Increasing and Decreasing Subsequences

Richard P. Stanley
M.I.T.

$$
\left.\begin{array}{cccccc}
\rightarrow & H^{n-1}(X) & \xrightarrow{0} & H^{n}(X) & \rightarrow & H^{n+1}(X)
\end{array}\right) \rightarrow
$$

$$
\begin{aligned}
& \rightarrow H^{n-1}(X) \\
& \\
& \rightarrow E^{n-1} \oplus X^{n-1} \\
& \\
& \downarrow \\
& \rightarrow
\end{aligned}
$$

Permutations

Permutations

First lecture: increasing and decreasing subsequences

Permutations

First lecture: increasing and decreasing subsequences

Second lecture: alternating permutations

Permutations

First lecture: increasing and decreasing subsequences

Second lecture: alternating permutations
Third lecture: reduced decompositions

Definitions

318496725 (increasing subsequence)
318496725 (decreasing subsequence)

$$
\begin{aligned}
\mathbf{i s}(w) & =\mid \text { longest i.s. } \mid=4 \\
\mathbf{d s}(w) & =\mid \text { longest d.s. } \mid=3
\end{aligned}
$$

Application: airplane boarding

Naive model: passengers board in order $w=a_{1} a_{2} \cdots a_{n}$ for seats $1,2, \ldots, n$. Each passenger takes one time unit to be seated after arriving at his seat.

Boarding process

$\longleftarrow 253614$

Boarding process

$\longleftarrow 253614$

Boarding process

$\longleftarrow 253614$

Boarding process

$\longleftarrow 253614$

$6 \quad 4$

Results

Easy: Total waiting time $=$ is (w).
Bachmat, et al.: more sophisticated model.

Results

Easy: Total waiting time $=$ is (w).
Bachmat, et al.: more sophisticated model.

Two conclusions:

- Usual system (back-to-front) not much better than random.
- Better: first board window seats, then center, then aisle.

Partitions

partition $\lambda \vdash n: \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0 \\
\sum \lambda_{i}=n
\end{gathered}
$$

Young diagrams

(Young) diagram of $\lambda=(4,4,3,1)$:

Conjugate partitions

$\lambda^{\prime}=(4,3,3,2)$, the conjugate partition to
$\lambda=(4,4,3,2)$

λ

λ

Standard Young tableau

standard Young tableau (SYT) of shape $\lambda \vdash n$,
e.g., $\lambda=(4,4,3,1)$:

f^{λ}

$f^{\lambda}=\#$ of SYT of shape λ
E.g., $f^{(3,2)}=5$:
123
124
125
134
135
45
35
34
25
24
$f^{\lambda}=\#$ of SYT of shape λ

$$
\text { E.g., } f^{(3,2)}=5 \text { : }
$$

$$
\begin{array}{lllll}
123 & 124 & 125 & 134 & 135 \\
45 & 35 & 34 & 25 & 24
\end{array}
$$

\exists simple formula for f^{λ} (Frame-Robinson-Thrall hook-length formula)
$f^{\lambda}=\#$ of SYT of shape λ
E.g., $f^{(3,2)}=5$:

$$
\begin{array}{lllll}
123 & 124 & 125 & 134 & 135 \\
45 & 35 & 34 & 25 & 24
\end{array}
$$

\exists simple formula for f^{λ} (Frame-Robinson-Thrall hook-length formula)
Note. $f^{\lambda}=\operatorname{dim}\left(\right.$ irrep. of $\left.\mathfrak{S}_{n}\right)$, where \mathfrak{S}_{n} is the symmetric group of all permutations of $1,2 \ldots, n$.

RSK algorithm

RSK algorithm: a bijection

$$
w \xrightarrow{\text { rsk }}(P, Q),
$$

where $w \in \mathfrak{S}_{n}$ and P, Q are SYT of the same shape $\lambda \vdash n$.
Write $\lambda=\operatorname{sh}(w)$, the shape of w.

RSK algorithm

RSK algorithm: a bijection

$$
w \xrightarrow{\text { rsk }}(P, Q),
$$

where $w \in \mathfrak{S}_{n}$ and P, Q are SYT of the same shape $\lambda \vdash n$.
Write $\lambda=\boldsymbol{s h}(w)$, the shape of w.
$\mathbf{R}=$ Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
$\mathbf{K}=$ Donald Ervin Knuth

Example of RSK

Example of RSK

$$
\begin{aligned}
& w=4132: \\
& \begin{array}{rrrrl}
4 & 1 & 3 & 2 & 4 \\
4 & 1 & 13 & 12 & 12 \\
& 4 & 4 & 3 & 3 \\
& & & 4 &
\end{array} \\
& 3121 \\
& (P, Q)=\left(\begin{array}{ll}
12 & 13 \\
3 \\
4
\end{array}, \quad \begin{array}{l}
2 \\
4
\end{array}\right)
\end{aligned}
$$

Schensted's theorem

Theorem. Let $w \xrightarrow{\text { rsk }}(P, Q)$, where $\operatorname{sh}(P)=\operatorname{sh}(Q)=\lambda$. Then

$$
\begin{aligned}
\text { is }(w) & =\text { longest row length }=\lambda_{1} \\
\mathrm{ds}(w) & =\text { longest column length }=\lambda_{1}^{\prime} .
\end{aligned}
$$

Schensted's theorem

Theorem. Let $w \xrightarrow{\text { rsk }}(P, Q)$, where $\operatorname{sh}(P)=\operatorname{sh}(Q)=\lambda$. Then

$$
\begin{aligned}
\operatorname{is}(w) & =\text { longest row length }=\lambda_{1} \\
\operatorname{ds}(w) & =\text { longest column length }=\lambda_{1}^{\prime}
\end{aligned}
$$

Example. $4132 \xrightarrow{\text { rsk }}\left(\begin{array}{ll}12 \\ 3 \\ 4\end{array}, \begin{array}{l}13 \\ 4\end{array}\right)$

$$
\operatorname{is}(w)=2, \quad \mathrm{ds}(w)=3
$$

Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let
$w \in \mathfrak{S}_{p q+1}$. Then either is $(w)>p$ or $\mathrm{ds}(w)>q$.

Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{p q+1}$. Then either is $(w)>p$ or $\mathrm{ds}(w)>q$.

Proof. Let $\lambda=\operatorname{sh}(w)$. If is $(w) \leq p$ and $\mathrm{ds}(w) \leq q$ then $\lambda_{1} \leq p$ and $\lambda_{1}^{\prime} \leq q$, so $\sum \lambda_{i} \leq p q$. \square

An extremal case

Corollary. Say $p \leq q$. Then

$$
\begin{gathered}
\#\left\{w \in \mathfrak{S}_{p q}: \operatorname{is}(w)=p, \operatorname{ds}(w)=q\right\} \\
=\left(f^{\left(p^{q}\right)}\right)^{2}
\end{gathered}
$$

An extremal case

Corollary. Say $p \leq q$. Then

$$
\begin{gathered}
\#\left\{w \in \mathfrak{S}_{p q}: \operatorname{is}(w)=p, \operatorname{ds}(w)=q\right\} \\
=\left(f^{\left(p^{q}\right)}\right)^{2}
\end{gathered}
$$

By hook-length formula, this is

$$
\left(\frac{(p q)!}{1^{1} 2^{2} \cdots p^{p}(p+1)^{p} \cdots q^{p}(q+1)^{p-1} \cdots(p+q-1)^{1}}\right)^{2} .
$$

Romik's theorem

Romik: let

$$
w \in \mathfrak{S}_{n^{2}}, \operatorname{is}(w)=\operatorname{ds}(w)=n
$$

Let P_{w} be the permutation matrix of w with corners $(\pm 1, \pm 1)$. Then (informally) as $n \rightarrow \infty$ almost surely the 1's in P_{w} will become dense in the region bounded by the curve

$$
\left(x^{2}-y^{2}\right)^{2}+2\left(x^{2}+y^{2}\right)=3
$$

and will remain isolated outside this region.

An example

										I				

$$
w=9,11,6,14,2,10,1,5,13,3,16,8,15,4,12,17
$$

$\left(x^{2}-y^{2}\right)^{2}+2\left(x^{2}+y^{2}\right)=3$

Area enclosed by curve

$$
\begin{aligned}
\alpha= & 8 \int_{0}^{1} \frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-(t / 3)^{2}\right)}} d t \\
& -6 \int_{0}^{1} \sqrt{\frac{1-(t / 3)^{2}}{1-t^{2}}} d t \\
= & 4(0.94545962 \cdots)
\end{aligned}
$$

Expectation of is (w)

$\boldsymbol{E}(\boldsymbol{n})=$ expectation of is $(w), w \in \mathfrak{S}_{n}$

$$
\begin{aligned}
& =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \operatorname{is}(w) \\
& =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}
\end{aligned}
$$

Expectation of is (w)

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{n}) & =\operatorname{expectation~of~is~}(w), w \in \mathfrak{S}_{n} \\
& =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \text { is }(w) \\
& =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}
\end{aligned}
$$

Ulam: what is distribution of is (w) ? rate of growth of $E(n)$?

Work of Hammersley

Hammersley (1972):

$$
\exists c=\lim _{n \rightarrow \infty} n^{-1 / 2} E(n),
$$

and

$$
\frac{\pi}{2} \leq c \leq e
$$

Work of Hammersley

Hammersley (1972):

$$
\exists c=\lim _{n \rightarrow \infty} n^{-1 / 2} E(n),
$$

and

$$
\frac{\pi}{2} \leq c \leq e
$$

Conjectured $c=2$.

$c=2$

Logan-Shepp, Vershik-Kerov (1977): $c=2$
$c=2$

Logan-Shepp, Vershik-Kerov (1977): $c=2$ Idea of proof.

$$
\begin{aligned}
E(n) & =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} \\
& \approx \frac{1}{n!} \max _{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} .
\end{aligned}
$$

Find "limiting shape" of $\lambda \vdash n$ maximizing λ as $n \rightarrow \infty$ using hook-length formula.

A "big" partition

Increasing and Decreasing Subsequences - 0. 25

The limiting curve

Equation of limiting curve

$$
\begin{aligned}
x= & y+2 \cos \theta \\
y= & \frac{2}{\pi}(\sin \theta-\theta \cos \theta) \\
& 0 \leq \theta \leq \pi
\end{aligned}
$$

is $(w) \leq 2$

$$
\boldsymbol{u}_{\boldsymbol{k}}(\boldsymbol{n}):=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{is}_{n}(w) \leq k\right\} .
$$

$\operatorname{is}(w) \leq 2$

$$
\boldsymbol{u}_{\boldsymbol{k}}(\boldsymbol{n}):=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{is}_{n}(w) \leq k\right\} .
$$

J. M. Hammersley (1972):

$$
u_{2}(n)=C_{n}=\frac{1}{n+1}\binom{2 n}{n},
$$

a Catalan number.

$$
\boldsymbol{u}_{k}(\boldsymbol{n}):=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{is}_{n}(w) \leq k\right\} .
$$

J. M. Hammersley (1972):

$$
u_{2}(n)=C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

a Catalan number.

For >170 combinatorial interpretations of C_{n}, see
www-math.mit.edu/~rstan/ec

Gessel's theorem

I. Gessel (1990):

$$
\sum_{n \geq 0} u_{k}(n) \frac{x^{2 n}}{n!^{2}}=\operatorname{det}\left[I_{|i-j|}(2 x)\right]_{i, j=1}^{k}
$$

where

$$
I_{m}(2 x)=\sum_{j \geq 0} \frac{x^{m+2 j}}{j!(m+j)!},
$$

a hyperbolic Bessel function of the first kind of order m.

The case $k=2$

Example. $\sum_{n \geq 0} u_{2}(n) \frac{x^{2 n}}{n!!^{2}}$

$$
\begin{aligned}
& =I_{0}(2 x)^{2}-I_{1}(2 x)^{2} \\
= & \sum_{n \geq 0} C_{n} \frac{x^{2 n}}{n!^{2}}
\end{aligned}
$$

Painlevé II equation

Baik-Deift-Johansson:

Define $u(x)$ by

$$
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x) \quad(*)
$$

with certain initial conditions.

Painlevé II equation

Baik-Deift-Johansson:

Define $\boldsymbol{u}(\boldsymbol{x})$ by

$$
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x) \quad(*)
$$

with certain initial conditions.
(*) is the Painlevé II equation (roughly, the branch points and essential singularities are independent of the initial conditions).

Paul Painlevé

1863: born in Paris.

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.
1917, 1925: Prime Minister of France.

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.

The Tracy-Widom distribution

$$
\boldsymbol{F}(\boldsymbol{t})=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right)
$$

where $u(x)$ is the Painlevé II function.

The Baik-Deift-Johansson theorem

Let χ be a random variable with distribution F, and let χ_{n} be the random variable on \mathfrak{S}_{n} :

$$
\chi_{n}(w)=\frac{\mathrm{is}_{n}(w)-2 \sqrt{n}}{n^{1 / 6}}
$$

The Baik-Deift-Johansson theorem

Let χ be a random variable with distribution F, and let χ_{n} be the random variable on \mathfrak{S}_{n} :

$$
\chi_{n}(w)=\frac{\operatorname{is}_{n}(w)-2 \sqrt{n}}{n^{1 / 6}} .
$$

Theorem. As $n \rightarrow \infty$,
$\chi_{n} \rightarrow \chi$ in distribution,
i.e.,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\chi_{n} \leq t\right)=F(t) .
$$

Expectation redux

Recall $E(n) \sim 2 \sqrt{n}$.

Expectation redux

Recall $E(n) \sim 2 \sqrt{n}$.

Corollary to BDJ theorem.

$$
\begin{aligned}
E(n) & =2 \sqrt{n}+\left(\int t d F(t)\right) n^{1 / 6}+o\left(n^{1 / 6}\right) \\
& =2 \sqrt{n}-(1.7711 \cdots) n^{1 / 6}+o\left(n^{1 / 6}\right)
\end{aligned}
$$

Proof of BDJ theorem

Gessel's theorem reduces the problem to "just" analysis, viz., the Riemann-Hilbert problem in the theory of integrable systems, and the method of steepest descent to analyze the asymptotic behavior of integrable systems.

Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution $F(t)$ come from?

$$
\begin{gathered}
F(t)=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right) \\
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x)
\end{gathered}
$$

Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for $n \times n$ hermitian matrices $M=\left(M_{i j}\right)$:

Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for $n \times n$ hermitian matrices $M=\left(M_{i j}\right)$:

$$
\begin{gathered}
Z_{n}^{-1} e^{-\operatorname{tr}\left(M^{2}\right)} d M, \\
d M=\prod_{i} d M_{i i} \cdot \prod_{i<j} d\left(\Re M_{i j}\right) d\left(\Im M_{i j}\right),
\end{gathered}
$$

where Z_{n} is a normalization constant.

Tracy-Widom theorem

Tracy-Widom (1994): let α_{1} denote the largest eigenvalue of M. Then

lim

$n \rightarrow \infty$

$$
\begin{gathered}
\operatorname{Prob}\left(\left(\alpha_{1}-\sqrt{2 n}\right) \sqrt{2} n^{1 / 6} \leq t\right) \\
=F(t)
\end{gathered}
$$

Random topologies

Is the connection between is (w) and GUE a coincidence?

Random topologies

Is the connection between is (w) and GUE a coincidence?

Okounkov provides a connection, via the theory of random topologies on surfaces. Very briefly, a surface can be described in two ways:

- Gluing polygons along their edges, connected to random matrices via quantum gravity.
- Ramified covering of a sphere, which can be formulated in terms of permutations.

Two variations

1. Matchings
2. Pattern avoidance

Joint with：

$$
\begin{gathered}
\text { Bill Chen 陈永川 } \\
\text { Eva Deng 邓玉平 } \\
\text { Rosena Du 杜若霞 } \\
\text { Catherine Yan 颜华菲 }
\end{gathered}
$$

Complete matchings

(complete) matching:

Complete matchings

(complete) matching:

total number of matchings on
$[2 n]:=\{1,2, \ldots, 2 n\}$ is

$$
(2 n-1)!!:=1 \cdot 3 \cdot 5 \cdots(2 n-1)
$$

Crossings and nestings

3-nesting

Crossing and nesting number

$$
\begin{aligned}
\boldsymbol{M} & =\text { matching } \\
\operatorname{cr}(M) & =\max \{k: \exists k \text {-crossing }\} \\
\mathbf{n e}(M) & =\max \{k: \exists k \text {-nesting }\}
\end{aligned}
$$

Crossing and nesting number

$$
\begin{aligned}
\boldsymbol{M} & =\text { matching } \\
\operatorname{cr}(M) & =\max \{k: \exists k \text {-crossing }\} \\
\mathbf{n e}(M) & =\max \{k: \exists k \text {-nesting }\}
\end{aligned}
$$

Theorem. The number of matchings on $[2 n]$ with no crossings (or with no nestings) is

$$
\boldsymbol{C}_{n}:=\frac{1}{n+1}\binom{2 n}{n}
$$

Main result on matchings

Theorem. Let $f_{n}(i, j)=$ \# matchings M on $[2 n]$ with $\operatorname{cr}(M)=i$ and $\operatorname{ne}(M)=j$. Then

$$
f_{n}(i, j)=f_{n}(j, i)
$$

Main result on matchings

Theorem. Let $f_{n}(i, j)=\#$ matchings M on $[2 n]$ with $\operatorname{cr}(M)=i$ and $\operatorname{ne}(M)=j$. Then

$$
f_{n}(i, j)=f_{n}(j, i)
$$

Corollary. \# matchings M on $[2 n]$ with $\operatorname{cr}(M)=k$ equals \# matchings M on $[2 n]$ with ne $(M)=k$.

Oscillating tableaux

shape $(3,1)$, length 8

Oscillating tableaux

$\phi \quad \square$

\square
\square

shape $(3,1)$, length 8

Proof sketch

Φ is a bijection from matchings on $1,2, \ldots, 2 n$ to oscillating tableaux of length $2 n$, shape \emptyset.

Corollary. Number of oscillating tableaux of length $2 n$, shape \emptyset, is $(2 n-1)!$!.

Proof sketch

Φ is a bijection from matchings on $1,2, \ldots, 2 n$ to oscillating tableaux of length $2 n$, shape \emptyset.

Corollary. Number of oscillating tableaux of length $2 n$, shape \emptyset, is $(2 n-1)!$!.
(related to Brauer algebra of dimension
$(2 n-1)!!)$.

Schensted for matchings

Schensted's theorem for matchings. Let

$$
\Phi(M)=\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right) .
$$

Then

$$
\begin{aligned}
\operatorname{cr}(M) & =\max \left\{\left(\lambda^{i}\right)_{1}^{\prime}: 0 \leq i \leq n\right\} \\
\operatorname{ne}(M) & =\max \left\{\lambda_{1}^{i}: 0 \leq i \leq n\right\} .
\end{aligned}
$$

Schensted for matchings

Schensted's theorem for matchings. Let

$$
\Phi(M)=\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right) .
$$

Then

$$
\begin{aligned}
\operatorname{cr}(M) & =\max \left\{\left(\lambda^{i}\right)_{1}^{\prime}: 0 \leq i \leq n\right\} \\
\operatorname{ne}(M) & =\max \left\{\lambda_{1}^{i}: 0 \leq i \leq n\right\} .
\end{aligned}
$$

Proof. Reduce to ordinary RSK.

An example

$\Phi(M) \quad \phi \quad \square \quad \boxminus \quad \square \quad \square \quad \square \quad \boxminus \quad \square \quad \phi$

An example

$\Phi(M) \quad \phi \quad \square \quad \phi$
$\operatorname{cr}(M)=2, \quad \operatorname{ne}(M)=2$

Now let $\operatorname{cr}(M)=i$, $\operatorname{ne}(M)=j$, and

$$
\Phi(M)=\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right) .
$$

Define M^{\prime} by

$$
\Phi\left(M^{\prime}\right)=\left(\emptyset=\left(\lambda^{0}\right)^{\prime},\left(\lambda^{1}\right)^{\prime}, \ldots,\left(\lambda^{2 n}\right)^{\prime}=\emptyset\right) .
$$

By Schensted's theorem for matchings,

$$
\operatorname{cr}\left(M^{\prime}\right)=j, \operatorname{ne}\left(M^{\prime}\right)=i
$$

Conclusion of proof

Thus $M \mapsto M^{\prime}$ is an involution on matchings of $[2 n]$ interchanging cr and ne.
\Rightarrow Theorem. Let $f_{n}(i, j)=$ \# matchings M on
$[2 n]$ with $\operatorname{cr}(M)=i$ and ne $(M)=j$. Then
$f_{n}(i, j)=f_{n}(j, i)$.

Simple description?

Open: simple description of $M \mapsto M^{\prime}$, the analogue of

$$
a_{1} a_{2} \cdots a_{n} \longmapsto a_{n} \cdots a_{2} a_{1}
$$

which interchanges is and ds.

$g_{k}(n)$

$$
\begin{aligned}
\boldsymbol{g}_{k}(\boldsymbol{n})= & \text { number of matching } M \text { on }[2 n] \\
& \text { with } \operatorname{cro}(M) \leq k
\end{aligned}
$$ (matching analogue of $u_{k}(n)$)

Grabiner-Magyar theorem

Theorem. Define

$$
\boldsymbol{H}_{\boldsymbol{k}}(\boldsymbol{x})=\sum_{n} g_{k}(n) \frac{x^{2 n}}{(2 n)!} .
$$

Then

$$
H_{k}(x)=\operatorname{det}\left[I_{|i-j|}(2 x)-I_{i+j}(2 x)\right]_{i, j=1}^{k}
$$

where

$$
I_{m}(2 x)=\sum_{j \geq 0} \frac{x^{m+2 j}}{j!(m+j)!}
$$

as before.

Gessel's theorem redux

Compare:

I. Gessel (1990):

$$
\sum_{n \geq 0} u_{k}(n) \frac{x^{2 n}}{n!^{2}}=\operatorname{det}\left[I_{|i-j|}(2 x)\right]_{i, j=1}^{k}
$$

Noncrossing example

Example. $k=1$ (noncrossing matchings):

$$
\begin{aligned}
H_{1}(x) & =I_{0}(2 x)-I_{2}(2 x) \\
& =\sum_{j \geq 0} C_{j} \frac{x^{2 j}}{(2 j)!} .
\end{aligned}
$$

Baik-Rains theorem

Baik-Rains (implicitly):

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{\mathrm{cr}_{n}(M)-\sqrt{2 n}}{(2 n)^{1 / 6}} \leq \frac{t}{2}\right)=F_{1}(t)
$$

where

$$
\boldsymbol{F}_{\mathbf{1}}(\boldsymbol{t})=\sqrt{F(t)} \exp \left(\frac{1}{2} \int_{t}^{\infty} u(s) d s\right)
$$

where $F(t)$ is the Tracy-Widom distribution and $u(t)$ the Painlevé II function.

Bounding $\operatorname{cr}(M)$ and ne (N)

$$
\begin{aligned}
\boldsymbol{g}_{j, k}(\boldsymbol{n}) & := \\
& \operatorname{cr}(M) \leq j, \operatorname{me}(M) \leq k\}
\end{aligned}
$$

Bounding $\operatorname{cr}(M)$ and ne (N)

$$
\begin{gathered}
\boldsymbol{g}_{j, k}(\boldsymbol{n}):=\#\{\text { matchings } M \text { on }[2 n], \\
\operatorname{cr}(M) \leq j, \operatorname{ne}(M) \leq k\} \\
g_{j, k}(n)=\#\left\{\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right):\right. \\
\left.\lambda^{i+1}=\lambda^{i} \pm \square, \lambda^{i} \subseteq j \times k \text { rectangle }\right\},
\end{gathered}
$$

a walk on a graph $L(j, k)$.

$L(2,3)$

Increasing and Decreasing Subsequences - p. $6($

Transfer matrix generating function

$\boldsymbol{A}=$ adjacency matrix of $\mathcal{H}(j, k)$
$\boldsymbol{A}_{\mathbf{0}}=$ adjacency matrix of $\mathcal{H}(j, k)-\{\emptyset\}$.

Transfer matrix generating function

$\boldsymbol{A}=$ adjacency matrix of $\mathcal{H}(j, k)$
 $\boldsymbol{A}_{\mathbf{0}}=$ adjacency matrix of $\mathcal{H}(j, k)-\{\emptyset\}$.

Transfer-matrix method \Rightarrow

$$
\sum_{n \geq 0} g_{j, k}(n) x^{2 n}=\frac{\operatorname{det}\left(I-x A_{0}\right)}{\operatorname{det}(I-x A)}
$$

Zeros of $\operatorname{det}(I-x A)$

Theorem (Grabiner, implicitly) Every zero of $\operatorname{det}(I-x A)$ has the form

$$
2\left(\cos \left(\pi r_{1} / m\right)+\cdots+\cos \left(\pi r_{j} / m\right)\right)
$$

where each $r_{i} \in \mathbb{Z}$ and $m=j+k+1$.

Zeros of $\operatorname{det}(I-x A)$

Theorem (Grabiner, implicitly) Every zero of $\operatorname{det}(I-x A)$ has the form

$$
2\left(\cos \left(\pi r_{1} / m\right)+\cdots+\cos \left(\pi r_{j} / m\right)\right)
$$

where each $r_{i} \in \mathbb{Z}$ and $m=j+k+1$.
Corollary. Every irreducible factor of $\operatorname{det}(I-x A)$ over \mathbb{Q} has degree dividing

$$
\frac{1}{2} \phi(2(j+k+1)),
$$

where ϕ is the Euler phi-function.

An example

Example.

$$
\begin{aligned}
& j=2, k=5, \frac{1}{2} \phi(16)=4: \\
& \operatorname{det}(I-x A)=\left(1-2 x^{2}\right)\left(1-4 x^{2}+2 x^{4}\right) \\
& \left(1-8 x^{2}+8 x^{4}\right)\left(1-8 x^{2}+8 x^{3}-2 x^{4}\right) \\
& \left(1-8 x^{2}-8 x^{3}-2 x^{4}\right)
\end{aligned}
$$

Another example

$$
\begin{aligned}
& j=k=3, \frac{1}{2} \phi(14)=3: \\
& \operatorname{det}(I-x A)=(1-x)(1+x)\left(1+x-9 x^{2}-x^{3}\right) \\
& \quad\left(1-x-9 x^{2}+x^{3}\right)\left(1-x-2 x^{2}+x^{3}\right)^{2} \\
& \left(1+x-2 x^{2}-x^{3}\right)^{2}
\end{aligned}
$$

An open problem

rank $(A)=$?
Or even: when is A invertible?

An open problem

rank $(A)=$?
Or even: when is A invertible?
Eigenvalues are known (and A is symmetric)

An open problem

$\operatorname{rank}(A)=$?
Or even: when is A invertible?
Eigenvalues are known (and A is symmetric)
Cannot tell from the trigonometric expression for the eigenvalues when they are 0.

Pattern avoidance

$$
\begin{aligned}
\boldsymbol{v} & =b_{1} \cdots b_{k} \in \mathfrak{S}_{k} \\
\boldsymbol{w} & =a_{1} \cdots a_{n} \in \mathfrak{S}_{n}
\end{aligned}
$$

w avoids v if no subsequence $a_{i_{1}} \cdots a_{i_{k}}$ of w is in the same relative order as v.

Pattern avoidance

$$
\begin{aligned}
\boldsymbol{v} & =b_{1} \cdots b_{k} \in \mathfrak{S}_{k} \\
\boldsymbol{w} & =a_{1} \cdots a_{n} \in \mathfrak{S}_{n}
\end{aligned}
$$

w avoids v if no subsequence $a_{i_{1}} \cdots a_{i_{k}}$ of w is in the same relative order as v.

352968147 does not avoid 3142.

Pattern avoidance

$$
\begin{aligned}
\boldsymbol{v} & =b_{1} \cdots b_{k} \in \mathfrak{S}_{k} \\
\boldsymbol{w} & =a_{1} \cdots a_{n} \in \mathfrak{S}_{n}
\end{aligned}
$$

w avoids v if no subsequence $a_{i_{1}} \cdots a_{i_{k}}$ of w is in the same relative order as v.

352968147 does not avoid 3142.
w has no increasing (decreasing) subsequence of length $k \Leftrightarrow w$ avoids $12 \cdots k(k \cdots 21)$.

The case $k=3$

Let $v \in \mathfrak{S}_{k}$. Define

$$
\begin{aligned}
\mathfrak{S}_{n}(\boldsymbol{v}) & =\left\{w \in \mathfrak{S}_{n}: w \text { avoids } v\right\} \\
\boldsymbol{s}_{n}(\boldsymbol{v}) & =\# \mathfrak{S}_{n}(v)
\end{aligned}
$$

The case $k=3$

Let $v \in \mathfrak{S}_{k}$. Define

$$
\begin{aligned}
\mathfrak{S}_{n}(\boldsymbol{v}) & =\left\{w \in \mathfrak{S}_{n}: w \text { avoids } v\right\} \\
\boldsymbol{s}_{n}(\boldsymbol{v}) & =\# \mathfrak{S}_{n}(v)
\end{aligned}
$$

Hammersley-Knuth-Rotem:

$$
s_{n}(123)=s_{n}(321)=C_{n} .
$$

The case $k=3$

Let $v \in \mathfrak{S}_{k}$. Define

$$
\begin{aligned}
\mathfrak{S}_{n}(\boldsymbol{v}) & =\left\{w \in \mathfrak{S}_{n}: w \text { avoids } v\right\} \\
\boldsymbol{s}_{\boldsymbol{n}}(\boldsymbol{v}) & =\# \mathfrak{S}_{n}(v)
\end{aligned}
$$

Hammersley-Knuth-Rotem:

$$
s_{n}(123)=s_{n}(321)=C_{n} .
$$

Knuth:

$$
s_{n}(132)=s_{n}(213)=s_{n}(231)=s_{n}(312)=C_{n} .
$$

Generating trees

Chung-Graham-Hoggatt-Kleiman, West: define $u \leq v$ if u is a subsequence of v.

$$
3142 \leq 835196427
$$

123 and 132 -avoiding trees

black: 123-avoiding
magenta: 132-avoiding

Structure of the tree

Wilf equivalence

Define $u \sim v$ if $s_{n}(u)=s_{n}(v)$ for all n.

Wilf equivalence

Define $u \sim v$ if $s_{n}(u)=s_{n}(v)$ for all n.
One equivalence class for $k=3$.

Wilf equivalence

Define $u \sim v$ if $s_{n}(u)=s_{n}(v)$ for all n.
One equivalence class for $k=3$.
Three equivalence classes for $k=4$.

The three classes for $k=4$

Gessel: $s_{n}(1234)=$

$$
\frac{1}{(n+1)^{2}(n+2)} \sum_{j=0}^{n}\binom{2 j}{j}\binom{n+1}{j+1}\binom{n+2}{j+2}
$$

The three classes for $k=4$

Gessel: $s_{n}(1234)=$

$$
\frac{1}{(n+1)^{2}(n+2)} \sum_{j=0}^{n}\binom{2 j}{j}\binom{n+1}{j+1}\binom{n+2}{j+2}
$$

Bóna:

$\sum_{n \geq 0} s_{n}(1342) x^{n}=\frac{32 x}{1+20 x-8 x^{2}-(1-8 x)^{3 / 2}}$,

The three classes for $k=4$

Gessel: $s_{n}(1234)=$

$$
\frac{1}{(n+1)^{2}(n+2)} \sum_{j=0}^{n}\binom{2 j}{j}\binom{n+1}{j+1}\binom{n+2}{j+2}
$$

Bóna:

$\sum_{n \geq 0} s_{n}(1342) x^{n}=\frac{32 x}{1+20 x-8 x^{2}-(1-8 x)^{3 / 2}}$,

Open: $s_{n}(1324)$

Ryan, Lakshmibai-Sandhya, Haiman:

Let $w \in \mathfrak{S}_{n}$. The Schubert variety Ω_{w} in the complete flag variety $\mathrm{GL}(n, \mathbb{C})$ is smooth if and only if w avoids 4231 and 3412.

Typical application

Ryan, Lakshmibai-Sandhya, Haiman:

Let $w \in \mathfrak{S}_{n}$. The Schubert variety Ω_{w} in the complete flag variety $\mathrm{GL}(n, \mathbb{C})$ is smooth if and only if w avoids 4231 and 3412.
$\sum_{n \geq 0} f(n) x^{n}=\frac{1}{1-x-\frac{x^{2}}{1-x}\left(\frac{2 x}{1+x-(1-x) C(x)}-1\right)}$,
where

$$
C(x)=\sum_{n \geq 0} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Increasing and Decreasing Subseauences - p. 7

