Lattice Points in Polytopes

Richard P. Stanley

A lattice polygon

Georg Alexander Pick (1859-1942)
\boldsymbol{P} : lattice polygon in \mathbb{R}^{2} (vertices $\in \mathbb{Z}^{2}$, no self-intersections)

Boundary \& interior lattice points

red: boundary lattice point blue: interior lattice point

Pick's theorem

$$
\begin{aligned}
\boldsymbol{A} & =\text { area of } P \\
\boldsymbol{I} & =\# \text { interior points of } P(=4) \\
\boldsymbol{B} & =\# \text { boundary points of } P(=10)
\end{aligned}
$$

Then

$$
\boldsymbol{A}=\frac{2 \boldsymbol{I}+\boldsymbol{B}-2}{2}
$$

Pick's theorem

$$
\begin{aligned}
\boldsymbol{A} & =\text { area of } P \\
\boldsymbol{I} & =\# \text { interior points of } P(=4) \\
\boldsymbol{B} & =\# \text { boundary points of } P(=10)
\end{aligned}
$$

Then

$$
\boldsymbol{A}=\frac{2 \boldsymbol{I}+\boldsymbol{B}-2}{2}
$$

Example on previous slide:

$$
A=\frac{2 \cdot \mathbf{4}+\mathbf{1 0 - 2}}{2}=9
$$

Two tetrahedra

Pick's theorem (seemingly) fails in higher dimensions. For example, let T_{1} and T_{2} be the tetrahedra with vertices

$$
\begin{aligned}
\operatorname{vert}\left(T_{1}\right) & =\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\} \\
\operatorname{vert}\left(T_{2}\right) & =\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}
\end{aligned}
$$

Failure of Pick's theorem in dim 3

Then

$$
\begin{gathered}
I\left(T_{1}\right)=I\left(T_{2}\right)=0 \\
B\left(T_{1}\right)=B\left(T_{2}\right)=4 \\
A\left(T_{1}\right)=1 / 6, \quad A\left(T_{2}\right)=1 / 3
\end{gathered}
$$

Convex hull

The convex hull conv (S) of $S \subseteq \mathbb{R}^{n}$:

$$
\operatorname{conv}(S)=\bigcap_{\substack{T \supseteq S \\ T \text { convex }}} T
$$

the smallest convex set containing S.

Convex hull

The convex hull conv (S) of $S \subseteq \mathbb{R}^{n}$:

$$
\operatorname{conv}(S)=\bigcap_{\substack{T \supseteq S \\ T \text { convex }}} T
$$

the smallest convex set containing S.

Convex hull

The convex hull conv (S) of $S \subseteq \mathbb{R}^{n}$:

$$
\operatorname{conv}(S)=\bigcap_{\substack{T \supseteq S \\ T \text { convex }}} T
$$

the smallest convex set containing S.

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^{d}. For $n \geq 1$, let

$$
\boldsymbol{n} \mathcal{P}=\{n \alpha: \alpha \in \mathcal{P}\} .
$$

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^{d}. For $n \geq 1$, let

$$
\boldsymbol{n} \mathcal{P}=\{n \alpha: \alpha \in \mathcal{P}\} .
$$

P

3P
$i(\mathcal{P}, n)$

Let

$$
\begin{aligned}
\boldsymbol{i}(\mathcal{P}, \boldsymbol{n}) & =\#\left(n \mathcal{P} \cap \mathbb{Z}^{d}\right) \\
& =\#\left\{\alpha \in \mathcal{P}: n \alpha \in \mathbb{Z}^{d}\right\},
\end{aligned}
$$

the number of lattice points in $n \mathcal{P}$.

$\bar{i}(\mathcal{P}, n)$

Similarly let

$$
\begin{aligned}
& \mathcal{P}^{\circ}= \text { interior of } \mathcal{P}=\mathcal{P}-\partial \mathcal{P} \\
& \begin{aligned}
\overline{\boldsymbol{i}}(\mathcal{P}, \boldsymbol{n}) & =\#\left(n \mathcal{P}^{\circ} \cap \mathbb{Z}^{d}\right) \\
& =\#\left\{\alpha \in \mathcal{P}^{\circ}: n \alpha \in \mathbb{Z}^{d}\right\},
\end{aligned}
\end{aligned}
$$

the number of lattice points in the interior of $n \mathcal{P}$.

An example

$i(\mathcal{P}, n)=(n+1)^{2}$

$$
\bar{i}(\mathcal{P}, n)=(n-1)^{2}=i(\mathcal{P},-n) .
$$

Reeve's theorem

lattice polytope: polytope with integer vertices
Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1), \bar{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$.

Reeve's theorem

lattice polytope: polytope with integer vertices
Theorem (Reeve, 1957). Let P be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1), \bar{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$.

Recall: $\bar{i}(P, 1)=$ number of interior lattice points.

The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let

$$
\mathcal{P}=\text { lattice polytope in } \mathbb{R}^{N}, \operatorname{dim} \mathcal{P}=\boldsymbol{d}
$$

Then $i(\mathcal{P}, n)$ is a polynomial (the Ehrhart polynomial of \mathcal{P}) in n of degree d.

Reciprocity and volume

Moreover,

$$
\begin{aligned}
& i(\mathcal{P}, 0)=1 \\
& \bar{i}(\mathcal{P}, n)=(-1)^{d} i(\mathcal{P},-n), n>0 \\
& \quad \text { (reciprocity). }
\end{aligned}
$$

Reciprocity and volume

Moreover,

$$
\begin{aligned}
i(\mathcal{P}, 0)= & 1 \\
\bar{i}(\mathcal{P}, n)= & (-1)^{d} i(\mathcal{P},-n), n>0 \\
& \quad \text { (reciprocity). }
\end{aligned}
$$

If $d=N$ then

$$
i(\mathcal{P}, n)=V(\mathcal{P}) n^{d}+\text { lower order terms },
$$

where $\boldsymbol{V}(\mathcal{P})$ is the volume of \mathcal{P}.

Eugène Ehrhart

- April 29, 1906: born in Guebwiller, France
- 1932: begins teaching career in lycées
- 1959: Prize of French Sciences Academy
- 1963: begins work on Ph.D. thesis
- 1966: obtains Ph.D. thesis from Univ. of Strasbourg
- 1971: retires from teaching career
- January 17, 2000: dies

Photo of Ehrhart

Self-portrait

Lattice Points in Polvtones - o. 17

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\operatorname{dim} \mathcal{P}=d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n>0$ determines $V(\mathcal{P})$.

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\operatorname{dim} \mathcal{P}=d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n>0$ determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0)=1$, this data determines $d+1$ values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$.

An example: Reeve's theorem

Example. When $d=3, V(\mathcal{P})$ is determined by

$$
\begin{aligned}
i(\mathcal{P}, 1) & =\#\left(\mathcal{P} \cap \mathbb{Z}^{3}\right) \\
i(\mathcal{P}, 2) & =\#\left(2 \mathcal{P} \cap \mathbb{Z}^{3}\right) \\
\bar{i}(\mathcal{P}, 1) & =\#\left(\mathcal{P}^{\circ} \cap \mathbb{Z}^{3}\right)
\end{aligned}
$$

which gives Reeve's theorem.

Birkhoff polytope

Example. Let $\mathcal{B}_{M} \subset \mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A=\left(a_{i j}\right)$, i.e.,

$$
\begin{aligned}
a_{i j} & \geq 0 \\
\sum_{i} a_{i j} & =1 \text { (column sums } 1 \text {) } \\
\sum_{j} a_{i j} & =1(\text { row sums } 1) .
\end{aligned}
$$

(Weak) magic squares

Note. $B=\left(b_{i j}\right) \in n \mathcal{B}_{M} \cap \mathbb{Z}^{M \times M}$ if and only if

$$
\begin{aligned}
b_{i j} & \in \mathbb{N}=\{0,1,2, \ldots\} \\
\sum_{i} b_{i j} & =n \\
\sum_{j} b_{i j} & =n
\end{aligned}
$$

Example of a magic square

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 4 \\
3 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 \\
1 & 2 & 4 & 0
\end{array}\right]
$$

$$
(M=4, n=7)
$$

Example of a magic square

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 4 \\
3 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 \\
1 & 2 & 4 & 0
\end{array}\right] \quad(M=4, n=7)
$$

$\in 7 \mathcal{B}_{4}$

$H_{M}(n)$

$\boldsymbol{H}_{M}(\boldsymbol{n}):=\#\{M \times M \mathbb{N}$-matrices, line sums $n\}$

$$
=i\left(\mathcal{B}_{M}, n\right)
$$

$H_{M}(n)$

$\boldsymbol{H}_{M}(\boldsymbol{n}):=\#\{M \times M \mathbb{N}$-matrices, line sums $n\}$

$$
=i\left(\mathcal{B}_{M}, n\right)
$$

$$
\begin{aligned}
& H_{1}(n)=1 \\
& H_{2}(n)=? ?
\end{aligned}
$$

$\boldsymbol{H}_{M}(\boldsymbol{n}):=\#\{M \times M \mathbb{N}$-matrices, line sums $n\}$

$$
=i\left(\mathcal{B}_{M}, n\right)
$$

$$
\begin{aligned}
& H_{1}(n)=1 \\
& H_{2}(n)=n+1 \\
& {\left[\begin{array}{cc}
a & n-a \\
n-a & a
\end{array}\right], \quad 0 \leq a \leq n . }
\end{aligned}
$$

The case $M=3$

$$
H_{3}(n)=\binom{n+2}{4}+\binom{n+3}{4}+\binom{n+4}{4}
$$

(MacMahon)

Values for small n

$$
H_{M}(0)=? ?
$$

Values for small n

$$
H_{M}(0)=1
$$

Values for small n

$$
\begin{gathered}
H_{M}(0)=1 \\
H_{M}(1)=? ?
\end{gathered}
$$

Values for small n

$$
\begin{gathered}
H_{M}(0)=1 \\
H_{M}(1)=M!\text { (permutation matrices) }
\end{gathered}
$$

Values for small n

$$
\begin{gathered}
H_{M}(0)=1 \\
H_{M}(1)=M!\text { (permutation matrices) }
\end{gathered}
$$

Anand-Dumir-Gupta, 1966:

$$
\sum_{M \geq 0} H_{M}(2) \frac{x^{M}}{M!^{2}}=? ?
$$

Values for small n

$$
\begin{gathered}
H_{M}(0)=1 \\
H_{M}(1)=M!\text { (permutation matrices) }
\end{gathered}
$$

Anand-Dumir-Gupta, 1966:

$$
\sum_{M \geq 0} H_{M}(2) \frac{x^{M}}{M!^{2}}=\frac{e^{x / 2}}{\sqrt{1-x}}
$$

Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The vertices of \mathcal{B}_{M} consist of the $M!M \times M$ permutation matrices. Hence \mathcal{B}_{M} is a lattice polytope.

Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The vertices of \mathcal{B}_{M} consist of the $M!M \times M$ permutation matrices. Hence \mathcal{B}_{M} is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture). $H_{M}(n)$ is a polynomial in n (of degree $(M-1)^{2}$).

$H_{4}(n)$

Example. $H_{4}(n)=\frac{1}{11340}\left(11 n^{9}+198 n^{8}+1596 n^{7}\right.$ $+7560 n^{6}+23289 n^{5}+48762 n^{5}+70234 n^{4}+68220 n^{2}$ $+40950 n+11340)$.

Reciprocity for magic squares

Reciprocity $\Rightarrow \pm H_{M}(-n)=$
$\#\{M \times M$ matrices B of positive integers, line sum $n\}$
But every such B can be obtained from an $M \times M$ matrix A of nonnegative integers by adding 1 to each entry.

Reciprocity for magic squares

Reciprocity $\Rightarrow \pm H_{M}(-n)=$
$\#\{M \times M$ matrices B of positive integers, line sum $n\}$
But every such B can be obtained from an $M \times M$ matrix A of nonnegative integers by adding 1 to each entry.
Corollary.

$$
\begin{gathered}
H_{M}(-1)=H_{M}(-2)=\cdots=H_{M}(-M+1)=0 \\
H_{M}(-M-n)=(-1)^{M-1} H_{M}(n)
\end{gathered}
$$

Two remarks

- Reciprocity greatly reduces computation.
- Applications of magic squares, e.g., to statistics (contingency tables).

Zeros of $H_{9}(n)$ in complex plane

Zeros of H_9(n)

Zeros of $H_{9}(n)$ in complex plane

Zeros of H_9(n)

No explanation known.

Coefficients of $i(\mathcal{P}, n)$

Coefficients of n^{d}, n^{d-1}, and 1 are "nice", well-understood, and positive.

Coefficients of $i(\mathcal{P}, n)$

Coefficients of n^{d}, n^{d-1}, and 1 are "nice", well-understood, and positive.

Let \mathcal{P} denote the tetrahedron with vertices
$(0,0,0),(1,0,0),(0,1,0),(1,1,13)$. Then

$$
i(\mathcal{P}, n)=\frac{13}{6} n^{3}+n^{2}-\frac{1}{6} n+1 .
$$

The "bad" tetrahedron

The "bad" tetrahedron

Thus in general the coefficients of Ehrhart polynomials are not "nice." There is a better basis (not given here).

Zonotopes

Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{d}$. The zonotope $Z\left(v_{1}, \ldots, v_{k}\right)$ generated by v_{1}, \ldots, v_{k} :
$\boldsymbol{Z}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}: 0 \leq \lambda_{i} \leq 1\right\}$

Zonotopes

Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{d}$. The zonotope $Z\left(v_{1}, \ldots, v_{k}\right)$ generated by v_{1}, \ldots, v_{k} :
$\boldsymbol{Z}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}: 0 \leq \lambda_{i} \leq 1\right\}$
Example. $v_{1}=(4,0), v_{2}=(3,1), v_{3}=(1,2)$

Lattice points in a zonotope

Theorem. Let

$$
\boldsymbol{Z}=Z\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{d}
$$

where $v_{i} \in \mathbb{Z}^{d}$. Then the coefficient of n^{j} in $i(Z, n)$ is given by $\sum_{X} h(X)$, where X ranges over all linearly independent j-element subsets of $\left\{v_{1}, \ldots, v_{k}\right\}$, and $h(X)$ is the gcd of all $j \times j$ minors of the matrix whose rows are the elements of X.

An example

Example. $v_{1}=(4,0), v_{2}=(3,1), v_{3}=(1,2)$

$$
v_{1}=(4,0), v_{2}=(3,1), v_{3}=(1,2)
$$

$$
\begin{aligned}
i(Z, n)= & \left(\left|\begin{array}{ll}
4 & 0 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|\right) n^{2} \\
& +(\operatorname{gcd}(4,0)+\operatorname{gcd}(3,1) \\
& +\operatorname{gcd}(1,2)) n+\operatorname{det}(\emptyset) \\
= & (4+8+5) n^{2}+(4+1+1) n+1 \\
= & 17 n^{2}+6 n+1
\end{aligned}
$$

$$
v_{1}=(4,0), v_{2}=(3,1), v_{3}=(1,2)
$$

$$
\begin{aligned}
i(Z, n)= & \left(\left|\begin{array}{ll}
4 & 0 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|\right) n^{2} \\
& +(\operatorname{gcd}(4,0)+\operatorname{gcd}(3,1) \\
& +\operatorname{gcd}(1,2)) n+\operatorname{det}(\emptyset) \\
= & (4+8+5) n^{2}+(4+1+1) n+1 \\
= & 17 n^{2}+6 n+1 .
\end{aligned}
$$

Corollaries

Corollary. If Z is an integer zonotope generated by integer vectors, then the coefficients of $i(Z, n)$ are nonnegative integers.

Corollaries

Corollary. If Z is an integer zonotope generated by integer vectors, then the coefficients of $i(Z, n)$ are nonnegative integers.

Neither property is true for general integer polytopes. There are numerous conjectures concerning special cases.

The permutohedron

$$
\boldsymbol{\Pi}_{\boldsymbol{d}}=\operatorname{conv}\left\{(w(1), \ldots, w(d)): w \in S_{d}\right\} \subset \mathbb{R}^{d}
$$

The permutohedron

$$
\begin{gathered}
\Pi_{d}=\operatorname{conv}\left\{(w(1), \ldots, w(d)): w \in S_{d}\right\} \subset \mathbb{R}^{d} \\
\operatorname{dim} \Pi_{d}=d-1, \text { since } \sum w(i)=\binom{d+1}{2}
\end{gathered}
$$

The permutohedron

$$
\begin{gathered}
\boldsymbol{\Pi}_{\boldsymbol{d}}=\operatorname{conv}\left\{(w(1), \ldots, w(d)): w \in S_{d}\right\} \subset \mathbb{R}^{d} \\
\operatorname{dim} \Pi_{d}=d-1, \text { since } \sum w(i)=\binom{d+1}{2} \\
\Pi_{d} \approx Z\left(e_{i}-e_{j}: 1 \leq i<j \leq d\right)
\end{gathered}
$$

Π_{3}

$$
i\left(\Pi_{3}, n\right)=3 n^{2}+3 n+1
$$

(truncated octahedron)

$i\left(\Pi_{d}, n\right)$

Theorem. $i\left(\Pi_{d}, n\right)=\sum_{k=0}^{d-1} f_{k}(d) x^{k}$, where $\boldsymbol{f}_{k}(\boldsymbol{d})=\#\{$ forests with k edges on vertices $1, \ldots, d\}$

$i\left(\Pi_{d}, n\right)$

Theorem. $i\left(\Pi_{d}, n\right)=\sum_{k=0}^{d-1} f_{k}(d) x^{k}$, where $\boldsymbol{f}_{k}(\boldsymbol{d})=\#\{$ forests with k edges on vertices $1, \ldots, d\}$ $1 \quad{ }^{-}$

- 3

$$
i\left(\Pi_{3}, n\right)=3 n^{2}+3 n+1
$$

Application to graph theory

Let G be a graph (with no loops or multiple edges) on the vertex set $\boldsymbol{V}(\boldsymbol{G})=\{1,2, \ldots, n\}$. Let

$$
\boldsymbol{d}_{\boldsymbol{i}}=\text { degree (\# incident edges) of vertex } i \text {. }
$$

Define the ordered degree sequence $d(G)$ of G by

$$
d(G)=\left(d_{1}, \ldots, d_{n}\right)
$$

Example of $d(G)$

Example. $d(G)=(2,4,0,3,2,1)$

\# of ordered degree sequences

Let $\boldsymbol{f}(\boldsymbol{n})$ be the number of distinct $d(G)$, where $V(G)=\{1,2, \ldots, n\}$.

$\boldsymbol{f}(\boldsymbol{n})$ for $\boldsymbol{n} \leq 4$

Example. If $n \leq 3$, all $d(G)$ are distinct, so $f(1)=1, f(2)=2^{1}=2, f(3)=2^{3}=8$. For $n \geq 4$ we can have $G \neq H$ but $d(G)=d(H)$, e.g.,

In fact, $f(4)=54<2^{6}=64$.

The polytope of degree sequences

Let conv denote convex hull, and

$$
\mathcal{D}_{n}=\operatorname{conv}\{d(G): V(G)=\{1, \ldots, n\}\} \subset \mathbb{R}^{n}
$$

the polytope of degree sequences (Perles, Koren).

The polytope of degree sequences

Let conv denote convex hull, and

$$
\mathcal{D}_{n}=\operatorname{conv}\{d(G): V(G)=\{1, \ldots, n\}\} \subset \mathbb{R}^{n}
$$

the polytope of degree sequences (Perles, Koren).

Easy fact. Let $\boldsymbol{e}_{\boldsymbol{i}}$ be the i th unit coordinate vector in \mathbb{R}^{n}. E.g., if $n=5$ then $e_{2}=(0,1,0,0,0)$. Then

$$
\mathcal{D}_{n}=Z\left(e_{i}+e_{j}: 1 \leq i<j \leq n\right) .
$$

The Erdős-Gallai theorem

Theorem. Let

$$
\boldsymbol{\alpha}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}
$$

Then $\alpha=d(G)$ for some G if and only if

- $\alpha \in \mathcal{D}_{n}$
- $a_{1}+a_{2}+\cdots+a_{n}$ is even.

A generating function

Enumerative techniques leads to:
Theorem. Let

$$
\begin{aligned}
F(x) & =\sum_{n \geq 0} f(n) \frac{x^{n}}{n!} \\
& =1+x+2 \frac{x^{2}}{2!}+8 \frac{x^{3}}{3!}+54 \frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

Then:

A formula for $\boldsymbol{F}(x)$

$$
\begin{aligned}
& F(x)=\frac{1}{2}\left[\left(1+2 \sum_{n \geq 1} n^{n} \frac{x^{n}}{n!}\right)^{1 / 2}\right. \\
& \left.\quad \times\left(1-\sum_{n \geq 1}(n-1)^{n-1} \frac{x^{n}}{n!}\right)+1\right] \\
& \quad \times \exp \sum_{n \geq 1} n^{n-2} \frac{x^{n}}{n!} \quad\left(0^{0}=1\right)
\end{aligned}
$$

Two references

M. Beck and S. Robins, Computing the Continuous Discretely, Springer, 2010.

Two references

M. Beck and S. Robins, Computing the Continuous Discretely, Springer, 2010. ??, Enumerative Combinatorics, vol. 1, 2nd ed. (Sections 4.5-4.6), Cambridge Univ. Press, 2011.

Lattice Points in Polvtones - D. 5

