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A lattice polygon

Georg Alexander Pick (1859–1942)

P : lattice polygon in R
2

(vertices ∈ Z
2, no self-intersections)
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Boundary and interior lattice points
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Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =
2I + B − 2

2
.

Example on previous slide:

2 · 4 + 10 − 2

2
= 9.
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Two tetrahedra

Pick’s theorem (seemingly) fails in higher
dimensions. For example, let T1 and T2 be the
tetrahedra with vertices

v(T1) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

v(T2) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
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Failure of Pick’s theorem in dim 3

Then
I(T1) = I(T2) = 0

B(T1) = B(T2) = 4

A(T1) = 1/6, A(T2) = 1/3.
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Polytope dilation

Let P be a convex polytope (convex hull of a
finite set of points) in R

d. For n ≥ 1, let

nP = {nα : α ∈ P}.

3PP
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i(P, n)

Let

i(P, n) = #(nP ∩ Z
d)

= #{α ∈ P : nα ∈ Z
d},

the number of lattice points in nP.
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ī(P, n)

Similarly let

P◦ = interior of P = P − ∂P

ī(P, n) = #(nP◦ ∩ Z
d)

= #{α ∈ P◦ : nα ∈ Z
d},

the number of lattice points in the interior of nP.

Note. Could use any lattice L instead of Z
d.
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An example

P 3P

i(P, n) = (n + 1)2

ī(P, n) = (n − 1)2 = i(P,−n).
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Reeve’s theorem

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let P be a
three-dimensional lattice polytope. Then the
volume V (P) is a certain (explicit) function of
i(P, 1), ī(P, 1), and i(P, 2).
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The main result

Theorem (Ehrhart 1962, Macdonald 1963) Let

P = lattice polytope in R
N , dimP = d.

Then i(P, n) is a polynomial (the Ehrhart
polynomial of P) in n of degree d.
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Reciprocity and volume

Moreover,

i(P, 0) = 1

ī(P, n) = (−1)di(P,−n), n > 0

(reciprocity).

If d = N then

i(P, n) = V (P)nd + lower order terms,

where V (P) is the volume of P.
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Generalized Pick’s theorem

Corollary. Let P ⊂ R
d and dimP = d. Knowing

any d of i(P, n) or ī(P, n) for n > 0 determines
V (P).

Proof. Together with i(P, 0) = 1, this data
determines d + 1 values of the polynomial i(P, n)
of degree d. This uniquely determines i(P, n)
and hence its leading coefficient V (P). �
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An example: Reeve’s theorem

Example. When d = 3, V (P) is determined by

i(P, 1) = #(P ∩ Z
3)

i(P, 2) = #(2P ∩ Z
3)

ī(P, 1) = #(P◦ ∩ Z
3),

which gives Reeve’s theorem.
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Birkhoff polytope

Example. Let BM ⊂ R
M×M be the Birkhoff

polytope of all M × M doubly-stochastic
matrices A = (aij), i.e.,

aij ≥ 0

∑

i

aij = 1 (column sums 1)

∑

j

aij = 1 (row sums 1).
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(Weak) magic squares

Note. B = (bij) ∈ nBM ∩ Z
M×M if and only if

bij ∈ N = {0, 1, 2, . . . }
∑

i

bij = n

∑

j

bij = n.
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Example of a magic square











2 1 0 4

3 1 1 2

1 3 2 1

1 2 4 0











(M = 4, n = 7)

∈ 7B4
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HM(n)

HM(n) := #{M × M N-matrices, line sums n}

= i(BM , n).

H1(n) = 1

H2(n) = n + 1

[

a n − a

n − a a

]

, 0 ≤ a ≤ n.
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The case M = 3

H3(n) =

(

n + 2

4

)

+

(

n + 3

4

)

+

(

n + 4

4

)

(MacMahon)
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The Anand-Dumir-Gupta conjecture

HM(0) = 1

HM(1) = M ! (permutation matrices)

Theorem (Birkhoff-von Neumann). The vertices
of BM consist of the M ! M × M permutation
matrices. Hence BM is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture).
HM(n) is a polynomial in n (of degree (M − 1)2).
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H4(n)

Example. H4(n) =
1

11340

(

11n9 + 198n8 + 1596n7

+7560n6 + 23289n5 + 48762n5 + 70234n4 + 68220n2

+40950n + 11340) .
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Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =

#{M×M matrices B of positive integers, line sum n}.

But every such B can be obtained from an
M × M matrix A of nonnegative integers by
adding 1 to each entry.

Corollary.
HM(−1) = HM(−2) = · · · = HM(−M + 1) = 0

HM(−M − n) = (−1)M−1HM(n)
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Two remarks

Reciprocity greatly reduces computation.

Applications of magic squares, e.g., to
statistics (contingency tables).
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Zeros of H9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2

No explanation known.
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Zonotopes

Let v1, . . . , vk ∈ R
d. The zonotope Z(v1, . . . , vk)

generated by v1, . . . , vk:

Z(v1, . . . , vk) = {λ1v1 + · · · + λkvk : 0 ≤ λi ≤ 1}

Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)
(1,2)

(0,0)
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Lattice points in a zonotope

Theorem. Let

Z = Z(v1, . . . , vk) ⊂ R
d,

where vi ∈ Z
d. Then

i(Z, 1) =
∑

X

h(X),

where X ranges over all linearly independent
subsets of {v1, . . . , vk}, and h(X) is the gcd of all
j × j minors (j = #X) of the matrix whose rows
are the elements of X.
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An example

Example. v1 = (4, 0), v2 = (3, 1), v3 = (1, 2)

(4,0)

(3,1)
(1,2)

(0,0)
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Computation of i(Z, 1)

i(Z, 1) =

∣

∣

∣

∣

∣

4 0

3 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

4 0

1 2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

3 1

1 2

∣

∣

∣

∣

∣

+gcd(4, 0) + gcd(3, 1)

+gcd(1, 2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1

= 24.
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Application to graph theory

Let G be a graph (with no loops or multiple
edges) on the vertex set V (G) = {1, 2, . . . , n}.
Let

di = degree (# incident edges) of vertex i.

Define the ordered degree sequence d(G) of G
by

d(G) = (d1, . . . , dn).
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Example of d(G)

Example. d(G) = (2, 4, 0, 3, 2, 1)

1 2

4 5 6

3
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Number of ordered degree sequences

Let f(n) be the number of distinct d(G), where
V (G) = {1, 2, . . . , n}.
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f(n) for n ≤ 4

Example. If n ≤ 3, all d(G) are distinct, so
f(1) = 1, f(2) = 21 = 2, f(3) = 23 = 8. For n ≥ 4
we can have G 6= H but d(G) = d(H), e.g.,

3 4

2 11 2

3 4 3 4

1 2

In fact, f(4) = 54 < 26 = 64.
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The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) : V (G) = {1, . . . , n}} ⊂ R
n,

the polytope of degree sequences (Perles,
Koren).

Easy fact. Let ei be the ith unit coordinate vector
in R

n. E.g., if n = 5 then e2 = (0, 1, 0, 0, 0). Then

Dn = Z(ei + ej : 1 ≤ i < j ≤ n).
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The Erdős-Gallai theorem

Theorem. Let

α = (a1, . . . , an) ∈ Z
n.

Then α = d(G) for some G if and only if

α ∈ Dn

a1 + a2 + · · · + an is even.
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A generating function

Enumerative techniques leads to:

Theorem. Let

F (x) =
∑

n≥0

f(n)
xn

n!

= 1 + x + 2
x2

2!
+ 8

x3

3!
+ 54

x4

4!
+ · · · .

Then:
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A formula for F (x)

F (x) =
1

2





(

1 + 2
∑

n≥1

nn xn

n!

)1/2

×

(

1 −
∑

n≥1

(n − 1)n−1 xn

n!

)

+ 1

]

× exp
∑

n≥1

nn−2 xn

n!
(00 = 1)
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Coefficients of i(P, n)

Let P denote the tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 13). Then

i(P, n) =
13

6
n3 + n2 −

1

6
n + 1.
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The “bad” tetrahedron

z

x

y

Thus in general the coefficients of Ehrhart
polynomials are not “nice.” Is there a “better”
basis?
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The h-vector of i(P, n)

Let P be a lattice polytope of dimension d. Since
i(P, n) is a polynomial of degree d, ∃ hi ∈ Z such
that

∑

n≥0

i(P, n)xn =
h0 + h1x + · · · + hdx

d

(1 − x)d+1
.

Definition. Define

h(P) = (h0, h1, . . . , hd),

the h-vector of P.
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Example of an h-vector

Example. Recall

i(B4, n) =
1

11340
(11n9

+198n8 + 1596n7 + 7560n6 + 23289n5

+48762n5 + 70234n4 + 68220n2

+40950n + 11340).

Then

h(B4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).
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Elementary properties of h(P)

h0 = 1

hd = (−1)dimPi(P,−1) = I(P)

max{i : hi 6= 0} = min{j ≥ 0 :

i(P,−1) = i(P,−2) = · · · = i(P,−(d−j)) = 0}

E.g., h(P) = (h0, . . . , hd−2, 0, 0) ⇔ i(P,−1) =
i(P,−2) = 0.
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Another property

i(P,−n − k) = (−1)d i(P, n) ∀n ⇔

hi = hd+1−k−i ∀i, and

hd+2−k−i = hd+3−k−i = · · · = hd = 0
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Back to B4

Recall:

h(B4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).

Thus

i(B4,−1) = i(B4,−2) = i(B4,−3) = 0

i(B4,−n − 4) = −i(B4, n).
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Main properties of h(P)

Theorem A (nonnegativity). (McMullen, RS)
hi ≥ 0.

Theorem B (monotonicity). (RS) If P and Q are
lattice polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i.

B ⇒ A: take Q = ∅.
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Proofs

Both theorems can be proved geometrically.

There are also elegant algebraic proofs based on
commutative algebra.
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Further directions

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle,
RS). Let P be a lattice d-polytope. Then

i(P, α) = 0, α ∈ R ⇒ −d ≤ α ≤ bd/2c.

Theorem. Let d be odd. There exists a 0/1
d-polytope Pd and a real zero αd of i(Pd, n) such
that

lim
d→∞

d odd

αd

d
=

1

2πe
= 0.0585 · · · .
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An open problem

Open. Is the set of all complex zeros of all
Ehrhart polynomials of lattice polytopes dense in
C? (True for chromatic polynomials of graphs.)
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II. Brion’s theorem

Example. Let P be the polytope [2, 5] in R, so P
is defined by

(1) x ≥ 2, (2) x ≤ 5.

Let

F1(t) =
∑

n≥2
n∈Z

tn =
t2

1 − t

F2(t) =
∑

n≤5
n∈Z

tn =
t5

1 − 1
t

.
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F1(t) + F2(t)

F1(t) + F2(t) =
t2

1 − t
+

t5

1 − 1
t

= t2 + t3 + t4 + t5

=
∑

m∈P∩Z

tm.
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Cone at a vertex

P : Z-polytope in R
N with vertices v1, . . . ,vk

Ci: cone at vertex i supporting P

v

(C v)
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The general result

Let Fi(t1, . . . , tN ) =
∑

(m1,...,mN )∈Ci∩ZN

tm1

1 · · · tmN

N .

Theorem (Brion). Each Fi is a rational function
of t1, . . . , tN , and

k
∑

i=1

Fi(t1, . . . , tN) =
∑

(m1,...,mN )∈P∩ZN

tm1

1 · · · tmN

N

(as rational functions).
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III. Toric varieties

Given an integer polytope P, can define a
projective algebraic variety XP , a toric variety.

Leads to deep connections with toric geometry,
including new formulas for i(P, n).
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IV. Complexity

Computing i(P, n), or even i(P, 1) is
#P -complete. Thus an “efficient” (polynomial
time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed dimP, ∃
polynomial-time algorithm for computing i(P, n).
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V. Fractional lattice polytopes

Example. Let SM(n) denote the number of
symmetric M × M matrices of nonnegative
integers, every row and column sum n. Then

S3(n) =

{

1
8(2n

3 + 9n2 + 14n + 8), n even
1
8(2n

3 + 9n2 + 14n + 7), n odd

=
1

16
(4n3 + 18n2 + 28n + 15 + (−1)n).

Why a different polynomial depending on n
modulo 2?
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The symmetric Birkhoff polytope

TM : the polytope of all M × M symmetric
doubly-stochastic matrices.

Easy fact: SM(n) = #
(

nTM ∩ Z
M×M

)

Fact: vertices of TM have the form 1
2(P + P t),

where P is a permutation matrix.

Thus if v is a vertex of TM then 2v ∈ Z
M×M .
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SM(n) in general

Theorem. There exist polynomials PM(n) and
QM(n) for which

SM(n) = PM(n) + (−1)nQM(n), n ≥ 0.

Moreover, deg PM(n) =
(

M
2

)

.

Difficult result (W. Dahmen and C. A. Micchelli,
1988):

deg QM(n) =

{

(

n−1
2

)

− 1, n odd
(

n−2
2

)

− 1, n even.
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