Smith Normal Form and Combinatorics

Richard P. Stanley

June 8, 2017

Smith normal form

A: $n \times n$ matrix over commutative ring R (with 1)
Suppose there exist $P, Q \in \operatorname{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Smith normal form

A: $n \times n$ matrix over commutative ring R (with 1)
Suppose there exist $P, Q \in \operatorname{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.
Note. (1) Can extend to $m \times n$.
(2) unit $\cdot \operatorname{det}(A)=\operatorname{det}(B)=d_{1}^{n} d_{2}^{n-1} \cdots d_{n}$.

Thus SNF is a refinement of det.

Who is Smith?

Henry John Stephen Smith

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society
- 1861: SNF paper in Phil. Trans. R. Soc. London

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society
- 1861: SNF paper in Phil. Trans. R. Soc. London
- 1868: Steiner Prize of Royal Academy of Sciences of Berlin

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society
- 1861: SNF paper in Phil. Trans. R. Soc. London
- 1868: Steiner Prize of Royal Academy of Sciences of Berlin
- died 9 February 1883 (age 56)

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society
- 1861: SNF paper in Phil. Trans. R. Soc. London
- 1868: Steiner Prize of Royal Academy of Sciences of Berlin
- died 9 February 1883 (age 56)
- April 1883: shared Grand prix des sciences mathématiques with Minkowski

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
Theorem (Smith, for \mathbb{Z}). If R is a PIR then A has a unique SNF up to units.

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
Theorem (Smith, for \mathbb{Z}). If R is a PIR then A has a unique SNF up to units.

Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic interpretation of SNF

R : a PID
A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$: SNF of A

Algebraic interpretation of SNF

R : a PID
A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$: SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

Algebraic interpretation of SNF

R : a PID
A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$: SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

$R^{n} /\left(v_{1}, \ldots, v_{n}\right)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

R: a PID
A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

An explicit formula for SNF

R: a PID

A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem. $e_{1} e_{2} \cdots e_{i}$ is the gcd of all $i \times i$ minors of A.
minor: determinant of a square submatrix

An explicit formula for SNF

R: a PID

A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem. $e_{1} e_{2} \cdots e_{i}$ is the gcd of all $i \times i$ minors of A.
minor: determinant of a square submatrix
Special case: e_{1} is the gcd of all entries of A.

Laplacian matrices

$L(G)$: Laplacian matrix of the graph G
rows and columns indexed by vertices of G

$$
L(G)_{u v}=\left\{\begin{aligned}
-\#(\text { edges } u v), & u \neq v \\
\operatorname{deg}(u), & u=v
\end{aligned}\right.
$$

Laplacian matrices

$L(G)$: Laplacian matrix of the graph G
rows and columns indexed by vertices of G

$$
L(G)_{u v}=\left\{\begin{aligned}
-\#(\text { edges } u v), & u \neq v \\
\operatorname{deg}(u), & u=v
\end{aligned}\right.
$$

reduced Laplacian matrix $L_{0}(G)$: for some vertex v, remove from $L(G)$ the row and column indexed by v

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{\mathbf{0}}(G)=\kappa(G)$, the number of spanning trees of G.

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{\mathbf{0}}(G)=\kappa(G)$, the number of spanning trees of G.

In general, SNF of $L_{0}(G)$ not understood.

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{\mathbf{0}}(G)=\kappa(G)$, the number of spanning trees of G.

In general, SNF of $L_{0}(G)$ not understood.

$$
\boldsymbol{L}_{0}(G) \xrightarrow{\operatorname{snf}} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}\right) \Rightarrow \boldsymbol{L}(G) \xrightarrow{\operatorname{snf}} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}, 0\right)
$$

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{\mathbf{0}}(G)=\kappa(G)$, the number of spanning trees of G.

In general, SNF of $L_{0}(G)$ not understood.

$$
\boldsymbol{L}_{\mathbf{0}}(G) \xrightarrow{\operatorname{snf}} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}\right) \Rightarrow \boldsymbol{L}(G) \xrightarrow{\operatorname{snf}} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}, 0\right)
$$

Applications to sandpile models, chip firing, etc.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

What about SNF?

An example (continued)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

Reduced Laplacian matrix of K_{n}

$$
\begin{aligned}
L_{0}\left(K_{n}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Reduced Laplacian matrix of K_{n}

$$
\begin{aligned}
L_{0}\left(K_{n}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Theorem. $\mathbf{L}_{\mathbf{0}}\left(K_{n}\right) \xrightarrow{\text { SNF }} \operatorname{diag}(1, n, n, \ldots, n)$, a refinement of Cayley's theorem that $\kappa\left(K_{n}\right)=n^{n-2}$.

Proof that $L_{0}\left(K_{n}\right) \xrightarrow{\text { SNF }} \operatorname{diag}(1, n, n, \ldots, n)$

Trick: 2×2 submatrices (up to row and column permutations):

$$
\left[\begin{array}{cc}
n-1 & -1 \\
-1 & n-1
\end{array}\right], \quad\left[\begin{array}{cc}
n-1 & -1 \\
-1 & -1
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & -1 \\
-1 & -1
\end{array}\right]
$$

with determinants $n(n-2),-n$, and 0 . Hence $e_{1} e_{2}=n$. Since $\prod e_{i}=n^{n-2}$ and $e_{i} \mid e_{i+1}$, we get the $\operatorname{SNF} \operatorname{diag}(1, n, n, \ldots, n)$.

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$
\sigma: V \rightarrow\{0,1,2, \ldots\}
$$

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$
\sigma: V \rightarrow\{0,1,2, \ldots\}
$$

toppling of a vertex v : if $\sigma(v) \geq \operatorname{deg}(v)$, then send a chip to each neighboring vertex.

The sandpile group

Choose a vertex to be a sink, and ignore chips falling into the sink.
stable configuration: no vertex can topple
Theorem (easy). After finitely many topples a stable configuration will be reached, which is independent of the order of topples.

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
ideal of M : subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
ideal of M : subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$
Exercise. The (unique) minimal ideal of a finite commutative monoid is a group.

Sandpile group

sandpile group of G : the minimal ideal $K(G)$ of the monoid M
Fact. $K(G)$ is independent of the choice of sink up to isomorphism.

Sandpile group

sandpile group of G : the minimal ideal $K(G)$ of the monoid M
Fact. $K(G)$ is independent of the choice of sink up to isomorphism.

Theorem. Let

$$
L_{0}(G) \xrightarrow{\mathrm{SNF}} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}\right)
$$

Then

$$
K(G) \cong \mathbb{Z} / e_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / e_{n-1} \mathbb{Z}
$$

The n-cube

C_{n} : graph of the n-cube

The n-cube

C_{n} : graph of the n-cube

The 4-cube

The 4－cube

4ロ〉〈回〉

The 4－cube

An open problem

$$
\kappa\left(C_{n}\right)=2^{2^{n}-n-1} \prod_{i=1}^{n} i\binom{n}{i}
$$

An open problem

$$
\kappa\left(C_{n}\right)=2^{2^{n}-n-1} \prod_{i=1}^{n} i\binom{n}{i}
$$

Easy to prove by linear algebra; combinatorial (but not bijective) proof by O. Bernardi, 2012.

An open problem

$$
\kappa\left(C_{n}\right)=2^{2^{n}-n-1} \prod_{i=1}^{n} i\binom{n}{i}
$$

Easy to prove by linear algebra; combinatorial (but not bijective) proof by O. Bernardi, 2012.
p-Sylow subgroup of $K\left(C_{n}\right)$ known for all odd primes p (Hua Bai, 2003)

An open problem

$$
\kappa\left(C_{n}\right)=2^{2^{n}-n-1} \prod_{i=1}^{n} i\binom{n}{i}
$$

Easy to prove by linear algebra; combinatorial (but not bijective) proof by O. Bernardi, 2012.
p-Sylow subgroup of $K\left(C_{n}\right)$ known for all odd primes p (Hua Bai, 2003)

2-Sylow subgroup of $K\left(C_{n}\right)$ is unknown.

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Very little work on SNF of random matrices over a PID.

Is the question interesting?

$\operatorname{Mat}_{k}(n)$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Is the question interesting?

$\operatorname{Mat}_{k}(n)$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M

Is the question interesting?

$\operatorname{Mat}_{k}(n)$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M
Theorem. $\lim _{k \rightarrow \infty} p_{k}(n, d)=\frac{1}{d^{n^{2}} \zeta\left(n^{2}\right)}$

Specifying some e_{i}

with Yinghui Wang

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Specifying some e_{i}

with Yinghui Wang（王颖慧）
Two general results．
－Let $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{P}, \alpha_{i} \mid \alpha_{i+1}$.
$\mu_{k}(n)$ ：probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{i}=\alpha_{i}$ for $1 \leq \alpha_{i} \leq n-1$ ．

$$
\mu(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n) .
$$

Then $\mu(n)$ exists，and $0<\mu(n)<1$ ．

Second result

- Let $\alpha_{n} \in \mathbb{P}$.
$\nu_{k}(n):$ probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{n}=\alpha_{n}$.

Then

$$
\lim _{k \rightarrow \infty} \nu_{k}(n)=0
$$

Sample result

$\mu_{k}(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{1}=2, e_{2}=6$.

$$
\mu(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n)
$$

Conclusion

$$
\begin{aligned}
\mu(n)= & 2^{-n^{2}}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} 2^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} 2^{-i}\right) \\
& \cdot \frac{3}{2} \cdot 3^{-(n-1)^{2}}\left(1-3^{(n-1)^{2}}\right)\left(1-3^{-n}\right)^{2} \\
& \cdot \prod_{p>3}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} p^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} p^{-i}\right)
\end{aligned}
$$

Cyclic cokernel

$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

Cyclic cokernel

$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$
$\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)$
Theorem. $\kappa(n)=\frac{p \quad p^{2}}{\zeta(2) \zeta(3) \cdots}$

Cyclic cokernel

$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$
$\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)$
Theorem. $\kappa(n)=\frac{p\left(1+p^{2}\right.}{\zeta(2) \zeta(3) \cdots}$
Corollary.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \kappa(n) & =\frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)} \\
& \approx 0.846936 \cdots
\end{aligned}
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\operatorname{Prob}(g \leq 2)=0.99462688 \cdots
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(3.46275 \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(3.46275 \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

$3.46275 \ldots$

$$
3.46275 \cdots=\frac{1}{\prod_{j \geq 1}\left(1-\frac{1}{2^{j}}\right)}
$$

Example of SNF computation

λ : a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$

Example of SNF computation

λ : a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

Example of SNF computation

λ : a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

$$
(3,1)^{*}=(4,4,2)
$$

Initialization

Insert 1 into each square of λ^{*} / λ.

$$
(3,1)^{*}=(4,4,2)
$$

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

Let $t \in \lambda$. Let $M_{\boldsymbol{t}}$ be the largest square of λ^{*} with t as the upper left-hand corner.

Let $t \in \lambda$. Let $M_{\boldsymbol{t}}$ be the largest square of λ^{*} with t as the upper left-hand corner.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.
Why? Expand det M_{t} by the first row. The coefficient of n_{t} is 1 by induction.
$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$
\lambda=(4,4,3)
$$

$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$
\begin{aligned}
\lambda & =(4,4,3) \\
\lambda(t) & =(3,2)
\end{aligned}
$$

$\boldsymbol{u}_{\boldsymbol{\lambda}}$

$$
\boldsymbol{u}_{\lambda}=\#\{\mu: \mu \subseteq \lambda\}
$$

$\boldsymbol{u}_{\boldsymbol{\lambda}}$

$$
\boldsymbol{u}_{\lambda}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

$$
\boldsymbol{u}_{\lambda}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

There is a determinantal formula for u_{λ}, due essentially to MacMahon and later Kreweras (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_{t} (over \mathbb{Z}).

Theorem. $n_{t}=u_{\lambda(t)}$

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Theorem. $n_{t}=u_{\lambda(t)}$
Proofs. 1. Induction (row and column operations).
2. Nonintersecting lattice paths.

An example

An example

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda / \mu|}$.

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda / \mu|}$.

$$
\lambda=64431, \quad \mu=42211, \quad q^{\lambda / \mu}=q^{8}
$$

$u_{\lambda}(q)$

$$
\boldsymbol{u}_{\lambda}(\boldsymbol{q})=\sum_{\mu \subseteq \lambda} q^{|\lambda / \mu|}
$$

$$
u_{(2,1)}(q)=1+2 q+q^{2}+q^{3}:
$$

Diagonal hooks

$$
\boldsymbol{d}_{i}(\lambda)=\lambda_{i}+\lambda_{i}^{\prime}-2 i+1
$$

$$
d_{1}=9, \quad d_{2}=4, \quad d_{3}=1
$$

Main result (with C. Bessenrodt)

Theorem. M_{t} has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If M_{t} is a $(k+1) \times(k+1)$ matrix then M_{t} has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Main result (with C. Bessenrodt)

Theorem. M_{t} has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If M_{t} is a $(k+1) \times(k+1)$ matrix then M_{t} has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Corollary. $\operatorname{det} M_{t}=q^{\sum i d_{i}}$.

Main result (with C. Bessenrodt)

Theorem. M_{t} has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If M_{t} is a $(k+1) \times(k+1)$ matrix then M_{t} has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Corollary. $\operatorname{det} M_{t}=q^{\sum i d_{i}}$.
Note. There is a multivariate generalization.

An example

$$
\lambda=6431, \quad d_{1}=9, \quad d_{2}=4, \quad d_{3}=1
$$

An example

$$
\lambda=6431, \quad d_{1}=9, \quad d_{2}=4, \quad d_{3}=1
$$

SNF of $M_{t}:\left(1, q, q^{5}, q^{14}\right)$

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$.

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$.

$u_{\delta_{n-1}}(q)$ counts Dyck paths of length $2 n$ by (scaled) area, and is thus the well-known q-analogue $C_{n}(q)$ of the Catalan number C_{n}.

A q-Catalan example

$$
C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

A q-Catalan example

$$
\square \square \square \square \square \square \quad C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

$$
\left.\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array} \right\rvert\, \stackrel{ }{\sim} \stackrel{ }{\sim} \operatorname{diag}\left(1, q, q^{6}\right)
$$

$$
\text { since } d_{1}(3,2,1)=1, d_{2}(3,2,1)=5
$$

A q-Catalan example

$$
\left|\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array}\right| \stackrel{\text { SNF }}{\sim} \operatorname{diag}\left(1, q, q^{6}\right)
$$

since $d_{1}(3,2,1)=1, d_{2}(3,2,1)=5$.

- q-Catalan determinant previously known
- SNF is new

Ramanujan

$$
\begin{aligned}
F(q, x) & :=\sum_{n \geq 0} c_{n}(q) x^{n} \\
& =\frac{1}{1-\frac{x}{1-\frac{q x}{1-\frac{q^{2} x}{1-\cdots}}}}
\end{aligned}
$$

Ramanujan

$$
\begin{aligned}
& \boldsymbol{F}(\boldsymbol{q}, \boldsymbol{x}):=\sum_{n \geq 0} C_{n}(q) x^{n} \\
&=\frac{1}{1-\frac{x}{1-\frac{q x}{1-\frac{q^{2} x}{1-\cdots}}}} \\
& e^{-2 \pi / 5} F\left(e^{-2 \pi},-e^{-2 \pi}\right)=\frac{1}{\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{1+\sqrt{5}}{2}} .
\end{aligned}
$$

An open problem

$\ell(w)$: length (number of inversions) of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$, i.e.,

$$
\ell(w)=\#\left\{(i, j): i<j, w_{i}>w_{j}\right\} .
$$

$V(n)$: the $n!\times n!$ matrix with rows and columns indexed by $w \in \mathfrak{S}_{n}$, and

$$
V(n)_{u v}=q^{\ell\left(u v^{-1}\right)} .
$$

$n=3$

$$
\operatorname{det}\left[\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right]=\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)
$$

$n=3$

$$
\operatorname{det}\left[\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right]=\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)
$$

$V(3) \xrightarrow{\text { snf }} \operatorname{diag}\left(1,1-q^{2}, 1-q^{2}, 1-q^{2},\left(1-q^{2}\right)^{2},\left(1-q^{2}\right)\left(1-q^{6}\right)\right)$

$n=3$

$$
\operatorname{det}\left[\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right]=\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)
$$

$V(3) \xrightarrow{\text { snf }} \operatorname{diag}\left(1,1-q^{2}, 1-q^{2}, 1-q^{2},\left(1-q^{2}\right)^{2},\left(1-q^{2}\right)\left(1-q^{6}\right)\right)$
special case of \boldsymbol{q}-Varchenko matrix of a real hyperplane arrangment

Zagier's theorem

Theorem (D. Zagier, 1992)

$$
\operatorname{det} V(n)=\prod_{j=2}^{n}\left(1-q^{j(j-1)}\right)^{\binom{n}{j}(j-2)!(n-j+1)!}
$$

Zagier's theorem

Theorem (D. Zagier, 1992)

$$
\operatorname{det} V(n)=\prod_{j=2}^{n}\left(1-q^{j(j-1)}\right)^{\binom{n}{j}(j-2)!(n-j+1)!}
$$

SNF is open. Partial result:
Theorem (Denham-Hanlon, 1997) Let

$$
V(n) \xrightarrow{\text { snf }} \operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n!}\right) .
$$

The number of e_{i} 's exactly divisible by $(q-1)^{j}\left(\right.$ or by $\left.\left(q^{2}-1\right)^{j}\right)$ is the number $c(n, n-j)$ of $w \in \mathfrak{S}_{n}$ with $n-j$ cycles (signless Stirling number of the first kind).

The last slide

The last slide

The last slide

