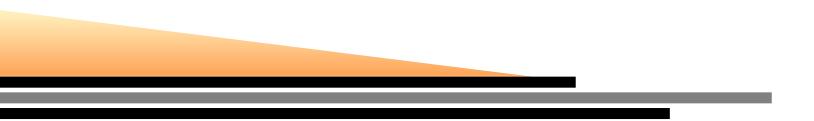


Smith Normal Form and Combinatorics

Richard P. Stanley

Smith Normal Form and Combinatorics - p. 1



I Really Appreciate

Great Enumerative S uccesses S tated Exceptionally Lucidly

Little known fact: perhaps the most influential work of Ira is related to

Little known fact: perhaps the most influential work of Ira is related to

QUAINT CUNEIFORM MYSTICS

Little known fact: perhaps the most influential work of Ira is related to

QUAINT CUNEIFORM MYSTICS

1 2 3 5 17 11 14 16 22 10 13 15 21 12 8 9 7 6 19 20 18 4

Smith Normal Form and Combinatorics - p. 3

Little known fact: perhaps the most influential work of Ira is related to

QUAINT CUNEIFORM MYSTICS

1 2 3 5 17 11 14 16 22 10 13 15 21 12 8 9 7 6 19 20 18 4

QUASISYMMETRIC FUNCTION

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that
 - $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$
- where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that

 $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$

- where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.
- **NOTE.** (1) Can extend to $m \times n$.

(2) unit $\cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n.$

Thus SNF is a refinement of \det .

If *R* is a **principal ideal ring** (PIR), such as \mathbb{Z} or K[x] (*K* = field), then *A* has a unique SNF up to units.

- If *R* is a **principal ideal ring** (PIR), such as \mathbb{Z} or K[x] (K =field), then *A* has a unique SNF up to units.
- Otherwise A "typically" does not have a SNF but may have one in special cases.

Row and column operations

- Over a principal ideal ring, can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.

Row and column operations

- Over a principal ideal ring, can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.
- Over a field, SNF is **row reduced echelon form** (with all unit entries equal to 1).

Algebraic interpretation of SNF

R: a PIR

A: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$

 $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Algebraic interpretation of SNF

R: a PIR

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

Algebraic interpretation of SNF

R: a PIR

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

 $R^n/(v_1, \dots, v_n) \cong (R/e_1R) \oplus \dots \oplus (R/e_nR).$ $R^n/(v_1, \dots, v_n)$: (Kastelyn) cokernel of A

An explicit formula for SNF

R: a PIR

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

An explicit formula for SNF

R: a PIR

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A
- **Theorem.** $e_1e_2 \cdots e_i$ is the gcd of all $i \times i$ minors of A.
- minor: determinant of a square submatrix.
- **Special case:** e_1 is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

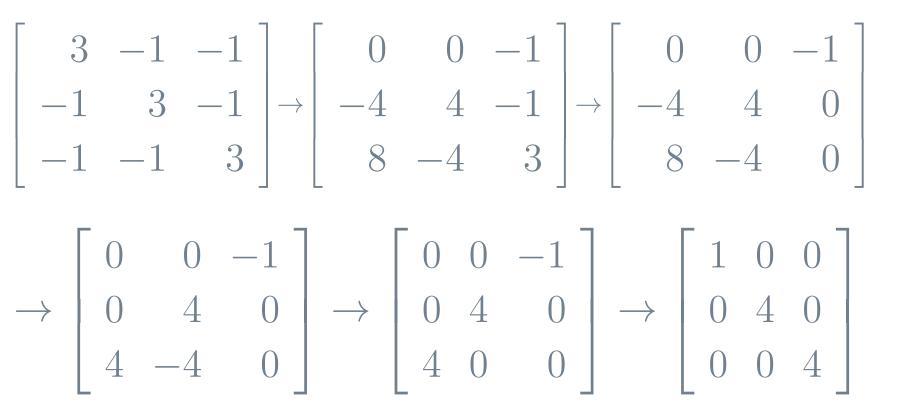
Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

What about SNF?

An example (continued)



Smith Normal Form and Combinatorics – p. 10

$L_0(G)$: reduced Laplacian matrix of the graph G

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

 $L_0(G)$: reduced Laplacian matrix of the graph G

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

Theorem. $L_0(K_n) \xrightarrow{\text{SNF}} \text{diag}(1, n, n, \dots, n)$, a refinement of Cayley's theorem that $\kappa(K_n) = n^{n-2}$.

 $L_0(G)$: reduced Laplacian matrix of the graph G

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

Theorem. $L_0(K_n) \xrightarrow{\text{SNF}} \text{diag}(1, n, n, \dots, n)$, a refinement of Cayley's theorem that $\kappa(K_n) = n^{n-2}$.

In general, SNF of $L_0(G)$ not understood.

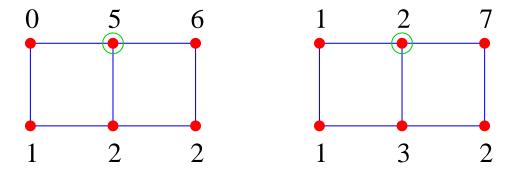
Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$\sigma\colon V\to\{0,1,2,\dots\}.$$

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$\sigma\colon V\to\{0,1,2,\dots\}.$$

toppling of a vertex v: if $\sigma(v) \ge \deg(v)$, then send a chip to each neighboring vertex.



Smith Normal Form and Combinatorics – p. 12

- Choose a vertex to be a **sink**, and ignore chips falling into the sink.
- stable configuration: no vertex can topple
- **Theorem** (easy). After finitely many topples a stable configuration will be reached, which is independent of the order of topples.

The monoid of stable configurations

- Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
- ideal of M: subset $J\subseteq M$ satisfying $\sigma J\subseteq J$ for all $\sigma\in M$

The monoid of stable configurations

- Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
- ideal of M: subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$
- **Exercise.** The (unique) minimal ideal of a finite commutative monoid is a group.

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to isomorphism.

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to isomorphism.

Theorem. Let

$$L_0(G) \xrightarrow{\text{SNF}} \text{diag}(e_1, \dots, e_{n-1}).$$

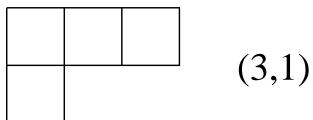
Then

 $K(G) \cong \mathbb{Z}/e_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/e_{n-1}\mathbb{Z}.$

Some matrices connected with Young diagrams

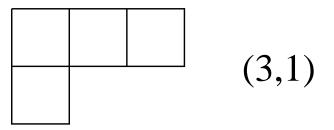
Extended Young diagrams

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram



Extended Young diagrams

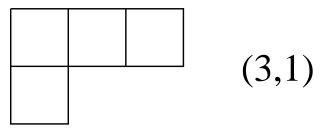
\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram



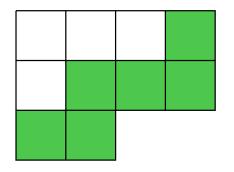
 λ^* : λ extended by a border strip along its entire boundary

Extended Young diagrams

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram



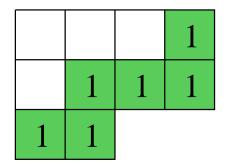
 λ^* : λ extended by a border strip along its entire boundary



$$(3,1)^* = (4,4,2)$$

Initialization

Insert 1 into each square of λ^*/λ .



$$(3,1)^* = (4,4,2)$$

Smith Normal Form and Combinatorics - p. 18



Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

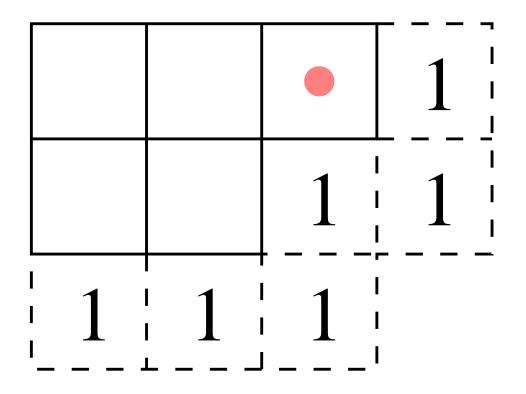
Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

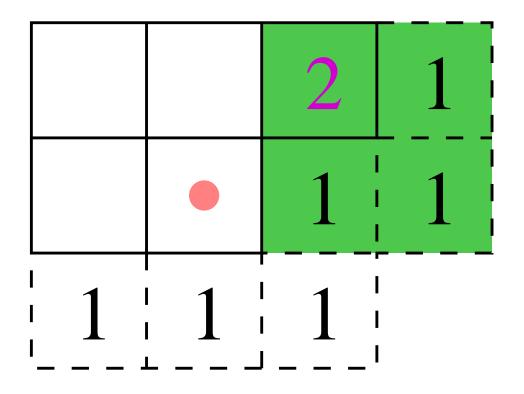
t		
		•

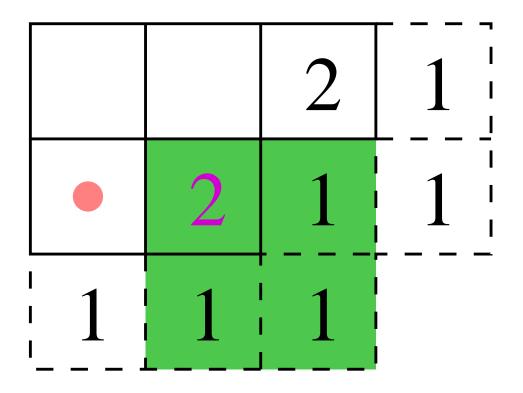
Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

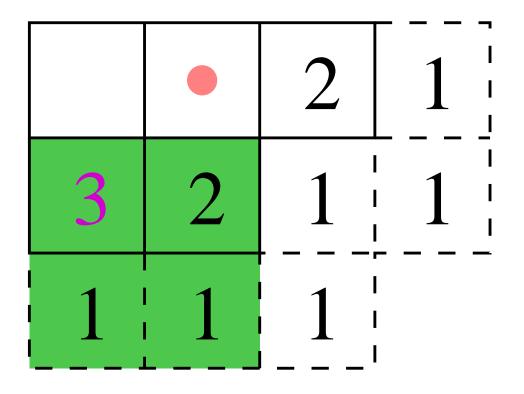
t		

Determinantal algorithm

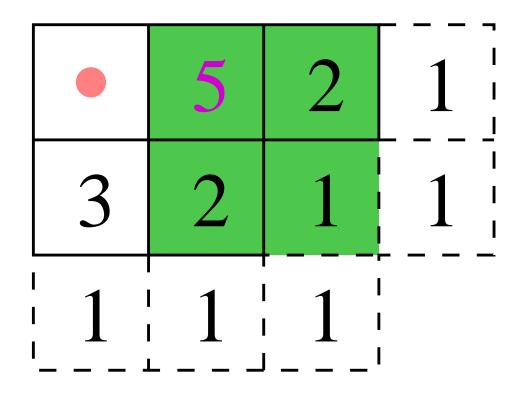




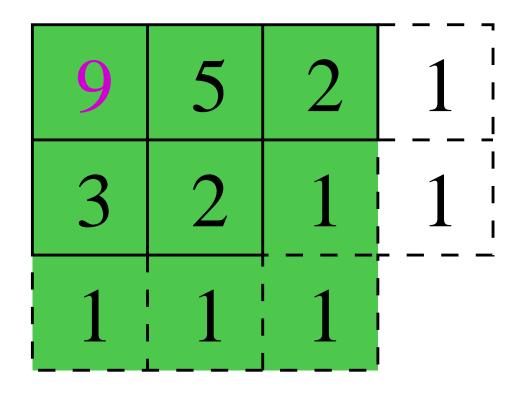




Determinantal algorithm



Determinantal algorithm



Easy to see: the numbers n_t are well-defined and unique.

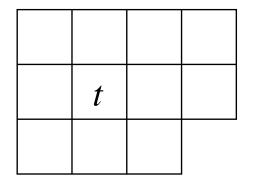
Easy to see: the numbers n_t are well-defined and unique.

Why? Expand det M_t by the first row. The coefficient of n_t is 1 by induction.

t)

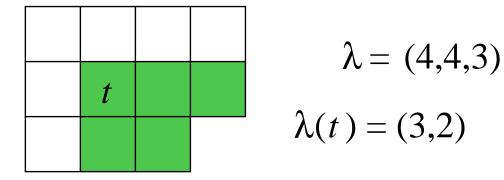
If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.



$$\lambda = (4, 4, 3)$$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

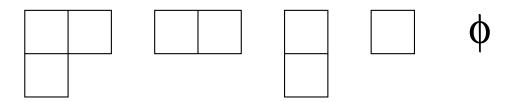


 $\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$

$$u_{\lambda}$$

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

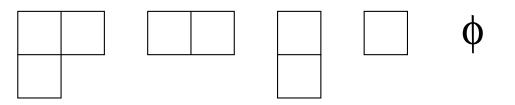
Example. $u_{(2,1)} = 5$:



$$u_{\lambda}$$

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:



There is a determinantal formula for u_{λ} , due essentially to **MacMahon** and later **Kreweras** (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = u_{\lambda(t)}$

Carlitz-Scoville-Roselle theorem

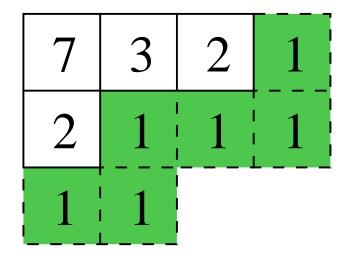
- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = u_{\lambda(t)}$

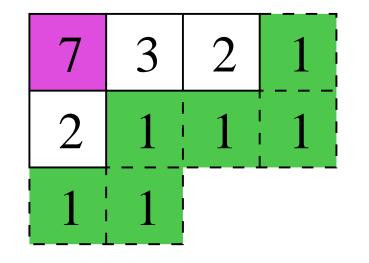
Proofs. 1. Induction (row and column operations).

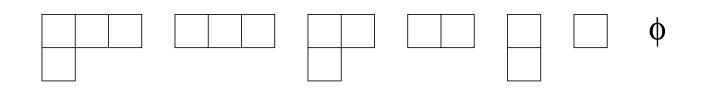
2. Nonintersecting lattice paths.

An example



An example





Smith Normal Form and Combinatorics – p. 25

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate $\boldsymbol{x_{ij}}$ (matrix coordinates).

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate x_{ij} (matrix coordinates).

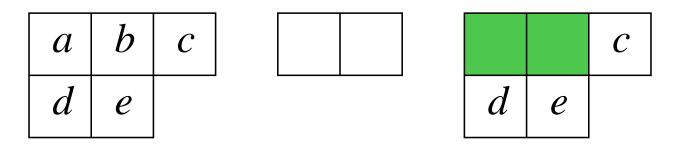
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
x ₂₁	<i>x</i> ₂₂	

A refinement of u_{λ}

 $u_{\lambda}(x) = \sum \prod x_{ij}$ $\mu \subseteq \lambda \ (i,j) \in \lambda/\mu$

A refinement of u_{λ}

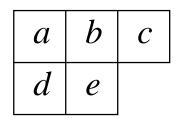
$$oldsymbol{u}_{oldsymbol{\lambda}}(oldsymbol{x}) = \sum_{\mu \subseteq \lambda} \prod_{(i,j) \in \lambda/\mu} x_{ij}$$



 λ μ λ/μ

$$\prod_{(i,j)\in\lambda/\mu} x_{ij} = cde$$

An example



abcde+bcde+bce+cde +ce+de+c+e+l	bce+ce+c +e+1	c+1	1
<i>de+e+1</i>	<i>e</i> +1	1	1
1	1	1	

Smith Normal Form and Combinatorics - p. 28

 $A_t = \prod x_{ij}$ $(i,j) \in \lambda(t)$

 $\mathbf{A_t} = \prod x_{ij}$ $(i,j) \in \lambda(t)$ t b d С a е fi h 8 j k l т n 0

$$egin{array}{l} egin{array}{l} A_t = \prod\limits_{(i,j)\in\lambda(t)} x_{ij} \ f \ a \ b \ c \ d \ e \ f \ g \ h \ i \ j \ k \ l \ m \ n \ o \end{array}$$

$$A_t = bcdeghiklmo$$

Theorem. Let t = (i, j). Then M_t has SNF

diag
$$(1, \ldots, A_{i-2,j-2}, A_{i-1,j-1}, A_{ij})$$
.

Theorem. Let t = (i, j). Then M_t has SNF

diag
$$(1, \ldots, A_{i-2,j-2}, A_{i-1,j-1}, A_{ij})$$
.

- **Proof.** 1. Explicit row and column operations putting M_t into SNF.
- 2. (C. Bessenrodt) Induction.

An example

a	b	С
d	е	

abcde+bcde+bce+cde +ce+de+c+e+l	bce+ce+c +e+1	c+1	1
de+e+1	<i>e</i> +1	1	1
1	1	1	

Smith Normal Form and Combinatorics - p. 31

a	b	С
d	е	

abcde+bcde+bce+cde +ce+de+c+e+1	bce+ce+c +e+1	c+1	1
<i>de+e+1</i>	e+1	1	1
1	1	1	

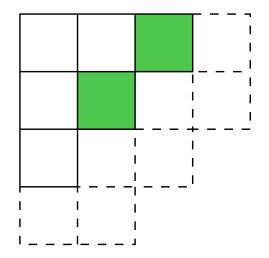
 $\mathbf{SNF} = \operatorname{diag}(1, e, abcde)$

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, ..., 1)$. Set each $x_{ij} = q$.

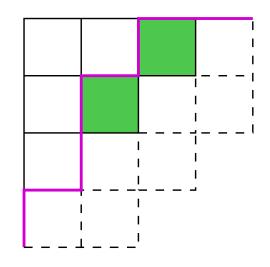
A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, ..., 1)$. Set each $x_{ij} = q$.



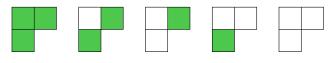
A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, ..., 1)$. Set each $x_{ij} = q$.



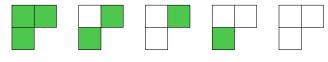
 $u_{\delta_{n-1}}(x)|_{x_{ij}=q}$ counts Dyck paths of length 2n by (scaled) area, and is thus the well-known q-analogue $C_n(q)$ of the Catalan number C_n .

A q-Catalan example



 $C_3(q) = q^3 + q^2 + 2q + 1$

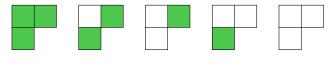
A q-Catalan example



 $C_3(q) = q^3 + q^2 + 2q + 1$

$$\begin{array}{c|cccc} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{array} \xrightarrow{\text{SNF}} \text{diag}(1,q,q^6)$$

A q-Catalan example



$$C_3(q) = q^3 + q^2 + 2q + 1$$

$$\begin{array}{c|cccc} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{array} \begin{array}{c|cccc} \text{SNF} & \text{diag}(1,q,q^6) \\ \sim & \text{diag}(1,q,q^6) \end{array}$$

q-Catalan determinant previously known

SNF is new

SNF of random matrices

- Huge literature on random matrices, mostly connected with eigenvalues.
- Very little work on SNF of random matrices over a PIR.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \ldots, e_n)$, then $e_1 = d$.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \gcd \text{ of } 1 \times 1 \text{ minors (entries) of } M$

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \text{gcd of } 1 \times 1 \text{ minors (entries) of } M$

Theorem. $\lim_{k\to\infty} p_k(n,d) = 1/d^{n^2}\zeta(n^2)$

Work of Yinghui Wang

Sample result. $\mu_k(n)$: probability that the SNF of a random $A \in Mat_k(n)$ satisfies $e_1 = 2, e_2 = 6$.

 $\boldsymbol{\mu(n)} = \lim_{k \to \infty} \mu_k(n).$

Conclusion

$$\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right)$$
$$\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} (1 - 3^{(n-1)^2}) (1 - 3^{-n})^2$$
$$\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right)$$

uses a 2014 result of C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, Communication over finite-chain-ring matrix channels: number of $m \times n$ matrices over $\mathbb{Z}/p^s\mathbb{Z}$ with specified SNF

uses a 2014 result of **C. Feng**, **R. W. Nóbrega**, **F. R. Kschischang**, and **D. Silva**, Communication over finite-chain-ring matrix channels: number of $m \times n$ matrices over $\mathbb{Z}/p^s\mathbb{Z}$ with specified SNF

Note. $\mathbb{Z}/p^s\mathbb{Z}$ is not a PID but is a PIR.

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$.

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$.

$$\mathbf{Theorem.}\ \kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$.

Theorem.
$$\kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

Corollary. $\lim_{n \to \infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j \ge 4} \zeta(j)}$ $\approx 0.846936 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- previous slide: $Prob(g = 1) = 0.846936 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- previous slide: $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- previous slide: $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$

 $Prob(g \le 3) = 0.99995329\cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- previous slide: $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$

 $\operatorname{Prob}(g \leq 3) = 0.99995329 \cdots$ **Theorem.** $\operatorname{Prob}(g \leq \ell) =$

$$1 - (3.46275\cdots)2^{-(\ell+1)^2}(1 + O(2^{-\ell}))$$

Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$s_{\lambda} = \det[h_{\lambda_i - i + j}],$$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

 $s_{\lambda} = \det[h_{\lambda_i - i + j}],$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

We consider the specialization $x_1 = x_2 = \cdots = x_n = 1$, other $x_i = 0$. Then

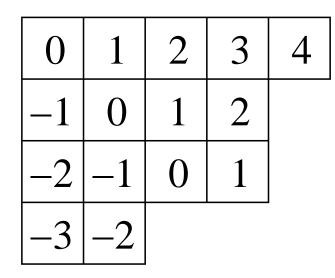
$$h_i \to \binom{n+i-1}{i}$$

Specialized Schur function

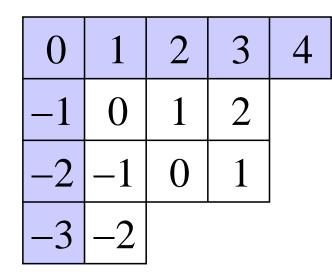
$$s_{\lambda} \to \prod_{u \in \lambda} \frac{n + c(u)}{h(u)}.$$

c(u): content of the square u

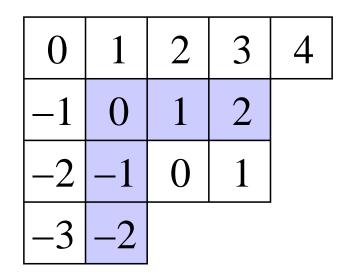
0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			-



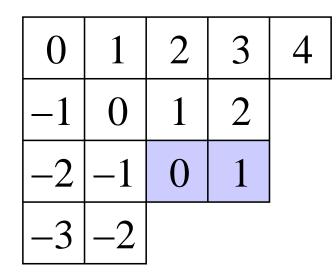
$$\lambda = (5, 4, 4, 2)$$



 D_1



 D_2



 D_3

SNF result

$$\mathbf{R} = \mathbb{Q}[n]$$

Let

SNF
$$\begin{bmatrix} \binom{n+\lambda_i-i+j-1}{\lambda_i-i+j} \end{bmatrix} = \operatorname{diag}(e_1,\ldots,e_m).$$

Then

$$e_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}.$$

We will use the fact that if

$$SNF(A) = diag(e_1, e_2, \ldots, e_n),$$

then $e_1e_2 \cdots e_i$ is the gcd of the $i \times i$ minors of A.

Idea of proof (cont.)

$$\mathbf{f_i} = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

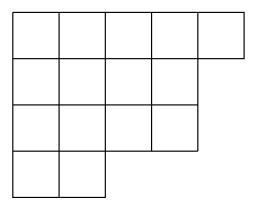
Then $f_1 f_2 \cdots f_i$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Idea of proof (cont.)

$$\mathbf{f_i} = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

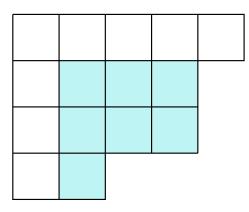
- Then $f_1 f_2 \cdots f_i$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)
- Every $i \times i$ minor is a specialized skew Schur function $s_{\mu/\nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

An example



$$s_{5442} = \left[egin{array}{cccccc} h_5 & h_6 & h_7 & h_9 \ h_3 & h_4 & h_5 & h_6 \ h_2 & h_3 & h_4 & h_5 \ 0 & 1 & h_1 & h_2 \end{array}
ight]$$

An example



$$s_{5442} = \begin{vmatrix} h_5 & h_6 & h_7 & h_9 \\ h_3 & h_4 & h_5 & h_6 \\ h_2 & h_3 & h_4 & h_5 \\ 0 & 1 & h_1 & h_2 \end{vmatrix}$$

$$\begin{array}{c|cccc} & h_3 & h_4 & h_5 \\ s_{331} = & h_2 & h_3 & h_4 \\ & 0 & 1 & h_1 \end{array}$$

Conclusion of proof

Let

 $s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho}.$

By Littlewood-Richardson rule,

$$c^{\mu}_{\nu\rho} \neq 0 \Rightarrow \alpha \subseteq \rho.$$

Conclusion of proof

Let

$$s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho}.$$

By Littlewood-Richardson rule,

$$c^{\mu}_{\nu\rho} \neq 0 \Rightarrow \alpha \subseteq \rho.$$

Hence

$$f_1 \cdots f_i = \gcd(i \times i \text{ minors}) = e_1 \cdots e_i.$$

What about the specialization $x_i = q^{i-1}$, $1 \le i \le n$, other $x_i = 0$?

$$h_i \to \binom{n+i-1}{i}_q$$

What about the specialization $x_i = q^{i-1}$, $1 \le i \le n$, other $x_i = 0$?

$$h_i \to \binom{n+i-1}{i}_q$$

Now it seems the ring should be $\mathbb{Q}[q]$. Looks difficult.

The last slide

The last slide

