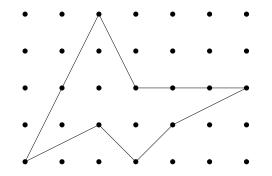
Lattice Points in Polytopes

Richard P. Stanley U. Miami & M.I.T.

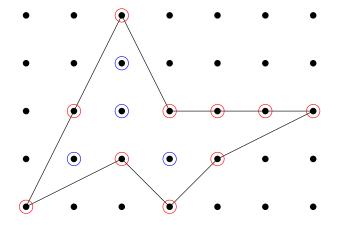
A lattice polygon

Georg Alexander Pick (1859–1942)

P: lattice polygon in \mathbb{R}^2 (vertices $\in \mathbb{Z}^2$, no self-intersections)



Boundary and interior lattice points



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Pick's theorem

$$A$$
 = area of P

I = # interior points of P (= 4)

$$B = \#$$
 boundary points of $P (= 10)$

Then

$$\boldsymbol{A}=\frac{2\boldsymbol{I}+\boldsymbol{B}-2}{2}.$$

Pick's theorem

$$\mathbf{A}$$
 = area of P

I = # interior points of P (= 4)

$$B = \#$$
 boundary points of $P (= 10)$

Then

$$\boldsymbol{A}=\frac{2\boldsymbol{I}+\boldsymbol{B}-2}{2}.$$

Example on previous slide:

$$\frac{2 \cdot \mathbf{4} + \mathbf{10} - 2}{2} = 9.$$

Two tetrahedra

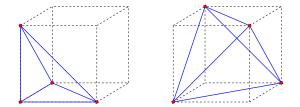
Pick's theorem (seemingly) fails in higher dimensions. For example, let T_1 and T_2 be the tetrahedra with vertices

$$v(T_1) = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$$

$$v(T_2) = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Failure of Pick's theorem in dim 3



Then

 $I(T_1) = I(T_2) = 0$ $B(T_1) = B(T_2) = 4$ $A(T_1) = 1/6, \quad A(T_2) = 1/3.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Polytope dilation

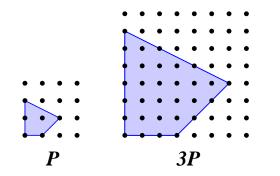
Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^m . For $n \ge 1$, let

$$\mathbf{nP} = \{\mathbf{n}\alpha : \alpha \in \mathcal{P}\}.$$

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^m . For $n \ge 1$, let

$$\mathbf{nP} = \{\mathbf{n}\alpha : \alpha \in \mathcal{P}\}.$$



 $i(\mathcal{P},n)$

Let

$$i(\mathcal{P}, \mathbf{n}) = \#(\mathbf{n}\mathcal{P} \cap \mathbb{Z}^m) \\ = \#\{\alpha \in \mathcal{P} : \mathbf{n}\alpha \in \mathbb{Z}^m\},\$$

the number of lattice points in $n\mathcal{P}$.

 $\overline{i}(\mathcal{P},n)$

Similarly let

 \mathcal{P}° = interior of $\mathcal{P} = \mathcal{P} - \partial \mathcal{P}$

$$\overline{i}(\mathcal{P}, \mathbf{n}) = \#(\mathbf{n}\mathcal{P}^{\circ} \cap \mathbb{Z}^{m}) \\ = \#\{\alpha \in \mathcal{P}^{\circ} : \mathbf{n}\alpha \in \mathbb{Z}^{m}\},\$$

the number of lattice points in the **interior** of $n\mathcal{P}$.

 $\overline{i}(\mathcal{P},n)$

Similarly let

$$\mathcal{P}^{\circ}$$
 = interior of $\mathcal{P} = \mathcal{P} - \partial \mathcal{P}$

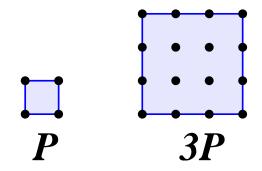
$$\overline{i}(\mathcal{P}, \mathbf{n}) = \#(\mathbf{n}\mathcal{P}^{\circ} \cap \mathbb{Z}^{m}) \\ = \#\{\alpha \in \mathcal{P}^{\circ} : \mathbf{n}\alpha \in \mathbb{Z}^{m}\},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

the number of lattice points in the **interior** of $n\mathcal{P}$.

Note. Could use any lattice *L* instead of \mathbb{Z}^m .

An example



$$i(\mathcal{P}, n) = (n+1)^2$$

 $\overline{i}(\mathcal{P}, n) = (n-1)^2 = i(\mathcal{P}, -n).$

▲口 ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲日 ● ● ● ●

The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let

 \mathcal{P} = lattice polytope in \mathbb{R}^m , dim \mathcal{P} = **d**.

Then $i(\mathcal{P}, n)$ is a polynomial (the Ehrhart polynomial of \mathcal{P}) in n of degree d.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Reciprocity and volume

Moreover,

$$\begin{split} i(\mathcal{P},0) &= 1\\ \overline{i}(\mathcal{P},n) &= (-1)^d i(\mathcal{P},-n), \ n>0\\ & (\text{reciprocity}). \end{split}$$

Reciprocity and volume

Moreover,

$$\begin{split} i(\mathcal{P},0) &= 1\\ \overline{i}(\mathcal{P},n) &= (-1)^d i(\mathcal{P},-n), \ n>0\\ & (\text{reciprocity}). \end{split}$$

If d = N then

 $i(\mathcal{P}, n) = V(\mathcal{P})n^d$ + lower order terms,

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where $V(\mathcal{P})$ is the volume of \mathcal{P} .

Reciprocity and volume

Moreover,

$$\begin{split} i(\mathcal{P},0) &= 1\\ \overline{i}(\mathcal{P},n) &= (-1)^d i(\mathcal{P},-n), \ n>0\\ & (\text{reciprocity}). \end{split}$$

If d = N then

 $i(\mathcal{P}, n) = V(\mathcal{P})n^d$ + lower order terms,

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

where $V(\mathcal{P})$ is the volume of \mathcal{P} .

(For d < N, $V(\mathcal{P})$ is the relative volume.)

Eugène Ehrhart

- April 29, 1906: born in Guebwiller, France
- 1932: begins teaching career in lycées
- 1959: Prize of French Sciences Academy
- 1963: begins work on Ph.D. thesis
- 1966: obtains Ph.D. thesis from Univ. of Strasbourg

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- 1971: retires from teaching career
- January 17, 2000: dies

Photo of Ehrhart

Self-portrait

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^d$ and dim $\mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\overline{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^d$ and dim $\mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\overline{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0) = 1$, this data determines d + 1 values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. \Box

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two basic questions

Let \mathcal{P} be a lattice (convex) polytope in \mathbb{R}^m .

• Does $i(\mathcal{P}, n)$ have integer coefficients?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Two basic questions

Let \mathcal{P} be a lattice (convex) polytope in \mathbb{R}^m .

- Does $i(\mathcal{P}, n)$ have integer coefficients?
- Does $i(\mathcal{P}, n)$ have positive coefficients? If so, we say that \mathcal{P} is **Ehrhart positive**.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Two basic questions

Let \mathcal{P} be a lattice (convex) polytope in \mathbb{R}^m .

- Does i(P, n) have integer coefficients?
- Does *i*(*P*, *n*) have positive coefficients? If so, we say that *P* is Ehrhart positive.

Note. If dim $\mathcal{P} = d$ and

$$i(\mathcal{P}, n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_0,$$

then $c_d > 0$ (relative volume), $c_{d-1} > 0$ (half the relative surface area), and $c_0 = 1 > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 1. \mathcal{P}_d is the simplex in \mathbb{R}^d with vertices O, e_1, \ldots, e_d , where O is the origin, and e_i the *i*th unit coordinate vector.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Two examples

Example 1. \mathcal{P}_d is the simplex in \mathbb{R}^d with vertices O, e_1, \ldots, e_d , where O is the origin, and e_i the *i*th unit coordinate vector.

$$i(\mathcal{P}_d, n) = \binom{n+d-1}{d} = \frac{n(n-1)\cdots(n-d+1)}{d!}$$

Example 2. Let \mathcal{P} denote the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (1,1,13). Then

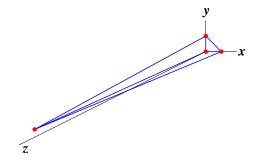
$$i(\mathcal{P}, n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The "bad" tetrahedron

y x

The "bad" tetrahedron



Thus in general the coefficients of Ehrhart polynomials are not "nice." Is there a "better" basis?

The h^* -vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree d, $\exists h_i \in \mathbb{Z}$ such that

$$\sum_{n\geq 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1-x)^{d+1}}.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

The *h**-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree d, $\exists h_i \in \mathbb{Z}$ such that

$$\sum_{n\geq 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1-x)^{d+1}}.$$

Definition. Define

$$\boldsymbol{h^*(\mathcal{P})} = (h_0, h_1, \ldots, h_d),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

the *h*^{*}-vector of \mathcal{P} .

Three terms of $h^*(\mathcal{P})$

•
$$h_0 = 1$$

• $h_1 = i(\mathcal{P}, 1) - \dim \mathcal{P} - 1 \ge 0$
• $h_d = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = \#(\mathcal{P}^\circ \cap \mathbb{Z}^m) \ge 0$

Three terms of $h^*(\mathcal{P})$

•
$$h_0 = 1$$

• $h_1 = i(\mathcal{P}, 1) - \dim \mathcal{P} - 1 \ge 0$
• $h_d = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = \#(\mathcal{P}^\circ \cap \mathbb{Z}^m) \ge 0$
Example. $\mathcal{P} = \operatorname{conv}\{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}$. Then
 $h^*(\mathcal{P}) = (1, 0, 1, 0).$

Main properties of $h^*(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i \ge 0$.

Main properties of $h^*(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i \ge 0$.

Theorem B (monotonicity). **(RS)** If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

 $h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \ \forall i.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Main properties of $h^*(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i \ge 0$.

Theorem B (monotonicity). **(RS)** If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

 $h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \ \forall i.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

 $B \Rightarrow A$: take $Q = \emptyset$.

Proofs: the Ehrhart ring

 \mathcal{P} : (convex) lattice polytope in \mathbb{R}^m with vertex set V

$$\mathbf{x}^{\boldsymbol{\beta}} = x^{\beta_1} \cdots x^{\beta_d}, \ \beta \in \mathbb{Z}^m$$

Ehrhart ring (over \mathbb{Q}):

$$\mathbf{R}_{\mathcal{P}} = \mathbb{Q}\left[x^{\beta}y^{n} : \beta \in \mathbb{Z}^{m}, \ n \in \mathbb{P}, \ \frac{\beta}{n} \in \mathcal{P}\right]$$
$$\operatorname{deg} x^{\beta}y^{n} := n$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proofs: the Ehrhart ring

 \mathcal{P} : (convex) lattice polytope in \mathbb{R}^m with vertex set V

$$\mathbf{x}^{\boldsymbol{\beta}} = x^{\beta_1} \cdots x^{\beta_d}, \ \beta \in \mathbb{Z}^m$$

Ehrhart ring (over \mathbb{Q}):

$$\mathbf{R}_{\mathbf{\mathcal{P}}} = \mathbb{Q}\left[x^{\beta}y^{n} : \beta \in \mathbb{Z}^{m}, \ n \in \mathbb{P}, \ \frac{\beta}{n} \in \mathcal{P}\right]$$
$$\operatorname{deg} x^{\beta}y^{n} \coloneqq n$$

$$R_{\mathcal{P}} = (R_{\mathcal{P}})_0 \oplus (R_{\mathcal{P}})_1 \oplus \cdots$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Hilbert function of $R_{\mathcal{P}}$:

 $H(R_{\mathcal{P}}, n) = \dim_{\mathbb{Q}}(R_{\mathcal{P}})_n.$

Hilbert function of $R_{\mathcal{P}}$:

 $H(R_{\mathcal{P}}, n) = \dim_{\mathbb{Q}}(R_{\mathcal{P}})_n.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Theorem (easy). $H(R_{\mathcal{P}}, n) = i(\mathcal{P}, n)$

Hilbert function of $R_{\mathcal{P}}$:

 $H(R_{\mathcal{P}}, n) = \dim_{\mathbb{Q}}(R_{\mathcal{P}})_n.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem (easy). $H(R_{\mathcal{P}}, n) = i(\mathcal{P}, n)$

 $\mathbb{Q}[\mathbf{V}]$: subalgebra of $R_{\mathcal{P}}$ generated by $x^{\alpha}y, \alpha \in \mathbf{V}$.

Hilbert function of $R_{\mathcal{P}}$:

 $H(R_{\mathcal{P}}, \mathbf{n}) = \dim_{\mathbb{Q}}(R_{\mathcal{P}})_{\mathbf{n}}.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem (easy). $H(R_{\mathcal{P}}, n) = i(\mathcal{P}, n)$

 $\mathbb{Q}[\mathbf{V}]$: subalgebra of $R_{\mathcal{P}}$ generated by $x^{\alpha}y$, $\alpha \in \mathbf{V}$.

Theorem (easy). $R_{\mathcal{P}}$ is a finitely-generated $\mathbb{Q}[V]$ -module.

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.

This means (using finiteness of $R_{\mathcal{P}}$ over $\mathbb{Q}[V]$): if dim $\mathcal{P} = m$ then there exist algebraically independent $\theta_1, \ldots, \theta_{m+1} \in (R_{\mathcal{P}})_1$ such that $R_{\mathcal{P}}$ is a finitely-generated free $\mathbb{Q}[\theta_1, \ldots, \theta_{m+1}]$ -module.

 $\theta_1, \ldots, \theta_{m+1}$ is a homogeneous system of parameters (h.s.o.p.).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.

This means (using finiteness of $R_{\mathcal{P}}$ over $\mathbb{Q}[V]$): if dim $\mathcal{P} = m$ then there exist algebraically independent $\theta_1, \ldots, \theta_{m+1} \in (R_{\mathcal{P}})_1$ such that $R_{\mathcal{P}}$ is a finitely-generated free $\mathbb{Q}[\theta_1, \ldots, \theta_{m+1}]$ -module.

 $\theta_1, \ldots, \theta_{m+1}$ is a homogeneous system of parameters (h.s.o.p.).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus
$$R_{\mathcal{P}} = \bigoplus_{j=1}^{\prime} \eta_j \mathbb{Q}[\theta_1, \dots, \theta_{m+1}]$$
, where $\eta_j \in (R_{\mathcal{P}})_{e_j}$.

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.

This means (using finiteness of $R_{\mathcal{P}}$ over $\mathbb{Q}[V]$): if dim $\mathcal{P} = m$ then there exist algebraically independent $\theta_1, \ldots, \theta_{m+1} \in (R_{\mathcal{P}})_1$ such that $R_{\mathcal{P}}$ is a finitely-generated free $\mathbb{Q}[\theta_1, \ldots, \theta_{m+1}]$ -module.

 $\theta_1, \ldots, \theta_{m+1}$ is a homogeneous system of parameters (h.s.o.p.).

Thus
$$R_{\mathcal{P}} = \bigoplus_{j=1}^{\prime} \eta_j \mathbb{Q}[\theta_1, \dots, \theta_{m+1}]$$
, where $\eta_j \in (R_{\mathcal{P}})_{e_j}$.

Corollary.
$$\sum_{n\geq 0} \underbrace{H(R_{\mathcal{P}}, n)}_{i(\mathcal{P}, n)} x^n = \frac{x^{e_1} + \dots + x^{e_r}}{(1-x)^{m+1}}, \text{ so } h^*(\mathcal{P}) \ge 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monotonicity

The result $\mathcal{Q} \subseteq \mathcal{P} \Rightarrow h^*(\mathcal{Q}) \leq h^*(\mathcal{P})$ is proved similarly.

We have $R_Q \subset R_P$. The key fact is that we can find an h.s.o.p. $\theta_1, \ldots, \theta_k$ for R_Q that extends to an h.s.o.p. for R_P .

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Valuations

convex body in \mathbb{R}^m : a nonempty, compact, convex subset

A valuation is a map φ from a family \mathcal{F} of convex bodies in \mathbb{R}^m containing \emptyset into an abelian group G such that $\varphi(\emptyset) = 0$ and

$$\varphi(P \cup Q) = \varphi(P) + \varphi(Q) - \varphi(P \cap Q),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $P, Q \in \mathcal{F}$ for which $P \cup Q, P \cap Q \in \mathcal{F}$.

Hadwiger's theorem

Theorem (Hadwiger, 1957) The family of continuous, real-valued, rigid-motion invariant valuations on all convex bodies is a (d + 1)-dimensional vector space with basis consisting of the quermassintegrals W_i defined by

$$\operatorname{vol}(tP + \mathcal{B}_d) = \sum_{i=0}^d \binom{d}{i} W_i(P) t^i,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where \mathcal{B}_d is a unit ball of dimension d.

Hadwiger's theorem

Theorem (Hadwiger, 1957) The family of continuous, real-valued, rigid-motion invariant valuations on all convex bodies is a (d + 1)-dimensional vector space with basis consisting of the quermassintegrals W_i defined by

$$\operatorname{vol}(tP + \mathcal{B}_d) = \sum_{i=0}^d \binom{d}{i} W_i(P) t^i,$$

where \mathcal{B}_d is a unit ball of dimension d.

Note. W_i is monotone (hence nonnegative) and *i*-homogeneous, i.e., $W_i(\lambda P) = \lambda^i W_i(P)$. W_0, \ldots, W_d is the unique (up to scaling) monotone homogeneous basis.

Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued, lattice-invariant (i.e., invariant under $GL(m,\mathbb{Z})$) valuations on lattice polytopes in \mathbb{R}^m is an (m+1)-dimensional vector space spanned by the coefficients of the Ehrhart polynomial.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued, lattice-invariant (i.e., invariant under $GL(m,\mathbb{Z})$) valuations on lattice polytopes in \mathbb{R}^m is an (m+1)-dimensional vector space spanned by the coefficients of the Ehrhart polynomial.

Note. This is the unique such basis (up to scaling) that is homogeneous. However, it is not nonnegative.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued, lattice-invariant (i.e., invariant under $GL(m,\mathbb{Z})$) valuations on lattice polytopes in \mathbb{R}^m is an (m + 1)-dimensional vector space spanned by the coefficients of the Ehrhart polynomial.

Note. This is the unique such basis (up to scaling) that is homogeneous. However, it is not nonnegative.

Note. h_i^* is not a valuation because its definition depends on $d = \dim \mathcal{P}$.

$$\sum_{n\geq 0} i(\mathcal{P}, n) x^n = \frac{n_0 + n_1 x + \dots + n_d x^n}{(1-x)^{d+1}}.$$

Zonotopes

Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k :

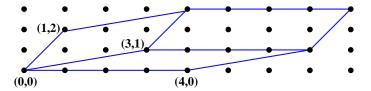
$$\boldsymbol{Z}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k) = \{\lambda_1\boldsymbol{v}_1 + \cdots + \lambda_k\boldsymbol{v}_k : 0 \leq \lambda_i \leq 1\}$$

Zonotopes

Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k :

$$\boldsymbol{Z}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k) = \{\lambda_1\boldsymbol{v}_1 + \cdots + \lambda_k\boldsymbol{v}_k : 0 \leq \lambda_i \leq 1\}$$

Example. $v_1 = (4,0), v_2 = (3,1), v_3 = (1,2)$



◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Lattice points in a zonotope

Theorem. Let

$$Z=Z(v_1,\ldots,v_k)\subset\mathbb{R}^d,$$

where $v_i \in \mathbb{Z}^d$. Then

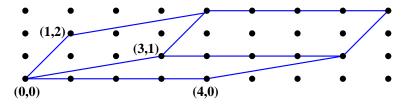
$$i(Z,1)=\sum_X h(X),$$

where X ranges over all linearly independent subsets of $\{v_1, \ldots, v_k\}$, and h(X) is the gcd of all $j \times j$ minors (j = #X) of the matrix whose rows are the elements of X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An example

Example.
$$v_1 = (4,0), v_2 = (3,1), v_3 = (1,2)$$



◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

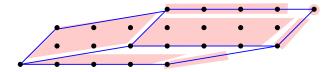
Computation of i(Z, 1)

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} +gcd(4,0) + gcd(3,1) +gcd(1,2) + det(\emptyset) = 4 + 8 + 5 + 4 + 1 + 1 + 1 = 24.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Computation of i(Z, 1)

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$$
$$+\gcd(4,0) + \gcd(3,1)$$
$$+\gcd(1,2) + \det(\emptyset)$$
$$= 4 + 8 + 5 + 4 + 1 + 1 + 1$$
$$= 24.$$



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Corollary

Let
$$n \in \mathbb{P}$$
. If $Z = Z(v_1, \dots, v_k)$, then
 $nZ = Z(nv_1, \dots, nv_k)$,

and

$$i(Z, n) = i(nZ, 1) = \sum_{X} h(X) n^{\#X}$$

Corollary. If Z is an integer zonotope generated by integer vectors, then the coefficients of i(Z, n) are nonnegative integers.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The permutohedron

$$\mathbf{\Pi}_{m} = \operatorname{conv}\{(w(1), \ldots, w(m)) : w \in \mathfrak{S}_{m}\} \subset \mathbb{R}^{m}$$

The permutohedron

$$\Pi_m = \operatorname{conv}\{(w(1),\ldots,w(m)) : w \in \mathfrak{S}_m\} \subset \mathbb{R}^m$$

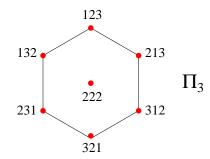
dim
$$\Pi_m = m - 1$$
, since $\sum w(i) = \binom{m+1}{2}$

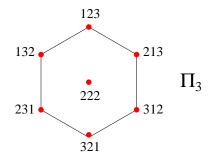
The permutohedron

$$\Pi_{m} = \operatorname{conv}\{(w(1), \ldots, w(m)) : w \in \mathfrak{S}_{m}\} \subset \mathbb{R}^{m}$$

dim
$$\Pi_m = m - 1$$
, since $\sum w(i) = \binom{m+1}{2}$

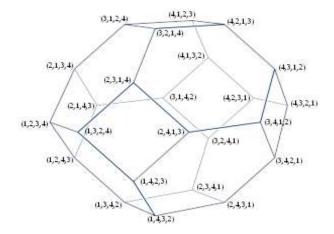
$$\Pi_m \approx Z(e_i - e_j : 1 \le i < j \le m)$$





 $i(\Pi_3, n) = 3n^2 + 3n + 1$

Π4



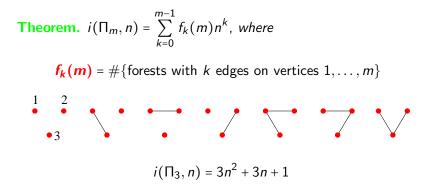
(truncated octahedron)

$i(\Pi_m, n)$

Theorem.
$$i(\Pi_m, n) = \sum_{k=0}^{m-1} f_k(m) n^k$$
, where

 $f_k(m) = #\{$ forests with k edges on vertices $1, ..., m\}$

$i(\Pi_m, n)$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Generalized permtohedra

Definition (A. Postnikov, 2005) A generalized permutohedron is a lattice polytope in \mathbb{R}^m for which every edge is parallel to some edge of the permutohedron Π_m , that is, parallel to some vector $e_i - e_j$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Generalized permtohedra

Definition (A. Postnikov, 2005) A generalized permutohedron is a lattice polytope in \mathbb{R}^m for which every edge is parallel to some edge of the permutohedron Π_m , that is, parallel to some vector $e_i - e_j$.

Example. *M*: matroid on $E = \{v_1, \ldots, v_m\}$

 $\chi_B \in \{0,1\}^n$: characteristic vector of $B \subseteq E$

 \mathcal{B} : set of all bases of M

matroid polytope \mathcal{P}_M : conv{ $\chi_B : B \in \mathcal{B}$ }

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Castillo-Liu conjecture

Conjecture (F. Castillo and **F. Liu**, 2015). Every integral generalized permutohedron is Ehrhart positive.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Open even for matroid polytopes.

Cross polytopes

cross polytope C_d : conv{ $\pm e_1, \ldots, \pm e_d$ } $\subset \mathbb{R}^d$ (dual to *d*-cube)

Cross polytopes

cross polytope C_d : conv{ $\pm e_1, \ldots, \pm e_d$ } $\subset \mathbb{R}^d$ (dual to *d*-cube)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Easy theorem.
$$\sum_{n\geq 0} i(\mathcal{C}_d, n) x^n = \frac{(1+x)^d}{(1-x)^{d+1}}$$

Cross polytopes

cross polytope C_d : conv{ $\pm e_1, \ldots, \pm e_d$ } $\subset \mathbb{R}^d$ (dual to *d*-cube)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Easy theorem.
$$\sum_{n\geq 0} i(\mathcal{C}_d, n) x^n = \frac{(1+x)^d}{(1-x)^{d+1}}$$

Theorem. C_d is Ehrhart positive.

Crucial lemma

Lemma. Let f(n) be polynomial of degree d satisfying

$$\sum_{n\geq 0} f(n)x^n = \frac{P(x)}{(1-x)^{d+1}}$$

where
$$P(x) = \prod_{j=1}^{k} (1 + \gamma_j x)$$
, $|\gamma_j| = 1$. Then
 $f(n) = (n+1)(n+2)\cdots(n+d-k)g(n)$, where

$$g(\alpha) = 0 \Rightarrow Re(\alpha) = -\frac{1}{2}(d+1-k).$$

Crucial lemma

Lemma. Let f(n) be polynomial of degree d satisfying

$$\sum_{n\geq 0} f(n)x^n = \frac{P(x)}{(1-x)^{d+1}}$$

where
$$P(x) = \prod_{j=1}^{k} (1 + \gamma_j x)$$
, $|\gamma_j| = 1$. Then
 $f(n) = (n+1)(n+2)\cdots(n+d-k)g(n)$, where

$$g(\alpha) = 0 \Rightarrow Re(\alpha) = -\frac{1}{2}(d+1-k).$$

Proof. Exercise.

Proof that C_d is Ehrhart positive

Apply to $i(\mathcal{C}_d, n)$ to get that all zeros of $i(\mathcal{C}_d, n)$ have real part -1/2. Thus $i(\mathcal{C}_d, n)$ is a product of factors $n + \frac{1}{2}$ and

$$\left(n+\frac{1}{2}+\beta i\right)\left(n+\frac{1}{2}-\beta i\right)=n^2+n+\beta^2+\frac{1}{4},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so $i(\mathcal{C}_d, n)$ has positive coefficients. \Box

Proof that C_d is Ehrhart positive

Apply to $i(\mathcal{C}_d, n)$ to get that all zeros of $i(\mathcal{C}_d, n)$ have real part -1/2. Thus $i(\mathcal{C}_d, n)$ is a product of factors $n + \frac{1}{2}$ and

$$\left(n+\frac{1}{2}+\beta i\right)\left(n+\frac{1}{2}-\beta i\right)=n^2+n+\beta^2+\frac{1}{4},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so $i(\mathcal{C}_d, n)$ has positive coefficients. \Box

Not so easy to give a "positive formula" for the coefficients.

Rational polytopes

Let $\mathcal{P} \subseteq \mathbb{R}^d$ have rational vertices.

Rational polytopes

Let $\mathcal{P} \subseteq \mathbb{R}^d$ have rational vertices.

Example. P = [0, 1/2]. Then

$$\begin{split} i(\mathcal{P},n) &= \begin{cases} \frac{1}{2}n, & n \text{ even} \\ \frac{1}{2}(n+1), & n \text{ odd} \\ &= \frac{1}{2}n + \frac{1}{4}(1-(-1)^n). \end{split}$$

Theorem. Let NP have integer vertices, $N \in \mathbb{P}$. Then there exist polynomials $P_0(n), \ldots, P_{N-1}(n)$ such that

 $i(\mathcal{P},n)=P_j(n),\ n\equiv j\,(\mathrm{mod}\,N).$

Irrational polytopes

Example. $\mathcal{P} = [0, \sqrt{2}]$, then

$$i(\mathcal{P},n)=\lfloor\sqrt{2}n\rfloor,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

which is poorly behaved.

Irrational polytopes

Example.
$$\mathcal{P} = [0, \sqrt{2}]$$
, then

$$i(\mathcal{P},n)=\lfloor\sqrt{2}n\rfloor,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

which is poorly behaved.

For instance, $\sum_{n\geq 0} \lfloor \sqrt{2}n \rfloor x^n$ has the unit circle as a natural boundary.

Uninteresting irrational polytopes

Example. Let
$$\mathcal{P} = [\sqrt{2} - 1, \sqrt{2}]$$
. Then

 $i(\mathcal{P},n) = n.$

Uninteresting irrational polytopes

Example. Let
$$\mathcal{P} = [\sqrt{2} - 1, \sqrt{2}]$$
. Then

$$i(\mathcal{P},n) = n.$$

Uninteresting, because \mathcal{P} is the translate of a rational (in fact, integer) polytope.

Period collapse

If there are polynomials $P_0(n), \ldots, P_{M-1}(n)$ for which

$$i(\mathcal{P}, n) = P_j(n), n \equiv j \pmod{M},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

then *M* is called a **period** of \mathcal{P} or $i(\mathcal{P}, n)$.

Period collapse

If there are polynomials $P_0(n), \ldots, P_{M-1}(n)$ for which

$$i(\mathcal{P},n)=P_j(n),\ n\equiv j\,(\mathrm{mod}\,M),$$

then *M* is called a **period** of \mathcal{P} or $i(\mathcal{P}, n)$.

If \mathcal{P} has a period smaller than the least N > 0 for which $N\mathcal{P}$ has integer vertices, then \mathcal{P} exhibits **period collapse**.

Period collapse

If there are polynomials $P_0(n), \ldots, P_{M-1}(n)$ for which

$$i(\mathcal{P},n)=P_j(n),\ n\equiv j\,(\mathrm{mod}\,M),$$

then *M* is called a **period** of \mathcal{P} or $i(\mathcal{P}, n)$.

If \mathcal{P} has a period smaller than the least N > 0 for which $N\mathcal{P}$ has integer vertices, then \mathcal{P} exhibits **period collapse**.

Special case of period collapse: \mathcal{P} does not have integer vertices, but $i(\mathcal{P}, n)$ is a polynomial.

Poorly understood, but lots of examples, such as **Gelfand-Zetlin polytopes**.

For $\alpha > 0$ let T_{α} be the triangle in \mathbb{R}^2 with vertices $(0,0), (0,\alpha), (1/\alpha, 0)$, so area $(T_{\alpha}) = \frac{1}{2}$. Can define

$$\mathbf{i}(\mathbf{T}_{\boldsymbol{\alpha}},\mathbf{n}) = \#(\mathbf{n}T_{\boldsymbol{\alpha}} \cap \mathbb{Z}^2), \ \mathbf{n} \geq 1.$$

For $\alpha > 0$ let T_{α} be the triangle in \mathbb{R}^2 with vertices $(0,0), (0,\alpha), (1/\alpha, 0)$, so area $(T_{\alpha}) = \frac{1}{2}$. Can define

$$i(T_{\alpha}, n) = \#(nT_{\alpha} \cap \mathbb{Z}^2), \ n \ge 1.$$

Easy. T_1 is a lattice triangle with $i(T_1, n) = \binom{n+2}{2}$.

Theorem (Cristofaro-Gardiner, Li, S). Let $\alpha > 1$. We have $i(T_{\alpha}, n) = \binom{n+2}{2}$ for all $n \ge 1$ if and only if either:

For $\alpha > 0$ let T_{α} be the triangle in \mathbb{R}^2 with vertices $(0,0), (0,\alpha), (1/\alpha, 0)$, so area $(T_{\alpha}) = \frac{1}{2}$. Can define

$$i(T_{\alpha}, n) = \#(nT_{\alpha} \cap \mathbb{Z}^2), \ n \ge 1.$$

Easy. T_1 is a lattice triangle with $i(T_1, n) = \binom{n+2}{2}$.

Theorem (Cristofaro-Gardiner, Li, S). Let $\alpha > 1$. We have $i(T_{\alpha}, n) = \binom{n+2}{2}$ for all $n \ge 1$ if and only if either: • $\alpha = \frac{F_{2k+1}}{F_{2k-1}}$ (Fibonacci numbers)

For $\alpha > 0$ let T_{α} be the triangle in \mathbb{R}^2 with vertices $(0,0), (0,\alpha), (1/\alpha, 0)$, so area $(T_{\alpha}) = \frac{1}{2}$. Can define

$$i(T_{\alpha}, n) = \#(nT_{\alpha} \cap \mathbb{Z}^2), \ n \ge 1.$$

Easy. T_1 is a lattice triangle with $i(T_1, n) = \binom{n+2}{2}$.

Theorem (Cristofaro-Gardiner, Li, S). Let $\alpha > 1$. We have $i(T_{\alpha}, n) = \binom{n+2}{2}$ for all $n \ge 1$ if and only if either: • $\alpha = \frac{F_{2k+1}}{F_{2k-1}}$ (Fibonacci numbers) • $\alpha = \frac{1}{2}(3 + \sqrt{5})$

Generalizations?

Lots of variants of previous irrational example.

Generalizations?

Lots of variants of previous irrational example.

However: no "interesting" irrational polytope \mathcal{P} is known for which $i(\mathcal{P}, n)$ is a polynomial and some vertex of \mathcal{P} is algebraic of degree at least three.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

