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integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

C0 = 1, C1 = 2, C2 = 3, C3 = 5, C4 = 14, . . .

Cn is a Catalan number.

Comments. . . . This is probably the longest entry in OEIS, and
rightly so.
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Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of Cn and 68 additional
problems.
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History

Sharabiin Myangat, also known as Minggatu, Ming’antu
( ), and Jing An (c. 1692–c. 1763): a Mongolian
astronomer, mathematician, and topographic scientist who worked
at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α

First example of an infinite trigonometric series.

No combinatorics, no further work in China.
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More history, via Igor Pak

Euler (1751): conjectured formula for the number of
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More history, via Igor Pak

Euler (1751): conjectured formula for the number of
triangulations of a convex (n + 2)-gon. In other words, draw
n − 1 noncrossing diagonals of a convex polygon with n + 2
sides.

1, 2, 5, 14, . . .

We define these numbers to be the Catalan numbers Cn.



Completion of proof

Goldbach and Segner (1758–1759): helped Euler complete
the proof, in pieces.

Lamé (1838): first self-contained, complete proof.
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Eugène Charles Catalan (1838): wrote Cn in the form
(2n)!

n! (n+1)! and showed it counted (nonassociative) bracketings

(or parenthesizations) of a string of n + 1 letters.



Catalan

Eugène Charles Catalan (1838): wrote Cn in the form
(2n)!

n! (n+1)! and showed it counted (nonassociative) bracketings

(or parenthesizations) of a string of n + 1 letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule).
Studied in France and worked in France and Liège, Belgium. Died
in Liège in 1894.
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Why “Catalan numbers”?

John Riordan (1948): introduced the term “Catalan
number” in Math Reviews.

Riordan (1964): used the term again in Math. Reviews.

Riordan (1968): used the term in his book Combinatorial

Identities. Finally caught on.

Martin Gardner (1976): used the term in his Mathematical
Games column in Scientific American. Real popularity began.
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Cn+1 =
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k=0

CkCn−k , C0 = 1

Let y =
∑

n≥0 Cnx
n (generating function).

⇒ y − 1

x
= y2

⇒ y =
1−

√
1− 4x

2x

= −1

2

∑

n≥1

(−4)n
(−1/2

n

)

xn−1

Cn =
1

n + 1

(

2n

n

)

=
(2n)!

n! (n + 1)!



Other combinatorial interpretations

Pn := {triangulations of convex (n + 2)-gon}
⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations of Cn, i.e., other sets
Sn for which Cn = #Sn.
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The ballot problem

Bertrand’s ballot problem: first published by W. A. Whitworth
in 1878 but named after Joseph Louis François Bertrand who
rediscovered it in 1887 (one of the first results in probability
theory).



The ballot problem

Bertrand’s ballot problem: first published by W. A. Whitworth
in 1878 but named after Joseph Louis François Bertrand who
rediscovered it in 1887 (one of the first results in probability
theory).

Special case: there are two candidates A and B in an election.
Each receives n votes. What is the probability that A will never
trail B during the count of votes?

Example. AABABBBAAB is bad, since after seven votes, A
receives 3 while B receives 4.



Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by −1 (abbreviated −).
Clearly a sequence a1a2 · · · a2n of n each of 1 and −1 is allowed if
and only if

∑k
i=1 ai ≥ 0 for all 1 ≤ k ≤ 2n. Such a sequence is

called a ballot sequence.



Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’s and n −1’s such that
every partial sum is nonnegative (with −1 denoted simply as −
below)

111−−− 11− 1−− 11−−1− 1− 11−− 1− 1− 1−



Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’s and n −1’s such that
every partial sum is nonnegative (with −1 denoted simply as −
below)

111−−− 11− 1−− 11−−1− 1− 11−− 1− 1− 1−

Note. Answer to original problem (probability that a sequence of n
each of 1’s and −1’s is a ballot sequence) is therefore

Cn
(2n
n

) =
1

n+1

(

2n
n

)

(2n
n

) =
1

n + 1
.
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The ballot recurrence

1 1 − 1 1− 1−−− 1− 1 1− 1−−

1 1− 1 1− 1−−−|1− 1 1− 1−−

1− 1 1− 1−− |1− 1 1− 1−−



Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0, 0) to
(2n, 0) with steps (1, 1) and (1,−1), never falling below the x-axis
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Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0, 0) to
(2n, 0) with steps (1, 1) and (1,−1), never falling below the x-axis

Walther von Dyck (1856–1934)



Bijection with ballot sequences

11 1 11 1 1 1 1− − − − − − − − −

For each upstep, record 1.
For each downstep, record −1.
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for which there does
not exist i < j < k and aj < ak < ai (called 312-avoiding)
permutations)

123 132 213 231 321

3425 768 (note red<blue)

part of the subject of pattern avoidance



321-avoiding permutations

Another example of pattern avoidance:

115. Permutations a1a2 · · · an of 1, 2, . . . , n with longest decreasing
subsequence of length at most two (i.e., there does not exist
i < j < k , ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231



321-avoiding permutations

Another example of pattern avoidance:

115. Permutations a1a2 · · · an of 1, 2, . . . , n with longest decreasing
subsequence of length at most two (i.e., there does not exist
i < j < k , ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231

more subtle: no obvious decomposition into two pieces
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Bijection with ballot sequences

w = 412573968

1

4

2

5

7

9

3

6

8

1 1 1 1 − − − 1 − 1 1 − − 1 1 − −−



An unexpected interpretation

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2 such that in the
sequence 1a1a2 · · · an1, each ai divides the sum of its two neighbors

14321 13521 13231 12531 12341



Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue
until only 1’s remain; then replace bar with 1 and an original
number with −1, except last two

1 2 5 3 4 1
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Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue
until only 1’s remain; then replace bar with 1 and an original
number with −1, except last two

|1||2 5 |3 4 1

| 1 | | 2 5 | 3 4 1

1 − 1 1 − − 1 −
tricky to prove



A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all
(n − 1)× (n − 1) upper triangular matrices over a field
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(a) Number of two-sided ideals of the algebra of all
(n − 1)× (n − 1) upper triangular matrices over a field

* * *

* * * *

* * *

* * * *

* *

* *

*

* *
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A symmetric group representation

Dimension of the irreducible representation of S2n−1 indexed by
the partition (n, n − 1), and of S2n indexed by (n, n).



A symmetric group representation

Dimension of the irreducible representation of S2n−1 indexed by
the partition (n, n − 1), and of S2n indexed by (n, n).

Is there a “natural” action of S2n−1 and/or S2n on the space QX ,
where X is some family of Catalan objects indexed by 2n − 1
and/or 2n?



Diagonal harmonics

(i) Let the symmetric group Sn act on the polynomial ring
A = C[x1, . . . , xn, y1, . . . , yn] by
w · f (x1, . . . , xn, y1, . . . , yn) = f (xw(1), . . . , xw(n), yw(1), . . . , yw(n))
for all w ∈ Sn. Let I be the ideal generated by all invariants of
positive degree, i.e.,

I = 〈f ∈ A : w · f = f for all w ∈ Sn, and f (0) = 0〉.



Diagonal harmonics (cont.)

Then Cn is the dimension of the subspace of A/I affording the sign
representation, i.e.,

Cn = dim{f ∈ A/I : w · f = (sgnw)f for all w ∈ Sn}.



Diagonal harmonics (cont.)

Then Cn is the dimension of the subspace of A/I affording the sign
representation, i.e.,

Cn = dim{f ∈ A/I : w · f = (sgnw)f for all w ∈ Sn}.

Very deep proof by Mark Haiman, 1994.



Generalizations & refinements

A12. k-triangulation of n-gon: maximal collections of diagonals
such that no k + 1 of them pairwise intersect in their interiors

k = 1: an ordinary triangulation

superfluous edge: an edge between vertices at most k steps apart
(along the boundary of the n-gon). They appear in all
k-triangulations and are irrelevant.



An example

Example. 2-triangulations of a hexagon (superfluous edges
omitted):



Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All
k-triangulations of an n-gon have k(n − 2k − 1) nonsuperfluous
edges.



Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All
k-triangulations of an n-gon have k(n − 2k − 1) nonsuperfluous
edges.

Theorem (Jonsson, Serrano-Stump). The number Tk(n) of
k-triangulations of an n-gon is given by

Tk(n) = det [Cn−i−j ]
k
i ,j=1

=
∏

1≤i<j≤n−2k

2k + i + j − 1

i + j − 1
.



Representation theory?

Note. The number Tk(n) is the dimension of an irreducible
representation of the symplectic group Sp(2n − 4).



Representation theory?

Note. The number Tk(n) is the dimension of an irreducible
representation of the symplectic group Sp(2n − 4).

Is there a direct connection?



Number theory

A61. Let b(n) denote the number of 1’s in the binary expansion of
n. Using Kummer’s theorem on binomial coefficients modulo a
prime power, show that the exponent of the largest power of 2
dividing Cn is equal to b(n+ 1)− 1.



Sums of three squares

Let f (n) denote the number of integers 1 ≤ k ≤ n such that k is
the sum of three squares (of nonnegative integers). Well-known:

lim
n→∞

f (n)

n
=

5

6
.
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Sums of three squares

Let f (n) denote the number of integers 1 ≤ k ≤ n such that k is
the sum of three squares (of nonnegative integers). Well-known:

lim
n→∞

f (n)

n
=

5

6
.

A63. Let g(n) denote the number of integers 1 ≤ k ≤ n such that
Ck is the sum of three squares. Then

lim
n→∞

g(n)

n
=

7

8
.
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Analysis

A65.(b)
∑

n≥0

1

Cn

= 2 +
4
√
3π

27

1 + 1 +
1

2
+

1

5
= 2.7

2 +
4
√
3π

27
= 2.806133 · · ·



Why?

A65.(a)

∑

n≥0

xn

Cn

=
2(x + 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.



Why?

A65.(a)

∑

n≥0

xn

Cn

=
2(x + 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.

Based on a (difficult) calculus exercise: let

y = 2

(

sin−1 1

2

√
x

)2

.

Then y =
∑

n≥1

xn

n2
(2n
n

) . Use sin−1 x =
∑

n≥0 4
−n

(2n
n

)

x2n+1

2n+1 .
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2nn )
. Note that:

d

dx
x2

d

dx
x
dx
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y =
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2nn )
. Note that:

d

dx
x2

d

dx
x
dx

x
y =

∑

n≥1

(n + 1)xn
(2n
n

)

= −1 +
∑

n≥0

xn

Cn

,

etc.



What’s next?

Next topic: Euler numbers


