

Mn: number of maximal chains of Pn

Counting maximal chains from top to bottom and from bottom to
top gives

Mn = nt(n)(n − 1)! = nn−1(n − 1)!

⇒ t(n) = nn−2 .
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Parking functions

Car Ci prefers space ai , drives there, and parks if possible. If ai is
occupied, then Ci takes the next available space. We call
(a1, . . . , an) a parking function (of length n) if all cars can park.



Parking functions

Car Ci prefers space ai , drives there, and parks if possible. If ai is
occupied, then Ci takes the next available space. We call
(a1, . . . , an) a parking function (of length n) if all cars can park.

First considered by Ronald Pyke (implicitly) and Alan Konheim
and Benjamin Weiss (1966).



The case of the capricious wives

Konheim and Weiss:

Let st. be a street with p parking places. A car occupied
by a man and his dozing wife enters st. at the left and
moves towards the right. The wife awakens at a capricious
moment and orders her husband to park immediately! He
dutifully parks at his present location, if it is empty, and if
not, continues to the right and parks at the next available
space. If no space is available he leaves st.



Small examples

n = 2 : 11 12 21

n = 3 : 111 112 121 211 113 131 311 122
212 221 123 132 213 231 312 321



Parking function characterization

Easy: Let α = (a1, . . . , an) ∈ P
n. Let b1 ≤ b2 ≤ · · · ≤ bn be the

increasing rearrangement of α. Then α is a parking function if and
only bi ≤ i .

Corollary. Every permutation of the entries of a parking function
is also a parking function.



Enumeration of parking functions

Theorem (Pyke, 1959; Konheim and Weiss, 1966). Let f (n) be
the number of parking functions of length n. Then
f (n) = (n + 1)n−1.

Proof (Pollak, c. 1974). Add an additional space n + 1, and
arrange the spaces in a circle. Allow n+1 also as a preferred space.



Pollak’s proof

a a a1 2

...
n

1

n2

3

n+1



Conclusion of Pollak’s proof

Now all cars can park, and there will be one empty space. α is a
parking function ⇔ if the empty space is n+ 1. If α = (a1, . . . , an)
leads to car Ci parking at space pi , then (a1 + j , . . . , an + j)
(modulo n + 1) will lead to car Ci parking at space pi + j . Hence
exactly one of the vectors

(a1 + i , a2 + i , . . . , an + i) (modulo n + 1)

is a parking function, so

f (n) =
(n + 1)n

n + 1
= (n + 1)n−1.



Prime parking functions

Definition (I. Gessel). A parking function is prime if it remains a
parking function when we delete a 1 from it.
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Factorization of increasing PF’s

1 2 3 4 5 6 7 8 9 10 11

1 1 3 3 4 4 7 8 8 9 10

→ (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)

p(n): number of prime parking functions of length n

∑

n≥0

(n + 1)n−1 x
n

n!
=

1

1−∑n≥1 p(n)
xn

n!

Corollary. p(n) = (n − 1)n−1

Exercise. Find a “parking” proof.



Bijection: parking functions → planted forests
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Inversions

An inversion in F is a pair (i , j) so that i > j and i lies on the
path from j to the root.

inv(F ) = #(inversions of F )
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Inversions

An inversion in F is a pair (i , j) so that i > j and i lies on the
path from j to the root.

inv(F ) = #(inversions of F )

1

6

9

10

37

112

84

5

12

Inversions:
(5, 4), (5, 2), (12, 4), (12, 8), (3, 1), (10, 1), (10, 6), (10, 9)

inv(F ) = 8



The inversion enumerator

Let
In(q) =

∑

F

qinv(F ),

summed over all forests F with vertex set {1, . . . , n}. E.g.,

I1(q) = 1

I2(q) = 2 + q

I3(q) = 6 + 6q + 3q2 + q3



The inversion enumerator

Let
In(q) =

∑

F

qinv(F ),

summed over all forests F with vertex set {1, . . . , n}. E.g.,

I1(q) = 1

I2(q) = 2 + q

I3(q) = 6 + 6q + 3q2 + q3

Theorem (Mallows-Riordan 1968, Gessel-Wang 1979) We have

In(1 + q) =
∑

G

qe(G)−n,

where G ranges over all connected graphs (without loops or
multiple edges) on n+ 1 labelled vertices, and where e(G ) denotes
the number of edges of G .



Generating function

Corollary.

∑

n≥0

In(q)(q − 1)n
xn

n!
=

∑

n≥0 q
(n+1

2 ) x
n

n!
∑

n≥0 q
(n2) xn

n!



Connection with parking functions

Theorem (Kreweras, 1980) We have

q(
n

2)In(1/q) =
∑

(a1,...,an)

qa1+···+an ,

where (a1, . . . , an) ranges over all parking functions of length n.



Connection with parking functions

Theorem (Kreweras, 1980) We have

q(
n

2)In(1/q) =
∑

(a1,...,an)

qa1+···+an ,

where (a1, . . . , an) ranges over all parking functions of length n.

Note. The earlier bijection between forests and parking functions
does not send the number of inversions to the sum of the terms.
Such a bijection is more complicated.
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The Shi arrangement: background

Braid arrangement Bn: the set of hyperplanes

xi − xj = 0, 1 ≤ i < j ≤ n,

in R
n.

R = set of regions of Bn

#R = n!

To specify a region, we must specify for each i < j whether xi < xj
or xi > xj . Hence the number of regions is the number of ways to
linearly order x1, . . . , xn.



Labeling the regions

Let R0 be the base region

R0 : x1 > x2 > · · · > xn.



Labeling the regions

Let R0 be the base region

R0 : x1 > x2 > · · · > xn.

Label R0 with
λ(R0) = (1, 1, . . . , 1) ∈ Z

n.

If R is labelled, R ′ is separated from R only by xi − xj = 0 (i < j),
and R ′ is unlabelled, then set

λ(R′) = λ(R) + ei ,

where ei = ith unit coordinate vector.



The labeling rule

x  = x
 i < j

i j

λ(  )R

R
R’

R’ eiλ(   )=λ(  )+R



Description of labels

211
311

121

321

111 221

B3
x  =x1

x  =x1

x  =x2
3

3

2



Description of labels

211
311

121

321

111 221

B3
x  =x1

x  =x1

x  =x2
3

3

2

Theorem (easy). The labels of Bn are the sequences
(b1, . . . , bn) ∈ Z

n such that 1 ≤ bi ≤ n − i + 1.



The Shi arrangement

Shi Jianyi ( )



The Shi arrangement

Shi Jianyi ( )

Shi arrangement Sn: the set of hyperplanes

xi − xj = 0, 1,

1 ≤ i < j ≤ n, in R
n.



The case n = 3
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Labeling the regions

base region:
R0 : xn + 1 > x1 > · · · > xn



Labeling the regions

base region:
R0 : xn + 1 > x1 > · · · > xn

λ(R0) = (1, 1, . . . , 1) ∈ Z
n



The labeling rule

If R is labelled, R ′ is separated from R only by xi − xj = 0
(i < j), and R ′ is unlabelled, then set

λ(R ′) = λ(R) + ei .

If R is labelled, R ′ is separated from R only by xi − xj = 1
(i < j), and R ′ is unlabelled, then set

λ(R ′) = λ(R) + ej .



The labeling rule illustrated

λ(   )=λ(  )+eR iR’
λ(  )R

x  = x
i < j

ji

R
R’

λ(  )R

+1x  = x
i < j

ji

R
R’

λ(   )=λ(  )+eRR’ j



The labeling for n = 3

123 122
132

131 231

121
111

112

211

212 311

312

321213

221113

2

1

1

1 1

x −x  =1 x −x  =0

x −x  =0

x −x  =1

x −x  =1 x −x  =0

2

3 3

2

2

3 3



Description of the labels

Theorem (Pak, S.). The labels of Sn are the parking functions of
length n (each occurring once).



Description of the labels

Theorem (Pak, S.). The labels of Sn are the parking functions of
length n (each occurring once).

Corollary (Shi, 1986).

r(Sn) = (n + 1)n−1



The parking function polytope

Given x1, . . . , xn ∈ R≥0, define Pn = P(x1, . . . , xn) ⊂ R
n by:

(y1, . . . , yn) ∈ Pn if

0 ≤ yi , y1 + · · · + yi ≤ x1 + · · ·+ xi

for 1 ≤ i ≤ n.



The parking function polytope

Given x1, . . . , xn ∈ R≥0, define Pn = P(x1, . . . , xn) ⊂ R
n by:

(y1, . . . , yn) ∈ Pn if

0 ≤ yi , y1 + · · · + yi ≤ x1 + · · ·+ xi

for 1 ≤ i ≤ n.

(also called Pitman-Stanley polytope)



Volume of P

Theorem. Let x1, . . . , xn ∈ R≥0. Then

n!V (Pn) =
∑

parking functions
(i1,...,in)

xi1 · · · xin .



Volume of P

Theorem. Let x1, . . . , xn ∈ R≥0. Then

n!V (Pn) =
∑

parking functions
(i1,...,in)

xi1 · · · xin .

Note. If each xi > 0, then Pn has the combinatorial type of an
n-cube.



The case n = 2

x=a

x+y=a+b

(0,b) (a,a+b)

(a,0)(0,0)

(0,a+b)



Noncrossing partitions

A noncrossing partition of {1, 2, . . . , n} is a partition
{B1, . . . ,Bk} of {1, . . . , n} such that

a < b < c < d , a, c ∈ Bi , b, d ∈ Bj ⇒ i = j .

(Bi 6= ∅, Bi ∩ Bj = ∅ if i 6= j ,
⋃

Bi = {1, . . . , n})



Number of noncrossing partitions
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Number of noncrossing partitions

12

11

10

9

8
7 6

5

4

3

2

1

Theorem (H. W. Becker, 1948–49). The number of noncrossing
partitions of {1, . . . , n} is the Catalan number

Cn =
1

n + 1

(

2n

n

)

.



Maximal chains of noncrossing partitions

A maximal chain m of noncrossing partitions of {1, . . . , n + 1} is
a sequence

π0, π1, π2, . . . , πn

of noncrossing partitions of {1, . . . , n + 1} such that πi is obtained
from πi−1 by merging two blocks into one. (Hence πi has exactly
n + 1− i blocks.)



Maximal chains of noncrossing partitions

A maximal chain m of noncrossing partitions of {1, . . . , n + 1} is
a sequence

π0, π1, π2, . . . , πn

of noncrossing partitions of {1, . . . , n + 1} such that πi is obtained
from πi−1 by merging two blocks into one. (Hence πi has exactly
n + 1− i blocks.)

1−2−3−4−5 1−25−3−4 1−25−34
125−34 12345



A maximal chain labeling

Define:
minB = least element of B

j < B : j < k ∀k ∈ B .

Suppose πi is obtained from πi−1 by merging together blocks B
and B ′, with minB < minB ′. Define

Λi(m) = max{j ∈ B : j < B ′}
Λ(m) = (Λ1(m), . . . ,Λn(m)).



A maximal chain labeling

Define:
minB = least element of B

j < B : j < k ∀k ∈ B .

Suppose πi is obtained from πi−1 by merging together blocks B
and B ′, with minB < minB ′. Define

Λi(m) = max{j ∈ B : j < B ′}
Λ(m) = (Λ1(m), . . . ,Λn(m)).

For above example:

1−2−3−4−5 1−25−3−4 1−25−34
125−34 12345

we have
Λ(m) = (2, 3, 1, 2).



Labelings and parking functions

Theorem. Λ is a bijection between the maximal chains of
noncrossing partitions of {1, . . . , n + 1} and parking functions of
length n.



Labelings and parking functions

Theorem. Λ is a bijection between the maximal chains of
noncrossing partitions of {1, . . . , n + 1} and parking functions of
length n.

Corollary (Kreweras, 1972) The number of maximal chains of
noncrossing partitions of {1, . . . , n + 1} is

(n + 1)n−1.



The parking function Sn-action

The symmetric group Sn acts on the set Pn of all parking
functions of length n by permuting coordinates.



Sample properties

Multiplicity of trivial representation (number of orbits)
= Cn = 1

n+1

(2n
n

)

n = 3 : 111 211 221 311 321

Clear since orbit representatives are sequences
b1 ≤ b2 ≤ · · · ≤ bn, 1 ≤ bi ≤ i .
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Sample properties

Multiplicity of trivial representation (number of orbits)
= Cn = 1

n+1

(2n
n

)

n = 3 : 111 211 221 311 321

Clear since orbit representatives are sequences
b1 ≤ b2 ≤ · · · ≤ bn, 1 ≤ bi ≤ i .

Number of elements of Pn fixed by w ∈ Sn (character value
at w):

#Fix(w) = (n + 1)(# cycles of w)−1

Multiplicity of the irreducible representation indexed by λ ⊢ n:
1

n+1 sλ(1
n+1)



The parking function symmetric function

Let PFn = PFn(x1, x2, . . . ) denote the Frobenius characteristic
symmetric function of the action of Sn on parking functions of
length n. More concretely,

PFn =
∑

α

hm1(α)hm2(α) · · · ,

where α ranges over all increasing parking functions of length n,
and mi (α) is the number of i ’s in α.

Example. n = 3
111 h3
112 h2h1
113 h2h1
122 h2h1
123 h31

,

so PF3 = h3 + 3h2h1 + h31.



Connection with power series inversion

Define

F (t) =
∑

n≥1

PFn t
n

G (t) =
∑

n≥1

(−1)n−1en−1t
n

= t(1− x1t)(1− x2t) · · · .
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Connection with power series inversion

Define

F (t) =
∑

n≥1

PFn t
n

G (t) =
∑

n≥1

(−1)n−1en−1t
n

= t(1− x1t)(1− x2t) · · · .

Then F (G (t)) = G (F (t) = t.

Connections with Lagrange inversion, etc.
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the action of Sn on prime parking functions α of length n, i.e., α
remain a parking function when we delete a 1. Let p(n) be the
number of prime parking functions of length n
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(1 + F (t))−1

Let PPFn be the Frobenius characteristic symmetric function of
the action of Sn on prime parking functions α of length n, i.e., α
remain a parking function when we delete a 1. Let p(n) be the
number of prime parking functions of length n

Recall

∑

n≥0

(n + 1)n−1 t
n

n!
=

1

1−∑n≥1 p(n)
tn

n!

⇒ p(n) = (n − 1)n−1

Theorem. 1 + F (t) := 1 +
∑

n≥1

PFnt
n =

1

1−∑n≥1 PPFntn

Yinghui Wang ( ) and RS: interpretation of (1 + F (t))k

for all k ∈ Z (rather subtle for k < 0)
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di (λ): number of parts of λ equal to i



Basis expansions

di (λ): number of parts of λ equal to i

PFn =
∑

λ⊢n

(n + 1)ℓ(λ)−1z−1
λ pλ

=
1

n+ 1

∑

λ⊢n

sλ(1
n+1)sλ

=
1

n+ 1

∑

λ⊢n

[

∏

i

(

λi + n

λi

)

]

mλ

=
∑

λ⊢n

n(n − 1) · · · (n − ℓ(λ) + 2)

d1(λ)! · · · dn(λ)!
hλ



More expansions

PFn =
∑

λ⊢n

ελ
(n + 2)(n + 3) · · · (n + ℓ(λ))

d1(λ)! · · · dn(λ)!
eλ

ωPFn =
1

n+ 1

[

∏

i

(

n + 1

λi

)

]

mλ,



Background: invariants of Sn

The group Sn acts on R = C[x1, . . . , xn] by permuting variables,
i.e., w · xi = xw(i). Let

RSn = {f ∈ R : w · f = f for all w ∈ Sn}.



Background: invariants of Sn

The group Sn acts on R = C[x1, . . . , xn] by permuting variables,
i.e., w · xi = xw(i). Let

RSn = {f ∈ R : w · f = f for all w ∈ Sn}.

Well-known:
RSn = C[e1, . . . , en],

where
ek =

∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik .



The coinvariant algebra

RSn

+ : symmetric functions with 0 constant term

(irrelevant ideal of RSn)

Dn := R/
(

RSn
+

)

= R/(e1, . . . , en).

Then dimDn = n!, and Sn acts on Dn according to the regular
representation.



Diagonal action of Sn

Now let Sn act diagonally on

R = C[x1, . . . , xn, y1, . . . , yn],

i.e,
w · xi = xw(i), w · yi = yw(i).

As before, let

RSn = {f ∈ R : w · f = f for all w ∈ Sn}
D2,n = R/

(

RSn
+

)

.



Haiman’s theorem

Theorem (Haiman, 1994, 2001). dimD2,n = (n + 1)n−1, and the
action of Sn on D2,n is isomorphic to the action on Pn, tensored
with the sign representation. In other words,

chD2,n = ωPFn.



Haiman’s theorem

Theorem (Haiman, 1994, 2001). dimD2,n = (n + 1)n−1, and the
action of Sn on D2,n is isomorphic to the action on Pn, tensored
with the sign representation. In other words,

chD2,n = ωPFn.

Connections with Macdonald polynomials, Hilbert scheme of
points in the plane, etc.
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Diaconis-Hicks, 2016: what does a random parking function
(a1, . . . , an) look like?



Probabilistic aspects

Diaconis-Hicks, 2016: what does a random parking function
(a1, . . . , an) look like?

Theorem. As n → ∞ and fixed j ,

Prob(a1 = j) ∼ 1 + Q(j)

n

Prob(a1 = n − j) ∼ 1− Q(j + 2)

n
,

where

Q(j) =
∑

k≥j

e−kkk−1

k!

(tail of Borel distribution on j = 1, 2, . . . ). Moreover,

E(a1) =
n

2
−

√
2π

4
n1/2 + o(n1/2).
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Prob(a1 = n) ∼ 1

en
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Note. Since Q(j) → 0 we have for instance

Prob(a1 = ⌊cn⌋) ∼ 1

n

for any 0 < c < 1.



Extremes

Prob(a1 = 1) ∼ 2

n

Prob(a1 = n) ∼ 1

en
.

Note. Since Q(j) → 0 we have for instance

Prob(a1 = ⌊cn⌋) ∼ 1

n

for any 0 < c < 1.

Error term?



A last sample result

Let α be a parking function. In the original parking scenario with n
cars, let L(α) be the number of cars (lucky cars) which park in
their preferred space. Then

Prob

(

L(α) − n
2

√

n/6

)

∼
∫ x

−∞

e−t2/2

√
2π

dt.
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Next topic:
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Next topic: ??


