

Lattice Points in Polytopes

Richard P. Stanley

M.I.T.

A lattice polygon

Georg Alexander Pick (1859–1942)

P: lattice polygon in \mathbb{R}^2 (vertices $\in \mathbb{Z}^2$, no self-intersections)

Boundary and interior lattice points

Pick's theorem

A = area of P

- I = # interior points of P (= 4)
- B = #boundary points of P (= 10)

Then

$$\boldsymbol{A} = \frac{2\boldsymbol{I} + \boldsymbol{B} - 2}{2}$$

Pick's theorem

A = area of P

- I = # interior points of P (= 4)
- B = #boundary points of P (= 10)

Then

$$\boldsymbol{A} = \frac{2\boldsymbol{I} + \boldsymbol{B} - 2}{2}$$

Example on previous slide:

$$\frac{2 \cdot \mathbf{4} + \mathbf{10} - 2}{2} = 9.$$

Pick's theorem (seemingly) fails in higher dimensions. For example, let T_1 and T_2 be the tetrahedra with vertices

$$v(T_1) = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$$

$$v(T_2) = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}.$$

Failure of Pick's theorem in dim 3

Then

$$I(T_1) = I(T_2) = 0$$

 $B(T_1) = B(T_2) = 4$
 $A(T_1) = 1/6, \quad A(T_2) = 1/3.$

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d . For $n \ge 1$, let

 $\boldsymbol{nP} = \{n\alpha : \alpha \in \mathcal{P}\}.$

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d . For $n \ge 1$, let

 $\boldsymbol{nP} = \{n\alpha : \alpha \in \mathcal{P}\}.$

 (\mathcal{P}, n) 2

Let

$\begin{aligned} \boldsymbol{i}(\boldsymbol{\mathcal{P}},\boldsymbol{n}) &= \ \#(n\boldsymbol{\mathcal{P}}\cap\mathbb{Z}^d) \\ &= \ \#\{\alpha\in\boldsymbol{\mathcal{P}} \,:\, n\alpha\in\mathbb{Z}^d\}, \end{aligned}$

the number of lattice points in $n\mathcal{P}$.

 $ar{i}(\mathcal{P},n)$

Similarly let

$$\mathcal{P}^{\circ}$$
 = interior of $\mathcal{P} = \mathcal{P} - \partial \mathcal{P}$

$$\overline{\boldsymbol{i}}(\boldsymbol{\mathcal{P}}, \boldsymbol{n}) = \#(n\boldsymbol{\mathcal{P}}^{\circ} \cap \mathbb{Z}^{d}) \\ = \#\{\alpha \in \boldsymbol{\mathcal{P}}^{\circ} : n\alpha \in \mathbb{Z}^{d}\},$$

the number of lattice points in the interior of $n\mathcal{P}$.

 $\overline{i}(\mathcal{P},n)$

Similarly let

$$\mathcal{P}^{\circ}$$
 = interior of $\mathcal{P} = \mathcal{P} - \partial \mathcal{P}$

$$\overline{\boldsymbol{i}}(\boldsymbol{\mathcal{P}},\boldsymbol{n}) = \#(n\boldsymbol{\mathcal{P}}^{\circ} \cap \mathbb{Z}^{d}) \\ = \#\{\alpha \in \boldsymbol{\mathcal{P}}^{\circ} : n\alpha \in \mathbb{Z}^{d}\},\$$

the number of lattice points in the interior of $n\mathcal{P}$.

Note. Could use any lattice *L* instead of \mathbb{Z}^d .

Lattice Points in Polytopes – p. 9

 $i(\mathcal{P}, n) = (n+1)^2$

$$\overline{i}(\mathcal{P},n) = (n-1)^2 = i(\mathcal{P},-n).$$

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1)$, $\overline{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$.

Theorem (Ehrhart 1962, Macdonald 1963) Let

 \mathcal{P} = lattice polytope in \mathbb{R}^N , dim $\mathcal{P} = \mathbf{d}$.

Then $i(\mathcal{P}, n)$ is a polynomial (the Ehrhart polynomial of \mathcal{P}) in n of degree d.

Reciprocity and volume

Moreover,

$$i(\mathcal{P}, 0) = 1$$

$$\overline{i}(\mathcal{P}, n) = (-1)^{d} i(\mathcal{P}, -n), \ n > 0$$

(reciprocity).

Reciprocity and volume

Moreover,

$$i(\mathcal{P}, 0) = 1$$

$$\overline{i}(\mathcal{P}, n) = (-1)^{d} i(\mathcal{P}, -n), \ n > 0$$

(reciprocity).

If d = N then

 $i(\mathcal{P}, n) = V(\mathcal{P})n^d + \text{ lower order terms},$ where $V(\mathcal{P})$ is the volume of \mathcal{P} .

Lattice Points in Polytopes – p. 13

Corollary. Let $\mathcal{P} \subset \mathbb{R}^d$ and dim $\mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\overline{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$. Corollary. Let $\mathcal{P} \subset \mathbb{R}^d$ and dim $\mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\overline{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0) = 1$, this data determines d + 1 values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. \Box

An example: Reeve's theorem

Example. When d = 3, $V(\mathcal{P})$ is determined by

$$i(\mathcal{P},1) = \#(\mathcal{P} \cap \mathbb{Z}^3)$$

$$i(\mathcal{P},2) = \#(2\mathcal{P} \cap \mathbb{Z}^3)$$

$$\overline{i}(\mathcal{P},1) = \#(\mathcal{P}^\circ \cap \mathbb{Z}^3),$$

which gives Reeve's theorem.

Example. Let $\mathcal{B}_M \subset \mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A = (a_{ij})$, i.e.,

 $a_{ij} \ge 0$ $\sum_{i} a_{ij} = 1$ (column sums 1) $\sum_{j} a_{ij} = 1$ (row sums 1).

(Weak) magic squares

Note. $B = (b_{ij}) \in n\mathcal{B}_M \cap \mathbb{Z}^{M \times M}$ if and only if

$$b_{ij} \in \mathbb{N} = \{0, 1, 2, \dots\}$$
$$\sum_{i} b_{ij} = n$$

$$\sum_{j} b_{ij} = n.$$

Example of a magic square

$$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 4 & 0 \end{bmatrix}$$

$$(M = 4, n = 7)$$

Example of a magic square

$$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 4 & 0 \end{bmatrix}$$
 (*M* = 4, *n* = 7)

 $\in 7\mathcal{B}_4$

$\begin{aligned} \boldsymbol{H}_{\boldsymbol{M}}(\boldsymbol{n}) &:= \#\{M \times M \; \mathbb{N}\text{-matrices, line sums } n\} \\ &= i(\mathcal{B}_M, n). \end{aligned}$

$H_M(n) := \#\{M \times M \mathbb{N}\text{-matrices, line sums } n\} \\ = i(\mathcal{B}_M, n).$

$$H_1(n) = 1$$
$$H_2(n) = n+1$$

$$\left[\begin{array}{rrr} a & n-a \\ n-a & a \end{array}\right], \quad 0 \le a \le n.$$

$H_3(n) = \binom{n+2}{4} + \binom{n+3}{4} + \binom{n+4}{4}$

(MacMahon)

The Anand-Dumir-Gupta conjectur

$$H_M(0) = 1$$

 $H_M(1) = M!$ (permutation matrices)

The Anand-Dumir-Gupta conjectur

$$H_M(0) = 1$$

 $H_M(1) = M!$ (permutation matrices)

Theorem (Birkhoff-von Neumann). *The vertices* of \mathcal{B}_M consist of the $M! M \times M$ permutation matrices. Hence \mathcal{B}_M is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture). $H_M(n)$ is a polynomial in *n* (of degree $(M-1)^2$).

Lattice Points in Polytopes – p. 21

Example. $H_4(n) = \frac{1}{11340} \left(11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 + 48762n^5 + 70234n^4 + 68220n^2 + 40950n + 11340 \right).$

Reciprocity for magic squares

Reciprocity
$$\Rightarrow \pm H_M(-n) =$$

 $\#\{M \times M \text{ matrices } B \text{ of positive integers, line sum } n$

But every such B can be obtained from an $M \times M$ matrix A of **nonnegative** integers by adding 1 to each entry.

Reciprocity for magic squares

Reciprocity
$$\Rightarrow \pm H_M(-n) =$$

 $\#\{M \times M \text{ matrices } B \text{ of positive integers, line sum } n$

But every such B can be obtained from an $M \times M$ matrix A of **nonnegative** integers by adding 1 to each entry.

Corollary.

 $H_M(-1) = H_M(-2) = \dots = H_M(-M+1) = 0$

$$H_M(-M-n) = (-1)^{M-1} H_M(n)$$

Lattice Points in Polytopes – p. 23

Two remarks

- Reciprocity greatly reduces computation.
- Applications of magic squares, e.g., to statistics (contingency tables).

Zeros of $H_9(n)$ in complex plane

Zeros of $H_9(n)$ in complex plane

No explanation known.

Zonotopes

Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k :

 $\boldsymbol{Z}(\boldsymbol{v_1},\ldots,\boldsymbol{v_k}) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \leq \lambda_i \leq 1\}$
Zonotopes

Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k :

 $Z(v_1, \ldots, v_k) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \le \lambda_i \le 1\}$ Example. $v_1 = (4, 0), v_2 = (3, 1), v_3 = (1, 2)$

Lattice Points in Polytopes – p. 26

Lattice points in a zonotope

Theorem. Let

$$Z = Z(v_1, \ldots, v_k) \subset \mathbb{R}^d,$$

where $v_i \in \mathbb{Z}^d$. Then

$$i(Z,1) = \sum_{X} h(X),$$

where *X* ranges over all linearly independent subsets of $\{v_1, \ldots, v_k\}$, and h(X) is the gcd of all $j \times j$ minors (j = #X) of the matrix whose rows are the elements of *X*.

An example

Example. $v_1 = (4, 0)$, $v_2 = (3, 1)$, $v_3 = (1, 2)$

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \\ +\gcd(4,0) + \gcd(3,1) \\ +\gcd(1,2) + \det(\emptyset) \\ = 4 + 8 + 5 + 4 + 1 + 1 + 1 \\ = 24.$$

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$$
$$+\gcd(4,0) + \gcd(3,1)$$
$$+\gcd(1,2) + \det(\emptyset)$$
$$= 4 + 8 + 5 + 4 + 1 + 1 + 1$$
$$= 24.$$

Application to graph theory

Let G be a graph (with no loops or multiple edges) on the vertex set $V(G) = \{1, 2, ..., n\}$. Let

 d_i = degree (# incident edges) of vertex *i*. Define the ordered degree sequence d(G) of *G* by

 $d(G) = (d_1, \ldots, d_n).$

Example of d(G)

Example. d(G) = (2, 4, 0, 3, 2, 1)

Lattice Points in Polytopes – p. 3²

Number of ordered degree sequence

Let f(n) be the number of distinct d(G), where $V(G) = \{1, 2, ..., n\}$.

f(n) for n < 4

Example. If $n \leq 3$, all d(G) are distinct, so f(1) = 1, $f(2) = 2^1 = 2$, $f(3) = 2^3 = 8$. For $n \geq 4$ we can have $G \neq H$ but d(G) = d(H), e.g.,

The polytope of degree sequences

Let **conv** denote convex hull, and

 $\mathcal{D}_n = \operatorname{conv}\{d(G) : V(G) = \{1, \dots, n\}\} \subset \mathbb{R}^n,$

the **polytope of degree sequences** (Perles, Koren).

The polytope of degree sequences

Let **conv** denote convex hull, and

 $\mathcal{D}_n = \operatorname{conv}\{d(G) : V(G) = \{1, \dots, n\}\} \subset \mathbb{R}^n,$

the **polytope of degree sequences** (Perles, Koren).

Easy fact. Let e_i be the *i*th unit coordinate vector in \mathbb{R}^n . E.g., if n = 5 then $e_2 = (0, 1, 0, 0, 0)$. Then

$$\mathcal{D}_n = Z(e_i + e_j : 1 \le i < j \le n).$$

Lattice Points in Polytopes – p. 34

The Erdős-Gallai theorem

Theorem. Let

$$\boldsymbol{\alpha} = (a_1,\ldots,a_n) \in \mathbb{Z}^n.$$

Then $\alpha = d(G)$ for some G if and only if

- $\alpha \in \mathcal{D}_n$
- $a_1 + a_2 + \cdots + a_n$ is even.

A generating function

Enumerative techniques leads to:

Theorem. Let

Then:

A formula for F(x)

$$F(x) = \frac{1}{2} \left[\left(1 + 2 \sum_{n \ge 1} n^n \frac{x^n}{n!} \right)^{1/2} \right]$$

$$\times \left(1 - \sum_{n \ge 1} (n-1)^{n-1} \frac{x^n}{n!}\right) + 1\right]$$

$$\times \exp\sum_{n\ge 1} n^{n-2} \frac{x^n}{n!} \qquad (0^0 = 1)$$

Coefficients of $i(\mathcal{P}, n)$

Let \mathcal{P} denote the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (1,1,13). Then

$$i(\mathcal{P}, n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$

The "bad" tetrahedron

The "bad" tetrahedron

Thus in general the coefficients of Ehrhart polynomials are not "nice." Is there a "better" basis?

The *h*-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree d, $\exists h_i \in \mathbb{Z}$ such that

$$\sum_{n \ge 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1 - x)^{d+1}}.$$

The *h*-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree $d, \exists h_i \in \mathbb{Z}$ such that

$$\sum_{n \ge 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1 - x)^{d+1}}.$$

Definition. Define

$$\boldsymbol{h}(\boldsymbol{\mathcal{P}}) = (h_0, h_1, \ldots, h_d),$$

the *h*-vector of \mathcal{P} .

Lattice Points in Polytopes – p. 40

Example of an *h***-vector**

Example. Recall

$$i(\mathcal{B}_4, n) = \frac{1}{11340} (11n^9)$$

+198n⁸ + 1596n⁷ + 7560n⁶ + 23289n⁵
+48762n⁵ + 70234n⁴ + 68220n²
+40950n + 11340).

Lattice Points in Polytopes – p. 4²

Example of an *h***-vector**

Example. Recall

$$i(\mathcal{B}_4, n) = \frac{1}{11340} (11n^9)$$
$$-198n^8 + 1596n^7 + 7560n^6 + 23289n^5$$
$$+48762n^5 + 70234n^4 + 68220n^2$$

+40950n + 11340).

Then

 $h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$

Lattice Points in Polytopes – p. 4²

Elementary properties of $h(\mathcal{P})$

•
$$h_0 = 1$$

- $h_d = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = I(\mathcal{P})$
- $\max\{i : h_i \neq 0\} = \min\{j \ge 0 :$

$$i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = \dots = i(\mathcal{P}, -(d-j)) = 0$$

E.g., $h(\mathcal{P}) = (h_0, \dots, h_{d-2}, 0, 0) \Leftrightarrow i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = 0.$

Another property

_

•
$$i(\mathcal{P}, -n-k) = (-1)^d i(\mathcal{P}, n) \ \forall n \Leftrightarrow$$

 $h_i = h_{d+1-k-i} \ \forall i, \text{and}$
 $h_{d+2-k-i} = h_{d+3-k-i} = \dots = h_d =$

Recall:

$$h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$$
 Thus

$$i(\mathcal{B}_4, -1) = i(\mathcal{B}_4, -2) = i(\mathcal{B}_4, -3) = 0$$

 $i(\mathcal{B}_4, -n-4) = -i(\mathcal{B}_4, n).$

Main properties of $h(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i \ge 0$.

Main properties of $h(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i \ge 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

 $h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \ \forall i.$

Main properties of $h(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i \ge 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

 $h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \ \forall i.$

 $B \Rightarrow A$: take $Q = \emptyset$.

Both theorems can be proved geometrically.

There are also elegant algebraic proofs based on **commutative algebra**.

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle, RS). Let \mathcal{P} be a lattice *d*-polytope. Then

 $i(\mathcal{P}, \alpha) = 0, \ \alpha \in \mathbb{R} \Rightarrow -d \le \alpha \le \lfloor d/2 \rfloor.$

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle, RS). Let \mathcal{P} be a lattice *d*-polytope. Then

 $i(\mathcal{P}, \alpha) = 0, \ \alpha \in \mathbb{R} \Rightarrow -d \le \alpha \le \lfloor d/2 \rfloor.$

Theorem. Let *d* be odd. There exists a 0/1*d*-polytope \mathcal{P}_d and a real zero α_d of $i(\mathcal{P}_d, n)$ such that

$$\lim_{\substack{d \to \infty \\ d \text{ odd}}} \frac{\alpha_d}{d} = \frac{1}{2\pi e} = 0.0585 \cdots$$

Open. Is the set of all complex zeros of all Ehrhart polynomials of lattice polytopes dense in \mathbb{C} ? (True for chromatic polynomials of graphs.)

Example. Let \mathcal{P} be the polytope [2, 5] in \mathbb{R} , so \mathcal{P} is defined by

(1) $x \ge 2$, (2) $x \le 5$.

Example. Let \mathcal{P} be the polytope [2, 5] in \mathbb{R} , so \mathcal{P} is defined by

(1) $x \ge 2$, (2) $x \le 5$.

Let

$$F_{1}(t) = \sum_{\substack{n \ge 2\\ n \in \mathbb{Z}}} t^{n} = \frac{t^{2}}{1 - t}$$

$$F_{2}(t) = \sum_{\substack{n \le 5\\ n \in \mathbb{Z}}} t^{n} = \frac{t^{5}}{1 - \frac{1}{t}}$$

 $F_1(t) + F_2(t)$

 $F_1(t) + F_2(t) = \frac{t^2}{1-t} + \frac{t^5}{1-\frac{1}{t}}$ $= t^2 + t^3 + t^4 + t^5$ $= \sum t^m.$ $m \in \mathcal{P} \cap \mathbb{Z}$

\mathcal{P} : \mathbb{Z} -polytope in \mathbb{R}^N with vertices v_1, \ldots, v_k

 C_i : cone at vertex *i* supporting \mathcal{P}

Lattice Points in Polytopes – p. 5²

 \mathcal{P} : \mathbb{Z} -polytope in \mathbb{R}^N with vertices v_1, \ldots, v_k \mathcal{C}_i : cone at vertex *i* supporting \mathcal{P}

Lattice Points in Polytopes – p. 5²
The general result

Let $F_i(t_1,\ldots,t_N) = \sum t_1^{m_1}\cdots t_N^{m_N}$. $(m_1,\ldots,m_N)\in\mathcal{C}_i\cap\mathbb{Z}^N$

The general result

Let
$$F_i(t_1, \ldots, t_N) = \sum_{(m_1, \ldots, m_N) \in \mathcal{C}_i \cap \mathbb{Z}^N} t_1^{m_1} \cdots t_N^{m_N}$$
.

Theorem (Brion). Each F_i is a rational function of t_1, \ldots, t_N , and

$$\sum_{i=1}^{k} F_i(t_1, \dots, t_N) = \sum_{(m_1, \dots, m_N) \in \mathcal{P} \cap \mathbb{Z}^N} t_1^{m_1} \cdots t_N^{m_N}$$

(as rational functions).

Given an integer polytope \mathcal{P} , can define a projective algebraic variety $X_{\mathcal{P}}$, a toric variety.

Leads to deep connections with toric geometry, including new formulas for $i(\mathcal{P}, n)$.

Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is #*P***-complete**. Thus an "efficient" (polynomial time) algorithm is extremely unlikely. However:

Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is #*P***-complete**. Thus an "efficient" (polynomial time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed dim \mathcal{P} , \exists polynomial-time algorithm for computing $i(\mathcal{P}, n)$.

V. Fractional lattice polytopes

Example. Let $S_M(n)$ denote the number of symmetric $M \times M$ matrices of nonnegative integers, every row and column sum n. Then

$$S_{3}(n) = \begin{cases} \frac{1}{8}(2n^{3} + 9n^{2} + 14n + 8), & n \text{ even} \\ \frac{1}{8}(2n^{3} + 9n^{2} + 14n + 7), & n \text{ odd} \end{cases}$$
$$= \frac{1}{16}(4n^{3} + 18n^{2} + 28n + 15 + (-1)^{n}), \end{cases}$$

V. Fractional lattice polytopes

Example. Let $S_M(n)$ denote the number of symmetric $M \times M$ matrices of nonnegative integers, every row and column sum n. Then

$$S_{3}(n) = \begin{cases} \frac{1}{8}(2n^{3} + 9n^{2} + 14n + 8), & n \text{ even} \\ \frac{1}{8}(2n^{3} + 9n^{2} + 14n + 7), & n \text{ odd} \end{cases}$$
$$= \frac{1}{16}(4n^{3} + 18n^{2} + 28n + 15 + (-1)^{n}).$$

Why a different polynomial depending on *n* modulo 2?

Lattice Points in Polytopes – p. 55

T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

Easy fact: $S_M(n) = \# (n\mathcal{T}_M \cap \mathbb{Z}^{M \times M})$

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

Easy fact: $S_M(n) = \# (n\mathcal{T}_M \cap \mathbb{Z}^{M \times M})$

Fact: vertices of T_M have the form $\frac{1}{2}(P + P^t)$, where *P* is a permutation matrix.

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

Easy fact: $S_M(n) = \# \left(n \mathcal{T}_M \cap \mathbb{Z}^{M \times M} \right)$

Fact: vertices of T_M have the form $\frac{1}{2}(P + P^t)$, where P is a permutation matrix.

Thus if v is a vertex of \mathcal{T}_M then $\mathbf{2}v \in \mathbb{Z}^{M \times M}$.

 $S_M(n)$ in general

Theorem. There exist polynomials $P_M(n)$ and $Q_M(n)$ for which

$$S_M(n) = P_M(n) + (-1)^n Q_M(n), \quad n \ge 0.$$

Moreover, $\deg P_M(n) = \binom{M}{2}$.

 $S_M(n)$ in general

Theorem. There exist polynomials $P_M(n)$ and $Q_M(n)$ for which

$$S_M(n) = P_M(n) + (-1)^n Q_M(n), \quad n \ge 0.$$

Moreover, $\deg P_M(n) = \binom{M}{2}$.

Difficult result (W. Dahmen and C. A. Micchelli, 1988):

$$\deg Q_M(n) = \begin{cases} \binom{n-1}{2} - 1, & n \text{ odd} \\ \binom{n-2}{2} - 1, & n \text{ even.} \end{cases}$$

