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A lattice polygon

Georg Alexander Pick (1859–1942)

P: lattice polygon in R2

(vertices ∈ Z2, no self-intersections)



Boundary and interior lattice points



Pick’s theorem

A = area of P

I = # interior points of P (= 4)
B = #boundary points of P (= 10)

Then

A = 2I +B − 2
2

.



Pick’s theorem

A = area of P

I = # interior points of P (= 4)
B = #boundary points of P (= 10)

Then

A = 2I +B − 2
2

.

Example on previous slide:

2 ⋅ 4 + 10 − 2
2

= 9.



Two tetrahedra

Pick’s theorem (seemingly) fails in higher dimensions. For
example, let T1 and T2 be the tetrahedra with vertices

v(T1) = {(0,0,0), (1, 0, 0), (0, 1, 0), (0, 0,1)}
v(T2) = {(0,0,0), (1, 1, 0), (1, 0, 1), (0, 1,1)}.



Failure of Pick’s theorem in dim 3

Then
I(T1) = I(T2) = 0
B(T1) = B(T2) = 4

A(T1) = 1/6, A(T2) = 1/3.



Polytope dilation

Let P be a convex polytope (convex hull of a finite set of points)
in Rm. For n ≥ 1, let

nP = {nα ∶ α ∈ P}.



Polytope dilation

Let P be a convex polytope (convex hull of a finite set of points)
in Rm. For n ≥ 1, let

nP = {nα ∶ α ∈ P}.

3PP



i(P,n)

Let

i(P,n) = #(nP ∩ Zm)
= #{α ∈ P ∶ nα ∈ Zm},

the number of lattice points in nP.



ī(P,n)

Similarly let
P○ = interior of P = P − ∂P

ī(P,n) = #(nP○ ∩ Zm)
= #{α ∈ P○ ∶ nα ∈ Zm},

the number of lattice points in the interior of nP.



ī(P,n)

Similarly let
P○ = interior of P = P − ∂P

ī(P,n) = #(nP○ ∩ Zm)
= #{α ∈ P○ ∶ nα ∈ Zm},

the number of lattice points in the interior of nP.

Note. Could use any lattice L instead of Zm.



An example

P 3P
i(P,n) = (n + 1)2

ī(P,n) = (n − 1)2 = i(P,−n).



The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let

P = lattice polytope in Rm, dimP = d .

Then i(P,n) is a polynomial (the Ehrhart polynomial of P) in n
of degree d.



Reciprocity and volume

Moreover,

i(P,0) = 1

ī(P,n) = (−1)d i(P,−n), n > 0
(reciprocity).
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i(P,n) = V (P)nd + lower order terms,

where V (P) is the volume of P.



Reciprocity and volume

Moreover,

i(P,0) = 1

ī(P,n) = (−1)d i(P,−n), n > 0
(reciprocity).

If d = N then

i(P,n) = V (P)nd + lower order terms,

where V (P) is the volume of P.

(For d < N, V (P) is the relative volume.)



Eugène Ehrhart

April 29, 1906: born in Guebwiller, France

1932: begins teaching career in lycées

1959: Prize of French Sciences Academy

1963: begins work on Ph.D. thesis

1966: obtains Ph.D. thesis from Univ. of Strasbourg

1971: retires from teaching career

January 17, 2000: dies



Photo of Ehrhart



Self-portrait



Generalized Pick’s theorem

Corollary. Let P ⊂ Rd and dimP = d. Knowing any d of i(P,n)
or ī(P,n) for n > 0 determines V (P).



Generalized Pick’s theorem

Corollary. Let P ⊂ Rd and dimP = d. Knowing any d of i(P,n)
or ī(P,n) for n > 0 determines V (P).
Proof. Together with i(P,0) = 1, this data determines d + 1
values of the polynomial i(P,n) of degree d . This uniquely
determines i(P,n) and hence its leading coefficient V (P). ◻
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Let P be a lattice (convex) polytope in Rm.

Does i(P,n) have integer coefficients?
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Two basic questions

Let P be a lattice (convex) polytope in Rm.

Does i(P,n) have integer coefficients?

Does i(P,n) have positive coefficients? If so, we say that P is
Ehrhart positive.

Note. If dimP = d and

i(P,n) = cdnd + cd−1nd−1 +⋯+ c0,
then cd > 0 (relative volume), cd−1 > 0 (half the relative surface
area), and c0 = 1 > 0.



Two examples

Example 1. Pd is the simplex in Rd with vertices O, e1, . . . , ed ,
where O is the origin, and ei the ith unit coordinate vector.



Two examples

Example 1. Pd is the simplex in Rd with vertices O, e1, . . . , ed ,
where O is the origin, and ei the ith unit coordinate vector.

i(Pd ,n) = (n + d − 1
d

) = n(n − 1)⋯(n − d + 1)
d !

Example 2. Let P denote the tetrahedron with vertices (0,0,0),
(1,0,0), (0,1,0), (1,1,13). Then

i(P,n) = 13

6
n3 + n2 −

1

6
n + 1.



The “bad” tetrahedron

z

x
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The “bad” tetrahedron

z

x

y

Thus in general the coefficients of Ehrhart polynomials are not
“nice.” Is there a “better” basis?



The h∗-vector of i(P,n)

Let P be a lattice polytope of dimension d . Since i(P,n) is a
polynomial of degree d , ∃ hi ∈ Z such that

∑
n≥0

i(P,n)xn = h0 + h1x +⋯+ hdxd

(1 − x)d+1 .



The h∗-vector of i(P,n)

Let P be a lattice polytope of dimension d . Since i(P,n) is a
polynomial of degree d , ∃ hi ∈ Z such that

∑
n≥0

i(P,n)xn = h0 + h1x +⋯+ hdxd

(1 − x)d+1 .

Definition. Define

h
∗(P) = (h0,h1, . . . ,hd),

the h
∗-vector of P.



Three terms of h∗(P)

h0 = 1
h1 = i(P,1) − dimP − 1 ≥ 0
hd = (−1)dimP i(P,−1) =#(P○ ∩Zm) ≥ 0



Three terms of h∗(P)

h0 = 1
h1 = i(P,1) − dimP − 1 ≥ 0
hd = (−1)dimP i(P,−1) =#(P○ ∩Zm) ≥ 0

Example. P = conv{(0,0,0), (1,1, 0), (1, 0,1), (0, 1, 1)}. Then

h∗(P) = (1,0,1,0).



Main properties of h∗(P)

Theorem A (nonnegativity). (McMullen, RS) hi ≥ 0.
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Main properties of h∗(P)

Theorem A (nonnegativity). (McMullen, RS) hi ≥ 0.
Theorem B (monotonicity). (RS) If P and Q are lattice
polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i .

B ⇒ A: take Q = ∅.



Proofs: the Ehrhart ring

P : (convex) lattice polytope in Rm with vertex set V

x
β = xβ1⋯xβd , β ∈ Zm

Ehrhart ring (over Q):

RP = Q [xβyn ∶ β ∈ Zm, n ∈ P, β

n
∈ P]

deg xβyn ∶= n



Proofs: the Ehrhart ring

P : (convex) lattice polytope in Rm with vertex set V

x
β = xβ1⋯xβd , β ∈ Zm

Ehrhart ring (over Q):

RP = Q [xβyn ∶ β ∈ Zm, n ∈ P, β

n
∈ P]

deg xβyn ∶= n

RP = (RP)0 ⊕ (RP)1 ⊕⋯
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Hilbert function of RP :

H(RP ,n) = dimQ(RP)n.
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Simple properties of RP

Hilbert function of RP :

H(RP ,n) = dimQ(RP)n.
Theorem (easy). H(RP ,n) = i(P,n)
Q[V ]: subalgebra of RP generated by xαy , α ∈ V .

Theorem (easy). RP is a finitely-generated Q[V ]-module.



The Cohen-Macaulay property

Theorem (Hochster, 1972). RP is a Cohen-Macaulay ring.
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Theorem (Hochster, 1972). RP is a Cohen-Macaulay ring.

This means (using finiteness of RP over Q[V ]): if dimP = m then
there exist algebraically independent θ1, . . . , θm+1 ∈ (RP)1 such
that RP is a finitely-generated free Q[θ1, . . . , θm+1]-module.

θ1, . . . , θm+1 is a homogeneous system of parameters (h.s.o.p.).
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The Cohen-Macaulay property

Theorem (Hochster, 1972). RP is a Cohen-Macaulay ring.

This means (using finiteness of RP over Q[V ]): if dimP = m then
there exist algebraically independent θ1, . . . , θm+1 ∈ (RP)1 such
that RP is a finitely-generated free Q[θ1, . . . , θm+1]-module.

θ1, . . . , θm+1 is a homogeneous system of parameters (h.s.o.p.).

Thus RP =
r

⊕
j=1

ηjQ[θ1, . . . , θm+1], where ηj ∈ (RP)ej .

Corollary. ∑n≥0H(RP ,n)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i(P,n)

xn = xe1 +⋯+ xer

(1 − x)m+1 , so h∗(P) ≥ 0.



Monotonicity

The result Q ⊆ P ⇒ h∗(Q) ≤ h∗(P) is proved similarly.

We have RQ ⊂ RP . The key fact is that we can find an h.s.o.p.
θ1, . . . , θk for RQ that extends to an h.s.o.p. for RP .



Valuations

convex body in Rm: a nonempty, compact, convex subset

A valuation is a map ϕ from a family F of convex bodies in Rm

containing ∅ into an abelian group G such that ϕ(∅) = 0 and

ϕ(P ∪Q) = ϕ(P) +ϕ(Q) − ϕ(P ∩Q),
for all P ,Q ∈ F for which P ∪Q,P ∩Q ∈ F .



Hadwiger’s theorem

Theorem (Hadwiger, 1957) The family of continuous,
real-valued, rigid-motion invariant valuations on all convex bodies
is a (d + 1)-dimensional vector space with basis consisting of the
quermassintegrals Wi defined by

vol(tP + Bd) = d∑
i=0

(d
i
)Wi(P)t i ,

where Bd is a unit ball of dimension d.



Hadwiger’s theorem

Theorem (Hadwiger, 1957) The family of continuous,
real-valued, rigid-motion invariant valuations on all convex bodies
is a (d + 1)-dimensional vector space with basis consisting of the
quermassintegrals Wi defined by

vol(tP + Bd) = d∑
i=0

(d
i
)Wi(P)t i ,

where Bd is a unit ball of dimension d.

Note. Wi is monotone (hence nonnegative) and i -homogeneous,
i.e., Wi(λP) = λiWi(P). W0, . . . ,Wd is the unique (up to scaling)
monotone homogeneous basis.



Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued,
lattice-invariant (i.e., invariant under GL(m,Z)) valuations on
lattice polytopes in Rm is an (m + 1)-dimensional vector space
spanned by the coefficients of the Ehrhart polynomial.
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Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued,
lattice-invariant (i.e., invariant under GL(m,Z)) valuations on
lattice polytopes in Rm is an (m + 1)-dimensional vector space
spanned by the coefficients of the Ehrhart polynomial.

Note. This is the unique such basis (up to scaling) that is
homogeneous. However, it is not nonnegative.

Note. h∗i is not a valuation because its definition depends on
d = dimP.

∑
n≥0

i(P,n)xn = h0 + h1x +⋯+ hdxd(1 − x)d+1 .



Zonotopes

Let v1, . . . ,vk ∈ Rd . The zonotope Z(v1, . . . , vk) generated by
v1, . . . , vk :

Z(v1, . . . ,vk) = {λ1v1 +⋯+ λkvk ∶ 0 ≤ λi ≤ 1}



Zonotopes

Let v1, . . . ,vk ∈ Rd . The zonotope Z(v1, . . . , vk) generated by
v1, . . . , vk :

Z(v1, . . . ,vk) = {λ1v1 +⋯+ λkvk ∶ 0 ≤ λi ≤ 1}
Example. v1 = (4,0), v2 = (3,1), v3 = (1,2)

(4,0)

(3,1)
(1,2)

(0,0)



Lattice points in a zonotope

Theorem. Let
Z = Z(v1, . . . , vk) ⊂ Rd ,

where vi ∈ Zd . Then

i(Z ,1) =∑
X

h(X ),
where X ranges over all linearly independent subsets of{v1, . . . , vk}, and h(X ) is the gcd of all j × j minors (j =#X) of
the matrix whose rows are the elements of X .



An example

Example. v1 = (4,0), v2 = (3,1), v3 = (1,2)

(4,0)

(3,1)
(1,2)

(0,0)



Computation of i(Z ,1)

i(Z ,1) = ∣ 4 0
3 1

∣ + ∣ 4 0
1 2

∣ + ∣ 3 1
1 2

∣
+gcd(4,0) + gcd(3,1)
+gcd(1,2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1

= 24.



Computation of i(Z ,1)

i(Z ,1) = ∣ 4 0
3 1

∣ + ∣ 4 0
1 2

∣ + ∣ 3 1
1 2

∣
+gcd(4,0) + gcd(3,1)
+gcd(1,2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1

= 24.



Corollary

Let n ∈ P. If Z = Z(v1, . . . , vk), then
nZ = Z(nv1, . . . ,nvk),

and
i(Z ,n) = i(nZ ,1) =∑

X

h(X )n#X .

Corollary. If Z is an integer zonotope generated by integer
vectors, then the coefficients of i(Z ,n) are nonnegative integers.



The permutohedron

Πm = conv{(w(1), . . . ,w(m)) ∶ w ∈ Sm} ⊂ Rm



The permutohedron

Πm = conv{(w(1), . . . ,w(m)) ∶ w ∈ Sm} ⊂ Rm

dimΠm = m − 1, since ∑w(i) = (m + 1
2
)



The permutohedron

Πm = conv{(w(1), . . . ,w(m)) ∶ w ∈ Sm} ⊂ Rm

dimΠm = m − 1, since ∑w(i) = (m + 1
2
)

Πm ≈ Z(ei − ej ∶ 1 ≤ i < j ≤ m)



Π3

321

312

213

123

132

231
222

Π3



Π3

321

312

213

123

132

231
222

Π3

i(Π3,n) = 3n2 + 3n + 1



Π4

(truncated octahedron)



i(Πm,n)

Theorem. i(Πm,n) = m−1∑
k=0

fk(m)nk , where
fk(m) =#{forests with k edges on vertices 1, . . . ,m}



i(Πm,n)

Theorem. i(Πm,n) = m−1∑
k=0

fk(m)nk , where
fk(m) =#{forests with k edges on vertices 1, . . . ,m}

1 2

3

i(Π3,n) = 3n2 + 3n + 1



Generalized permtohedra

Definition (A. Postnikov, 2005) A generalized permutohedron
is a lattice polytope in Rm for which every edge is parallel to some
edge of the permutohedron Πm, that is, parallel to some vector
ei − ej .



Generalized permtohedra

Definition (A. Postnikov, 2005) A generalized permutohedron
is a lattice polytope in Rm for which every edge is parallel to some
edge of the permutohedron Πm, that is, parallel to some vector
ei − ej .

Example. M : matroid on E = {v1, . . . , vm}
χB ∈ {0,1}n ∶ characteristic vector of B ⊆ E

B ∶ set of all bases of M

matroid polytope PM ∶ conv{χB ∶ B ∈ B}



Castillo-Liu conjecture

Conjecture (F. Castillo and F. Liu, 2015). Every integral
generalized permutohedron is Ehrhart positive.

Open even for matroid polytopes.



Cross polytopes

cross polytope Cd : conv{±e1, . . . ,±ed} ⊂ Rd (dual to d -cube)
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Easy theorem. ∑n≥0 i(Cd ,n)xn = (1 + x)d(1 − x)d+1



Cross polytopes

cross polytope Cd : conv{±e1, . . . ,±ed} ⊂ Rd (dual to d -cube)

Easy theorem. ∑n≥0 i(Cd ,n)xn = (1 + x)d(1 − x)d+1
Theorem. Cd is Ehrhart positive.



Crucial lemma

Lemma. Let f (n) be polynomial of degree d satisfying

∑
n≥0

f (n)xn = P(x)
(1 − x)d+1 ,

where P(x) =∏k
j=1(1 + γjx), ∣γj ∣ = 1. Then

f (n) = (n + 1)(n + 2)⋯(n + d − k)g(n), where
g(α) = 0⇒ Re(α) = −1

2
(d + 1 − k).



Crucial lemma

Lemma. Let f (n) be polynomial of degree d satisfying

∑
n≥0

f (n)xn = P(x)
(1 − x)d+1 ,

where P(x) =∏k
j=1(1 + γjx), ∣γj ∣ = 1. Then

f (n) = (n + 1)(n + 2)⋯(n + d − k)g(n), where
g(α) = 0⇒ Re(α) = −1

2
(d + 1 − k).

Proof. Exercise.



Proof that Cd is Ehrhart positive

Apply to i(Cd ,n) to get that all zeros of i(Cd ,n) have real part
−1/2. Thus i(Cd ,n) is a product of factors n + 1

2
and

(n + 1

2
+ βi)(n + 1

2
− βi) = n2 + n + β2 +

1

4
,

so i(Cd ,n) has positive coefficients. ◻



Proof that Cd is Ehrhart positive

Apply to i(Cd ,n) to get that all zeros of i(Cd ,n) have real part
−1/2. Thus i(Cd ,n) is a product of factors n + 1

2
and

(n + 1

2
+ βi)(n + 1

2
− βi) = n2 + n + β2 +

1

4
,

so i(Cd ,n) has positive coefficients. ◻

Not so easy to give a “positive formula” for the coefficients.
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Let P ⊆ Rd have rational vertices.



Rational polytopes

Let P ⊆ Rd have rational vertices.

Example. P = [0,1/2]. Then

i(P,n) = ⎧⎪⎪⎨⎪⎪⎩
1
2
n, n even

1
2
(n + 1), n odd

= 1

2
n +

1

4
(1 − (−1)n).

Theorem. Let NP have integer vertices, N ∈ P. Then there exist
polynomials P0(n), . . . ,PN−1(n) such that

i(P,n) = Pj(n), n ≡ j (modN).



Irrational polytopes

Example. P = [0,√2], then
i(P,n) = ⌊√2n⌋,

which is poorly behaved.



Irrational polytopes

Example. P = [0,√2], then
i(P,n) = ⌊√2n⌋,

which is poorly behaved.

For instance, ∑n≥0⌊√2n⌋xn has the unit circle as a natural
boundary.



Uninteresting irrational polytopes

Example. Let P = [√2 − 1,√2]. Then
i(P,n) = n.



Uninteresting irrational polytopes

Example. Let P = [√2 − 1,√2]. Then
i(P,n) = n.

Uninteresting, because P is the translate of a rational (in fact,
integer) polytope.



Period collapse

If there are polynomials P0(n), . . . ,PM−1(n) for which
i(P,n) = Pj(n), n ≡ j (modM),

then M is called a period of P or i(P,n).
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If there are polynomials P0(n), . . . ,PM−1(n) for which
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then M is called a period of P or i(P,n).
If P has a period smaller than the least N > 0 for which NP has
integer vertices, then P exhibits period collapse.



Period collapse

If there are polynomials P0(n), . . . ,PM−1(n) for which
i(P,n) = Pj(n), n ≡ j (modM),

then M is called a period of P or i(P,n).
If P has a period smaller than the least N > 0 for which NP has
integer vertices, then P exhibits period collapse.

Special case of period collapse: P does not have integer
vertices, but i(P,n) is a polynomial.

Poorly understood, but lots of examples, such as Gelfand-Zetlin
polytopes.



Some curious triangles

For α > 0 let Tα be the triangle in R2 with vertices(0,0), (0, α), (1/α,0), so area(Tα) = 1
2
. Can define

i(Tα,n) =#(nTα ∩ Z
2), n ≥ 1.



Some curious triangles

For α > 0 let Tα be the triangle in R2 with vertices(0,0), (0, α), (1/α,0), so area(Tα) = 1
2
. Can define

i(Tα,n) =#(nTα ∩ Z
2), n ≥ 1.

Easy. T1 is a lattice triangle with i(T1,n) = (n+22 ).
Theorem (Cristofaro-Gardiner, Li, S). Let α > 1. We have
i(Tα,n) = (n+22 ) for all n ≥ 1 if and only if either:



Some curious triangles

For α > 0 let Tα be the triangle in R2 with vertices(0,0), (0, α), (1/α,0), so area(Tα) = 1
2
. Can define

i(Tα,n) =#(nTα ∩ Z
2), n ≥ 1.

Easy. T1 is a lattice triangle with i(T1,n) = (n+22 ).
Theorem (Cristofaro-Gardiner, Li, S). Let α > 1. We have
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(Fibonacci numbers)



Some curious triangles

For α > 0 let Tα be the triangle in R2 with vertices(0,0), (0, α), (1/α,0), so area(Tα) = 1
2
. Can define

i(Tα,n) =#(nTα ∩ Z
2), n ≥ 1.

Easy. T1 is a lattice triangle with i(T1,n) = (n+22 ).
Theorem (Cristofaro-Gardiner, Li, S). Let α > 1. We have
i(Tα,n) = (n+22 ) for all n ≥ 1 if and only if either:

α = F2k+1

F2k−1
(Fibonacci numbers)

α = 1
2
(3 +√5)



Generalizations?

Lots of variants of previous irrational example.



Generalizations?

Lots of variants of previous irrational example.

However: no “interesting” irrational polytope P is known for which
i(P,n) is a polynomial and some vertex of P is algebraic of degree
at least three.




