$$
\boldsymbol{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)
$$

ordinary generating function of a :

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n \geq 0} a_{n} x^{n}
$$

exponential generating function of a :

$$
a_{0}+a_{1} \frac{x}{1!}+a_{2} \frac{x^{2}}{2!}+\cdots=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}
$$

Many others, not as important.
What is the point?
"Natural" algebraic operations on generating functions have combinatorial significance, so we can transform combinatorics into algebra (and vice versa).

Notation:

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2, \ldots\} \\
& \mathbb{P}=\{1,2,3, \ldots\} \\
& {[\boldsymbol{n}] }=\{1,2, \ldots, n\} \\
& {\left[\boldsymbol{x}^{\boldsymbol{n}}\right] \sum a_{k} x^{k}=a_{n} . }
\end{aligned}
$$

Some operations:

$$
\begin{aligned}
& \sum a_{n} x^{n}+\sum b_{n} x^{n}=\sum\left(a_{n}+b_{n}\right) x^{n} \\
& \left(\sum a_{n} x^{n}\right)\left(\sum b_{n} x^{n}\right)=\sum c_{n} x^{n} \\
& \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} . \\
& \left(\sum a_{n} \frac{x^{n}}{n!}\right)\left(\sum b_{n} \frac{x^{n}}{n!}\right)=\sum c_{n} \frac{x^{n}}{n!} \\
& \text { where } c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} .
\end{aligned}
$$

Define

$$
\begin{aligned}
& \qquad G(x)=\mathbf{1} / \mathbf{F}(\mathbf{x}) \\
& \text { if } F(x) G(x)=1 \text { (exists if and only if } \\
& F(0) \neq 0) \text {. E.g, } \\
& \frac{1}{1-a x}=1+a x+a^{2} x^{2}+\cdots .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \\
& F(x)=\sum_{n \geq 0} a_{n} x^{n}, G(x)=\sum_{n \geq 1} b_{n} x^{n} \\
& \text { (so } G(0)=0) \text {. Define the composi- } \\
& \text { tion } F(G(x)) \text { by } \\
& \qquad F(G(x))=\sum_{n \geq 0} a_{n} G(x)^{n}
\end{aligned}
$$

Makes sense formally since computing $\left[x^{n}\right] F(G(x))$ involves only a finite sum.

Examples. Let $G(0)=0$. Then

$$
\begin{aligned}
\boldsymbol{e}^{G(x)} & =\sum_{n \geq 0} \frac{G(x)^{n}}{n!} \\
-\log (1-G(x)) & =\sum_{n \geq 1} \frac{G(x)^{n}}{n}
\end{aligned}
$$

Lifting principle: All "familiar" formulas for convergent power series continue to hold whenever they make sense formally. E.g., if $G(0)=0$ then

$$
\begin{aligned}
\log \left(e^{G(x)}\right) & =G(x) \\
e^{\log (1+G(x))} & =1+G(x)
\end{aligned}
$$

Sets. Let $n \in \mathbb{N}$ and

$$
\boldsymbol{F}_{\boldsymbol{n}}(\boldsymbol{x})=\sum_{T \subseteq[n]} \prod_{i \in T} x_{i}
$$

a "list" of all subsets of $[n]$. E.g.,

$$
F_{2}(\boldsymbol{x})=1+x_{1}+x_{2}+x_{1} x_{2}
$$

Since for each $i \in S$ either $i \in T$ or $i \notin T$, we have
$F_{n}(\boldsymbol{x})=\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{n}\right)$.
Define

$$
\binom{\boldsymbol{n}}{\boldsymbol{k}}=\#\{T \subseteq S: \# T=k\}
$$

Put each $x_{i}=x$ to get

$$
(1+x)^{n}=\sum_{k \geq 0}\binom{n}{k} x^{k}
$$

Illustrates technique of "late specialization."

Multisets. A multiset M on a set S is a set with repeated elements from S. E.g,
$\{1,1,1,2,4,4,4,7,7\}=\left\{1^{3}, 2,4^{3}, 7^{2}\right\}$
is a multiset on [10]. Let

$$
\nu_{M}(i)=\# i \prime s \text { in } M
$$

Let

$$
\boldsymbol{G}_{\boldsymbol{n}}(\boldsymbol{x})=\sum_{M \text { on }[n]} \prod_{i=1}^{n} x_{i}^{\nu_{M}(i)}
$$

a "list" of all multisets on $[n]$. E.g.,

$$
\begin{aligned}
G_{2}(\boldsymbol{x}) & =1+x_{1}+x_{2}+x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+\cdots \\
& =\left(1+x_{1}+x_{1}^{2}+\cdots\right)\left(1+x_{2}+x_{2}^{2}+\cdots\right) \\
& =\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
\end{aligned}
$$

In general,
$G_{n}(\boldsymbol{x})=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{n}\right)}$.
Let $\left(\binom{\boldsymbol{n}}{\boldsymbol{k}}\right)$ denote the number of k-element multisets on $[n]$. E.g., $\left(\binom{3}{2}\right)=6$:

$$
\begin{array}{llllll}
11 & 22 & 33 & 12 & 13 & 23
\end{array}
$$

Put $x_{i}=x$ to get

$$
\begin{aligned}
\sum_{k \geq 0}\left(\binom{n}{k}\right) x^{k} & =\frac{1}{(1-x)^{n}} \\
& =\sum_{k \geq 0}\binom{-n}{k}(-x)^{k}
\end{aligned}
$$

where

$$
\binom{\boldsymbol{t}}{\boldsymbol{k}}=\frac{t(t-1) \cdots(t-k+1)}{k!} .
$$

$$
\begin{aligned}
\sum_{k \geq 0}\left(\binom{n}{k}\right) x^{k} & =\frac{1}{(1-x)^{n}} \\
& =\sum_{k \geq 0}\binom{-n}{k}(-x)^{k}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\binom{n}{k}\right)=(-1)^{k}\binom{-n}{k}=\binom{n+k-1}{k} \\
& \text { (example of reciprocity). }
\end{aligned}
$$

Combinatorial or bijective proof

 that$$
\left(\binom{n}{k}\right)=\binom{n+k-1}{k}
$$

Let

$$
1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq n
$$

be a k-multiset on $[n]$. Let $b_{i}=a_{i}+$ $i-1$. Then

$$
1 \leq b_{1}<b_{2}<\cdots<b_{k} \leq n+k-1
$$

and conversely (i.e., $a_{i}=b_{i}-i+1$).
Thus

$$
\left(\binom{n}{k}\right)=\binom{n+k-1}{k}
$$

RATIONAL GENERATING FUNCTIONS

A generating function $F(x)=\sum a_{n} x^{n}$ is rational if there are polynomials $P(x), Q(x)$ such that

$$
F(x)=\frac{P(x)}{Q(x)},
$$

i.e., $F(x) Q(x)=P(x)$. Can assume
$Q(0)=1$.
E.g.,

$$
\sum_{n \geq 0} a^{n} x^{n}=\frac{1}{1-a x} .
$$

More generally,

$$
\begin{aligned}
\frac{1}{(1-a x)^{d}} & =\sum_{n \geq 0}\binom{-d}{n}(-a x)^{n} \\
& =\sum_{n \geq 0}\binom{n+d-1}{d-1} a^{n} x^{n} .
\end{aligned}
$$

Note: $\binom{n+d-1}{d-1}$ is a polynomial in n of degree $d-1$.

Fundamental theorem on rational generating functions.
Fix $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}, \alpha_{d} \neq 0$.
Let $f: \mathbb{N} \rightarrow \mathbb{C}$. TFAE:

- $\sum_{n \geq 0} f(n) x^{n}=P(x) / Q(x)$,
where $Q(x)=1+\alpha_{1} x+\cdots+\alpha_{d} x^{d}$,

$$
\begin{gathered}
P(x) \in \mathbb{C}[x] \\
\operatorname{deg}(P)<\operatorname{deg}(Q)=d
\end{gathered}
$$

- For all $n \geq 0$,

$$
f(n+d)+\alpha_{1} f(n+d-1)+\cdots+\alpha_{d} f(n)=0
$$

(linear recurrence with constant coefficients).

- For all $n \geq 0$,

$$
f(n)=\sum_{i=1}^{k} P_{i}(n) \gamma_{i}^{n}
$$

where

$$
1+\alpha_{1} x+\cdots+\alpha_{d} x^{d}=\prod_{i=1}^{k}\left(1-\gamma_{i} x\right)^{d_{i}}
$$

the γ_{i} 's are distinct, and

$$
P_{i}(n) \in \mathbb{C}[n], \quad \operatorname{deg}\left(P_{i}\right)<d_{i}
$$

Idea of proof. Use partial fractions to write $P(x) / Q(x)$ as linear combination of terms $\left(1-\gamma_{i} x\right)^{e}, e<d_{i}$.

What if $\operatorname{deg} P \geq \operatorname{deg} Q$? Then write (uniquely)

$$
\frac{P(x)}{Q(x)}=L(x)+\frac{R(x)}{Q(x)}
$$

where $L(x), R(x) \in \mathbb{C}[x]$ and

$$
\operatorname{deg} R(x)<\operatorname{deg} Q(x)
$$

Thus $L(x)$ records the "exceptional values" (finitely many) where the fundamental theorem fails.

Example (the transfer-matrix method). Let $\boldsymbol{f}(\boldsymbol{n})$ be the number of sequences $a_{1} \cdots a_{n}, a_{i}=1,2,3$, with no $a_{i} a_{i+1}=$ 11 or 23 . Thus
$f(n)=\#$ paths of length $n-1$ in:

Adjacency matrix: $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.

$$
\begin{aligned}
& \text { Thus }\left(A^{k}\right)_{i j} \text { is the number of paths } \\
& \text { of length } k \text { from } i \text { to } j \text {, so } \\
& \qquad \begin{aligned}
& f(n)=\sum_{i, j=1}^{3}\left(A^{n-1}\right)_{i j} \\
& \Rightarrow \sum_{n \geq 0} f(n+1) x^{n}=\sum_{i, j=1}^{3}\left(\sum_{n \geq 0} A^{n} x^{n}\right)_{i j}^{3} \\
&=\sum_{i, j=1}^{3}(I-x A)_{i j}^{-1} .
\end{aligned}
\end{aligned}
$$

Let ($\boldsymbol{B} \boldsymbol{:} \boldsymbol{j}, \boldsymbol{i}$) denote the matrix B with row j and column i removed. Then

$$
B_{i j}^{-1}=(-1)^{i+j} \frac{\operatorname{det}(B ; j, i)}{\operatorname{det}(B)},
$$

SO
$\sum_{n \geq 0} f(n+1) x^{n}=\frac{\sum(-1)^{i+j} \operatorname{det}(I-x A: j, i)}{\operatorname{det}(I-x A)}$

$$
=\frac{3+x-x^{2}}{1-2 x-x^{2}+x^{3}} .
$$

EXPONENTIAL GENERATING FUNCTIONS

Given $f: \mathbb{N} \rightarrow \mathbb{C}$, write

$$
\boldsymbol{E}_{\boldsymbol{f}}(\boldsymbol{x})=\sum_{n \geq 0} f(n) \frac{x^{n}}{n!}
$$

Proposition. Given $f, g: \mathbb{N} \rightarrow \mathbb{C}$, define $h: \mathbb{N} \rightarrow \mathbb{C}$ by

$$
h(\# X)=\sum_{(S, T)} f(\# S) g(\# T)
$$

where $\# X<\infty$ and $S, T \subseteq X$ such that

$$
S \cup T=X, \quad S \cap T=\emptyset
$$

Then

$$
E_{f}(x) E_{g}(x)=E_{h}(x)
$$

$$
\begin{aligned}
& \text { Proof. Let } \# X=n \text {. There are }\binom{n}{k} \\
& \text { pairs }(S, T) \text { with } \# S=k \text { and } \# T= \\
& n-k \text {. Hence }
\end{aligned}
$$

$$
\begin{aligned}
h(n) & =\sum_{k=0}^{n}\binom{n}{k} f(k) g(n-k) \\
& =\left[\frac{x^{n}}{n!}\right] E_{f}(x) E_{g}(x) .
\end{aligned}
$$

Example. Find the number $h(n)$ of ways to let $[n]=S \cup T$ with $S \cap T=\emptyset$, choose a subset of S, and choose an element of T. Here $f(n)=2^{n}$ and $g(n)=n$. Thus

$$
\begin{aligned}
E_{f}(x) & =\sum_{n \geq 0} 2^{n} \frac{x^{n}}{n!}=e^{2 x} \\
E_{g}(x) & =\sum_{n \geq 0} n \frac{x^{n}}{n!}=x e^{x} \\
\Rightarrow E_{h}(x) & =x e^{3 x} \\
& =\sum_{n \geq 0} n 3^{n-1} \frac{x^{n}}{n!}
\end{aligned}
$$

whence $h(n)=\boldsymbol{n} \mathbf{3}^{\boldsymbol{n}-1}$.

Iterate previous proposition:

Proposition. Fix $k \in \mathbb{P}$ and f_{1}, \ldots, f_{k} :
$\mathbb{N} \rightarrow \mathbb{C}$. Define $h: \mathbb{N} \rightarrow \mathbb{C}$ by
$h(\# X)=\sum f_{1}\left(\# S_{1}\right) \cdots f_{k}\left(\# S_{k}\right)$,
where $\cup S_{i}=X$ and $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. Then

$$
E_{h}(x)=E_{f_{1}}(x) \cdots E_{f_{k}}(x)
$$

A partition of a finite set S is a collection $\left\{B_{1}, \ldots, B_{k}\right\}$ of subsets (called blocks) of S such that
$\cup B_{i}=S, \quad B_{i} \neq \emptyset, \quad B_{i} \cap B_{j}=\emptyset$ if $i \neq j$.
Write $\boldsymbol{\Pi}(\boldsymbol{S})$ for the set of partitions of S.

Partitions of [3]:

$$
\begin{array}{ccccc}
1-2-3 & 12-3 & 13-2 & 1-23 & 123
\end{array}
$$

Exponential formula. Given f :
$\mathbb{P} \rightarrow \mathbb{C}$, define $h: \mathbb{N} \rightarrow \mathbb{C}$ by
$h(0)=1$
$h(\# S)=\sum_{\pi} f\left(\# B_{1}\right) \cdots f\left(\# B_{k}\right), \quad \# S>0$,
where $\pi=\left\{B_{1}, \ldots, B_{k}\right\} \in \Pi(S)$. Then $E_{h}(x)=e^{E_{f}(x)}$.

Proof. Set $f(0)=0$. For fixed k let

$$
g_{k}(\# S)=\sum_{\left(B_{1}, \ldots, B_{k}\right)} f\left(\# B_{1}\right) \cdots f\left(\# B_{k}\right),
$$

where $\left\{B_{1}, \ldots, B_{k}\right\} \in \Pi(S)$. Thus

$$
E_{g_{k}}(x)=E_{f}(x)^{k} .
$$

Since $T_{i} \neq \emptyset$, all k ! orderings of T_{1}, \ldots, T_{k} are distinct. Thus for fixed k, if $h_{k}(\# S)=\sum_{\left\{B_{1}, \ldots, B_{k}\right\} \in \Pi(S)} f\left(\# B_{1}\right) \cdots f\left(\# B_{k}\right)$,
then $E_{h_{k}}(x)=\frac{1}{k!} E_{g_{k}}(x)=\frac{1}{k!} E_{f}(x)^{k}$.
Hence

$$
\begin{aligned}
E_{h}(x) & =1+\sum_{k \geq 1} E_{h_{k}}(x) \\
& =\sum \frac{E_{f}(x)^{k}}{k!}=e^{E_{f}(x)}
\end{aligned}
$$

Examples. (a) Let $\Pi_{n}=\Pi([n])$ and $\boldsymbol{B}(\boldsymbol{n})=\# \Pi_{n}$ (Bell number).
If $f(i)=1 \forall i$ then

$$
B(n)=\sum_{\left\{B_{1}, \ldots, B_{k}\right\} \in \Pi_{n}} f\left(\# B_{1}\right) \cdots f\left(\# B_{k}\right) .
$$

Thus

$$
\begin{aligned}
\sum_{n \geq 0} B(n) \frac{x^{n}}{n!} & =\exp \sum_{n \geq 1} \frac{x^{n}}{n!} \\
& =\exp \left(e^{x}-1\right),
\end{aligned}
$$

(b) Let $f(n)$ be the number of connected graphs on the vertex set $[n]$. Thus $h(n)$ is the total number of graphs on $[n]$, so $h(n)=2^{\binom{n}{2} \text {. Hence }}$

$$
\sum_{n \geq 1} f(n) \frac{x^{n}}{n!}=\log \sum_{n \geq 0} 2\binom{n}{2} \frac{x^{n}}{n!}
$$

(Note that these series diverge for all $x \neq 0$.)
(c) Let $t_{k}(n)$ be the number of permutations w of $[n]$ satisfying $w^{k}=1$. Thus every cycle length d of w satisfies $d \mid k$. We can choose w by partitioning [n] into blocks of sizes $d \mid k$ and placing a cycle on each such block in $(d-1)$! way. Hence

$$
\begin{aligned}
\sum_{n \geq 0} t_{k}(n) \frac{x^{n}}{n!} & =\exp \sum_{d \mid k}(d-1)!\frac{x^{d}}{d!} \\
& =\exp \sum_{d \mid k} \frac{x^{d}}{d}
\end{aligned}
$$

TREES

A rooted tree is a connected graph without cycles with one distinguished vertex (the root).

Let $r(n)$ be the number of rooted trees on the vertex set $[n]$. E.g., $r(3)=9$:

To obtain a rooted tree T on $[n]$, choose a root r in n ways, choose a partition $\pi \in \Pi([n]-\{r\})$, place a rooted tree T_{i} on each block of π, and "join" r to the roots of each T_{i}.

Let

$$
\begin{aligned}
\boldsymbol{R}(\boldsymbol{x}) & =\sum_{n \geq 1} r(n) \frac{x^{n}}{n!} \\
e^{R(x)} & =\sum_{n \geq 0} \boldsymbol{f}(\boldsymbol{n}) \frac{x^{n}}{n!}
\end{aligned}
$$

Thus $f(n)$ is the number of forests of rooted trees on $[n]$, so $x e^{R(x)}$ is the exponential generating function for choosing a 1 -element subset of $[n]$ (the root) and placing a forest of rooted trees on the remaining elements. Since this structure is equivalent to a rooted tree on $[n]$, we have

$$
R(x)=x e^{R(x)}
$$

Given

$$
F(x)=a_{1} x+a_{2} x^{2}+\cdots, a_{1} \neq 0
$$

define $F(x)^{\langle-1\rangle}$ by

$$
F\left(F^{\langle-1\rangle}(x)\right)=F^{\langle-1\rangle}(F(x))=x
$$

(exists and is unique). Then

$$
\begin{aligned}
R(x) & =x e^{R(x)} \\
\Rightarrow R(x) & =\left(x e^{-x}\right)^{\langle-1\rangle}
\end{aligned}
$$

How to find the coefficients $r(n) / n$! of $\left(x e^{-x}\right)^{\langle-1\rangle}$?

Bijective proof (Joyal). A double rooted tree is a tree with one vertex labelled s (start) and one vertex (possibly the same) labelled e (end). The number of double rooted trees on $[n]$ is $n \cdot r(n)$. Let \boldsymbol{T} be such a tree, and let \boldsymbol{P} be the unique path from s to e.

The vertices from s to e form a permutation of its elements written in increasing order. Write this permutation in cycle form as a directed graph:

$$
\begin{array}{ccccccc}
1 & 3 & 6 & 9 & 11 & 12 & 16 \\
12 & 6 & 16 & 9 & 3 & 1 & 11
\end{array}
$$

Attach the subtrees of the path P back to their attached vertices and directed into the cycles:

We obtain a digraph on $[n]$ for which every vertex has outdegree one, i.e., the graph of a function $f:[n] \rightarrow[n]$. Conversely, every such f comes from a unique double rooted tree T.

$$
\begin{gathered}
\# \text { of } f:[n] \rightarrow[n]: n^{n} \\
\Rightarrow \text { \# double-rooted trees on }[n]: n^{n} \\
\Rightarrow r(n)=n^{n-1}
\end{gathered}
$$

Can we generalize this argument to find coefficients of other $F^{\langle-1\rangle}(x)$?

Lagrange inversion formula. Let
$\boldsymbol{F}(\boldsymbol{x})=a_{1} x+a_{2} x^{2}+\cdots, \quad a_{1} \neq 0$.
Let $k, n \in \mathbb{Z}$. Then
$n\left[x^{n}\right] F^{\langle-1\rangle}(x)^{k}=k\left[x^{n-k}\right]\left(\frac{x}{F(x)}\right)^{n}$.

Proof. A combinatorial proof can be given based on counting trees. Proof of Lagrange:

Consider Laurent series

$$
G(x)=\sum_{n \geq n_{0} \in \mathbb{Z}} b_{n} x^{n}
$$

For instance,

$$
\begin{aligned}
\frac{1}{F(x)^{k}} & =\frac{1}{\left(a_{1} x+a_{2} x^{2}+\cdots\right)^{k}} \\
& =\frac{1}{x^{k}\left(a_{1}+a_{2} x+\cdots\right)^{k}} \\
& =x^{-k}\left(d_{0}+d_{1} x \cdots\right) \\
& =d_{0} x^{-k}+d_{1} x^{-k+1}+\cdots .
\end{aligned}
$$

Key fact:

$$
\begin{gathered}
\qquad\left[x^{-1}\right] \frac{d}{d x} G(x)=0 \\
\text { Set } F^{\langle-1\rangle}(x)^{k}=\sum_{i \geq k} p_{i} x^{i} \text {, so } \\
x^{k}=\sum_{i \geq k} p_{i} F(x)^{i} . \\
\text { Apply } \frac{d}{d x}: \\
\qquad \begin{array}{c}
k x^{k-1} \\
=\sum_{i \geq k} i p_{i} F(x)^{i-1} F^{\prime}(x) \\
\Rightarrow \frac{k x^{k-1}}{F(x)^{n}}=\sum_{i \geq k} i p_{i} F(x)^{i-n-1} F^{\prime}(x) .
\end{array}
\end{gathered}
$$

Take $\left[x^{-1}\right]$ on both sides. Since
$F(x)^{i-n-1} F^{\prime}(x)=\frac{1}{i-n} \frac{d}{d x} F(x)^{i-n}, \quad i \neq n$,
the coefficient of x^{-1} of the right-hand side is

$$
\begin{aligned}
{\left[x^{-1}\right] n p_{n} \frac{F^{\prime}(x)}{F(x)} } & =\left[x^{-1}\right] n p_{n}\left(\frac{a_{1}+2 a_{2} x+\cdots}{a_{1} x+a_{2} x^{2}+\cdots}\right) \\
& =\left[x^{-1}\right] n p_{n}\left(\frac{1}{x}+\cdots\right) \\
& =n p_{n}
\end{aligned}
$$

Hence

$$
\left[x^{-1}\right] \frac{k x^{k-1}}{F(x)^{n}}=n p_{n}=n\left[x^{n}\right] F^{\langle-1\rangle}(x)^{k}
$$

which is equivalent to

$$
n\left[x^{n}\right] F^{\langle-1\rangle}(x)^{k}=k\left[x^{n-k}\right]\left(\frac{x}{F(x)}\right)^{n}
$$

Let

$$
R(x)=\left(x e^{-x}\right)^{\langle-1\rangle}=\sum_{n \geq 1} r(n) \frac{x^{n}}{n!}
$$

Thus if $\boldsymbol{r}_{\boldsymbol{k}}(\boldsymbol{n})$ is the number of forests of k rooted trees on $[n]$, then

$$
\frac{1}{k!} R(x)^{k}=\sum_{n \geq k} r_{k}(n) \frac{x^{n}}{n!}
$$

By Lagrange inversion,

$$
\begin{aligned}
n\left[x^{n}\right] R(x)^{k} & =k\left[x^{n-k}\right]\left(\frac{x}{x e^{-x}}\right)^{n} \\
& =k\left[x^{n-k}\right] e^{n x} \\
& =\frac{k n^{n-k}}{(n-k)!},
\end{aligned}
$$

SO

$$
\begin{aligned}
r_{k}(n) & =\frac{k}{n} \frac{n!}{(n-k)!k!} n^{n-k} \\
& =\binom{n-1}{k-1} n^{n-k}
\end{aligned}
$$

ALGEBRAIC FUNCTIONS

A power series $F(x)=a_{0}+a_{1} x+\cdots$ is algebraic if \exists a polynomial $L(u, v) \neq$
0 such that

$$
L(x, F(x))=0
$$

Examples. (a) Rational functions $F(x)=$ $P(x) / Q(x)$ are algebraic, since

$$
Q(x) F(x)-P(x)=0 .
$$

(b) Easy to check that

$$
\binom{-1 / 2}{n}=\left(-\frac{1}{4}\right)^{n}\binom{2 n}{n}
$$

SO

$$
F(x):=\sum_{n \geq 0}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}
$$

$$
\begin{aligned}
& \text { (c) Let } F(x)=\sum_{n \geq 0}\binom{3 n}{n} x^{n} \text {. Then } \\
& (27 x-4) F(x)^{3}+3 F(x)+1=0 .
\end{aligned}
$$

(d) Not algebraic:

$$
\sum_{n \geq 0}\binom{2 n}{n}^{2} x^{n}, \quad \sum_{n \geq 0} \frac{(3 n)!}{n!^{3}} x^{n}
$$

Theorem. Let $F(x)=\sum_{n \geq 0} f(n) x^{n}$ be algebraic. Then $\exists d \geq 1$ and polynomials $P_{0}(n), \ldots, P_{d}(n)$ (not all 0$)$ such that for all $n \geq 0$

$$
\begin{gathered}
P_{d}(n) f(n+d)+P_{d-1}(n) f(n+d-1) \\
+\cdots+P_{0}(n) f(n)=0
\end{gathered}
$$

One says $F(x)$ is D-finite and $f(n)$ is P-recursive.

Proof (sketch). Let $L(u, v)$ be a nonzero polynomial such that $L(x, F(x))=0$. Thus

$$
\begin{aligned}
& L_{u}(x, F(x))+F^{\prime}(x) L_{v}(x, F(x))=0 \\
& \Rightarrow F^{\prime}(x)=-\frac{L_{u}(x, F(x))}{L_{v}(x, F(x))} \in \mathbb{C}(x, F(x))
\end{aligned}
$$

Similarly all higher derivatives $F^{(i)}(x) \in$ $\mathbb{C}(x, F(x))$. Since $F(x)$ is algebraic

$$
\operatorname{dim}_{\mathbb{C}}(x) \mathbb{C}(x, F(x))<\infty
$$

Thus $F(x), F^{\prime}(x), F^{\prime \prime}(x), \ldots$ are linearly dependent over $\mathbb{C}(x)$. Write down this linear dependence relation, clear denominators, and equate coefficients of x^{n} to get an equation

$$
P_{d}(n) f(n+d)+\cdots+P_{0}(n) f(n)=0
$$

Example. Let $\mathbf{f}(\mathbf{m}, \mathbf{n})$ be the number of paths from $(0,0)$ to (m, n) with steps $(1,0),(0,1),(1,1)$ (Delannoy number). Thus

$$
\begin{aligned}
\sum_{m, n \geq 0} f(m, n) x^{m} y^{n} & =\sum_{k \geq 0}(x+y+x y)^{k} \\
& =\frac{1}{1-x-y-x y}
\end{aligned}
$$

Then

$$
\begin{aligned}
& y:=\sum_{n \geq 0} f(n, n) x^{n}=\left[t^{0}\right] \frac{1}{1-x t-\frac{1}{t}-x} \\
& =\left[t^{0}\right] \frac{1}{\beta-\alpha}\left(\frac{t}{t-\alpha}-\frac{t}{t-\beta}\right), \\
& \text { where } \alpha=\frac{1}{2}\left(1-x-\sqrt{1-6 x+x^{2}}\right) \text {, } \\
& \beta=\frac{1}{2}\left(1-x+\sqrt{1-6 x+x^{2}}\right) \text {. Hence } \\
& \begin{aligned}
y & =\left[t^{0}\right] \frac{1}{\sqrt{1-6 x+x^{2}}}\left(\frac{t \alpha^{-1}}{1-t \alpha^{-1}}+\frac{1}{1-t^{-1} \beta}\right) \\
& =\frac{1}{\sqrt{1-6 x+x^{2}}},
\end{aligned} \\
& \text { and we get for } g(n)=f(n, n) \text {, } \\
& (n+2) g(n+2)-3(2 n+3) g(n+1)+(n+1) g(n)=0 \\
& \text { (challenging to prove directly!). }
\end{aligned}
$$

k-ARY PLANE TREES

A k-ary plane tree is a rooted tree for which every non-endpoint vertex has k cyclically ordered subtrees.

Let $f_{\boldsymbol{k}}(\boldsymbol{n})$ denote the number of k ary plane trees with n vertices and

$$
y=\boldsymbol{F}_{\boldsymbol{k}}(\boldsymbol{x})=\sum_{n \geq 0} f_{k}(n) x^{n} .
$$

Then $y=x+x y^{k}$, so

$$
y=\left(\frac{x}{1+x^{k}}\right)^{\langle-1\rangle} .
$$

By Lagrange inversion,

$$
\begin{aligned}
n\left[x^{n}\right] y & =\left[x^{n-1}\right]\left(1+x^{k}\right)^{n} \\
\Rightarrow f_{k}(n) & =\left\{\begin{aligned}
& \frac{1}{n}\binom{n}{j}, n=k j+1 \\
& 0, \text { otherwise. }
\end{aligned}\right.
\end{aligned}
$$

Special case: $k=2$ (plane binary trees). Then

$$
f_{2}(2 n+1)=\frac{1}{n+1}\binom{2 n}{n}
$$

a Catalan number $\boldsymbol{C}_{\boldsymbol{n}}$.

66 combinatorial interpretations of C_{n} : Exercise 6.19 of Enumerative Combinatorics, vol. 2.

36 additional interpretations (as of 22
December 2002):
www-math.mit.edu/~rstan/ec

Examples.

- triangulations of a convex $(n+2)$-gon into n triangles by $n-1$ diagonals that do not intersect in their interiors

- binary parenthesizations of a string of $n+1$ letters
$(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x$
- lattice paths from $(0,0)$ to (n, n) with steps $(0,1)$ or $(1,0)$, never rising above the line $y=x$

- n nonintersecting chords joining $2 n$ points on the circumference of a circle

- permutations $a_{1} a_{2} \cdots a_{n}$ of $[n]$ with longest decreasing subsequence of length at most two (i.e., there does not exist $\left.i<j<k, a_{i}>a_{j}>a_{k}\right)$
$\begin{array}{lllll}123 & 213 & 132 & 312 & 231\end{array}$
- ways to stack coins in the plane, the bottom row consisting of n consecutive coins

- n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of integers $a_{i} \geq 2$ such that in the sequence $1 a_{1} a_{2} \cdots a_{n} 1$, each a_{i} divides the sum of its two neighbors
$14321 \quad 13521 \quad 13231 \quad 1253112341$

Bijective proof that there are $C_{n}=$ $\frac{1}{n+1}\binom{2 n}{n}$ plane binary trees with $2 n+1$ vertices: do a depth-first (preorder) search through the tree, labeling down edges 1, up edges -1 , and ignoring the last edge.

11-11-1---11

This converts trees to sequences of $n+1$ 1's and $n-1$'s such that every partial sum is positive.

Claim. For any sequence $a_{1} a_{2} \cdots a_{2 n+1}$ of $n+1$ 1's and $n-1$'s, there is exactly one value of i for which every partial sum of $a_{i} a_{i+1} \cdots a_{2 n+1} a_{1} a_{2} \cdots a_{i-1}$ is positive.

Claim. For any sequence $a_{1} a_{2} \cdots a_{2 n+1}$ of $n+1$ 1's and $n-1$'s, there is exactly one value of i for which every partial sum of $a_{i} a_{i+1} \cdots a_{2 n+1} a_{1} a_{2} \cdots a_{i-1}$ is positive.

Proof (naive). Induction on n. Clear for $n=0$. Assume for $n-1$. Given $\alpha=a_{1} \cdots a_{2 n+1}$, can always find $a_{j}=$ 1, $a_{j+1}=-1$ (subscripts modulo $2 n+$ 1). Remove a_{j}, a_{j+1} from α, giving $\beta=b_{1} \cdots b_{2 n-1}$. By the induction hypothesis there is a unique i for which $b_{i} \cdots b_{i-1}$ has all partial sums positive. If $b_{i}=a_{k}$, then k is the unique integer for which $a_{k} \cdots a_{k-1}$ has every partial sum positive. \square

There are $\binom{2 n+1}{n}$ sequences of $n+1$ 1 's and $n-1$'s. All their $2 n+1$ "cyclic shifts" are distinct since $\operatorname{gcd}(n, n+1)=$ 1. Thus the number of plane binary trees with $2 n+1$ vertices is
$\frac{1}{2 n+1}\binom{2 n+1}{n}=\frac{1}{n+1}\binom{2 n}{n}=C_{n}$.

