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Definitions

3 1 84 96 7 2 5 (i.s)

3 18 4 9 6 72 5 (d.s)

is(w) = |longest i.s.| = 4

ds(w) = |longest d.s.| = 3
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Application: airplane boarding

Naive model: passengers board in order
w = a1a2 · · · an for seats 1, 2, . . . , n. Each
passenger takes one time unit to be seated after
arriving at his seat.
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Boarding process

2 5 3 6 1 4

6 5 4 3 2 1
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Results

Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

Two conclusions:

Usual system (back-to-front) not much better
than random.

Better: first board window seats, then center,
then aisle.
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Partitions

partition λ ` n: λ = (λ1, λ2, . . . )

λ1 ≥ λ2 ≥ · · · ≥ 0

∑

λi = n
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Young diagrams

(Young) diagram of λ = (4, 4, 3, 1):
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Conjugate partitions

λ′ = (4, 3, 3, 2), the conjugate partition to
λ = (4, 4, 3, 2)

λ’λ
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Standard Young tableau

standard Young tableau (SYT) of shape λ ` n,
e.g., λ = (4, 4, 3, 1):

2

12

1 7 10

3 5 8

4 6 11

9

<

<
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fλ

fλ = # of SYT of shape λ

E.g., f (3,2) = 5:

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5

4 5 3 5 3 4 2 5 2 4

∃ simple formula for fλ (Frame-Robinson-Thrall
hook-length formula)

Note. fλ = dim(irrep. of Sn), where Sn is the
symmetric group of all permutations of
1, 2 . . . , n.
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RSK algorithm

RSK algorithm: a bijection

w
rsk→ (P,Q),

where w ∈ Sn and P,Q are SYT of the same
shape λ ` n.

Write λ = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth

ea.ea.home.mindspring.com
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Example of RSK: w = 4132

insert 4, record 1: 4 1

insert 1, record 2: 1 1
4 2

insert 3, record 3: 1 3 1 3
4 2

insert 2, record 4:
1 2 1 3
3 2
4 4

(P,Q) =

(

1 2
3
4

,
1 3
2
4

)
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Schensted’s theorem

Theorem. Let w
rsk→ (P,Q), where

sh(P ) = sh(Q) = λ. Then

is(w) = longest row length = λ1

ds(w) = longest column length = λ′
1.

Example. 4132
rsk→
(

1 2
3
4

,
1 3
2
4

)

is(w) = 2, ds(w) = 3.
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Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let
w ∈ Spq+1. Then either is(w) > p or ds(w) > q.

Proof. Let λ = sh(w). If is(w) ≤ p and ds(w) ≤ q
then λ1 ≤ p and λ′

1 ≤ q, so
∑

λi ≤ pq. �
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An extremal case

Corollary. Say p ≤ q. Then

#{w ∈ Spq : is(w) = p, ds(w) = q}

=
(

f (pq)
)2

By hook-length formula, this is

(

(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1 · · · (p + q − 1)1

)

2

.
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Romik’s theorem

Romik: let

w ∈ Sn2, is(w) = ds(w) = n.

Let Pw be the permutation matrix of w with
corners (±1,±1). Then (informally) as n → ∞
almost surely the 1’s in Pw will become dense in
the region bounded by the curve

(x2 − y2)2 + 2(x2 + y2) = 3,

and will remain isolated outside this region.
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An example

w = 9, 11, 6, 14, 2, 10, 1, 5, 13, 3, 16, 8, 15, 4, 12, 17
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(x2 − y2)2 + 2(x2 + y2) = 3

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1

x
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Area enclosed by curve

α = 8

∫ 1

0

1
√

(1 − t2)(1 − (t/3)2)
dt

−6

∫ 1

0

√

1 − (t/3)2

1 − t2
dt

= 4(0.94545962 · · · )
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Expectation of is(w)

E(n) = expectation of is(w), w ∈ Sn

=
1

n!

∑

w∈Sn

is(w)

=
1

n!

∑

λ`n

λ1

(

fλ
)2

Ulam: what is distribution of is(w)? rate of growth
of E(n)?
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Work of Hammersley

Hammersley (1972):

∃ c = lim
n→∞

n−1/2E(n),

and
π

2
≤ c ≤ e.

Conjectured c = 2.
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c = 2

Logan-Shepp, Vershik-Kerov (1977): c = 2

Idea of proof.

E(n) =
1

n!

∑

λ`n

λ1

(

fλ
)2

≈ 1

n!
max
λ`n

λ1

(

fλ
)2

.

Find “limiting shape” of λ ` n maximizing λ as
n → ∞ using hook-length formula.
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A big shape

0

0.5

1

1.5

2

0.5 1 1.5 2
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The limiting curve

0

0.5

1

1.5

2

0.5 1 1.5 2
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Equation of limiting curve

x = y + 2 cos θ

y =
2

π
(sin θ − θ cos θ)

0 ≤ θ ≤ π
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is(w) ≤ 2

uk(n) := #{w ∈ Sn : isn(w) ≤ k}.

J. M. Hammersley (1972):

u2(n) = Cn =
1

n + 1

(

2n

n

)

,

a Catalan number.

For ≥160 combinatorial interpretations of Cn, see

www-math.mit.edu/∼rstan/ec
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Gessel’s theorem

I. Gessel (1990):

∑

n≥0

uk(n)
x2n

n!2
= det

[

I|i−j|(2x)
]k

i,j=1
,

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!
,

a hyperbolic Bessel function of the first kind of
order m.
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The case k = 2

Example.
∑

n≥0

u2(n)
x2n

n!2

= I0(2x)2 − I1(2x)2

=
∑

n≥0

Cn
x2n

n!2
.
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Painlevé II equation

Baik-Deift-Johansson:

Define u(x) by

d2

dx2
u(x) = 2u(x)3 + xu(x) (∗),

with certain initial conditions.

(∗) is the Painlevé II equation (roughly, the
branch points and essential singularities are
independent of the initial conditions).
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Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.

Increasing and Decreasing Subsequences – p. 30



Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.

Increasing and Decreasing Subsequences – p. 30



Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.

Increasing and Decreasing Subsequences – p. 30



Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.

Increasing and Decreasing Subsequences – p. 30



Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright; set flight
duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.

Increasing and Decreasing Subsequences – p. 30



The Tracy-Widom distribution

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

where u(x) is the Painlevé II function.
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The Baik-Deift-Johansson theorem

Let χ be a random variable with distribution F ,
and let χn be the random variable on Sn:

χn(w) =
isn(w) − 2

√
n

n1/6
.

Theorem. As n → ∞,

χn → χ in distribution,

i.e.,
lim
n→∞

Prob(χn ≤ t) = F (t).
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Expectation redux

Recall E(n) ∼ 2
√

n.

Corollary to BDJ theorem.

E(n) = 2
√

n +

(
∫

t dF (t)

)

n1/6 + o(n1/6)

= 2
√

n − (1.7711 · · · )n1/6 + o(n1/6)
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Proof of BDJ theorem

Gessel’s theorem reduces the problem to “just”
analysis, viz., the Riemann-Hilbert problem in
the theory of integrable systems, and the
method of steepest descent to analyze the
asymptotic behavior of integrable systems.
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Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution F (t)
come from?

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

d2

dx2
u(x) = 2u(x)3 + xu(x)
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Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for n × n
hermitian matrices M = (Mij):

Z−1
n e−tr(M2)dM,

dM =
∏

i

dMii ·
∏

i<j

d(<Mij)d(=Mij),

where Zn is a normalization constant.
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Tracy-Widom theorem

Tracy-Widom (1994): let α1 denote the largest
eigenvalue of M . Then

lim
n→∞

Prob
((

α1 −
√

2n
)√

2n1/6 ≤ t
)

= F (t).
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Random topologies

Is the connection between is(w) and GUE a
coincidence?

Okounkov provides a connection, via the theory
of random topologies on surfaces. Very briefly,
a surface can be described in two ways:

Gluing polygons along their edges, connected
to random matrices via quantum gravity.

Ramified covering of a sphere, which can be
formulated in terms of permutations.

Increasing and Decreasing Subsequences – p. 38



Random topologies

Is the connection between is(w) and GUE a
coincidence?

Okounkov provides a connection, via the theory
of random topologies on surfaces. Very briefly,
a surface can be described in two ways:

Gluing polygons along their edges, connected
to random matrices via quantum gravity.

Ramified covering of a sphere, which can be
formulated in terms of permutations.

Increasing and Decreasing Subsequences – p. 38



A variation

Alternating sequence of length k:

b1 > b2 < b3 > b4 < · · · bk

En: number of alternating w ∈ Sn (Euler
number)

E4 = 5: 2134, 3142, 3241, 4132, 4231

Désiré André (1840–1917): showed in 1879 that

∑

n≥0

En
xn

n!
= sec x + tan x
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Alternating subsequences?

as(w) = length of longest alternating subseq. of w

w = 56218347 ⇒ as(w) = 5
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The main lemma

MAIN LEMMA. ∀w ∈ Sn ∃ alternating
subsequence of maximal length that contains n.

ak(n) = #{w ∈ Sn : as(w) = k}

bk(n) = a1(n) + a2(n) + · · · + ak(n)

= #{w ∈ Sn : as(w) ≤ k}.
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Recurrence for ak(n)

⇒ ak(n) =
n
∑

j=1

(

n − 1

j − 1

)

∑

2r+s=k−1

(a2r(j − 1) + a2r+1(j − 1)) as(n − j)
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B(x, t) and A(x, t)

Define

B(x, t) =
∑

k,n≥0

bk(n)tk
xn

n!

A(x, t) =
∑

k,n≥0

ak(n)tk
xn

n!
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The main generating function

Theorem.

B(x, t) =
2/ρ

1 − 1−ρ
t eρx

− 1

ρ

A(x, t) = (1 − t)B(x, t),

where ρ =
√

1 − t2.
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Formulas for bk(n)

Corollary.

⇒ b1(n) = 1

b2(n) = n

b3(n) = 1
4(3

n − 2n + 3)

b4(n) = 1
8(4

n − (2n − 4)2n)

...

no such formulas for longest increasing
subsequences
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Mean (expectation) of as(w)

D(n) =
1

n!

∑

w∈Sn

as(w),

the expectation of as(w) for w ∈ Sn
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A formula for D(n)

∑

n≥1

D(n)xn =
∂

∂t
A(x, 1)

=
6x − 3x2 + x3

6(1 − x)2

= x +
∑

n≥2

4n + 1

6
xn.

⇒ D(n) =
4n + 1

6
, n ≥ 2

Increasing and Decreasing Subsequences – p. 47



A formula for D(n)

∑

n≥1

D(n)xn =
∂

∂t
A(x, 1)

=
6x − 3x2 + x3

6(1 − x)2

= x +
∑

n≥2

4n + 1

6
xn.

⇒ D(n) =
4n + 1

6
, n ≥ 2

Increasing and Decreasing Subsequences – p. 47



Comparison of E(n) and D(n)

D(n) =
4n + 1

6
, n ≥ 2

E(n) ∼ 2
√

n
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Variance of as(w)

V (n) =
1

n!

∑

w∈Sn

(

as(w) − 4n + 1

6

)2

, n ≥ 2

the variance of as(n) for w ∈ Sn

Corollary.

V (n) =
8

45
n − 13

180
, n ≥ 4

similar results for higher moments
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A new distribution?

P (t) = lim
n→∞

Probw∈Sn

(

asn(w) − 2n/3√
n

≤ t

)

Stanley distribution?

Increasing and Decreasing Subsequences – p. 50



A new distribution?

P (t) = lim
n→∞

Probw∈Sn

(

asn(w) − 2n/3√
n

≤ t

)

Stanley distribution?

Increasing and Decreasing Subsequences – p. 50



Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

lim
n→∞

Probw∈Sn

(

as(w) − 2n/3√
n

≤ t

)

=
1√
π

∫ t
√

45/4

−∞
e−s2

ds

(Gaussian distribution)
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Limiting distribution
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lim
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as(w) − 2n/3√
n

≤ t
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k-alternating sequences

Given k ≥ 1, define a sequence a1a2 · · · an of
integers to be k-alternating if

ai > ai+1 ⇔ i ≡ 1 (mod k).

Example. 61482572 is 3-alternating
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ak(w) and Ek(n)

ak(w) : length of longest k−alt. subsequence of w

an−1(w) = is(w)

a2(w) = as(w)

Ek(n) = expectation of ak(w)

=
1

n!

∑

w∈Sn

ak(w)
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A problem

Ek(n) interpolates between E(n) ∼ 2
√

n and
D(n) ∼ 2n/3. Is there a sharp cutoff between
c
√

n and cn behavior, or do we get intermediate
values like cnα, 1

2 < α < 1, say for k =
√

n?

Similar questions for the limiting distribution: do
we interpolate between Tracy-Widom and
Gaussian?
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A variant

Same questions if we replace k-alternating with:

ai > ai+1 ⇔ bi/kc is even.

E.g., k = 3:

a1 > a2 > a3 < a4 < a5 > a6 > a7 < · · ·
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