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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ =B = diag(dl, d1d2, ey d1d2 tee dn),

where d; € R. We then call B a Smith normal form (SNF) of A.



Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ := B = diag(dy, didb, ..., dida -+ - dp),
where d; € R. We then call B a Smith normal form (SNF) of A.
(1) Can extend to m x n.
(2) unit - det(A) = det(B) = d{'dy~* - - d,.

Thus SNF is a refinement of det.
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Who is Smith?

Henry John Stephen Smith

¢ © ¢ ¢ ¢ ¢ ¢

born 2 November 1826 in Dublin, Ireland

educated at Oxford University (England)

remained at Oxford throughout his career

twice president of London Mathematical Society

1861: SNF paper in Phil. Trans. R. Soc. London

1868: Steiner Prize of Royal Academy of Sciences of Berlin
died 9 February 1883 (age 56)

April 1883: shared Grand prix des sciences mathématiques
with Minkowski
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Row and column operations

Can put a matrix into SNF by the following operations.
@ Add a multiple of a row to another row.
@ Add a multiple of a column to another column.
@ Multiply a row or column by a in R.

Over a field, SNF is row reduced echelon form (with all unit
entries equal to 1).
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up to units.



Existence of SNF

PIR: principal ideal ring, e.g., Z, K[x], Z/mZ.

Theorem (Smith, for Z). If R is a PIR then A has a unique SNF
up to units.

Otherwise A "typically” does not have a SNF but may have one in
special cases.
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Algebraic interpretation of SNF

R: a PID

A: an n X n matrix over R with rows
Vi,...,vp € R"

diag(e1, e,...,e): SNF of A
Theorem.
R"/(vi,...,vn) Z(R/eaR) & --- ® (R/enR).

R"/(vi,...,vy): (Kasteleyn) cokernel of A
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An explicit formula for SNF

R: a PID

A: an n X n matrix over R with det(A) # 0

diag(e1, e, ..., e,): SNF of A

Theorem. eje--- ¢ is the gcd of all i x i minors of A.
minor: determinant of a square submatrix

Special case: e; is the ged of all entries of A.
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Laplacian matrices

L(G): Laplacian matrix of the graph G

rows and columns indexed by vertices of G

—#(edges uv), u#v
deg(u), u=v.

L(6)u = {

reduced Laplacian matrix Lo(G): for some vertex v, remove
from L(G) the row and column indexed by v
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Matrix-tree theorem

Matrix-tree theorem. det Lo(G) = k(G), the number of
spanning trees of G.

In general, SNF of Lg(G) not understood.

Lo(G) snf diag(eq,...,en—1) = L(G) snf diag(e1,...,€ep-1,0)

Applications to sandpile models, chip firing, etc.
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An example

Reduced Laplacian matrix of Kj:

3 -1 -1
A= -1 3 -1
-1 -1 3

Matrix-tree theorem = det(A) = 16, the number of spanning
trees of Kj.

What about SNF?



An example (continued)
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Reduced Laplacian matrix of K,

LO(Kn) = nlp1—Jpa
detLo(K,) = n"72



Reduced Laplacian matrix of K,

Lo(Kn) = nlpoy —Joa
det Lo(K,) = n"2

Theorem. Lo(K,) SNE diag(1,n,n,...,n), a refinement of

Cayley's theorem that k(K,) = n"~2.



Proof that Lo(K,) > diag(1,n, n, ..., n)

Trick: 2 x 2 submatrices (up to row and column permutations):

n—1 -1 n—1 -1 -1 -1
-1 n-=-11}’ -1 -1}’ -1 -1}’
with determinants n(n — 2), —n, and 0. Hence e;e; = n. Since
[Tei = n"2 and e|ejt1, we get the SNF diag(1,n,n,...,n).
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Chip firing

Abelian sandpile: a finite collection o of indistinguishable chips
distributed among the vertices V of a (finite) connected graph.
Equivalently,

o:V—{0,1,2,...}.

toppling of a vertex v: if o(v) > deg(v), then send a chip to each
neighboring vertex.




The sandpile group

Choose a vertex to be a sink, and ignore chips falling into the sink.
stable configuration: no vertex can topple

(easy). After finitely many topples a stable configuration
will be reached, which is independent of the order of topples.



The monoid of stable configurations

Define a commutative monoid M on the stable configurations by
vertex-wise addition followed by stabilization.

ideal of M: subset J C M satisfying cJ C J forallc € M



The monoid of stable configurations

Define a commutative monoid M on the stable configurations by
vertex-wise addition followed by stabilization.

ideal of M: subset J C M satisfying cJ C J forallc € M

Exercise. The (unique) minimal ideal of a finite commutative
monoid is a group.
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isomorphism.



Sandpile group

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to
isomorphism.

Theorem. Let

Lo(G) SNE diag(e1,...,en-1).

Then
K(G) = Z/elz D ---D Z/en_lz.
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C,: graph of the n-cube



The n-cube

C,: graph of the n-cube

T 01 11
0 00 10

010

000

111
011
110
101
001
100
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An open problem

K(Cy) = 221 H i(%)

Easy to prove by linear algebra; combinatorial (but not bijective)
proof by O. Bernardi, 2012.

p-Sylow subgroup of K(C,) known for all odd primes p (Hua Bai,
2003)

2-Sylow subgroup of K(C,) is



SNF of random matrices

Huge literature on random matrices, mostly connected with
eigenvalues.

Very little work on SNF of random matrices over a PID.



Is the question interesting?

Mat(n): all n x n Z-matrices with entries in [—k, k] (uniform
distribution)

pk(n, d): probability that if M € Mat(n) and
SNF(M) = (e1,...,en), then e; = d.
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Is the question interesting?

Mat(n): all n x n Z-matrices with entries in [—k, k] (uniform
distribution)

pk(n, d): probability that if M € Mat(n) and
SNF(M) = (e1,...,en), then e; = d.

er = gcd of 1 x 1 minors (entries) of M

1

Theorem. limyg_ o px(n,d) = —5——=<
iMg—s00 Pk(N; d) d"zg(n2)



Specifying some ¢;

with Yinghui Wang



Specifying some ¢;

B
with Yinghui Wang (E%ﬁ?)



Specifying some ¢;
with Yinghui Wang (E%ﬁ%)

Two general results.
o Let ay,...,ap—1 €P, «j|ajy.

(i (n): probability that the SNF of a random A € Mat(n)
satisfies g = a; for 1 < a; < n—1.

p(n) = lim juc(n).

Then p(n) exists, and 0 < p(n) < 1.



Second result

o Let ap, € P.

v (n): probability that the SNF of a random A € Mat(n)
satisfies e, = a,.

Then

lim vk(n) = 0.
k—o00



Sample result

i (n): probability that the SNF of a random A € Mat(n)
satisfies e = 2, eo = 6.

() = lim_ gue(n).



Conclusion

. n(n-1) -1 .
p(n) = 27" | 1- 27 Y 2
i=(n—1)2 )+1

i=(n—1) i=n(n—1)+
3

e 3—(n—1)2(1 N 3(n—1)2)(1 N 3—n)2

p>3 i=(n—1)2 i=n(n—1)+
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Cyclic cokernel

r(n): probability that an n x n Z-matrix has SNF
diag(ei,e,...,en) witheg =y =---=¢e,_1 =1

Ho+i+i+ +i)
p>  p

p"

n—o0 a ¢(6) Hj24 q0)
0.846936 - - - .

Q
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g: number of generators of cokernel (number of entries of SNF #
1)as n— oo
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Small number of generators

g: number of generators of cokernel (number of entries of SNF #
1)as n— oo

Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -

Theorem. Prob(g < /) =
1—(3.46275 - - )2~ (1 4+ 0(27%))



3.46275- - -

3.46275- .. =
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Example of SNF computation

A: a partition (A1, Az, ... ), identified with its Young diagram

(3.1)

A*: X extended by a border strip along its entire boundary

B1* =442



Initialization

Insert 1 into each square of A*/\.

(B1* =442

DA
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Let t € A. Let M; be the largest square of \* with t as the upper
left-hand corner.
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into t the number n; so that det M; = 1.



Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number n; so that det M; = 1.

1011

___J.___I___I



Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number n; so that det M; =1

101! 1
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Dac



Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number n; so that det M; = 1.
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Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number n; so that det M; = 1.
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Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number n; so that det M; = 1.

3
1011

___J.___l___

_—_— = = 1




Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number n; so that det M; = 1.

_—_— = = 1




Uniqueness

Easy to see: the numbers n; are well-defined and unique.



Uniqueness

Easy to see: the numbers n; are well-defined and unique.

Why? Expand det M; by the first row. The coefficient of n; is 1 by
induction.



A(t)

If t € A\, let A(t) consist of all squares of A to the southeast of t.



A(t)

If t € A\, let A(t) consist of all squares of A to the southeast of t.

A= (4473




A(t)

If t € A\, let A(t) consist of all squares of A to the southeast of t.

A= (443)
At)=(32)




ux

A}
=#{p:pnC
uy) =



ux

Example. up1) =5:

ux =#{p : pCA}

HDCP



un

ux =#{p : pCA}

U(271) =5

HHHD(P

There is a determinantal formula for uy, due essentially to
MacMahon and later Kreweras (not needed here).
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Carlitz-Scoville-Roselle theorem

o Berlekamp (1963) first asked for n; (mod 2) in connection
with a coding theory problem.

@ Carlitz-Roselle-Scoville (1971): combinatorial interpretation
of n; (over Z).

Theorem. ny = uy(y
1. Induction (row and column operations).

2. Nonintersecting lattice paths.
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Weight each p C X by gl/#l,



A g-analogue

Weight each p C X by gl*/#l.

A =064431, p=42211,

q/\/u _ q8



ux(q)

ux(q) = Z v

HCA
uen(9) =1+29+q¢*+q*:

sefiais Ju 1"



Diagonal hooks

d =9

=4, d3 =1



Main result (with C. Bessenrodt)

Theorem. M, has an SNF over Z[q]. Write d; = di(\¢). If My is a
(k+1) x (k + 1) matrix then M; has SNF
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Main result (with C. Bessenrodt)

Theorem. M, has an SNF over Z[q]. Write d; = di(\¢). If My is a
(k+1) x (k + 1) matrix then M; has SNF

dy—1+d d1+d2+"'+dk)
- .

diag(1, g%, q e

Corollary. det M, = g2

There is a multivariate generalization.



An example

°
oo
A=6431, d1=9, dr=4, d3=1

Dac



An GXample

d]_:g’

dy— 4.

SNF of M, : (1,9,q°,q")

°
{ B
d =1

QA



A special case

Let A be the staircase 6, = (n—1,n—2,...,1).




A special case

Let X be the staircase 6, = (n—1,n—2,...,1).

______

_______

us,_,(q) counts Dyck paths of length 2n by (scaled) area, and is
thus the well-known g-analogue C,(q) of the Catalan number C,.



A g-Catalan example
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A g-Catalan example

r?E.FBj G =q¢*+¢*>+29+1

G(q) Glg) 1+gq
Glq) 1+q 1
1+gq 1 1

since d1(3,2,1) =1, d»(3,2,1) =5.

SNF ..
~ diag(1,q,q°)




A g-Catalan example

r?E.FBj G =q¢*+¢*>+29+1

Ci(a) Gla) 1+aq |
G(q) 1+q 1 |°~ diag(l,q,q%)
1+gq 1 1

since d1(3,2,1) =1, d»(3,2,1) =5.
@ g-Catalan determinant previously known

@ SNF is new



Ramanujan

F(q,x)




Ramanujan

F(a,x) = Y GCiq)x"

n>0
_ 1
o X
1 _
X
1-— 9 5
- 97
1 _
—2m/5 -2 —2r !
e F(e , —€ ) - ’
5415 V5




An open problem

£(w): length (number of inversions) of w = a;---a, € &,,, i.e,
Uw) = #{0.4) = 7 <Js wi > wj}.

V(n): the n! x n! matrix with rows and columns indexed by
wE &, and
V(n)uv _ e(uv*l)'






=(1-9¢*)°(1-q°)

% — & T
oS %%

AN N M
1qqqqq

det

nf ..
V(3) ™ diag(1,1 - ¢%,1-¢%1-¢* (1 - ¢*)? (1 - ¢>)(1 - %)



(1 q q ¢ ¢ ¢ ]
g 1 q? 9 q° qz
g 9 1 ¢ q ¢ | _ . o6 6
det P g P 1 @ g =(1-q¢)(1-q")
? ¢ qg ¢ 1 g
| ¢* ¢ ¢ q q 1 |

nf ..
V(3) ™ diag(1,1 - ¢%,1-¢%1-¢* (1 - ¢*)? (1 - ¢>)(1 - %)

special case of g-Varchenko matrix of a real hyperplane
arrangment



Zagier’s theorem

Theorem (D. Zagier, 1992)

det V(n) = f[ (1 _ qf(j—1)> (7)G=2)! (n—j+1)!

j=2



Zagier’'s theorem

(D. Zagier, 1992)

det V(n) = f[ (1 _ qi(j—1)>(7)(f—2)! (n—j+1)!

j=2
SNF is open. Partial result:
(Denham-Hanlon, 1997) Let

V(n) Sﬂ)f diag(el) €2,..., en!)-

The number of e;'s exactly divisible by (q — 1) (or by (¢*> — 1)) is
the number c(n,n — j) of w € &, with n — j cycles (signless
Stirling number of the first kind).
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