
Two Analogues of Pascal’s Triangle

Richard P. Stanley
U. Miami & M.I.T.

October 6, 2021



The posets Pib

Let i , b ≥ 2. Define the poset (partially ordered set)Pib by

• There is a unique minimal element 0̂



The posets Pib

Let i , b ≥ 2. Define the poset (partially ordered set)Pib by

• There is a unique minimal element 0̂

• Each element is covered by exactly i elements.



The posets Pib

Let i , b ≥ 2. Define the poset (partially ordered set)Pib by

• There is a unique minimal element 0̂

• Each element is covered by exactly i elements.

• The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0̂ at the top).



The posets Pib

Let i , b ≥ 2. Define the poset (partially ordered set)Pib by

• There is a unique minimal element 0̂

• Each element is covered by exactly i elements.

• The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0̂ at the top).

• Every extends to a 2b-gon (b edges on each side)



The posets Pib

Let i , b ≥ 2. Define the poset (partially ordered set)Pib by

• There is a unique minimal element 0̂

• Each element is covered by exactly i elements.

• The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0̂ at the top).

• Every extends to a 2b-gon (b edges on each side)

We draw diagrams upside-down from the usual convention, so 0̂ is
at the top.
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pib(n): number of elements of Pij of rank n

In Pib, every element of rank n− 1 is covered by i elements, giving

a first approximation pib(n)
?
= ipib(n − 1). Each element of rank

n− b is the bottom of i − 1 2b-gons, so there are (i − 1)pib(n− b)
elements of rank n that cover two elements. The remaining
elements of rank n cover one element. Hence

pib(n) = ipib(n − 1)− (i − 1)pib(n − b).

Initial conditions: pib(n) = in, 0 ≤ n ≤ b − 1

⇒
∑

n≥0

pib(n)x
n =

1

1− ix + (i − 1)xb
.
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Pascal’s triangle

rows 0–4:
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

kth entry in row n, beginning with k = 0:
(

n

k

)

= n!
k! (n−k)!

∑

k

(

n

k

)

xk = (1 + x)n
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Sums of powers

∑

k

(

n

k

)2

=

(

2n

n

)

∑

n≥0

(

2n

n

)

xn =
1√

1− 4x
,

not a rational function (quotient of two polynomials)

∑

k

(

n

k

)3

=??

Even worse! Generating function is not algebraic.
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Stern’s triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

...

Stern’s triangle
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Some properties

• Number of entries in row n (beginning with row 0): 2n+1 − 1

• Sum of entries in row n: 3n

• Largest entry in row n: Fn+1 (Fibonacci number)

• Let
〈

n

k

〉

be the kth entry (beginning with k = 0) in row n.
Write

Pn(x) =
∑

k≥0

〈

n

k

〉

xk .

Then Pn+1(x) = (1 + x + x2)Pn(x
2) , since x Pn(x

2)
corresponds to bringing down the previous row, and
(1 + x2)Pn(x

2) to summing two consecutive entries.



Stern analogue of binomial theorem

Corollary. Pn(x) =
n−1
∏

i=0

(

1 + x2
i

+ x2·2
i
)



Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

...

u2(n) :=
∑

k

〈

n

k

〉2

= 1, 3, 13, 59, 269, 1227, . . .



Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

...

u2(n) :=
∑

k

〈

n

k

〉2

= 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n)− 2u2(n − 1), n ≥ 1



Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

...

u2(n) :=
∑

k

〈

n

k

〉2

= 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n)− 2u2(n − 1), n ≥ 1

∑

n≥0

u2(n)x
n =

1− 2x

1− 5x + 2x2
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Thus define u1,1(n) :=
∑

k

〈

n
k
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n
k+1
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, so

u2(n + 1) = 3u2(n) + 2u1,1(n).
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u1,1(n + 1) = · · · +
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+
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+
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〉)

+

(〈

n

k

〉

+

〈

n

k + 1

〉)〈

n

k + 1

〉

+ · · ·

= 2u2(n) + 2u1,1(n)

Recall also u2(n + 1) = 3u2(n) + 2u1,1(n).
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Two recurrences in two unknowns

Let A :=

[

3 2
2 2

]

. Then

A

[

u2(n)
u1,1(n)

]

=

[

u2(n + 1)
u1,1(n + 1)

]

.

⇒ An

[

u2(1)
u1,1(1)

]

=

[

u2(n)
u1,1(n)

]

Characteristic (or minimum) polynomial of A: x2 − 5x + 2

(A2 − 5A+ 2I )An−1 = 02×2

⇒ u2(n + 1) = 5u2(n)− 2u2(n − 1)

Also u1,1(n + 1) = 5u1,1(n)− 2u1,1(n − 1).
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Sums of cubes

u3(n) :=
∑

k

〈

n

k

〉3

= 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 · 7n−1, n ≥ 1
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Why so simple?

Same method gives the matrix

[

3 6
2 4

]

.

Characteristic polynomial: x(x − 7) (zero eigenvalue!)

Thus u3(n + 1) = 7u3(n), n ≥ 1 (not n ≥ 0).

Much nicer than
∑

k

(

n
k

)3
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What about ur(n) for general r ≥ 1?

By the same technique, can show that

∑

n≥0

ur (n)x
n

is rational.

Example.
∑

n≥0

u4(n)x
n =

1− 7x − 2x2

1− 10x − 9x2 + 2x3

Much more can be said!



The Stern poset

1

111

1121211

112132313231211
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1

111

1121211

112132313231211

P32



“Binomial theorem” for the Stern poset
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“Binomial theorem” for the Stern poset
1

111

1121211

112132313231211

Label t by e(t). Then the kth label (beginning with k = 0) at
rank n is

〈

n
k

〉

:

∑

k

〈

n

k

〉

xk =

n−1
∏

i=0

(

1 + x2
i

+ x2·2
i
)

.

Similar product formulas for all Pib.
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A Fibonacci product

Fibonacci numbers: F1 = F2 = 1, Fn = Fn−1 + Fn−2 (n ≥ 3)

In(x) =

n
∏

i=1

(

1 + xFi+1

)

I4(x) = (1 + x)(1 + x2)(1 + x3)(1 + x5)

= 1 + x + x2 + 2x3 + x4 + 2x5 + 2x6 + x7 + 2x8 + x9 + x10 + x11

vr (n): sum of r th powers of coefficients of In(x)
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The Fibonacci triangle F

1
1 1

1 1 • 1 1
1 1 • 1 2 1 • 1 1

1 1 • 1 2 1 • 2 2 • 1 2 1 • 1 1
1 1 • 1 2 1 • 2 2 • 1 3 2 • 2 3 1 • 2 2 • 1 2 1 • 1 1

Copy each entry of row n ≥ 1 to the next row.

Add two entries if separated by at bullet (and form group of 3)

Copy once more the middle entry of a group of 3 (group of 2)

Adjoin 1 at beginning and end of each row after row 0.
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“Binomial theorem” for F

[

n

k

]

: kth entry (beginning with k = 0) in row n (beginning with
n = 0) in F

Theorem.
∑

k

[

n

k

]

xk = In(x) :=
n
∏

i=1

(

1 + xFi+1

)

Proof omitted.
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∑

k

[

n

k

]2

Can obtain a system of recurrences analogous to

u2(n + 1) = 3u2(n) + 2u1,1(n)

u1,1(n + 1) = 2u2(n) + 2u1,1(n)

for Stern’s triangle.

Quite a bit more complicated (automated by D. Zeilberger).

Theorem.
∑

n≥0

v2(n)x
n =

1− 2x2

1− 2x − 2x2 + 2x3
, and similarly for

higher powers.
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A diagram (poset) associated with F

1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

P23



Further property
1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

Label t by e(t). Then the kth label (beginning with k = 0) at
rank n is

[

n
k

]

:

∑

k

[

n

k

]

xk = In(x) =
n
∏

i=1

(

1 + xFi+1

)

.
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Coefficients of In(x)

In(x) =

n
∏

i=1

(

1 + xFi+1

)

Coefficient of xm: number of ways to write m as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.

Example. Coefficient of x8 in
(1 + x)(1 + x2)(1 + x3)(1 + x5)(1 + x8) is 3:

8 = 5 + 3 = 5 + 2 + 1.

Can we see these sums from F? Each path from the top to a point
t ∈ F should correspond to a sum.
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An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2, 0,F2k+2, . . . from left to right.

The edges between ranks 2k − 1 and 2k are labelled alternately
F2k+1, 0,F2k+1, 0, . . . from left to right.



Diagram of the edge labeling

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).

If rank(t) = n, this gives all ways to write σ(t) as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

2 + 3 = F3 + F4



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

5 = F5



An ordering of N

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3

7 2   10 5   0    8 3   11 6  1    9 4

In the limit as rank → ∞, get an interesting linear ordering of N.



Second proof: factorization in a free monoid

In(x) :=
n
∏

i=1

(

1 + xFi+1

)

=
∑

k

[

n

k

]

xk



Second proof: factorization in a free monoid

In(x) :=
n
∏

i=1

(

1 + xFi+1

)

=
∑

k

[

n

k

]

xk

[

n

k

]

= #

{

(a1, . . . , an) ∈ {0, 1}n :
∑

i

aiFi+1 = k

}



Second proof: factorization in a free monoid

In(x) :=
n
∏

i=1

(

1 + xFi+1

)

=
∑

k

[

n

k

]

xk

[

n

k

]

= #

{

(a1, . . . , an) ∈ {0, 1}n :
∑

i

aiFi+1 = k

}

v2(n) :=
∑

k

[

n

k

]2

= #

{(

a1 a2 · · · an
b1 b2 · · · bn

)

:
∑

aiFi+1 =
∑

biFi+1

}



A concatenation product
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:
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biFi+1
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A concatenation product

Mn :=

{(

a1 a2 · · · an
b1 b2 · · · bn

)

:
∑

aiFi+1 =
∑

biFi+1

}

Let

α =

(

a1 · · · an
b1 · · · bn

)

∈ Mn, β =

(

c1 · · · cm
d1 · · · dm

)

∈ Mm.

Define

αβ =

(

a1 · · · an c1 · · · cm
b1 · · · bn d1 · · · dm

)

,



A concatenation product

Mn :=

{(

a1 a2 · · · an
b1 b2 · · · bn

)

:
∑

aiFi+1 =
∑

biFi+1

}

Let

α =

(

a1 · · · an
b1 · · · bn

)

∈ Mn, β =

(

c1 · · · cm
d1 · · · dm

)

∈ Mm.

Define

αβ =

(

a1 · · · an c1 · · · cm
b1 · · · bn d1 · · · dm

)

,

Easy to check: αβ ∈ Mn+m



The monoid M

M := M0 ∪M1 ∪M2 ∪ · · · ,
a monoid (semigroup with identity) under concatenation. The
identity element is ∅ ∈ M0.
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can be written uniquely as a product of elements of G. (We then
call M a free monoid.)



The monoid M

M := M0 ∪M1 ∪M2 ∪ · · · ,
a monoid (semigroup with identity) under concatenation. The
identity element is ∅ ∈ M0.

Definition. A subset G ⊂ M freely generates M if every α ∈ M
can be written uniquely as a product of elements of G. (We then
call M a free monoid.)

Suppose G freely generates M, and let
G (x) =

∑

n≥1 #(Mn ∩ G)xn. Then
∑

n

v2(n)x
n =

∑

n

#Mn · xn

= 1 + G (x) + G (x)2 + · · ·

=
1

1− G (x)
.



Free generators of M

Theorem. M is freely generated by the following elements:

(

0
0

) (

1
1

)

=

(

11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

=

(

00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

,

where each ∗ can be 0 or 1, but two ∗’s in the same column must
be equal.



Free generators of M

Theorem. M is freely generated by the following elements:

(

0
0

) (

1
1

)

=

(

11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

=

(

00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

,

where each ∗ can be 0 or 1, but two ∗’s in the same column must
be equal.

Example.

(

1 1 1 1 0
0 0 1 0 1

)

: 1 + 2 + 3 + 5 = 3 + 8



G (x)

(

0
0

) (

1
1

)

(

11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

(

00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

Two elements of length one: G (x) = 2x + · · ·



G (x)

(

0
0

) (

1
1

)

(

11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

(

00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

Two elements of length one: G (x) = 2x + · · ·

Let k be the number of columns of ∗’s. Length is 2k + 3. Thus

G (x) = 2x + 2
∑

k≥0

2kx2k+3

= 2x +
2x3

1− 2x2
.



Completion of proof

∑

n

v2(n)x
n =

1

1− G (x)

=
1

1−
(

2x + 2x3

1−2x2

)

=
1− 2x2

1− 2x − 2x2 + 2x3
�



Further vistas?

What more can be said about Pij?



The final slide



The final slide


