

Richard P. Stanley

M.I.T.

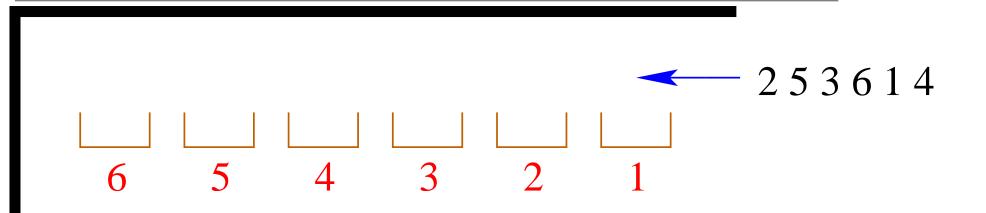
Definitions

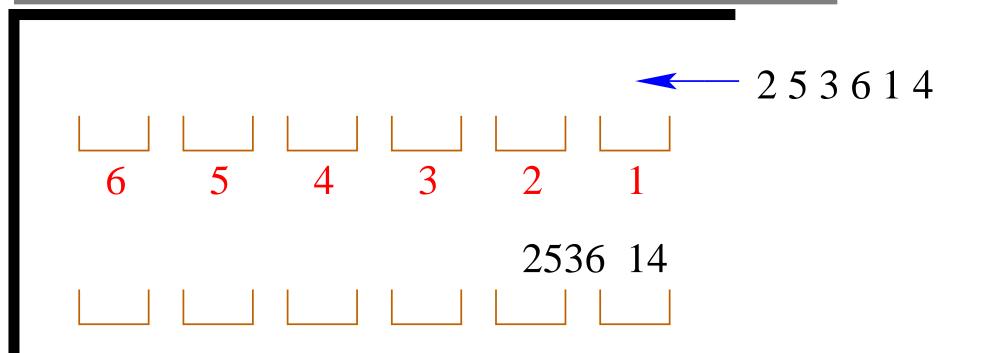
318**4**9**67**25 (i.s) 31**84**967**2**5 (d.s)

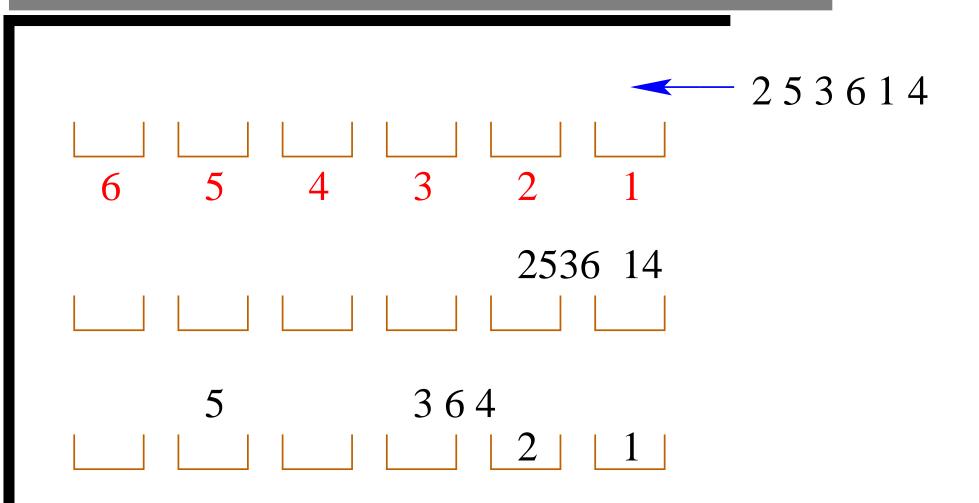
is(w) = |longest i.s.| = 4ds(w) = |longest d.s.| = 3

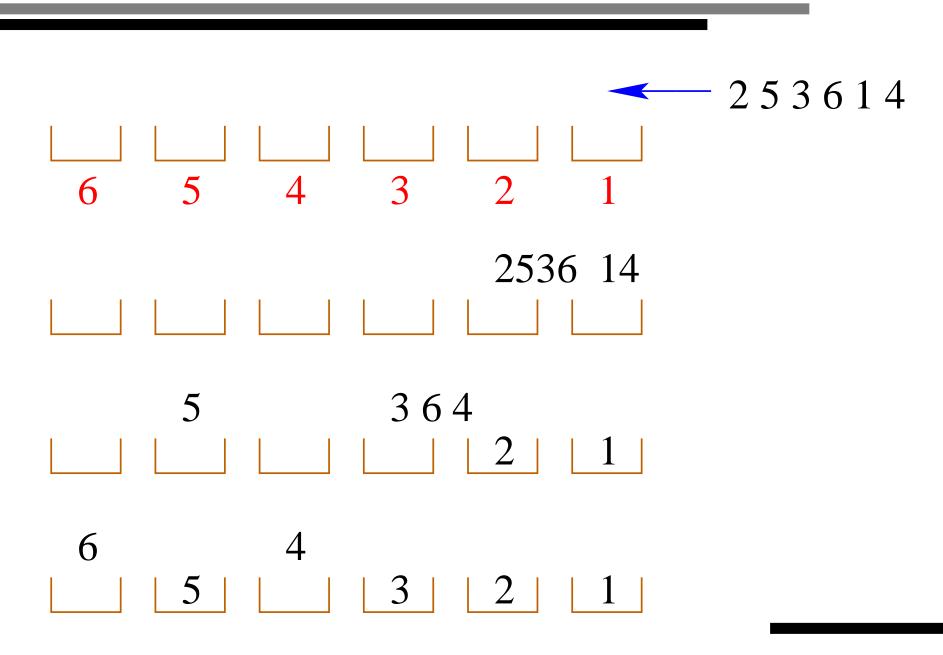
Application: airplane boarding

Naive model: passengers board in order $w = a_1 a_2 \cdots a_n$ for seats $1, 2, \ldots, n$. Each passenger takes one time unit to be seated after arriving at his seat.









Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

Easy: Total waiting time = is(w).

Bachmat, et al.: more sophisticated model.

Two conclusions:

- Usual system (back-to-front) not much better than random.
- Better: first board window seats, then center, then aisle.

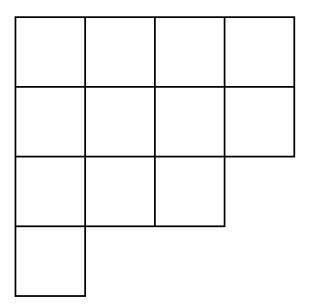
Partitions

partition $\lambda \vdash n$: $\lambda = (\lambda_1, \lambda_2, \dots)$ $\lambda_1 > \lambda_2 \geq \cdots \geq 0$ $\sum \lambda_i = n$

Increasing and Decreasing Subsequences -p, θ

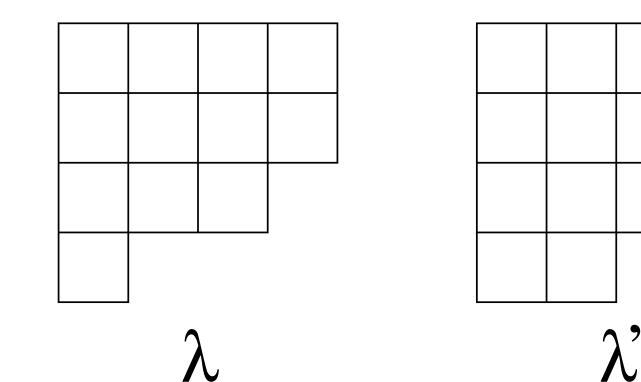
Young diagrams

(Young) diagram of $\lambda = (4, 4, 3, 1)$:



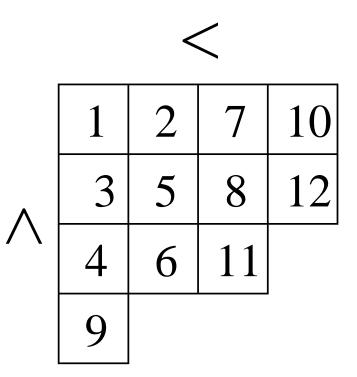
Conjugate partitions

$\lambda'=(4,3,3,2),$ the conjugate partition to $\lambda=(4,4,3,2)$



Standard Young tableau

standard Young tableau (SYT) of shape $\lambda \vdash n$, e.g., $\lambda = (4, 4, 3, 1)$:



- $f^{\lambda} = \#$ of SYT of shape λ E.g., $f^{(3,2)} = 5$:
 - 1231241251341354535342524

- $f^{\lambda} = \# \text{ of SYT of shape } \lambda$ E.g., $f^{(3,2)} = 5$:
 - 1231241251341354535342524

 \exists simple formula for f^{λ} (Frame-Robinson-Thrall **hook-length formula**)

$$f^{\lambda} = #$$
 of SYT of shape λ
E.g., $f^{(3,2)} = 5$:

- 1231241251341354535342524
- \exists simple formula for f^{λ} (Frame-Robinson-Thrall **hook-length formula**)

Note. $f^{\lambda} = \dim(\text{irrep. of } \mathfrak{S}_n)$, where \mathfrak{S}_n is the symmetric group of all permutations of 1, 2..., n.

RSK algorithm

RSK algorithm: a bijection

 $w \xrightarrow{\operatorname{rsk}} (P, Q),$

where $w \in \mathfrak{S}_n$ and P, Q are SYT of the same shape $\lambda \vdash n$.

Write $\lambda = \mathbf{sh}(w)$, the shape of w.

RSK algorithm: a bijection

 $w \xrightarrow{\operatorname{rsk}} (P,Q),$

where $w \in \mathfrak{S}_n$ and P, Q are SYT of the same shape $\lambda \vdash n$.

Write $\lambda = \mathbf{sh}(w)$, the shape of w.

- **R** = Gilbert de Beauregard Robinson
- **S** = Craige Schensted (= Ea Ea)
- **K** = Donald Ervin Knuth

RSK algorithm: a bijection

 $w \xrightarrow{\mathrm{rsk}} (P,Q),$

where $w \in \mathfrak{S}_n$ and P, Q are SYT of the same shape $\lambda \vdash n$.

Write $\lambda = \mathbf{sh}(w)$, the shape of w.

- **R** = Gilbert de Beauregard Robinson
- **S** = Craige Schensted (= Ea Ea)
- K = Donald Ervin Knuth

ea.ea.home.mindspring.com

Example of RSK: w = 4132

insert 4, record 1: 4 1

- insert 1, record 2: $\begin{pmatrix} 1 & 1 \\ 4 & 2 \end{pmatrix}$
- insert 3, record 3: $\begin{array}{ccc} 1 & 3 & 1 & 3 \\ 4 & 2 & 2 \end{array}$
- insert 2, record 4: $\begin{array}{ccc} 1 & 2 & 1 & 3 \\ 3 & & 2 \\ 4 & & 4 \end{array}$

Example of RSK: w = 4132

insert 4, record 1: 4 1

- insert 1, record 2: $\begin{pmatrix} 1 & 1 \\ 4 & 2 \end{pmatrix}$
- insert 3, record 3: $\begin{array}{ccc} 1 & 3 & 1 & 3 \\ 4 & 2 & 2 \end{array}$
- insert 2, record 4: $\begin{array}{ccc} 1 & 2 & 1 & 3 \\ 3 & & 2 \\ 4 & & 4 \end{array}$

$$(P,Q) = \begin{pmatrix} 12 & 13 \\ 3 & 2 \\ 4 & 4 \end{pmatrix}$$

Schensted's theorem

Theorem. Let $w \xrightarrow{\text{rsk}} (P, Q)$, where $sh(P) = sh(Q) = \lambda$. Then

 $is(w) = longest row length = \lambda_1$ $ds(w) = longest column length = \lambda'_1.$

Schensted's theorem

Theorem. Let $w \xrightarrow{\text{rsk}} (P, Q)$, where $sh(P) = sh(Q) = \lambda$. Then $is(w) = longest row length = \lambda_1$ $ds(w) = longest column length = \lambda'_1.$ **Example.** 4132 $\xrightarrow{\text{rsk}} \begin{pmatrix} 12 & 13 \\ 3 & 2 \\ 4 & 4 \end{pmatrix}$ is(w) = 2, ds(w) = 3.

Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{pq+1}$. Then either is(w) > p or ds(w) > q.

Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{pq+1}$. Then either is(w) > p or ds(w) > q.

Proof. Let $\lambda = \operatorname{sh}(w)$. If $\operatorname{is}(w) \leq p$ and $\operatorname{ds}(w) \leq q$ then $\lambda_1 \leq p$ and $\lambda'_1 \leq q$, so $\sum \lambda_i \leq pq$. \Box

Corollary. Say $p \leq q$. Then

$$\#\{w \in \mathfrak{S}_{pq} : \operatorname{is}(w) = p, \operatorname{ds}(w) = q\}$$
$$= \left(f^{(p^q)}\right)^2$$

Corollary. Say $p \leq q$. Then

$$\#\{w \in \mathfrak{S}_{pq} : \operatorname{is}(w) = p, \operatorname{ds}(w) = q\}$$
$$= \left(f^{(p^q)}\right)^2$$

By hook-length formula, this is

$$\left(\frac{(pq)!}{1^{1}2^{2}\cdots p^{p}(p+1)^{p}\cdots q^{p}(q+1)^{p-1}\cdots (p+q-1)^{1}}\right)^{2}$$

Romik's theorem

Romik: let

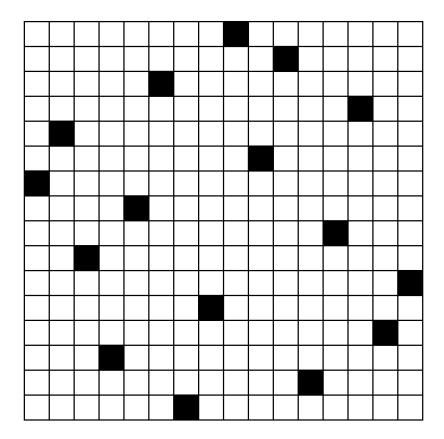
$$w \in \mathfrak{S}_{n^2}, \text{ is}(w) = \mathrm{ds}(w) = n.$$

Let P_w be the permutation matrix of w with corners $(\pm 1, \pm 1)$. Then (informally) as $n \to \infty$ almost surely the 1's in P_w will become dense in the region bounded by the curve

$$(x^{2} - y^{2})^{2} + 2(x^{2} + y^{2}) = 3,$$

and will remain isolated outside this region.

Increasing and Decreasing Subsequences – p. 16



w = 9, 11, 6, 14, 2, 10, 1, 5, 13, 3, 16, 8, 15, 4, 12, 17

$$(x^2 - y^2)^2 + 2(x^2 + y^2) = 3$$

Area enclosed by curve

$$\alpha = 8 \int_0^1 \frac{1}{\sqrt{(1-t^2)(1-(t/3)^2)}} dt$$
$$-6 \int_0^1 \sqrt{\frac{1-(t/3)^2}{1-t^2}} dt$$
$$= 4(0.94545962\cdots)$$

$$\begin{split} \boldsymbol{E}(\boldsymbol{n}) &= \text{ expectation of } \mathrm{is}(w), \ w \in \mathfrak{S}_n \\ &= \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \mathrm{is}(w) \\ &= \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2 \end{split}$$

$$\begin{split} \boldsymbol{E}(\boldsymbol{n}) &= \text{ expectation of } \mathrm{is}(w), \ w \in \mathfrak{S}_n \\ &= \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \mathrm{is}(w) \\ &= \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 \left(f^{\lambda} \right)^2 \end{split}$$

Ulam: what is distribution of is(w)? rate of growth of E(n)?

Work of Hammersley

Hammersley (1972):

$$\exists \ c = \lim_{n \to \infty} n^{-1/2} E(n),$$

and

 $\frac{\pi}{2} \le c \le e.$

Work of Hammersley

Hammersley (1972):

$$\exists \ c = \lim_{n \to \infty} n^{-1/2} E(n),$$

and

$$\frac{\pi}{2} \le c \le e.$$

Conjectured c = 2.

Increasing and Decreasing Subsequences – p. 2²

Logan-Shepp, Vershik-Kerov (1977): c = 2

c = 2

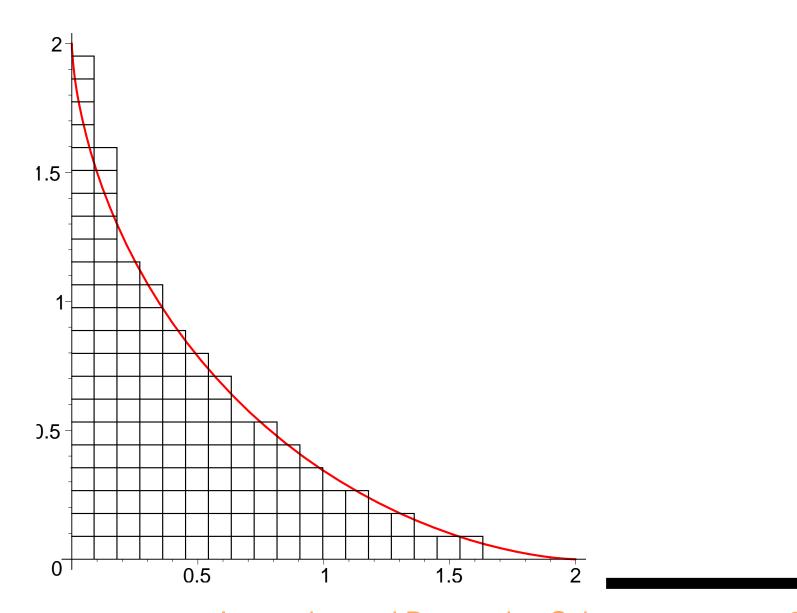
Logan-Shepp, Vershik-Kerov (1977): c = 2Idea of proof.

$$E(n) = \frac{1}{n!} \sum_{\lambda \vdash n} \lambda_1 (f^{\lambda})^2$$
$$\approx \frac{1}{n!} \max_{\lambda \vdash n} \lambda_1 (f^{\lambda})^2$$

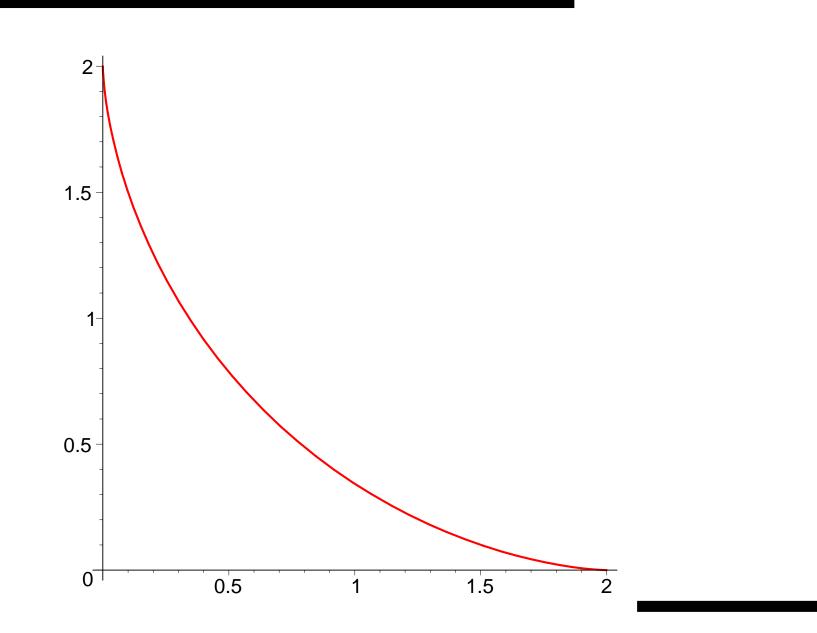
Find "limiting shape" of $\lambda \vdash n$ maximizing λ as $n \to \infty$ using hook-length formula.

Increasing and Decreasing Subsequences – p. 22

A big shape



The limiting curve



Equation of limiting curve

$$x = y + 2\cos\theta$$
$$y = \frac{2}{\pi}(\sin\theta - \theta\cos\theta)$$
$$0 \le \theta \le \pi$$

$\boldsymbol{u_k(n)} := \#\{w \in \mathfrak{S}_n : \operatorname{is}_n(w) \le k\}.$

$$u_k(n) := \#\{w \in \mathfrak{S}_n : is_n(w) \le k\}.$$

J. M. Hammersley (1972):

$$u_2(n) = C_n = \frac{1}{n+1} \binom{2n}{n},$$

a Catalan number.

$$\boldsymbol{u_k(n)} := \#\{w \in \mathfrak{S}_n : \operatorname{is}_n(w) \le k\}.$$

J. M. Hammersley (1972):

$$u_2(n) = C_n = \frac{1}{n+1} \binom{2n}{n},$$

a Catalan number.

For \geq 160 combinatorial interpretations of C_n , see

www-math.mit.edu/~rstan/ec

Increasing and Decreasing Subsequences – p. 26

Gessel's theorem

I. Gessel (1990):

$$\sum_{n\geq 0} u_k(n) \frac{x^{2n}}{n!^2} = \det \left[I_{|i-j|}(2x) \right]_{i,j=1}^k,$$

where

$$I_m(2x) = \sum_{j \ge 0} \frac{x^{m+2j}}{j!(m+j)!},$$

a hyperbolic Bessel function of the first kind of order m.

The case k = 2

Example. $\sum_{n\geq 0} u_2(n) \frac{x^{2n}}{n!^2}$

 $= I_0(2x)^2 - I_1(2x)^2$

 $=\sum_{n\geq 0}C_n\frac{x^{2n}}{n!^2}.$

Painlevé II equation

Baik-Deift-Johansson:

Define u(x) by

$$\frac{d^2}{dx^2}u(x) = 2u(x)^3 + xu(x) \quad (*),$$

with certain initial conditions.

Painlevé II equation

Baik-Deift-Johansson:

Define u(x) by

$$\frac{d^2}{dx^2}u(x) = 2u(x)^3 + xu(x) \quad (*),$$

with certain initial conditions.

(*) is the **Painlevé II** equation (roughly, the branch points and essential singularities are independent of the initial conditions).

Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

- **1890**: Grand Prix des Sciences Mathématiques
- **1908**: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

- **1890**: Grand Prix des Sciences Mathématiques
- **1908**: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.
- 1917, 1925: Prime Minister of France.

- **1890**: Grand Prix des Sciences Mathématiques
- **1908**: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.
- 1917, 1925: Prime Minister of France.
- 1933: died in Paris.

The Tracy-Widom distribution

$$\boldsymbol{F(t)} = \exp\left(-\int_t^\infty (x-t)u(x)^2\,dx\right)$$

where u(x) is the Painlevé II function.

Increasing and Decreasing Subsequences – p. 3²

The Baik-Deift-Johansson theorem

Let χ be a random variable with distribution F, and let χ_n be the random variable on \mathfrak{S}_n :

$$\chi_n(w) = \frac{\mathrm{is}_n(w) - 2\sqrt{n}}{n^{1/6}}$$

Let χ be a random variable with distribution F, and let χ_n be the random variable on \mathfrak{S}_n :

$$\chi_n(w) = \frac{\mathrm{is}_n(w) - 2\sqrt{n}}{n^{1/6}}$$

Theorem. As $n \to \infty$,

 $\chi_n \rightarrow \chi$ in distribution,

i.e.,

$$\lim_{n \to \infty} \operatorname{Prob}(\chi_n \le t) = F(t).$$

Expectation redux

Recall $E(n) \sim 2\sqrt{n}$.

Expectation redux

Recall
$$E(n) \sim 2\sqrt{n}$$
.

Corollary to BDJ theorem.

$$E(n) = 2\sqrt{n} + \left(\int t \, dF(t)\right) n^{1/6} + o(n^{1/6})$$

 $= 2\sqrt{n} - (1.7711\cdots)n^{1/6} + o(n^{1/6})$

Gessel's theorem reduces the problem to "just" analysis, viz., the **Riemann-Hilbert problem** in the theory of integrable systems, and the **method of steepest descent** to analyze the asymptotic behavior of integrable systems.

Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution F(t) come from?

$$F(t) = \exp\left(-\int_{t}^{\infty} (x-t)u(x)^{2} dx\right)$$

$$\frac{d^2}{dx^2}u(x) = 2u(x)^3 + xu(x)$$

Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for $n \times n$ hermitian matrices $M = (M_{ij})$:

Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for $n \times n$ hermitian matrices $M = (M_{ij})$:

$$Z_n^{-1}e^{-\operatorname{tr}(M^2)}dM,$$

$$dM = \prod_{i} dM_{ii} \cdot \prod_{i < j} d(\Re M_{ij}) d(\Im M_{ij}),$$

where Z_n is a normalization constant.

Tracy-Widom theorem

Tracy-Widom (1994): let α_1 denote the largest eigenvalue of M. Then

 $\lim_{n \to \infty}$

Prob
$$\left(\left(\alpha_1 - \sqrt{2n}\right)\sqrt{2n^{1/6}} \le t\right)$$

= $F(t)$.

Random topologies

Is the connection between is(w) and GUE a coincidence?

Is the connection between is(w) and GUE a coincidence?

Okounkov provides a connection, via the theory of **random topologies on surfaces**. Very briefly, a surface can be described in two ways:

- Gluing polygons along their edges, connected to random matrices via quantum gravity.
- Ramified covering of a sphere, which can be formulated in terms of permutations.

Alternating sequence of length *k*:

$$b_1 > b_2 < b_3 > b_4 < \cdots b_k$$

E_n : number of alternating $w \in \mathfrak{S}_n$ (Euler number)

 $E_4 = 5$: 2134, 3142, 3241, 4132, 4231

Alternating sequence of length *k*:

$$b_1 > b_2 < b_3 > b_4 < \cdots b_k$$

 E_n : number of alternating $w \in \mathfrak{S}_n$ (Euler number)

 $E_4 = 5$: 2134, 3142, 3241, 4132, 4231

Désiré André (1840–1917): showed in 1879 that

$$\sum_{n\geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

as(w) = length of longest alternating subseq. of w

as(w) = length of longest alternating subseq. of w

$w = \mathbf{56218347} \Rightarrow \operatorname{as}(w) = 5$

MAIN LEMMA. $\forall w \in \mathfrak{S}_n \exists$ alternating subsequence of maximal length that contains n.

Increasing and Decreasing Subsequences – p. 4²

MAIN LEMMA. $\forall w \in \mathfrak{S}_n \exists$ alternating subsequence of maximal length that contains n.

$$\begin{aligned} \mathbf{a}_{k}(n) &= \#\{w \in \mathfrak{S}_{n} : \operatorname{as}(w) = k\} \\ \mathbf{b}_{k}(n) &= a_{1}(n) + a_{2}(n) + \dots + a_{k}(n) \\ &= \#\{w \in \mathfrak{S}_{n} : \operatorname{as}(w) \leq k\}. \end{aligned}$$

Increasing and Decreasing Subsequences – p. 4²

Recurrence for $a_k(n)$

$$\Rightarrow a_k(n) = \sum_{j=1}^n \binom{n-1}{j-1}$$

$$\sum_{2r+s=k-1} \left(a_{2r}(j-1) + a_{2r+1}(j-1) \right) a_s(n-j)$$

B(x,t) and A(x,t)

Define

$$oldsymbol{B}(oldsymbol{x},oldsymbol{t}) = \sum_{k,n\geq 0} b_k(n) t^k rac{x^n}{n!}$$

$$oldsymbol{A(x,t)} = \sum_{k,n\geq 0} a_k(n) t^k rac{x^n}{n!}$$

The main generating function

Theorem.

$$B(x,t) = \frac{2/\rho}{1 - \frac{1-\rho}{t}e^{\rho x}} - \frac{1}{\rho}$$
$$A(x,t) = (1-t)B(x,t),$$

where $\rho = \sqrt{1-t^2}$.

Formulas for $b_k(n)$

Corollary.

$$\Rightarrow b_1(n) = 1$$

$$b_2(n) = n$$

$$b_3(n) = \frac{1}{4}(3^n - 2n + 3)$$

$$b_4(n) = \frac{1}{8}(4^n - (2n - 4)2^n)$$

Formulas for $b_k(n)$

Corollary.

$$\Rightarrow b_1(n) = 1$$

$$b_2(n) = n$$

$$b_3(n) = \frac{1}{4}(3^n - 2n + 3)$$

$$b_4(n) = \frac{1}{8}(4^n - (2n - 4)2^n)$$

no such formulas for longest increasing subsequences

Mean (expectation) of as(w)

$$\boldsymbol{D(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \operatorname{as}(w),$$

the expectation of $\operatorname{as}(w)$ for $w \in \mathfrak{S}_n$

A formula for D(n)

 $\sum D(n)x^n = \frac{\partial}{\partial t}A(x,1)$ $n \ge 1$ $= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$ $= x + \sum \frac{4n+1}{6} x^n.$

A formula for D(n)

 $\sum D(n)x^n = \frac{\partial}{\partial t}A(x,1)$ $n \ge 1$ $= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$ $= x + \sum \frac{4n+1}{6} x^n.$ $\Rightarrow D(n) = \frac{4n+1}{\epsilon}, n \ge 2$

Comparison of E(n) and D(n)

$$D(n) = \frac{4n+1}{6}, \quad n \ge 2$$
$$E(n) \sim 2\sqrt{n}$$

Variance of as(w)

$$\boldsymbol{V(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of $\operatorname{as}(n)$ for $w \in \mathfrak{S}_n$

Variance of as(w)

$$\boldsymbol{V(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of $\operatorname{as}(n)$ for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

Variance of as(w)

$$\boldsymbol{V(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of $\operatorname{as}(n)$ for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

similar results for higher moments

A new distribution?

$$\mathbf{P(t)} = \lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}_n(w) - 2n/3}{\sqrt{n}} \le t \right)$$

A new distribution?

$$\mathbf{P(t)} = \lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}_n(w) - 2n/3}{\sqrt{n}} \le t \right)$$

Stanley distribution?

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45}/4} e^{-s^2} \, ds$$

(Gaussian distribution)

Increasing and Decreasing Subsequences – p. 5²

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45}/4} e^{-s^2} \, ds$$

(Gaussian distribution)

k-alternating sequences

Given $k \ge 1$, define a sequence $a_1 a_2 \cdots a_n$ of integers to be *k*-alternating if

$a_i > a_{i+1} \Leftrightarrow i \equiv 1 \pmod{k}.$

k-alternating sequences

Given $k \ge 1$, define a sequence $a_1 a_2 \cdots a_n$ of integers to be *k*-alternating if

$a_i > a_{i+1} \Leftrightarrow i \equiv 1 \pmod{k}.$

Example. 61482572 is 3-alternating

 $a_k(w)$ and $E_k(n)$

$a_k(w)$: length of longest k – alt. subsequence of w

 $a_k(w)$ and $E_k(n)$

$a_k(w)$: length of longest k – alt. subsequence of w

$$a_{n-1}(w) = \operatorname{is}(w)$$

 $a_2(w) = \operatorname{as}(w)$

 $a_k(w)$ and $E_k(n)$

 $a_k(w)$: length of longest k – alt. subsequence of w

$$a_{n-1}(w) = is(w)$$
$$a_2(w) = as(w)$$

$$egin{aligned} m{E}_{m{k}}(m{n}) &= ext{expectation of } a_k(w) \ &= ext{$\frac{1}{n!}\sum_{w\in\mathfrak{S}_n}a_k(w)$} \end{aligned}$$

 $E_k(n)$ interpolates between $E(n) \sim 2\sqrt{n}$ and $D(n) \sim 2n/3$. Is there a sharp cutoff between $c\sqrt{n}$ and cn behavior, or do we get intermediate values like cn^{α} , $\frac{1}{2} < \alpha < 1$, say for $k = \sqrt{n}$?

 $E_k(n)$ interpolates between $E(n) \sim 2\sqrt{n}$ and $D(n) \sim 2n/3$. Is there a sharp cutoff between $c\sqrt{n}$ and cn behavior, or do we get intermediate values like cn^{α} , $\frac{1}{2} < \alpha < 1$, say for $k = \sqrt{n}$?

Similar questions for the limiting distribution: do we interpolate between Tracy-Widom and Gaussian?

Same questions if we replace *k*-alternating with:

 $a_i > a_{i+1} \Leftrightarrow \lfloor i/k \rfloor$ is even.

E.g., k = 3:

 $a_1 > a_2 > a_3 < a_4 < a_5 > a_6 > a_7 < \cdots$

