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I A lattice polygon

Georg Alexander Pick (1859-1942)

P: lattice polygon in R?
(vertices € Z*, no self-intersections)




I Boundary and interior lattice points




| Pick’s theorem

= areaof P
# interior points of P (= 4)
= #boundary points of P (= 10)

o~ >
|

Then
2+ B -2
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| Pick’s theorem

= areaof P
# interior points of P (= 4)
= #boundary points of P (= 10)

o~ >
|

Then
20 + B — 2

2
Example on previous slide:

2:4+10-2
s — 9. |

A:




| Two tetrahedra

Pick’s theorem (seemingly) fails in higher
dimensions. For example, let T and 75 be the
tetrahedra with vertices

o(Ty) = {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}
v(Ty) = {(0,0,0),(1,1,0),(1,0,1),(0,1,1)}.

—



| Fallure.of Pick’s theorem in dim 3

Then



I Polytope dilation

Let P be a convex polytope (convex hull of a
finite set of points) in R%. For n > 1, let

nP = {na : a € P}.



I Polytope dilation

Let P be a convex polytope (convex hull of a
finite set of points) in R%. For n > 1, let

nP ={na : a € P}

7




Let

i(P,n) = #(nPnZz
= #{a € P : nacZ%,

the number of lattice points in n’P.

—



Similarly let

P° = interior of P =P — 0P

i(P,n) = #(nP°NZ
= #{a € P° : na € 7%},

the number of lattice points in the of nP.

—



Similarly let

P° = interior of P =P — 0P

i(P,n) = #(nP°NZ
= #{a € P° : na € Z},

the number of lattice points in the of nP.

Could use any lattice L instead of Z¢.

—



I An example




| Reeve’s theorem

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let P be a
three-dimensional lattice polytope. Then the
volume V (P) is a certain (explicit) function of

i(P,1),i(P,1), and i(P, 2).

B



| The main.result

Theorem (Ehrhart 1962, Macdonald 1963) Let
P = lattice polytope in RY, dim P = d.

Then (P, n) is a polynomial (the Ehrhart
polynomial of P) in n of degree d.

—



I Reciprocity and volume

Moreover,

i(P,0) = 1
i(P,n) = (=1)%(P,—n), n >0
(reciprocity).

—



I Reciprocity and volume

Moreover,

i(P,0) = 1
i(P,n) = (=1)%(P,—n), n>0
(reciprocity).

If d = IV then

i(P,n) = V(P)n" + lower order terms,

—

where V' (P) is the volume of P.



| Generalized Pick’s theorem

Corollary. Let P ¢ R? and dim P = d. Knowing
any d of i(P,n) or i(P,n) for n > 0 determines
V(P).



| Generalized Pick’s theorem

Corollary. Let P ¢ R? and dim P = d. Knowing
any d of i(P,n) or i(P,n) for n > 0 determines
V(P).

Proof. Together with (P, 0) = 1, this data
determines d + 1 values of the polynomial :(P, n)
of degree d. This uniquely determines (P, n)
and hence its leading coefficient V (P).

—



I An example: Reeve’s theorem

Example. When d = 3, V(P) is determined by

i(P,1) = #(PNZ°
(P,2) = #(2PNZ°)
(P,1) = #(P°NZ°),

ST RS

which gives Reeve’s theorem.



I Birkhoff polytope

Example. Let By ¢ RY Y pe the Birkhoff
polytope of all M/ x M doubly-stochastic
matrices A = (a;;), I.€.,

CLZ'j>O

» a; = 1(column sums 1)

> a; = 1(rowsums 1).
j

—



I (Weak) magic squares

Note. B = (b;;) € nBy N ZM*M if and only if
bij c N:{O,l,Q,}

Zbi]‘ = N



Example of a magic square




Example of a magic square







Hy(n) = #{M x M N-matrices, line sums n}
— Z(BM,TL)




| The case M — 3
o = (1) (1) (1

(MacMahon)




I T he Anand-Dumir-Gupta conjectur

1
M! (permutation matrices)

—



| The Anand-Dumir-Gupta conjectur

Hy(0) = 1
Hy (1) = M! (permutation matrices)

Theorem (Birkhoff-von Neumann). The vertices
of B,, consist of the M! M x M permutation
matrices. Hence B, Is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture).
Hyr(n) is a polynomial in n (of degree (M — 1)?).

—



1
Example. Hy(n) = 75 (11n” + 198n° 4 1596n"

+7560n° + 23289n° + 48762n° + 70234n* + 63822012
+40950n 4 11340) .

—



| Reciprocity for magic squares

Reciprocity = £ Hy/(—n) =

#{ M x M matrices B of integers, line sum n

But every such B can be obtained from an
M x M matrix A of Integers by
adding 1 to each entry.

—



| Reciprocity for magic squares

Reciprocity = £ Hy/(—n) =

#{ M x M matrices B of positive integers, line sum n

But every such B can be obtained from an
M x M matrix A of nonnegative integers by
adding 1 to each entry.

Corollary.
Hy(=1) = Hy(=2) = - = Hy (=M + 1) = 0

Hy (=M —n) = (=1)"" " Hy(n)

—



| Two remarks

» Reciprocity greatly reduces computation.

» Applications of magic squares, e.g., to
statistics (contingency tables).



Zeros of Hy(n) In complex plane

Zeros of H_9(n)
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| Zeros of Hy(n) In complex plane

000000

oooooo

No explanation known. |




| Zonotopes

Let vy, ..., v, € R The zonotope Z (v, ..., v;)
generated by vy, ..., v

Z(’U1,---,’Uk):{)\1U1—|—'°°—|—)\kvk : OS)\zgl}

—



| Zonotopes

Let vy, ..., v, € R The zonotope Z (v, ..., v;)
generated by vy, ..., v

Z(’U1,---,’Uk):{)\1U1—|—'°°—|—)\kvk : OS)\zgl}
Example. vy = (4,0), v = (3,1), v3 = (1, 2)

A

(0,0) (4,0)




| Lattice points In a zonotope

Theorem. Let
7 =Z(v,...,v) CRY,

where v; € Z¢. Then
i(Z,1) =) h(X),
X

where X ranges over all linearly independent
subsets of {vy,..., v}, and h(X) is the gcd of all
7 %X 7 minors (3 = #.X) of the matrix whose rows

are the elements of X. |



I An example

v = (4,0), vy = (3,1), v3 = (1,2)

(0,0) (4,0)




I Computation of (Z, 1)

i(Z,1)

4 0 4 0

. NER
31 12| |12
)

+gcd(4,0) + ged(3, 1
1,2

+ged(1,2) + det(0)
14+8+5+4+1+1+1
24.




I Computation of (Z, 1)

4 0 4 0 3 1

3 1 1 2 1 2

__ng(47 O) - ng(37 1)
1,2

i(Z,1)

_|_

|
_|_

+ged(1,2) + det()




| Application to graph theory

Let G be a graph (with no loops or multiple
edges) on the vertex set V(G) = {1,2,...,n}.
Let

d; = degree (# incident edges) of vertex i.

Define the ordered degree sequence d(G) of ¢

by
d(G) = (dy,...,d,).

B



| Example of d(G)

Example. d(G) = (2,4,0,3,2,1)




I Number of ordered degree sequence

Let f(n) be the number of distinct d(G), where
V(G)={1,2,...,n}.




I f(n)forn < 4

Example. If n < 3, all d(G) are distinct, so
f(1)=1, f(2)=2'=2, f(3)=2°=8. Forn >4

we can have G # H but d(G) = d(H), e.g
] = X
3 4

AA Q

In fact, f(4) = 54 < 2° = 64.



I T he polytope of degree sequences

Let conv denote convex hull, and

D,, = conv{d(G) : V(G)=A{1,...,n}} CR"

the polytope of degree sequences (Perles,
Koren).

—



| T he polytope of degree sequences

Let conv denote convex hull, and

D,, = conv{d(G) : V(G)=A{1,...,n}} CR"

the polytope of degree sequences (Perles,
Koren).

Let e; be the :th unit coordinate vector
in R". E.g., ifn=>5thene;, = (0,1,0,0,0). Then

—



| The Erdos-Gallail theorem

Theorem. Let
o= (a,...,a,) € Z".

Then a = d(G) for some G if and only if
» oD,
® a+ay+---+a,lsSeven.



I A generating function

Enumerative techniques leads to:

Theorem. Let

Xz
) = Y fn)
n>0
R S Vi
— — L o | 3] | Z+
Then:



I A formula for F'(x)




| Coefficients of (P, n)

Let P denote the tetrahedron with vertices
(0,0,0), (1,0,0), (0,1,0), (1,1,13). Then



| The “bad’ tetrahedron

y



| The “bad’” tetrahedron

V4

Thus In general the coefficients of Ehrhart
polynomials are not “nice.” Is there a “better”

basis?



| The h-vector of (P, n)

Let P be a lattice polytope of dimension d. Since
i(P,n) is a polynomial of degree d, 4 h; € Z such
that

h h .o+ hyz?
Zi(P,n)x”: 0+ hx + + da?.

g (1 . m)dH

—



| The h-vector of (P, n)

Let P be a lattice polytope of dimension d. Since
i(P,n) is a polynomial of degree d, 4 h; € Z such
that

. . ho+ hiz+ -+ hgat
nZ%z(P, n)x" = 1= 2 .
Definition. Define

h(P) — (h(), hl, Cee hd),

the h-vector of P. |



I Example of an h-vector

Example. Recall

+198n° + 1596n" + 7560n° + 23289n°
148762n° 4 70234n* + 6822012
+40950n + 11340).

—



I Example of an h-vector

Example. Recall

+198n° + 1596n" + 7560n° + 23289n°
148762n° 4 70234n* + 6822012
+40950n + 11340).

Then
h(By) = (1,14,87,148,87,14,1,0,0,0). |



I Elementary properties of h(P)

o h() =1
» hg=(=1)"7i(P,~1) = I(P)
» max{i : h; # 0} =min{j >0 :

i(P,—1) =i(P,=2) = --- = i(P, —(d—j)) = 0}
E.9., h(P) = (ho,...,hq2,0,0) < i(P,—1) =
i(P,—2) = 0.

—



I Another property

» i(P,—n—k)=(-1)%(P,n) Vn &
hi = hay1-r—i Vi, and

hgro—k—i = hayz—p—i =+ =hqg =10

—



| Back to B,

Recall:
h(By) = (1,14,87,148,87,14,1,0,0,0).
Thus
i(By, —1) = i(By, —2) = i(By, —3) = 0
i(By, —n — 4) = —i(By, n).

—



| Main properties of h(P)

Theorem A . (McMullen, RS)
h; > 0.




| Main properties of h(P)

Theorem A . (McMullen, RS)
h; > 0.
Theorem B . (RS) If P and Q are

lattice polytopes and O C P, then
hi(Q) < h;(P) Vi.

—



| Main properties of h(P)

Theorem A . (McMullen, RS)
h; > 0.
Theorem B . (RS) If P and Q are

lattice polytopes and O C P, then
hi(Q) < h;(P) Vi.

B = A:take Q = ().

—



| Proofs

Both theorems can be proved geometrically.

There are also elegant algebraic proofs based on
commutative algebra.



| Further directions

Sample theorem (de Loera, Develin, Pfelifle,
RS). Let P be a lattice d-polytope. Then

(P,a) =0, a e R= —d < a < |d/2].

—



| Further directions

Sample theorem (de Loera, Develin, Pfelifle,
RS). Let P be a lattice d-polytope. Then

(P,a) =0, a e R= —d < a < |d/2].

Theorem. Let d be odd. There exists a 0/1
d-polytope P, and a real zero a4 of i(P;,n) such
that



I An open problem

Is the set of all complex zeros of all
Ehrhart polynomials of lattice polytopes dense In
C? (True for chromatic polynomials of graphs.)



| 1. Brion’s theorem

Example. Let P be the polytope [2,5] in R, so P
IS defined by



| 1. Brion’s theorem

Example. Let P be the polytope [2,5] in R, so P
IS defined by

Let




| Fy(t) o F2(t)

1 —¢ 1—%
24+t

>

mePNZ

N



| Cone at.a vertex

P: Z-polytope in RY with vertices vy, ..., vg
C;. cone at vertex : supporting P



| Cone at.a vertex

P: Z-polytope in RY with vertices vy, ..., vg
C;. cone at vertex : supporting P

\Y

C\)



I T he general result

Let F(t1,....tn) = > A A



I T he general result

Let Fi(tl, - ,tN)

|
]
=3
=3
2

Theorem (Brion). Each F; Is a rational function

of t1,...,ty, and
k
MRt )= Y e
1=1 (ma,..., mN)EPﬂZN

(as rational functions).



| 111. Toric.varieties

Given an integer polytope P, can define a
orojective algebraic variety Xp, a toric variety.

_eads to deep connections with toric geometry,
including new formulas for i(P, n).

B



I V. Complexity

Computing (P, n), or even (P, 1) is
# P-complete. Thus an “efficient” (polynomial
time) algorithm is extremely unlikely. However:



| V. Complexity

Computing (P, n), or even (P, 1) is
# P-complete. Thus an “efficient” (polynomial
time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For dim P,
polynomial-time algorithm for computing (P, n).

—



| V. Fractional lattice polytopes

Example. Let Sps(n) denote the number of
M x M matrices of nonnegative

Integers, every row and column sum n. Then

N £ T PO TUTH
£(2n* +9n* + 14n + 7), nodd

=

(4n° +18n° 4+ 28n + 15+ (—=1)").

B

p—t
@)



| V. Fractional lattice polytopes

Example. Let Sps(n) denote the number of
symmetric M x M matrices of nonnegative
Integers, every row and column sum n. Then

~

—~
DO
S

OV
|

-9n® + 14n + 8), n even

S —
(1) -9n® + 14n +7), nodd

N\
0| oo
N\
>
V)
|

=

= —(4n° +18n" +28n + 15 + (—=1)").

Why a different polynomial depending on n
modulo 27? |

p—t
@)



I T he symmetric Birkhoff polytope

Tar: the polytope of all M x M
doubly-stochastic matrices.



I T he symmetric Birkhoff polytope

Tar: the polytope of all M x M
doubly-stochastic matrices.

Easy fact: Sy(n) = # (nTy NZ*"M)



| T he symmetric Birkhoff polytope

Tar: the polytope of all M x M
doubly-stochastic matrices.

Easy fact: Sy(n) = # (nTy NZ*"M)

Fact: vertices of 7, have the form (P + P'),
where P Is a permutation matrix.

—



| T he symmetric Birkhoff polytope

Tar: the polytope of all M x M symmetric
doubly-stochastic matrices.

Easy fact: Sy(n) = # (nTy NZ*"M)

Fact: vertices of 7, have the form (P + P'),
where P Is a permutation matrix.

Thus if v is a vertex of 7, then 2v € ZM*M,

—



| Saz(n).1n general

Theorem. There exist polynomials P;(n) and
Qs (n) for which

Su(n) = Py(n)+ (=1)"Qu(n), n>0.
2)

Moreover, deg Py (n) = (% )-

—



| Saz(n).1n general

Theorem. There exist polynomials P;(n) and
Qs (n) for which

Su(n) = Py(n)+ (=1)"Qu(n), n>0.
2)

Moreover, deg Py (n) = (% )-

Difficult result (W. Dahmen and C. A. Micchell,
1988):

( (”;1) — 1, nodd

N \ (”;2) — 1, neven. |
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