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A lattice polygon

Georg Alexander Pick (1859–1942)

P: lattice polygon in R2

(vertices ∈ Z2, no self-intersections)



Boundary and interior lattice points



Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =
2I +B − 2

2
.



Pick’s theorem

A = area of P

I = # interior points of P (= 4)

B = #boundary points of P (= 10)

Then

A =
2I +B − 2

2
.

Example on previous slide:

2 ⋅ 4 + 10 − 2
2

= 9.



Two tetrahedra

Pick’s theorem (seemingly) fails in higher dimensions. For
example, let T1 and T2 be the tetrahedra with vertices

v(T1) = {(0,0,0), (1, 0, 0), (0, 1, 0), (0, 0,1)}

v(T2) = {(0,0,0), (1, 1, 0), (1, 0, 1), (0, 1,1)}.



Failure of Pick’s theorem in dim 3

Then
I(T1) = I(T2) = 0

B(T1) = B(T2) = 4

A(T1) = 1/6, A(T2) = 1/3.



Polytope dilation

Let P be a convex polytope (convex hull of a finite set of points)
in Rd . For n ≥ 1, let

nP = {nα ∶ α ∈ P}.



Polytope dilation

Let P be a convex polytope (convex hull of a finite set of points)
in Rd . For n ≥ 1, let

nP = {nα ∶ α ∈ P}.

3PP



i(P,n)

Let

i(P,n) = #(nP ∩ Zd)

= #{α ∈ P ∶ nα ∈ Zd},

the number of lattice points in nP.



ī(P,n)

Similarly let
P○ = interior of P = P − ∂P

ī(P,n) = #(nP○ ∩ Zd)

= #{α ∈ P○ ∶ nα ∈ Zd},

the number of lattice points in the interior of nP.



ī(P,n)

Similarly let
P○ = interior of P = P − ∂P

ī(P,n) = #(nP○ ∩ Zd)

= #{α ∈ P○ ∶ nα ∈ Zd},

the number of lattice points in the interior of nP.
Note. Could use any lattice L instead of Zd .



An example

P 3P
i(P,n) = (n + 1)2

ī(P,n) = (n − 1)2 = i(P,−n).



The main result

Theorem (Ehrhart 1962, Macdonald 1963). Let

P = lattice polytope in RN , dimP = d .

Then i(P,n) is a polynomial (the Ehrhart polynomial of P) in n
of degree d.



Reciprocity and volume

Moreover,

i(P,0) = 1

ī(P,n) = (−1)d i(P,−n), n > 0

(reciprocity).



Reciprocity and volume

Moreover,

i(P,0) = 1

ī(P,n) = (−1)d i(P,−n), n > 0

(reciprocity).

If d = N then

i(P,n) = V (P)nd + lower order terms,

where V (P) is the volume of P.



Eugène Ehrhart

April 29, 1906: born in Guebwiller, France

1932: begins teaching career in lycées

1959: Prize of French Sciences Academy

1963: begins work on Ph.D. thesis

1966: obtains Ph.D. thesis from Univ. of Strasbourg

1971: retires from teaching career

January 17, 2000: dies



Photo of Ehrhart



Self-portrait



Generalized Pick’s theorem

Corollary. Let P ⊂ Rd and dimP = d. Knowing any d of i(P,n)
or ī(P,n) for n > 0 determines V (P).



Generalized Pick’s theorem

Corollary. Let P ⊂ Rd and dimP = d. Knowing any d of i(P,n)
or ī(P,n) for n > 0 determines V (P).
Proof. Together with i(P,0) = 1, this data determines d + 1
values of the polynomial i(P,n) of degree d . This uniquely
determines i(P,n) and hence its leading coefficient V (P). ◻



Birkhoff polytope

Example. Let BM ⊂ R
M×M be the Birkhoff polytope of all

M ×M doubly-stochastic matrices A = (aij), i.e.,

aij ≥ 0

∑
i

aij = 1 (column sums 1)

∑
j

aij = 1 (row sums 1).



(Weak) magic squares

Note. B = (bij) ∈ nBM ∩ ZM×M if and only if

bij ∈ N = {0,1,2, . . . }

∑
i

bij = n

∑
j

bij = n.



Example of a magic square

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

2 1 0 4
3 1 1 2
1 3 2 1
1 2 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M = 4, n = 7)



Example of a magic square

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 4
3 1 1 2
1 3 2 1
1 2 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M = 4, n = 7)

∈ 7B4



HM(n)

HM(n) ∶= #{M ×M N-matrices, line sums n}
= i(BM ,n)
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HM(n)

HM(n) ∶= #{M ×M N-matrices, line sums n}
= i(BM ,n)

H1(n) = 1

H2(n) = n + 1

[ a n − a
n − a a

] , 0 ≤ a ≤ n.



The case M = 3

H3(n) = (n + 2
4
) + (n + 3

4
) + (n + 4

4
)

(MacMahon)



Values for small n

HM(0) = ??



Values for small n

HM(0) = 1



Values for small n

HM(0) = 1
HM(1) = ??



Values for small n

HM(0) = 1
HM(1) =M! (permutation matrices)



Values for small n

HM(0) = 1
HM(1) =M! (permutation matrices)

Anand-Dumir-Gupta, 1966:

∑
M≥0

HM(2) xM
M!2

= ??



Values for small n

HM(0) = 1
HM(1) =M! (permutation matrices)

Anand-Dumir-Gupta, 1966:

∑
M≥0

HM(2) xM
M!2

=
ex/2√
1 − x



Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The vertices of BM consist
of the M! M ×M permutation matrices. Hence BM is a lattice
polytope.



Anand-Dumir-Gupta conjecture

Theorem (Birkhoff-von Neumann). The vertices of BM consist
of the M! M ×M permutation matrices. Hence BM is a lattice
polytope.

Corollary (Anand-Dumir-Gupta conjecture). HM(n) is a
polynomial in n (of degree (M − 1)2).



H4(n)

Example. H4(n) = 1

11340
(11n9 + 198n8 + 1596n7

+7560n6 + 23289n5 + 48762n5 + 70234n4 + 68220n2
+40950n + 11340) .



Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =
#{M ×M matrices B of positive integers, line sum n}.

But every such B can be obtained from an M ×M matrix A of
nonnegative integers by adding 1 to each entry.



Reciprocity for magic squares

Reciprocity ⇒ ±HM(−n) =
#{M ×M matrices B of positive integers, line sum n}.

But every such B can be obtained from an M ×M matrix A of
nonnegative integers by adding 1 to each entry.

Corollary. HM(−1) = HM(−2) = ⋯ = HM(−M + 1) = 0
HM(−M − n) = (−1)M−1HM(n)



Two remarks

Reciprocity greatly reduces computation.

Applications of magic squares, e.g., to statistics (contingency
tables).



Zeros of H9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2



Zeros of H9(n) in complex plane

Zeros of H_9(n)

–3

–2

–1

0

1

2

3

–8 –6 –4 –2

No explanation known.



Zonotopes

Let v1, . . . ,vk ∈ R
d . The zonotope Z(v1, . . . , vk) generated by

v1, . . . , vk :

Z(v1, . . . ,vk) = {λ1v1 +⋯+ λkvk ∶ 0 ≤ λi ≤ 1}



Zonotopes

Let v1, . . . ,vk ∈ R
d . The zonotope Z(v1, . . . , vk) generated by

v1, . . . , vk :

Z(v1, . . . ,vk) = {λ1v1 +⋯+ λkvk ∶ 0 ≤ λi ≤ 1}
Example. v1 = (4,0), v2 = (3,1), v3 = (1,2)

(4,0)

(3,1)
(1,2)

(0,0)



Lattice points in a zonotope

Theorem. Let
Z = Z(v1, . . . , vk) ⊂ Rd ,

where vi ∈ Z
d . Then

i(Z ,1) =∑
X

h(X ),
where X ranges over all linearly independent subsets of{v1, . . . , vk}, and h(X ) is the gcd of all j × j minors (j =#X) of
the matrix whose rows are the elements of X .



An example

Example. v1 = (4,0), v2 = (3,1), v3 = (1,2)

(4,0)

(3,1)
(1,2)

(0,0)



Computation of i(Z ,1)

i(Z ,1) = ∣ 4 0
3 1

∣ + ∣ 4 0
1 2

∣ + ∣ 3 1
1 2

∣
+gcd(4,0) + gcd(3,1)
+gcd(1,2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1
= 24.



Computation of i(Z ,1)

i(Z ,1) = ∣ 4 0
3 1

∣ + ∣ 4 0
1 2

∣ + ∣ 3 1
1 2

∣
+gcd(4,0) + gcd(3,1)
+gcd(1,2) + det(∅)

= 4 + 8 + 5 + 4 + 1 + 1 + 1
= 24.



Corollaries

Corollary. If Z is an integer zonotope generated by integer
vectors, then the coefficients of i(Z ,n) are nonnegative integers.



Corollaries

Corollary. If Z is an integer zonotope generated by integer
vectors, then the coefficients of i(Z ,n) are nonnegative integers.

Neither property (nonnegativity, integrality) is true for general
integer polytopes. There are numerous conjectures concerning
special cases.



The permutohedron

Πd = conv{(w(1), . . . ,w(d))∶w ∈ Sd} ⊂ Rd



The permutohedron

Πd = conv{(w(1), . . . ,w(d))∶w ∈ Sd} ⊂ Rd

dimΠd = d − 1, since ∑w(i) = (d + 1
2
)



The permutohedron

Πd = conv{(w(1), . . . ,w(d))∶w ∈ Sd} ⊂ Rd

dimΠd = d − 1, since ∑w(i) = (d + 1
2
)

Πd ≈ Z(ei − ej ∶1 ≤ i < j ≤ d)



Π3

321

312

213

123

132

231
222

Π3



Π3

321

312

213

123

132

231
222

Π3

i(Π3,n) = 3n2 + 3n + 1



Π4

(truncated octahedron)



i(Πd ,n)

Theorem. i(Πd ,n) = ∑d−1
k=0 fk(d)nk , where

fk(d) =#{forests with k edges on vertices 1, . . . ,d}



i(Πd ,n)

Theorem. i(Πd ,n) = ∑d−1
k=0 fk(d)nk , where

fk(d) =#{forests with k edges on vertices 1, . . . ,d}
1 2

3

i(Π3,n) = 3n2 + 3n + 1



i(Πd ,n)

Theorem. i(Πd ,n) = ∑d−1
k=0 fk(d)nk , where

fk(d) =#{forests with k edges on vertices 1, . . . ,d}
1 2

3

i(Π3,n) = 3n2 + 3n + 1
Can be greatly generalized (Postnikov, et al.).



Application to graph theory

Let G be a graph (with no loops or multiple edges) on the vertex
set V (G) = {1,2, . . . ,n}. Let

di = degree (# incident edges) of vertex i .

Define the ordered degree sequence d(G) of G by

d(G) = (d1, . . . ,dn).



Example of d(G)

Example. d(G) = (2,4,0,3,2,1)
1 2

4 5 6

3



# ordered degree sequences

Let f (n) be the number of distinct d(G), where
V (G) = {1,2, . . . ,n}.



f (n) for n ≤ 4

Example. If n ≤ 3, all d(G) are distinct, so f (1) = 1,
f (2) = 21 = 2, f (3) = 23 = 8. For n ≥ 4 we can have G ≠ H but
d(G) = d(H), e.g.,

3 4

2 11 2

3 4 3 4

1 2

In fact, f (4) = 54 < 26 = 64.



The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) ∶ V (G) = {1, . . . ,n}} ⊂ Rn,

the polytope of degree sequences (Perles, Koren).



The polytope of degree sequences

Let conv denote convex hull, and

Dn = conv{d(G) ∶ V (G) = {1, . . . ,n}} ⊂ Rn,

the polytope of degree sequences (Perles, Koren).

Easy fact. Let ei be the ith unit coordinate vector in Rn. E.g., if
n = 5 then e2 = (0,1,0,0,0). Then

Dn = Z(ei + ej ∶ 1 ≤ i < j ≤ n).



The Erdős-Gallai theorem

Theorem. Let
α = (a1, . . . ,an) ∈ Zn.

Then α = d(G) for some G if and only if

α ∈ Dn

a1 + a2 +⋯ + an is even.



A generating function

Enumerative techniques leads to:

Theorem. Let

F (x) = ∑
n≥0

f (n)xn
n!

= 1 + x + 2x2
2!
+ 8x3

3!
+ 54x4

4!
+⋯.

Then:



A formula for F(x)

F (x) = 1

2

⎡⎢⎢⎢⎢⎣
(1 + 2∑

n≥1

nn
xn

n!
)1/2

× (1 −∑
n≥1

(n − 1)n−1 xn
n!
) + 1]

× exp∑
n≥1

nn−2
xn

n!
(00 = 1)



Coefficients of i(P,n)

Let P denote the tetrahedron with vertices (0,0,0), (1,0,0),(0,1,0), (1,1,13). Then

i(P,n) = 13

6
n3 + n2 − 1

6
n + 1.



The “bad” tetrahedron

z

x

y



The “bad” tetrahedron

z

x

y

Thus in general the coefficients of Ehrhart polynomials are not
“nice.” Is there a “better” basis?



The h∗-vector of i(P,n)

Let P be a lattice polytope of dimension d . Since i(P,n) is a
polynomial of degree d , ∃ hi ∈ Z such that

∑
n≥0

i(P,n)xn = h0 + h1x +⋯+ hdxd(1 − x)d+1 .



The h∗-vector of i(P,n)

Let P be a lattice polytope of dimension d . Since i(P,n) is a
polynomial of degree d , ∃ hi ∈ Z such that

∑
n≥0

i(P,n)xn = h0 + h1x +⋯+ hdxd(1 − x)d+1 .

Definition. Define

h
∗(P) = (h0,h1, . . . ,hd),

the h∗-vector of P.



Example of an h∗-vector

Example. Recall

i(B4,n) = 1

11340
(11n9

+198n8 + 1596n7 + 7560n6 + 23289n5
+48762n5 + 70234n4 + 68220n2

+40950n + 11340).



Example of an h∗-vector

Example. Recall

i(B4,n) = 1

11340
(11n9

+198n8 + 1596n7 + 7560n6 + 23289n5
+48762n5 + 70234n4 + 68220n2

+40950n + 11340).
Then

h∗(B4) = (1,14,87,148, 87, 14, 1,0, 0, 0).



Two terms of h∗(P)

h0 = 1
hd = (−1)dimP i(P,−1) = I(P)



Main properties of h∗(P)

Theorem A (nonnegativity). (McMullen, RS) hi ≥ 0.



Main properties of h∗(P)

Theorem A (nonnegativity). (McMullen, RS) hi ≥ 0.
Theorem B (monotonicity). (RS) If P and Q are lattice
polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i .



Main properties of h∗(P)

Theorem A (nonnegativity). (McMullen, RS) hi ≥ 0.
Theorem B (monotonicity). (RS) If P and Q are lattice
polytopes and Q ⊆ P, then

hi(Q) ≤ hi(P) ∀i .

B ⇒ A: take Q = ∅.



Proofs: the Ehrhart ring

P : (convex) lattice polytope in Rd with vertex set V

x
β = xβ1⋯xβd , β ∈ Zd

Ehrhart ring (over Q):

RP = Q [xβyn ∶ β ∈ Zd , n ∈ P, β

n
∈ P]

deg xβyn = n



Proofs: the Ehrhart ring

P : (convex) lattice polytope in Rd with vertex set V

x
β = xβ1⋯xβd , β ∈ Zd

Ehrhart ring (over Q):

RP = Q [xβyn ∶ β ∈ Zd , n ∈ P, β

n
∈ P]

deg xβyn = n

RP = (RP)0 ⊕ (RP)1 ⊕⋯



Simple properties of RP

Hilbert function of RP :

H(RP ,n) = dimQ(RP)n.
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Q[V ]: subalgebra of RP generated by xαy , α ∈ V .



Simple properties of RP

Hilbert function of RP :

H(RP ,n) = dimQ(RP)n.
Theorem (easy). H(RP ,n) = i(P,n)
Q[V ]: subalgebra of RP generated by xαy , α ∈ V .

Theorem (easy). RP is a finitely-generated Q[V ]-module.



The Cohen-Macaulay property

Theorem (Hochster, 1972). RP is a Cohen-Macaulay ring.



The Cohen-Macaulay property

Theorem (Hochster, 1972). RP is a Cohen-Macaulay ring.

This means (using finiteness of RP over Q[V ]): if dimP = m then
there exist algebraically independent θ1, . . . , θm ∈ (RP)1 such that
RP is a finitely-generated free Q[θ1, . . . , θm]-module.

θ1, . . . , θm is a homogeneous system of parameters (h.s.o.p.).
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This means (using finiteness of RP over Q[V ]): if dimP = m then
there exist algebraically independent θ1, . . . , θm ∈ (RP)1 such that
RP is a finitely-generated free Q[θ1, . . . , θm]-module.

θ1, . . . , θm is a homogeneous system of parameters (h.s.o.p.).

Thus RP =⊕r
j=1 ηjQ[θ1, . . . , θm], where ηj ∈ (RP)ej .



The Cohen-Macaulay property

Theorem (Hochster, 1972). RP is a Cohen-Macaulay ring.

This means (using finiteness of RP over Q[V ]): if dimP = m then
there exist algebraically independent θ1, . . . , θm ∈ (RP)1 such that
RP is a finitely-generated free Q[θ1, . . . , θm]-module.

θ1, . . . , θm is a homogeneous system of parameters (h.s.o.p.).

Thus RP =⊕r
j=1 ηjQ[θ1, . . . , θm], where ηj ∈ (RP)ej .

Corollary. ∑n≥0H(RP ,n)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i(P,n)

xn = xe1 +⋯+ xer
(1 − x)m , so h∗(P) ≥ 0.



Monotonicity

The result Q ⊆ P ⇒ h∗(Q) ≤ h∗(P) is proved similarly.

We have RQ ⊂ RP . The key fact is that we can find an h.s.o.p.
θ1, . . . , θk for RQ that extends to an h.s.o.p. for RP .



The canonical module

Let R = R0 ⊕R1 ⊕⋯ be a Cohen-Macaulay graded algebra over a
field K = R0, with Krull dimension m and Hilbert series

∑
n≥0

(dimK Rn)xn = ∑r
j=1 x

ej

(1 − xd1)⋯ (1 − xdm) .

Let R ≅ A/I , where A = K [x1, . . . , xt].



The canonical module

Let R = R0 ⊕R1 ⊕⋯ be a Cohen-Macaulay graded algebra over a
field K = R0, with Krull dimension m and Hilbert series

∑
n≥0

(dimK Rn)xn = ∑r
j=1 x

ej

(1 − xd1)⋯ (1 − xdm) .

Let R ≅ A/I , where A = K [x1, . . . , xt].
canonical module: Ω(R) = Extt−mA (R ,A), a graded R-module.



Reciprocity redux

Basic result in commutative/homological algebra:

∑
n≥0

(dimK Ω(R)n)xn = xc ∑r
j=1 x

−ej

(1 − xd1)⋯ (1 − xdm) .



Reciprocity redux

Basic result in commutative/homological algebra:

∑
n≥0

(dimK Ω(R)n)xn = xc ∑r
j=1 x

−ej

(1 − xd1)⋯ (1 − xdm) .
Theorem.
Ω(RP) = spanQ{xβyn ∶ β ∈ Zd , n ∈ P, β

n
∈ interior(P)}



Reciprocity redux

Basic result in commutative/homological algebra:

∑
n≥0

(dimK Ω(R)n)xn = xc ∑r
j=1 x

−ej

(1 − xd1)⋯ (1 − xdm) .
Theorem.
Ω(RP) = spanQ{xβyn ∶ β ∈ Zd , n ∈ P, β

n
∈ interior(P)}

Corollary. ī(P,n) = (−1)d i(P,n).



Further properties: I. Brion’s theorem

Example. Let P be the polytope [2,5] in R, so P is defined by

(1) x ≥ 2, (2) x ≤ 5.



Further properties: I. Brion’s theorem

Example. Let P be the polytope [2,5] in R, so P is defined by

(1) x ≥ 2, (2) x ≤ 5.
Let

F1(t) = ∑
n≥2
n∈Z

tn = t2

1 − t
F2(t) = ∑

n≤5
n∈Z

tn = t5

1 − 1

t

.



F1(t) + F2(t)

F1(t) + F2(t) = t2

1 − t +
t5

1 − 1

t

= t2 + t3 + t4 + t5
= ∑

m∈P∩Z

tm.



Cone at a vertex

P : Z-polytope in RN with vertices v1, . . . ,vk

Ci : cone at vertex vi supporting P



Cone at a vertex

P : Z-polytope in RN with vertices v1, . . . ,vk

Ci : cone at vertex vi supporting P

v

(C v)



The general result

Let Fi (t1, . . . , tN) = ∑
(m1,...,mN)∈Ci∩ZN

tm1

1
⋯tmN

N
.



The general result

Let Fi (t1, . . . , tN) = ∑
(m1,...,mN)∈Ci∩ZN

tm1

1
⋯tmN

N
.

Theorem (Brion). Each Fi is a rational function of t1, . . . , tN , and

k

∑
i=1

Fi(t1, . . . , tN) = ∑
(m1,...,mN)∈P∩ZN

tm1

1
⋯tmN

N

(as rational functions).



II. Complexity

Computing i(P,n), or even i(P,1) is #P-complete. Thus an
“efficient” (polynomial time) algorithm is extremely unlikely.
However:



II. Complexity

Computing i(P,n), or even i(P,1) is #P-complete. Thus an
“efficient” (polynomial time) algorithm is extremely unlikely.
However:

Theorem (A. Barvinok, 1994). For fixed dimP, ∃
polynomial-time algorithm for computing i(P,n).



III. Fractional lattice polytopes

Example. Let SM(n) denote the number of symmetric M ×M
matrices of nonnegative integers, every row and column sum n.
Then

S3(n) =
⎧⎪⎪⎨⎪⎪⎩

1

8
(2n3 + 9n2 + 14n + 8), n even

1

8
(2n3 + 9n2 + 14n + 7), n odd

= 1

16
(4n3 + 18n2 + 28n + 15 + (−1)n).



III. Fractional lattice polytopes

Example. Let SM(n) denote the number of symmetric M ×M
matrices of nonnegative integers, every row and column sum n.
Then

S3(n) =
⎧⎪⎪⎨⎪⎪⎩

1

8
(2n3 + 9n2 + 14n + 8), n even

1

8
(2n3 + 9n2 + 14n + 7), n odd

= 1

16
(4n3 + 18n2 + 28n + 15 + (−1)n).

Why a different polynomial depending on n modulo 2?



The symmetric Birkhoff polytope
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The symmetric Birkhoff polytope

TM : the polytope of all M ×M symmetric doubly-stochastic
matrices.

Easy fact: SM(n) =# (nTM ∩ZM×M)

Fact: vertices of TM have the form 1

2
(P +P t), where P is a

permutation matrix.

Thus if v is a vertex of TM then 2v ∈ ZM×M .



SM(n) in general

Theorem. There exist polynomials PM(n) and QM(n) for which
SM(n) = PM(n) + (−1)nQM(n), n ≥ 0.

Moreover, degPM(n) = (M2 ).



SM(n) in general

Theorem. There exist polynomials PM(n) and QM(n) for which
SM(n) = PM(n) + (−1)nQM(n), n ≥ 0.

Moreover, degPM(n) = (M2 ).
Difficult result (Dahmen and Micchelli, 1988):

degQM(n) =
⎧⎪⎪⎨⎪⎪⎩
(M−1

2
) − 1, M odd

(M−2
2
) − 1, M even.
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(0,0), (0, α), (1/α,0), so area(Tα) = 1

2
. Can define

i(Tα,n) =#(nTα ∩ Z2), n ≥ 1.
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IV. Some curious triangles

For α > 0 let Tα be the triangle in R2 with vertices
(0,0), (0, α), (1/α,0), so area(Tα) = 1

2
. Can define

i(Tα,n) =#(nTα ∩ Z2), n ≥ 1.

Easy. T1 is a lattice triangle with i(T1,n) = (n+22 ).
Theorem (Cristofaro-Gardiner, Li, S). Let α > 1. We have
i(Tα,n) = (n+22 ) for all n ≥ 1 if and only if either:

α = F2k+1

F2k−1
(Fibonacci numbers)

α = 1

2
(3 +√5)
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