Lattice Points in Polytopes

Richard P. Stanley
U. Miami \& M.I.T.

A lattice polygon

Georg Alexander Pick (1859-1942)
P : lattice polygon in \mathbb{R}^{2}
(vertices $\in \mathbb{Z}^{2}$, no self-intersections)

Boundary and interior lattice points

Pick's theorem

$$
\begin{aligned}
A & =\text { area of } P \\
\boldsymbol{I} & =\# \text { interior points of } P(=4) \\
B & =\# \text { boundary points of } P(=10)
\end{aligned}
$$

Then

$$
A=\frac{2 I+B-2}{2} .
$$

Pick's theorem

$$
\begin{aligned}
A & =\text { area of } P \\
\boldsymbol{I} & =\# \text { interior points of } P(=4) \\
B & =\# \text { boundary points of } P(=10)
\end{aligned}
$$

Then

$$
A=\frac{2 I+B-2}{2} .
$$

Example on previous slide:

$$
\frac{2 \cdot 4+10-2}{2}=9 .
$$

Two tetrahedra

Pick's theorem (seemingly) fails in higher dimensions. For example, let T_{1} and T_{2} be the tetrahedra with vertices

$$
\begin{aligned}
& v\left(T_{1}\right)=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\} \\
& v\left(T_{2}\right)=\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}
\end{aligned}
$$

Failure of Pick's theorem in dim 3

Then

$$
\begin{gathered}
I\left(T_{1}\right)=I\left(T_{2}\right)=0 \\
B\left(T_{1}\right)=B\left(T_{2}\right)=4 \\
A\left(T_{1}\right)=1 / 6, \quad A\left(T_{2}\right)=1 / 3 .
\end{gathered}
$$

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^{m}. For $n \geq 1$, let

$$
\boldsymbol{n P}=\{n \alpha: \alpha \in \mathcal{P}\} .
$$

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^{m}. For $n \geq 1$, let

$$
\boldsymbol{n P}=\{n \alpha: \alpha \in \mathcal{P}\} .
$$

$i(\mathcal{P}, n)$

Let

$$
\begin{aligned}
\boldsymbol{i}(\mathcal{P}, \boldsymbol{n}) & =\#\left(n \mathcal{P} \cap \mathbb{Z}^{m}\right) \\
& =\#\left\{\alpha \in \mathcal{P}: n \alpha \in \mathbb{Z}^{m}\right\}
\end{aligned}
$$

the number of lattice points in $n \mathcal{P}$.

Similarly let

$$
\begin{gathered}
\mathcal{P}^{\circ}=\text { interior of } \mathcal{P}=\mathcal{P}-\partial \mathcal{P} \\
\begin{aligned}
\bar{i}(\mathcal{P}, n) & =\#\left(n \mathcal{P}^{\circ} \cap \mathbb{Z}^{m}\right) \\
& =\#\left\{\alpha \in \mathcal{P}^{\circ}: n \alpha \in \mathbb{Z}^{m}\right\}
\end{aligned}
\end{gathered}
$$

the number of lattice points in the interior of $n \mathcal{P}$.

Similarly let

$$
\begin{gathered}
\mathcal{P}^{\circ}=\text { interior of } \mathcal{P}=\mathcal{P}-\partial \mathcal{P} \\
\begin{aligned}
\bar{i}(\mathcal{P}, n) & =\#\left(n \mathcal{P}^{\circ} \cap \mathbb{Z}^{m}\right) \\
& =\#\left\{\alpha \in \mathcal{P}^{\circ}: n \alpha \in \mathbb{Z}^{m}\right\}
\end{aligned}
\end{gathered}
$$

the number of lattice points in the interior of $n \mathcal{P}$.
Note. Could use any lattice L instead of \mathbb{Z}^{m}.

An example

$3 P$

$$
\begin{aligned}
& i(\mathcal{P}, n)=(n+1)^{2} \\
& \bar{i}(\mathcal{P}, n)=(n-1)^{2}=i(\mathcal{P},-n) .
\end{aligned}
$$

The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let
$\mathcal{P}=$ lattice polytope in $\mathbb{R}^{m}, \operatorname{dim} \mathcal{P}=\boldsymbol{d}$.
Then $i(\mathcal{P}, n)$ is a polynomial (the Ehrhart polynomial of \mathcal{P}) in n of degree d.

Reciprocity and volume

Moreover,

$$
\begin{aligned}
i(\mathcal{P}, 0)= & 1 \\
\bar{i}(\mathcal{P}, n)= & (-1)^{d} i(\mathcal{P},-n), n>0 \\
& \quad \text { (reciprocity). }
\end{aligned}
$$

Reciprocity and volume

Moreover,

$$
\begin{aligned}
i(\mathcal{P}, 0)= & 1 \\
\bar{i}(\mathcal{P}, n)= & (-1)^{d} i(\mathcal{P},-n), n>0 \\
& \quad \text { (reciprocity). }
\end{aligned}
$$

If $d=N$ then

$$
i(\mathcal{P}, n)=V(\mathcal{P}) n^{d}+\text { lower order terms },
$$

where $\mathbf{V}(\mathcal{P})$ is the volume of \mathcal{P}.

Reciprocity and volume

Moreover,

$$
\begin{aligned}
i(\mathcal{P}, 0)= & 1 \\
\bar{i}(\mathcal{P}, n)= & (-1)^{d} i(\mathcal{P},-n), n>0 \\
& \quad \text { (reciprocity). }
\end{aligned}
$$

If $d=N$ then

$$
i(\mathcal{P}, n)=V(\mathcal{P}) n^{d}+\text { lower order terms }
$$

where $\mathbf{V}(\mathcal{P})$ is the volume of \mathcal{P}.
(For $d<N, V(\mathcal{P})$ is the relative volume.)

Eugène Ehrhart

- April 29, 1906: born in Guebwiller, France
- 1932: begins teaching career in lycées
- 1959: Prize of French Sciences Academy
- 1963: begins work on Ph.D. thesis
- 1966: obtains Ph.D. thesis from Univ. of Strasbourg
- 1971: retires from teaching career
- January 17, 2000: dies

Photo of Ehrhart

Self-portrait

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\operatorname{dim} \mathcal{P}=d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n>0$ determines $V(\mathcal{P})$.

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\operatorname{dim} \mathcal{P}=d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n>0$ determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0)=1$, this data determines $d+1$ values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. \square

Two basic questions

Let \mathcal{P} be a lattice (convex) polytope in \mathbb{R}^{m}.

- Does $i(\mathcal{P}, n)$ have integer coefficients?

Two basic questions

Let \mathcal{P} be a lattice (convex) polytope in \mathbb{R}^{m}.

- Does $i(\mathcal{P}, n)$ have integer coefficients?
- Does $i(\mathcal{P}, n)$ have positive coefficients? If so, we say that \mathcal{P} is Ehrhart positive.

Two basic questions

Let \mathcal{P} be a lattice (convex) polytope in \mathbb{R}^{m}.

- Does $i(\mathcal{P}, n)$ have integer coefficients?
- Does $i(\mathcal{P}, n)$ have positive coefficients? If so, we say that \mathcal{P} is Ehrhart positive.
Note. If $\operatorname{dim} \mathcal{P}=d$ and

$$
i(\mathcal{P}, n)=c_{d} n^{d}+c_{d-1} n^{d-1}+\cdots+c_{0}
$$

then $c_{d}>0$ (relative volume), $c_{d-1}>0$ (half the relative surface area), and $c_{0}=1>0$.

Two examples

Example 1. \mathcal{P}_{d} is the simplex in \mathbb{R}^{d} with vertices O, e_{1}, \ldots, e_{d}, where O is the origin, and e_{i} the i th unit coordinate vector.

Two examples

Example 1. \mathcal{P}_{d} is the simplex in \mathbb{R}^{d} with vertices O, e_{1}, \ldots, e_{d}, where O is the origin, and e_{i} the i th unit coordinate vector.

$$
i\left(\mathcal{P}_{d}, n\right)=\binom{n+d-1}{d}=\frac{n(n-1) \cdots(n-d+1)}{d!}
$$

Example 2. Let \mathcal{P} denote the tetrahedron with vertices $(0,0,0)$, $(1,0,0),(0,1,0),(1,1,13)$. Then

$$
i(\mathcal{P}, n)=\frac{13}{6} n^{3}+n^{2}-\frac{1}{6} n+1 .
$$

The "bad" tetrahedron

The "bad" tetrahedron

Thus in general the coefficients of Ehrhart polynomials are not "nice." Is there a "better" basis?

The \boldsymbol{h}^{*}-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree $d, \exists \boldsymbol{h}_{\boldsymbol{i}} \in \mathbb{Z}$ such that

$$
\sum_{n \geq 0} i(\mathcal{P}, n) x^{n}=\frac{h_{0}+h_{1} x+\cdots+h_{d} x^{d}}{(1-x)^{d+1}}
$$

The \boldsymbol{h}^{*}-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree $d, \exists \boldsymbol{h}_{\boldsymbol{i}} \in \mathbb{Z}$ such that

$$
\sum_{n \geq 0} i(\mathcal{P}, n) x^{n}=\frac{h_{0}+h_{1} x+\cdots+h_{d} x^{d}}{(1-x)^{d+1}}
$$

Definition. Define

$$
\boldsymbol{h}^{*}(\mathcal{P})=\left(h_{0}, h_{1}, \ldots, h_{d}\right),
$$

the \boldsymbol{h}^{*}-vector of \mathcal{P}.

Three terms of $\boldsymbol{h}^{*}(\mathcal{P})$

- $h_{0}=1$
- $h_{1}=i(\mathcal{P}, 1)-\operatorname{dim} \mathcal{P}-1 \geq 0$
- $h_{d}=(-1)^{\operatorname{dim} \mathcal{P}} i(\mathcal{P},-1)=\#\left(\mathcal{P}^{\circ} \cap \mathbb{Z}^{m}\right) \geq 0$

Three terms of $h^{*}(\mathcal{P})$

- $h_{0}=1$
- $h_{1}=i(\mathcal{P}, 1)-\operatorname{dim} \mathcal{P}-1 \geq 0$
- $h_{d}=(-1)^{\operatorname{dim} \mathcal{P}} i(\mathcal{P},-1)=\#\left(\mathcal{P}^{\circ} \cap \mathbb{Z}^{m}\right) \geq 0$

Example. $\mathcal{P}=\operatorname{conv}\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}$. Then

$$
h^{*}(\mathcal{P})=(1,0,1,0) .
$$

Main properties of $\boldsymbol{h}^{*}(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_{i} \geq 0$.

Main properties of $\boldsymbol{h}^{*}(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_{i} \geq 0$.
Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

$$
h_{i}(\mathcal{Q}) \leq h_{i}(\mathcal{P}) \forall i
$$

Main properties of $h^{*}(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_{i} \geq 0$.
Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

$$
h_{i}(\mathcal{Q}) \leq h_{i}(\mathcal{P}) \forall i
$$

$\mathrm{B} \Rightarrow \mathrm{A}$: take $\mathcal{Q}=\varnothing$.

Proofs: the Ehrhart ring

\mathcal{P} : (convex) lattice polytope in \mathbb{R}^{m} with vertex set V
$x^{\beta}=x^{\beta_{1}} \cdots x^{\beta_{d}}, \beta \in \mathbb{Z}^{m}$
Ehrhart ring (over \mathbb{Q}):

$$
\begin{gathered}
\boldsymbol{R}_{\mathcal{P}}=\mathbb{Q}\left[x^{\beta} y^{n}: \beta \in \mathbb{Z}^{m}, n \in \mathbb{P}, \frac{\beta}{n} \in \mathcal{P}\right] \\
\operatorname{deg} x^{\beta} y^{n}:=n
\end{gathered}
$$

Proofs: the Ehrhart ring

\mathcal{P} : (convex) lattice polytope in \mathbb{R}^{m} with vertex set V
$x^{\beta}=x^{\beta_{1}} \cdots x^{\beta_{d}}, \beta \in \mathbb{Z}^{m}$
Ehrhart ring (over \mathbb{Q}):

$$
\begin{gathered}
\boldsymbol{R}_{\mathcal{P}}=\mathbb{Q}\left[x^{\beta} y^{n}: \beta \in \mathbb{Z}^{m}, n \in \mathbb{P}, \frac{\beta}{n} \in \mathcal{P}\right] \\
\operatorname{deg} x^{\beta} y^{n}:=n \\
R_{\mathcal{P}}=\left(R_{\mathcal{P}}\right)_{0} \oplus\left(R_{\mathcal{P}}\right)_{1} \oplus \cdots
\end{gathered}
$$

Simple properties of $R_{\mathcal{P}}$

Hilbert function of $R_{\mathcal{P}}$:

$$
\boldsymbol{H}\left(\boldsymbol{R}_{\mathcal{P}}, \boldsymbol{n}\right)=\operatorname{dim}_{\mathbb{Q}}\left(R_{\mathcal{P}}\right)_{n} .
$$

Simple properties of $R_{\mathcal{P}}$

Hilbert function of $R_{\mathcal{P}}$:

$$
\boldsymbol{H}\left(\boldsymbol{R}_{\mathcal{P}}, \boldsymbol{n}\right)=\operatorname{dim}_{\mathbb{Q}}\left(R_{\mathcal{P}}\right)_{n} .
$$

Theorem (easy). $H\left(R_{\mathcal{P}}, n\right)=i(\mathcal{P}, n)$

Simple properties of $R_{\mathcal{P}}$

Hilbert function of $R_{\mathcal{P}}$:

$$
\boldsymbol{H}\left(\boldsymbol{R}_{\mathcal{P}}, \boldsymbol{n}\right)=\operatorname{dim}_{\mathbb{Q}}\left(R_{\mathcal{P}}\right)_{n} .
$$

Theorem (easy). $H\left(R_{\mathcal{P}}, n\right)=i(\mathcal{P}, n)$
$\mathbb{Q}[\mathbf{V}]$: subalgebra of $R_{\mathcal{P}}$ generated by $x^{\alpha} y, \alpha \in V$.

Simple properties of $R_{\mathcal{P}}$

Hilbert function of $R_{\mathcal{P}}$:

$$
\boldsymbol{H}\left(\boldsymbol{R}_{\mathcal{P}}, \boldsymbol{n}\right)=\operatorname{dim}_{\mathbb{Q}}\left(R_{\mathcal{P}}\right)_{n} .
$$

Theorem (easy). $H\left(R_{\mathcal{P}}, n\right)=i(\mathcal{P}, n)$
$\mathbb{Q}[\mathrm{V}]$: subalgebra of $R_{\mathcal{P}}$ generated by $x^{\alpha} y, \alpha \in V$.
Theorem (easy). $R_{\mathcal{P}}$ is a finitely-generated $\mathbb{Q}[V]$-module.

The Cohen-Macaulay property

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.

The Cohen-Macaulay property

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.
This means (using finiteness of $R_{\mathcal{P}}$ over $\mathbb{Q}[V]$): if $\operatorname{dim} \mathcal{P}=m$ then there exist algebraically independent $\theta_{1}, \ldots, \theta_{m+1} \in\left(R_{\mathcal{P}}\right)_{1}$ such that $R_{\mathcal{P}}$ is a finitely-generated free $\mathbb{Q}\left[\theta_{1}, \ldots, \theta_{m+1}\right]$-module.
$\theta_{1}, \ldots, \theta_{m+1}$ is a homogeneous system of parameters (h.s.o.p.).

The Cohen-Macaulay property

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.
This means (using finiteness of $R_{\mathcal{P}}$ over $\mathbb{Q}[V]$): if $\operatorname{dim} \mathcal{P}=m$ then there exist algebraically independent $\theta_{1}, \ldots, \theta_{m+1} \in\left(R_{\mathcal{P}}\right)_{1}$ such that $R_{\mathcal{P}}$ is a finitely-generated free $\mathbb{Q}\left[\theta_{1}, \ldots, \theta_{m+1}\right]$-module.
$\theta_{1}, \ldots, \theta_{m+1}$ is a homogeneous system of parameters (h.s.o.p.).
Thus $R_{\mathcal{P}}=\bigoplus_{j=1}^{r} \eta_{j} \mathbb{Q}\left[\theta_{1}, \ldots, \theta_{m+1}\right]$, where $\eta_{j} \in\left(R_{\mathcal{P}}\right)_{e_{j}}$.

The Cohen-Macaulay property

Theorem (Hochster, 1972). $R_{\mathcal{P}}$ is a Cohen-Macaulay ring.
This means (using finiteness of $R_{\mathcal{P}}$ over $\mathbb{Q}[V]$): if $\operatorname{dim} \mathcal{P}=m$ then there exist algebraically independent $\theta_{1}, \ldots, \theta_{m+1} \in\left(R_{\mathcal{P}}\right)_{1}$ such that $R_{\mathcal{P}}$ is a finitely-generated free $\mathbb{Q}\left[\theta_{1}, \ldots, \theta_{m+1}\right]$-module.
$\theta_{1}, \ldots, \theta_{m+1}$ is a homogeneous system of parameters (h.s.o.p.).
Thus $R_{\mathcal{P}}=\bigoplus_{j=1}^{r} \eta_{j} \mathbb{Q}\left[\theta_{1}, \ldots, \theta_{m+1}\right]$, where $\eta_{j} \in\left(R_{\mathcal{P}}\right)_{e_{j}}$.
Corollary. $\sum_{n \geq 0} \underbrace{H\left(R_{\mathcal{P}}, n\right)}_{i(\mathcal{P}, n)} x^{n}=\frac{x^{e_{1}}+\cdots+x^{e_{r}}}{(1-x)^{m+1}}$, so $h^{*}(\mathcal{P}) \geq 0$.

Monotonicity

The result $\mathcal{Q} \subseteq \mathcal{P} \Rightarrow h^{*}(\mathcal{Q}) \leq h^{*}(\mathcal{P})$ is proved similarly.
We have $R_{\mathcal{Q}} \subset R_{\mathcal{P}}$. The key fact is that we can find an h.s.o.p. $\theta_{1}, \ldots, \theta_{k}$ for $R_{\mathcal{Q}}$ that extends to an h.s.o.p. for $R_{\mathcal{P}}$.

Valuations

convex body in \mathbb{R}^{m} : a nonempty, compact, convex subset
A valuation is a map φ from a family \mathcal{F} of convex bodies in \mathbb{R}^{m} containing \varnothing into an abelian group G such that $\varphi(\varnothing)=0$ and

$$
\varphi(P \cup Q)=\varphi(P)+\varphi(Q)-\varphi(P \cap Q)
$$

for all $P, Q \in \mathcal{F}$ for which $P \cup Q, P \cap Q \in \mathcal{F}$.

Hadwiger's theorem

Theorem (Hadwiger, 1957) The family of continuous, real-valued, rigid-motion invariant valuations on all convex bodies is a $(d+1)$-dimensional vector space with basis consisting of the quermassintegrals W_{i} defined by

$$
\operatorname{vol}\left(t P+\mathcal{B}_{d}\right)=\sum_{i=0}^{d}\binom{d}{i} W_{i}(P) t^{i}
$$

where $\mathcal{B}_{\boldsymbol{d}}$ is a unit ball of dimension d.

Hadwiger's theorem

Theorem (Hadwiger, 1957) The family of continuous, real-valued, rigid-motion invariant valuations on all convex bodies is a $(d+1)$-dimensional vector space with basis consisting of the quermassintegrals W_{i} defined by

$$
\operatorname{vol}\left(t P+\mathcal{B}_{d}\right)=\sum_{i=0}^{d}\binom{d}{i} W_{i}(P) t^{i}
$$

where $\mathcal{B}_{\boldsymbol{d}}$ is a unit ball of dimension d.
Note. W_{i} is monotone (hence nonnegative) and i-homogeneous, i.e., $W_{i}(\lambda P)=\lambda^{i} W_{i}(P) . W_{0}, \ldots, W_{d}$ is the unique (up to scaling) monotone homogeneous basis.

Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued, lattice-invariant (i.e., invariant under $G L(m, \mathbb{Z})$) valuations on lattice polytopes in \mathbb{R}^{m} is an $(m+1)$-dimensional vector space spanned by the coefficients of the Ehrhart polynomial.

Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued, lattice-invariant (i.e., invariant under $G L(m, \mathbb{Z})$) valuations on lattice polytopes in \mathbb{R}^{m} is an $(m+1)$-dimensional vector space spanned by the coefficients of the Ehrhart polynomial.

Note. This is the unique such basis (up to scaling) that is homogeneous. However, it is not nonnegative.

Lattice point analogue

Theorem (Betke-Kneser, 1985) The family of real-valued, lattice-invariant (i.e., invariant under $G L(m, \mathbb{Z})$) valuations on lattice polytopes in \mathbb{R}^{m} is an $(m+1)$-dimensional vector space spanned by the coefficients of the Ehrhart polynomial.

Note. This is the unique such basis (up to scaling) that is homogeneous. However, it is not nonnegative.

Note. h_{i}^{*} is not a valuation because its definition depends on $d=\operatorname{dim} \mathcal{P}$.

$$
\sum_{n \geq 0} i(\mathcal{P}, n) x^{n}=\frac{h_{0}+h_{1} x+\cdots+h_{d} x^{d}}{(1-x)^{d+1}}
$$

Zonotopes

Let $v_{1}, \ldots, v_{k} \in \mathbb{R}^{d}$. The zonotope $Z\left(v_{1}, \ldots, v_{k}\right)$ generated by v_{1}, \ldots, v_{k} :

$$
Z\left(v_{1}, \ldots, v_{k}\right)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}: 0 \leq \lambda_{i} \leq 1\right\}
$$

Zonotopes

Let $v_{1}, \ldots, v_{k} \in \mathbb{R}^{d}$. The zonotope $Z\left(v_{1}, \ldots, v_{k}\right)$ generated by v_{1}, \ldots, v_{k} :

$$
Z\left(v_{1}, \ldots, v_{k}\right)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}: 0 \leq \lambda_{i} \leq 1\right\}
$$

Example. $v_{1}=(4,0), v_{2}=(3,1), v_{3}=(1,2)$

Lattice points in a zonotope

Theorem. Let

$$
Z=Z\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{d}
$$

where $v_{i} \in \mathbb{Z}^{d}$. Then

$$
i(Z, 1)=\sum_{X} h(X)
$$

where X ranges over all linearly independent subsets of $\left\{v_{1}, \ldots, v_{k}\right\}$, and $h(X)$ is the gcd of all $j \times j$ minors $(j=\# X)$ of the matrix whose rows are the elements of X.

An example

Example. $v_{1}=(4,0), v_{2}=(3,1), v_{3}=(1,2)$

Computation of $i(Z, 1)$

$$
\begin{aligned}
i(Z, 1)= & \left|\begin{array}{ll}
4 & 0 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right| \\
& +\operatorname{gcd}(4,0)+\operatorname{gcd}(3,1) \\
& +\operatorname{gcd}(1,2)+\operatorname{det}(\varnothing) \\
= & 4+8+5+4+1+1+1 \\
= & 24 .
\end{aligned}
$$

Computation of $i(Z, 1)$

$$
\begin{aligned}
i(Z, 1)= & \left|\begin{array}{ll}
4 & 0 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right| \\
& +\operatorname{gcd}(4,0)+\operatorname{gcd}(3,1) \\
& +\operatorname{gcd}(1,2)+\operatorname{det}(\varnothing) \\
= & 4+8+5+4+1+1+1 \\
= & 24 .
\end{aligned}
$$

Corollary

Let $n \in \mathbb{P}$. If $Z=Z\left(v_{1}, \ldots, v_{k}\right)$, then

$$
n Z=Z\left(n v_{1}, \ldots, n v_{k}\right)
$$

and

$$
i(Z, n)=i(n Z, 1)=\sum_{X} h(X) n^{\# X} .
$$

Corollary. If Z is an integer zonotope generated by integer vectors, then the coefficients of $i(Z, n)$ are nonnegative integers.

The permutohedron

$$
\boldsymbol{\Pi}_{\boldsymbol{m}}=\operatorname{conv}\left\{(w(1), \ldots, w(m)): w \in \mathfrak{S}_{m}\right\} \subset \mathbb{R}^{m}
$$

The permutohedron

$$
\begin{gathered}
\Pi_{m}=\operatorname{conv}\left\{(w(1), \ldots, w(m)): w \in \mathfrak{S}_{m}\right\} \subset \mathbb{R}^{m} \\
\operatorname{dim} \Pi_{m}=m-1, \text { since } \sum w(i)=\binom{m+1}{2}
\end{gathered}
$$

The permutohedron

$$
\begin{gathered}
\Pi_{m}=\operatorname{conv}\left\{(w(1), \ldots, w(m)): w \in \mathfrak{S}_{m}\right\} \subset \mathbb{R}^{m} \\
\operatorname{dim} \Pi_{m}=m-1, \text { since } \sum w(i)=\binom{m+1}{2} \\
\Pi_{m} \approx Z\left(e_{i}-e_{j}: 1 \leq i<j \leq m\right)
\end{gathered}
$$

Π_{3}

Π_{3}

(truncated octahedron)
$i\left(\Pi_{m}, n\right)$

Theorem. $i\left(\Pi_{m}, n\right)=\sum_{k=0}^{m-1} f_{k}(m) n^{k}$, where
$\boldsymbol{f}_{\boldsymbol{k}}(\boldsymbol{m})=\#\{$ forests with k edges on vertices $1, \ldots, m\}$

$i\left(\Pi_{m}, n\right)$

Theorem. $i\left(\Pi_{m}, n\right)=\sum_{k=0}^{m-1} f_{k}(m) n^{k}$, where
$\boldsymbol{f}_{\boldsymbol{k}}(\boldsymbol{m})=\#\{$ forests with k edges on vertices $1, \ldots, m\}$

$$
i\left(\Pi_{3}, n\right)=3 n^{2}+3 n+1
$$

Generalized permtohedra

Definition (A. Postnikov, 2005) A generalized permutohedron is a lattice polytope in \mathbb{R}^{m} for which every edge is parallel to some edge of the permutohedron Π_{m}, that is, parallel to some vector $e_{i}-e_{j}$.

Generalized permtohedra

Definition (A. Postnikov, 2005) A generalized permutohedron is a lattice polytope in \mathbb{R}^{m} for which every edge is parallel to some edge of the permutohedron Π_{m}, that is, parallel to some vector $e_{i}-e_{j}$.

Example. M : matroid on $E=\left\{v_{1}, \ldots, v_{m}\right\}$
$\chi_{B} \in\{0,1\}^{n}$: characteristic vector of $B \subseteq E$
\mathcal{B} : set of all bases of M
matroid polytope $\mathcal{P}_{M}: \operatorname{conv}\left\{\chi_{B}: B \in \mathcal{B}\right\}$

Castillo-Liu conjecture

Conjecture (F. Castillo and F. Liu, 2015). Every integral generalized permutohedron is Ehrhart positive.

Open even for matroid polytopes.

Cross polytopes

cross polytope $\mathcal{C}_{d}: \operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\} \subset \mathbb{R}^{d}$ (dual to d-cube)

Cross polytopes

cross polytope $\mathcal{C}_{d}: \operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\} \subset \mathbb{R}^{d}$ (dual to d-cube)
Easy theorem. $\sum_{n \geq 0} i\left(\mathcal{C}_{d}, n\right) x^{n}=\frac{(1+x)^{d}}{(1-x)^{d+1}}$

Cross polytopes

cross polytope $\mathcal{C}_{d}: \operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\} \subset \mathbb{R}^{d}$ (dual to d-cube)
Easy theorem. $\sum_{n \geq 0} i\left(\mathcal{C}_{d}, n\right) x^{n}=\frac{(1+x)^{d}}{(1-x)^{d+1}}$
Theorem. \mathcal{C}_{d} is Ehrhart positive.

Crucial lemma

Lemma. Let $f(n)$ be polynomial of degree d satisfying

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{P(x)}{(1-x)^{d+1}},
$$

where $P(x)=\prod_{j=1}^{k}\left(1+\gamma_{j} x\right),\left|\gamma_{j}\right|=1$. Then $f(n)=(n+1)(n+2) \cdots(n+d-k) g(n)$, where

$$
g(\alpha)=0 \Rightarrow \operatorname{Re}(\alpha)=-\frac{1}{2}(d+1-k) .
$$

Crucial lemma

Lemma. Let $f(n)$ be polynomial of degree d satisfying

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{P(x)}{(1-x)^{d+1}},
$$

where $P(x)=\prod_{j=1}^{k}\left(1+\gamma_{j} x\right),\left|\gamma_{j}\right|=1$. Then $f(n)=(n+1)(n+2) \cdots(n+d-k) g(n)$, where

$$
g(\alpha)=0 \Rightarrow \operatorname{Re}(\alpha)=-\frac{1}{2}(d+1-k) .
$$

Proof. Exercise.

Proof that $\mathcal{C}_{\boldsymbol{d}}$ is Ehrhart positive

Apply to $i\left(\mathcal{C}_{d}, n\right)$ to get that all zeros of $i\left(\mathcal{C}_{d}, n\right)$ have real part $-1 / 2$. Thus $i\left(\mathcal{C}_{d}, n\right)$ is a product of factors $n+\frac{1}{2}$ and

$$
\left(n+\frac{1}{2}+\beta i\right)\left(n+\frac{1}{2}-\beta i\right)=n^{2}+n+\beta^{2}+\frac{1}{4},
$$

so $i\left(\mathcal{C}_{d}, n\right)$ has positive coefficients.

Proof that $\mathcal{C}_{\boldsymbol{d}}$ is Ehrhart positive

Apply to $i\left(\mathcal{C}_{d}, n\right)$ to get that all zeros of $i\left(\mathcal{C}_{d}, n\right)$ have real part $-1 / 2$. Thus $i\left(\mathcal{C}_{d}, n\right)$ is a product of factors $n+\frac{1}{2}$ and

$$
\left(n+\frac{1}{2}+\beta i\right)\left(n+\frac{1}{2}-\beta i\right)=n^{2}+n+\beta^{2}+\frac{1}{4},
$$

so $i\left(\mathcal{C}_{d}, n\right)$ has positive coefficients.
Not so easy to give a "positive formula" for the coefficients.

Rational polytopes

Let $\mathcal{P} \subseteq \mathbb{R}^{d}$ have rational vertices.

Rational polytopes

Let $\mathcal{P} \subseteq \mathbb{R}^{d}$ have rational vertices.
Example. $\mathcal{P}=[0,1 / 2]$. Then

$$
\begin{aligned}
i(\mathcal{P}, n) & =\left\{\begin{array}{rr}
\frac{1}{2} n, & n \text { even } \\
\frac{1}{2}(n+1), & n \text { odd }
\end{array}\right. \\
& =\frac{1}{2} n+\frac{1}{4}\left(1-(-1)^{n}\right)
\end{aligned}
$$

Theorem. Let $N \mathcal{P}$ have integer vertices, $N \in \mathbb{P}$. Then there exist polynomials $P_{0}(n), \ldots, P_{N-1}(n)$ such that

$$
i(\mathcal{P}, n)=P_{j}(n), n \equiv j(\bmod N)
$$

Irrational polytopes

Example. $\mathcal{P}=[0, \sqrt{2}]$, then

$$
i(\mathcal{P}, n)=\lfloor\sqrt{2} n\rfloor
$$

which is poorly behaved.

Irrational polytopes

Example. $\mathcal{P}=[0, \sqrt{2}]$, then

$$
i(\mathcal{P}, n)=\lfloor\sqrt{2} n\rfloor
$$

which is poorly behaved.
For instance, $\sum_{n \geq 0}(\sqrt{2} n\rfloor x^{n}$ has the unit circle as a natural boundary.

Uninteresting irrational polytopes

Example. Let $\mathcal{P}=[\sqrt{2}-1, \sqrt{2}]$. Then

$$
i(\mathcal{P}, n)=n
$$

Uninteresting irrational polytopes

Example. Let $\mathcal{P}=[\sqrt{2}-1, \sqrt{2}]$. Then

$$
i(\mathcal{P}, n)=n
$$

Uninteresting, because \mathcal{P} is the translate of a rational (in fact, integer) polytope.

Period collapse

If there are polynomials $P_{0}(n), \ldots, P_{M-1}(n)$ for which

$$
i(\mathcal{P}, n)=P_{j}(n), n \equiv j(\bmod M)
$$ then M is called a period of \mathcal{P} or $i(\mathcal{P}, n)$.

Period collapse

If there are polynomials $P_{0}(n), \ldots, P_{M-1}(n)$ for which

$$
i(\mathcal{P}, n)=P_{j}(n), n \equiv j(\bmod M)
$$

then M is called a period of \mathcal{P} or $i(\mathcal{P}, n)$.
If \mathcal{P} has a period smaller than the least $N>0$ for which $N \mathcal{P}$ has integer vertices, then \mathcal{P} exhibits period collapse.

Period collapse

If there are polynomials $P_{0}(n), \ldots, P_{M-1}(n)$ for which

$$
i(\mathcal{P}, n)=P_{j}(n), n \equiv j(\bmod M)
$$

then M is called a period of \mathcal{P} or $i(\mathcal{P}, n)$.
If \mathcal{P} has a period smaller than the least $N>0$ for which $N \mathcal{P}$ has integer vertices, then \mathcal{P} exhibits period collapse.

Special case of period collapse: \mathcal{P} does not have integer vertices, but $i(\mathcal{P}, n)$ is a polynomial.

Poorly understood, but lots of examples, such as Gelfand-Zetlin polytopes.

Some curious triangles

For $\alpha>0$ let T_{α} be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0, \alpha),(1 / \alpha, 0)$, so area $\left(T_{\alpha}\right)=\frac{1}{2}$. Can define

$$
i\left(T_{\alpha}, n\right)=\#\left(n T_{\alpha} \cap \mathbb{Z}^{2}\right), n \geq 1
$$

Some curious triangles

For $\alpha>0$ let T_{α} be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0, \alpha),(1 / \alpha, 0)$, so $\operatorname{area}\left(T_{\alpha}\right)=\frac{1}{2}$. Can define

$$
i\left(T_{\alpha}, n\right)=\#\left(n T_{\alpha} \cap \mathbb{Z}^{2}\right), n \geq 1
$$

Easy. T_{1} is a lattice triangle with $i\left(T_{1}, n\right)=\binom{n+2}{2}$.
Theorem (Cristofaro-Gardiner, Li, S). Let $\alpha>1$. We have $i\left(T_{\alpha}, n\right)=\binom{n+2}{2}$ for all $n \geq 1$ if and only if either:

Some curious triangles

For $\alpha>0$ let T_{α} be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0, \alpha),(1 / \alpha, 0)$, so $\operatorname{area}\left(T_{\alpha}\right)=\frac{1}{2}$. Can define

$$
i\left(T_{\alpha}, n\right)=\#\left(n T_{\alpha} \cap \mathbb{Z}^{2}\right), n \geq 1
$$

Easy. T_{1} is a lattice triangle with $i\left(T_{1}, n\right)=\binom{n+2}{2}$.
Theorem (Cristofaro-Gardiner, Li, S). Let $\alpha>1$. We have
$i\left(T_{\alpha}, n\right)=\binom{n+2}{2}$ for all $n \geq 1$ if and only if either:

- $\alpha=\frac{F_{2 k+1}}{F_{2 k-1}}$ (Fibonacci numbers)

Some curious triangles

For $\alpha>0$ let T_{α} be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0, \alpha),(1 / \alpha, 0)$, so area $\left(T_{\alpha}\right)=\frac{1}{2}$. Can define

$$
i\left(T_{\alpha}, n\right)=\#\left(n T_{\alpha} \cap \mathbb{Z}^{2}\right), n \geq 1
$$

Easy. T_{1} is a lattice triangle with $i\left(T_{1}, n\right)=\binom{n+2}{2}$.
Theorem (Cristofaro-Gardiner, Li, S). Let $\alpha>1$. We have
$i\left(T_{\alpha}, n\right)=\binom{n+2}{2}$ for all $n \geq 1$ if and only if either:

- $\alpha=\frac{F_{2 k+1}}{F_{2 k-1}}$ (Fibonacci numbers)
- $\alpha=\frac{1}{2}(3+\sqrt{5})$

Generalizations?

Lots of variants of previous irrational example.

Generalizations?

Lots of variants of previous irrational example.
However: no "interesting" irrational polytope \mathcal{P} is known for which $i(\mathcal{P}, n)$ is a polynomial and some vertex of \mathcal{P} is algebraic of degree at least three.

