Lattice Points in Polytopes

Richard P. Stanley

M.I.T.

A lattice polygon

Georg Alexander Pick (1859–1942)

P: lattice polygon in \mathbb{R}^2 (vertices $\in \mathbb{Z}^2$, no self-intersections)

Boundary and interior lattice points

Pick's theorem

```
m{A} = 	ext{area of } P
m{I} = \# 	ext{ interior points of } P \ (= 4)
m{B} = \# 	ext{boundary points of } P \ (= 10)
```

Then

$$\mathbf{A} = \frac{2\mathbf{I} + \mathbf{B} - 2}{2}.$$

Pick's theorem

 $m{A} = ext{area of } P$ $m{I} = \# ext{ interior points of } P \ (= 4)$ $m{B} = \# ext{boundary points of } P \ (= 10)$

Then

$$\mathbf{A} = \frac{2\mathbf{I} + \mathbf{B} - 2}{2}.$$

Example on previous slide:

$$\frac{2 \cdot 4 + 10 - 2}{2} = 9.$$

Two tetrahedra

Pick's theorem (seemingly) fails in higher dimensions. For example, let T_1 and T_2 be the tetrahedra with vertices

$$v(T_1) = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$$

 $v(T_2) = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}.$

Failure of Pick's theorem in dim 3

Then

$$I(T_1) = I(T_2) = 0$$
 $B(T_1) = B(T_2) = 4$
 $A(T_1) = 1/6, \quad A(T_2) = 1/3.$

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d . For $n \geq 1$, let

$$\mathbf{nP} = \{ n\alpha : \alpha \in \mathcal{P} \}.$$

Polytope dilation

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d . For $n \geq 1$, let

$$n\mathcal{P} = \{n\alpha : \alpha \in \mathcal{P}\}.$$

$$i(\mathcal{P},n)$$

Let

$$i(\mathcal{P}, n) = \#(n\mathcal{P} \cap \mathbb{Z}^d)$$

= $\#\{\alpha \in \mathcal{P} : n\alpha \in \mathbb{Z}^d\},$

the number of lattice points in $n\mathcal{P}$.

$$\overline{i}(\mathcal{P},n)$$

Similarly let

$$\mathcal{P}^{\circ}$$
 = interior of $\mathcal{P} = \mathcal{P} - \partial \mathcal{P}$

$$\overline{i}(\mathcal{P}, n) = \#(n\mathcal{P}^{\circ} \cap \mathbb{Z}^d)$$

$$= \#\{\alpha \in \mathcal{P}^{\circ} : n\alpha \in \mathbb{Z}^d\},$$

the number of lattice points in the interior of $n\mathcal{P}$.

$$\overline{i}(\mathcal{P},n)$$

Similarly let

$$\mathcal{P}^{\circ}$$
 = interior of $\mathcal{P} = \mathcal{P} - \partial \mathcal{P}$

$$\overline{i}(\mathcal{P}, n) = \#(n\mathcal{P}^{\circ} \cap \mathbb{Z}^d)$$

$$= \#\{\alpha \in \mathcal{P}^{\circ} : n\alpha \in \mathbb{Z}^d\},$$

the number of lattice points in the interior of $n\mathcal{P}$.

Note. Could use any lattice L instead of \mathbb{Z}^d .

An example

$$i(\mathcal{P}, n) = (n+1)^2$$

$$\overline{i}(\mathcal{P}, n) = (n-1)^2 = i(\mathcal{P}, -n).$$

Reeve's theorem

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1)$, $\bar{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$.

The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let

 \mathcal{P} = lattice polytope in \mathbb{R}^N , dim $\mathcal{P} = \mathbf{d}$.

Then $i(\mathcal{P}, n)$ is a polynomial (the **Ehrhart** polynomial of \mathcal{P}) in n of degree d.

Reciprocity and volume

Moreover,

$$i(\mathcal{P},0)=1$$

$$\bar{i}(\mathcal{P},n)=(-1)^d i(\mathcal{P},-n),\ n>0$$
 (reciprocity).

Reciprocity and volume

Moreover,

$$i(\mathcal{P},0)=1$$
 $\overline{i}(\mathcal{P},n)=(-1)^d i(\mathcal{P},-n),\ n>0$ (reciprocity).

If d = N then

$$i(\mathcal{P}, n) = V(\mathcal{P})n^d + \text{lower order terms},$$

where $V(\mathcal{P})$ is the volume of \mathcal{P} .

Eugène Ehrhart

- April 29, 1906: born in Guebwiller, France
- 1932: begins teaching career in lycées
- 1959: Prize of French Sciences Academy
- 1963: begins work on Ph.D. thesis
- 1966: obtains Ph.D. thesis from Univ. of Strasbourg
- 1971: retires from teaching career
- January 17, 2000: dies

Photo of Ehrhart

Self-portrait

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^d$ and $\dim \mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$.

Generalized Pick's theorem

Corollary. Let $\mathcal{P} \subset \mathbb{R}^d$ and $\dim \mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P},0)=1$, this data determines d+1 values of the polynomial $i(\mathcal{P},n)$ of degree d. This uniquely determines $i(\mathcal{P},n)$ and hence its leading coefficient $V(\mathcal{P})$. \square

An example: Reeve's theorem

Example. When d=3, $V(\mathcal{P})$ is determined by

$$i(\mathcal{P}, 1) = \#(\mathcal{P} \cap \mathbb{Z}^3)$$

 $i(\mathcal{P}, 2) = \#(2\mathcal{P} \cap \mathbb{Z}^3)$
 $\bar{i}(\mathcal{P}, 1) = \#(\mathcal{P}^\circ \cap \mathbb{Z}^3),$

which gives Reeve's theorem.

Birkhoff polytope

Example. Let $\mathcal{B}_{M} \subset \mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A = (a_{ij})$, i.e.,

$$a_{ij} \geq 0$$

$$\sum_{i} a_{ij} = 1 \text{ (column sums 1)}$$

$$\sum_{i} a_{ij} = 1 \text{ (row sums 1)}.$$

(Weak) magic squares

Note.
$$B=(b_{ij})\in n\mathcal{B}_M\cap \mathbb{Z}^{M imes M}$$
 if and only if $b_{ij}\in \mathbb{N}=\{0,1,2,\dots\}$
$$\sum_i b_{ij}=n$$

$$\sum_i b_{ij}=n.$$

Example of a magic square

$$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 4 & 0 \end{bmatrix} \qquad (M = 4, n = 7)$$

$$(M = 4, n = 7)$$

Example of a magic square

$$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 4 & 0 \end{bmatrix} \qquad (M = 4, n = 7)$$

 $\in 7\mathcal{B}_4$

$H_M(n)$

```
H_M(n) := \#\{M \times M \text{ } \mathbb{N}\text{-matrices, line sums } n\}
= i(\mathcal{B}_M, n)
```

$H_M(n)$

$$\boldsymbol{H_M(n)} := \#\{M \times M \text{ } \mathbb{N}\text{-matrices, line sums } n\}$$

$$= i(\mathcal{B}_M, n)$$

$$H_1(n) = 1$$

$$H_2(n) = ??$$

$H_M(n)$

$$\boldsymbol{H_M(n)} := \#\{M \times M \text{ } \mathbb{N}\text{-matrices, line sums } n\}$$

$$= i(\mathcal{B}_M, n)$$

$$H_1(n) = 1$$

$$H_2(n) = n+1$$

$$\begin{bmatrix} a & n-a \\ n-a & a \end{bmatrix}, \quad 0 \le a \le n.$$

The case M=3

$$H_3(n) = \binom{n+2}{4} + \binom{n+3}{4} + \binom{n+4}{4}$$

(MacMahon)

$$H_M(0) = ??$$

$$H_M(0) = 1$$

$$H_M(0)=1$$

$$H_M(1) = ??$$

$$H_M(0) = 1$$

 $H_M(1) = M!$ (permutation matrices)

$$H_M(0) = 1$$

 $H_M(1) = M!$ (permutation matrices)

Anand-Dumir-Gupta, 1966:

$$\sum_{M>0} H_M(2) \frac{x^M}{M!^2} = ??$$

Values for small n

$$H_M(0) = 1$$

 $H_M(1) = M!$ (permutation matrices)

Anand-Dumir-Gupta, 1966:

$$\sum_{M>0} H_M(2) \frac{x^M}{M!^2} = \frac{e^{x/2}}{\sqrt{1-x}}$$

Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The vertices of \mathcal{B}_M consist of the M! $M \times M$ permutation matrices. Hence \mathcal{B}_M is a lattice polytope.

Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The vertices of \mathcal{B}_M consist of the M! $M \times M$ permutation matrices. Hence \mathcal{B}_M is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture). $H_M(n)$ is a polynomial in n (of degree $(M-1)^2$).

$H_4(n)$

Example.
$$H_4(n) = \frac{1}{11340} \left(11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 + 48762n^5 + 70234n^4 + 68220n^2 + 40950n + 11340 \right).$$

Reciprocity for magic squares

Reciprocity $\Rightarrow \pm H_M(-n) =$

 $\#\{M\times M \text{ matrices } B \text{ of positive integers, line sum } n\}$

But every such B can be obtained from an $M \times M$ matrix A of **nonnegative** integers by adding 1 to each entry.

Reciprocity for magic squares

Reciprocity
$$\Rightarrow \pm H_M(-n) =$$

 $\#\{M\times M \text{ matrices } B \text{ of positive integers, line sum } n\}$

But every such B can be obtained from an $M \times M$ matrix A of **nonnegative** integers by adding 1 to each entry.

Corollary.

$$H_M(-1) = H_M(-2) = \dots = H_M(-M+1) = 0$$

 $H_M(-M-n) = (-1)^{M-1}H_M(n)$

Two remarks

- Reciprocity greatly reduces computation.
- Applications of magic squares, e.g., to statistics (contingency tables).

Zeros of $H_9(n)$ in complex plane

Zeros of $H_9(n)$ in complex plane

No explanation known.

Zonotopes

Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k :

$$\boldsymbol{Z}(\boldsymbol{v_1},\ldots,\boldsymbol{v_k}) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \leq \lambda_i \leq 1\}$$

Zonotopes

Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The zonotope $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k :

$$\mathbf{Z}(\mathbf{v_1},\ldots,\mathbf{v_k}) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \le \lambda_i \le 1\}$$

Example. $v_1 = (4,0), v_2 = (3,1), v_3 = (1,2)$

Lattice points in a zonotope

Theorem. Let

$$Z = Z(v_1, \ldots, v_k) \subset \mathbb{R}^d$$
,

where $v_i \in \mathbb{Z}^d$. Then

$$i(Z,1) = \sum_{X} h(X),$$

where X ranges over all linearly independent subsets of $\{v_1, \ldots, v_k\}$, and h(X) is the gcd of all $j \times j$ minors (j = #X) of the matrix whose rows are the elements of X.

An example

Example.
$$v_1 = (4,0)$$
, $v_2 = (3,1)$, $v_3 = (1,2)$

Computation of i(Z, 1)

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$$
$$+\gcd(4,0) + \gcd(3,1)$$
$$+\gcd(1,2) + \det(\emptyset)$$
$$= 4 + 8 + 5 + 4 + 1 + 1 + 1$$
$$= 24.$$

Computation of i(Z, 1)

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$$
$$+\gcd(4,0) + \gcd(3,1)$$
$$+\gcd(1,2) + \det(\emptyset)$$
$$= 4 + 8 + 5 + 4 + 1 + 1 + 1$$
$$= 24.$$

Corollaries

Corollary. If Z is an integer zonotope generated by integer vectors, then the coefficients of i(Z, n) are nonnegative integers.

Corollaries

Corollary. If Z is an integer zonotope generated by integer vectors, then the coefficients of i(Z, n) are nonnegative integers.

Neither property is true for general integer polytopes. There are numerous conjectures concerning special cases.

The permutohedron

$$\Pi_d = \operatorname{conv}\{(w(1), \dots, w(d)) : w \in S_d\} \subset \mathbb{R}^d$$

The permutohedron

$$\Pi_d = \operatorname{conv}\{(w(1), \dots, w(d)) : w \in S_d\} \subset \mathbb{R}^d$$

dim
$$\Pi_d = d - 1$$
, since $\sum w(i) = \binom{d+1}{2}$

The permutohedron

$$\Pi_d = \operatorname{conv}\{(w(1), \dots, w(d)) : w \in S_d\} \subset \mathbb{R}^d$$

dim
$$\Pi_d = d - 1$$
, since $\sum w(i) = \begin{pmatrix} d+1\\2 \end{pmatrix}$

$$\Pi_d \approx Z(e_i - e_j : 1 \le i < j \le d)$$

$$i(\Pi_3, n) = 3n^2 + 3n + 1$$

(truncated octahedron)

 $i(\Pi_d,n)$

Theorem. $i(\Pi_d, n) = \sum_{k=0}^{d-1} f_k(d)x^k$, where

 $f_k(d) = \#\{\text{forests with } k \text{ edges on vertices } 1, \dots, d\}$

$$i(\Pi_d,n)$$

Theorem. $i(\Pi_d, n) = \sum_{k=0}^{d-1} f_k(d)x^k$, where

 $f_k(d) = \#\{\text{forests with } k \text{ edges on vertices } 1, \dots, d\}$

$$i(\Pi_3, n) = 3n^2 + 3n + 1$$

Application to graph theory

Let G be a graph (with no loops or multiple edges) on the vertex set $V(G) = \{1, 2, ..., n\}$. Let

 d_i = degree (# incident edges) of vertex i.

Define the ordered degree sequence d(G) of G by

$$d(G) = (d_1, \dots, d_n).$$

Example of d(G)

Example. d(G) = (2, 4, 0, 3, 2, 1)

ordered degree sequences

Let f(n) be the number of distinct d(G), where $V(G) = \{1, 2, ..., n\}$.

f(n) for $n \leq 4$

Example. If $n \le 3$, all d(G) are distinct, so f(1) = 1, $f(2) = 2^1 = 2$, $f(3) = 2^3 = 8$. For $n \ge 4$ we can have $G \ne H$ but d(G) = d(H), e.g.,

In fact, $f(4) = 54 < 2^6 = 64$.

The polytope of degree sequences

Let conv denote convex hull, and

$$\mathcal{D}_n = \operatorname{conv}\{d(G) : V(G) = \{1, \dots, n\}\} \subset \mathbb{R}^n,$$

the polytope of degree sequences (Perles, Koren).

The polytope of degree sequences

Let conv denote convex hull, and

$$\mathcal{D}_n = \operatorname{conv}\{d(G) : V(G) = \{1, \dots, n\}\} \subset \mathbb{R}^n,$$

the polytope of degree sequences (Perles, Koren).

Easy fact. Let e_i be the *i*th unit coordinate vector in \mathbb{R}^n . E.g., if n=5 then $e_2=(0,1,0,0,0)$. Then

$$\mathcal{D}_n = Z(e_i + e_j : 1 \le i < j \le n).$$

The Erdős-Gallai theorem

Theorem. Let

$$\alpha = (a_1, \ldots, a_n) \in \mathbb{Z}^n$$
.

Then $\alpha = d(G)$ for some G if and only if

- $\alpha \in \mathcal{D}_n$
- $a_1 + a_2 + \cdots + a_n$ is even.

A generating function

Enumerative techniques leads to:

Theorem. Let

$$F(x) = \sum_{n\geq 0} f(n) \frac{x^n}{n!}$$

$$= 1 + x + 2\frac{x^2}{2!} + 8\frac{x^3}{3!} + 54\frac{x^4}{4!} + \cdots$$

Then:

A formula for F(x)

$$F(x) = \frac{1}{2} \left[\left(1 + 2 \sum_{n \ge 1} n^n \frac{x^n}{n!} \right)^{1/2} \right]$$

$$\times \left(1 - \sum_{n \ge 1} (n - 1)^{n-1} \frac{x^n}{n!} \right) + 1$$

$$\times \exp \sum_{n \ge 1} n^{n-2} \frac{x^n}{n!} \qquad (0^0 = 1)$$

Coefficients of $i(\mathcal{P}, n)$

Let \mathcal{P} denote the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0), (1,1,13). Then

$$i(\mathcal{P}, n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$

The "bad" tetrahedron

The "bad" tetrahedron

Thus in general the coefficients of Ehrhart polynomials are not "nice." Is there a "better" basis?

The h^* -vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P},n)$ is a polynomial of degree d, \exists $h_i \in \mathbb{Z}$ such that

$$\sum_{n\geq 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1-x)^{d+1}}.$$

The h^* -vector of $i(\mathcal{P}, n)$

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P},n)$ is a polynomial of degree d, \exists $h_i \in \mathbb{Z}$ such that

$$\sum_{n\geq 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1-x)^{d+1}}.$$

Definition. Define

$$\boldsymbol{h}(\boldsymbol{\mathcal{P}}) = (h_0, h_1, \dots, h_d),$$

the h^* -vector of \mathcal{P} .

Example of an h^* -vector

Example. Recall

$$i(\mathcal{B}_4, n) = \frac{1}{11340} (11n^9)$$

$$+198n^8 + 1596n^7 + 7560n^6 + 23289n^5$$

$$+48762n^5 + 70234n^4 + 68220n^2$$

$$+40950n + 11340).$$

Example of an h^* -vector

Example. Recall

$$i(\mathcal{B}_4, n) = \frac{1}{11340} (11n^9)$$

$$+198n^8 + 1596n^7 + 7560n^6 + 23289n^5$$

$$+48762n^5 + 70234n^4 + 68220n^2$$

$$+40950n + 11340).$$

Then

$$h^*(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$$

Elementary properties of $h^*(\mathcal{P})$

- $h_0^* = 1$
- $h_d^* = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = I(\mathcal{P})$

$$i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = \dots = i(\mathcal{P}, -(d-j)) = 0$$

E.g.,
$$h^*(\mathcal{P}) = (h_0^*, \dots, h_{d-2}^*, 0, 0) \Leftrightarrow i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = 0.$$

Another property

•
$$i(\mathcal{P},-n-k)=(-1)^d\,i(\mathcal{P},n)\;\forall n\Leftrightarrow$$

$$h_i^*=h_{d+1-k-i}^*\;\forall i, \text{and}$$

$$h_{d+2-k-i}^*=h_{d+3-k-i}^*=\cdots=h_d^*=0$$

Back to \mathcal{B}_4

Recall:

$$h^*(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$$

Thus

$$i(\mathcal{B}_4, -1) = i(\mathcal{B}_4, -2) = i(\mathcal{B}_4, -3) = 0$$

 $i(\mathcal{B}_4, -n - 4) = -i(\mathcal{B}_4, n).$

Main properties of $h^*(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i^* \ge 0$.

Main properties of $h^*(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i^* \ge 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

$$h_i^*(\mathcal{Q}) \le h_i^*(\mathcal{P}) \ \forall i.$$

Main properties of $h^*(\mathcal{P})$

Theorem A (nonnegativity). (McMullen, RS) $h_i^* \ge 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then

$$h_i^*(\mathcal{Q}) \le h_i^*(\mathcal{P}) \ \forall i.$$

 $\mathsf{B} \Rightarrow \mathsf{A}$: take $\mathcal{Q} = \emptyset$.

Proofs

Both theorems can be proved geometrically.

There are also elegant algebraic proofs based on commutative algebra.

Further directions

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle, RS). Let \mathcal{P} be a lattice d-polytope. Then

$$i(\mathcal{P}, \alpha) = 0, \ \alpha \in \mathbb{R} \Rightarrow -d \le \alpha \le |d/2|.$$

Further directions

I. Zeros of Ehrhart polynomials

Sample theorem (de Loera, Develin, Pfeifle, RS). Let \mathcal{P} be a lattice d-polytope. Then

$$i(\mathcal{P}, \alpha) = 0, \ \alpha \in \mathbb{R} \Rightarrow -d \le \alpha \le |d/2|.$$

Theorem. Let d be odd. There exists a 0/1 d-polytope \mathcal{P}_d and a real zero α_d of $i(\mathcal{P}_d,n)$ such that

$$\lim_{\substack{d \to \infty \\ d \text{ odd}}} \frac{\alpha_d}{d} = \frac{1}{2\pi e} = 0.0585 \cdots.$$

An open problem

Open. Is the set of all complex zeros of all Ehrhart polynomials of lattice polytopes dense in \mathbb{C} ? (True for chromatic polynomials of graphs.)

II. Brion's theorem

Example. Let \mathcal{P} be the polytope [2, 5] in \mathbb{R} , so \mathcal{P} is defined by

(1)
$$x \ge 2$$
, (2) $x \le 5$.

II. Brion's theorem

Example. Let \mathcal{P} be the polytope [2, 5] in \mathbb{R} , so \mathcal{P} is defined by

(1)
$$x \ge 2$$
, (2) $x \le 5$.

Let

$$F_1(t) = \sum_{\substack{n \ge 2\\ n \in \mathbb{Z}}} t^n = \frac{t^2}{1 - t}$$

$$F_2(t) = \sum_{\substack{n \le 5 \\ n \in \mathbb{Z}}} t^n = \frac{t^5}{1 - \frac{1}{t}}.$$

$F_1(t)+F_2(t)$

$$F_{1}(t) + F_{2}(t) = \frac{t^{2}}{1 - t} + \frac{t^{5}}{1 - \frac{1}{t}}$$

$$= t^{2} + t^{3} + t^{4} + t^{5}$$

$$= \sum_{m \in \mathcal{P} \cap \mathbb{Z}} t^{m}.$$

Cone at a vertex

 \mathcal{P} : \mathbb{Z} -polytope in \mathbb{R}^N with vertices $\boldsymbol{v_1}, \dots, \boldsymbol{v_k}$

 C_i : cone at vertex v_i supporting \mathcal{P}

Cone at a vertex

 \mathcal{P} : \mathbb{Z} -polytope in \mathbb{R}^N with vertices $\boldsymbol{v_1}, \dots, \boldsymbol{v_k}$

 C_i : cone at vertex v_i supporting P

The general result

Let
$$F_{m i}(t_1,\ldots,t_N)=\sum_{(m_1,\ldots,m_N)\in\mathcal{C}_i\cap\mathbb{Z}^N}t_1^{m_1}\cdots t_N^{m_N}$$
 .

The general result

Let
$$F_{m i}(t_1,\ldots,t_N)=\sum_{(m_1,\ldots,m_N)\in\mathcal{C}_i\cap\mathbb{Z}^N}t_1^{m_1}\cdots t_N^{m_N}$$
 .

Theorem (Brion). Each F_i is a rational function of t_1, \ldots, t_N , and

$$\sum_{i=1}^{k} F_i(t_1, \dots, t_N) = \sum_{(m_1, \dots, m_N) \in \mathcal{P} \cap \mathbb{Z}^N} t_1^{m_1} \cdots t_N^{m_N}$$

(as rational functions).

III. Toric varieties

Given an integer polytope \mathcal{P} , can define a projective algebraic variety $X_{\mathcal{P}}$, a toric variety.

Leads to deep connections with toric geometry, including new formulas for $i(\mathcal{P}, n)$.

IV. Complexity

Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is $\#\mathbf{P}$ -complete. Thus an "efficient" (polynomial time) algorithm is extremely unlikely. However:

IV. Complexity

Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is $\# \mathbf{P}$ -complete. Thus an "efficient" (polynomial time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed dim \mathcal{P} , \exists polynomial-time algorithm for computing $i(\mathcal{P}, n)$.

V. Fractional lattice polytopes

Example. Let $S_M(n)$ denote the number of symmetric $M \times M$ matrices of nonnegative integers, every row and column sum n. Then

$$S_3(n) = \begin{cases} \frac{1}{8}(2n^3 + 9n^2 + 14n + 8), & n \text{ even} \\ \frac{1}{8}(2n^3 + 9n^2 + 14n + 7), & n \text{ odd} \end{cases}$$
$$= \frac{1}{16}(4n^3 + 18n^2 + 28n + 15 + (-1)^n).$$

V. Fractional lattice polytopes

Example. Let $S_M(n)$ denote the number of symmetric $M \times M$ matrices of nonnegative integers, every row and column sum n. Then

$$S_3(n) = \begin{cases} \frac{1}{8}(2n^3 + 9n^2 + 14n + 8), & n \text{ even} \\ \frac{1}{8}(2n^3 + 9n^2 + 14n + 7), & n \text{ odd} \end{cases}$$
$$= \frac{1}{16}(4n^3 + 18n^2 + 28n + 15 + (-1)^n).$$

Why a different polynomial depending on *n* modulo 2?

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

Easy fact:
$$S_M(n) = \# (n\mathcal{T}_M \cap \mathbb{Z}^{M \times M})$$

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

Easy fact:
$$S_M(n) = \# (n\mathcal{T}_M \cap \mathbb{Z}^{M \times M})$$

Fact: vertices of \mathcal{T}_M have the form $\frac{1}{2}(P+P^t)$, where P is a permutation matrix.

 T_M : the polytope of all $M \times M$ symmetric doubly-stochastic matrices.

Easy fact:
$$S_M(n) = \# (n\mathcal{T}_M \cap \mathbb{Z}^{M \times M})$$

Fact: vertices of \mathcal{T}_M have the form $\frac{1}{2}(P+P^t)$, where P is a permutation matrix.

Thus if v is a vertex of \mathcal{T}_M then $2v \in \mathbb{Z}^{M \times M}$.

$S_M(n)$ in general

Theorem. There exist polynomials $P_M(n)$ and $Q_M(n)$ for which

$$S_M(n) = P_M(n) + (-1)^n Q_M(n), \quad n \ge 0.$$

Moreover,
$$\deg P_M(n) = \binom{M}{2}$$
.

$S_M(n)$ in general

Theorem. There exist polynomials $P_M(n)$ and $Q_M(n)$ for which

$$S_M(n) = P_M(n) + (-1)^n Q_M(n), \quad n \ge 0.$$

Moreover, $\deg P_M(n) = \binom{M}{2}$.

Difficult result (W. Dahmen and C. A. Micchelli, 1988):

$$\deg Q_M(n) = \begin{cases} \binom{n-1}{2} - 1, & n \text{ odd} \\ \binom{n-2}{2} - 1, & n \text{ even.} \end{cases}$$

The last slide

The last slide

The last slide

Lattice Points in Polytopes - p. 68