a = (CL(), ai, ag, .. )

ordinary generating function of

a:
ag + a1T + aox’ + - - - = Zanxn
n>0
exponential generating function
of a: ,
n
a0+a11' +a2:; + e = Za”%
n>0

Many others, not as important.
What is the point?

“Natural” algebraic operations on gen-
erating functions have combinatorial sig-
nificance, so we can transform combina-
torics into algebra (and vice versa).
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Notation:
N =1{01,2,...}
P={1,23,...}
n] ={1,2,...,n}

("] Z apz” = ay.



Some operations:

Z anx' + Z bt = Z(an + by )"
(Z a,nxn> (Z bnxn> — Z cnt,

n
where ¢, = Z azb,_j..
k=0

n n
(Z CLn%) (Z bn%) — Z Cn%a
n
where ¢, = Z (Z) arby,_ .
k=0



Define

G(r) =1/F(x)
if F(x)G(x ) = 1 (exists if and only if

F(0) #0). E
1

:1+aaz+a2x2+---
I —ax




F(x) = Z ant”, G(r) = Z b

n>0 n>1

(so G(0) = 0). Define the composi-
tion F(G(x)) by
F(G(x) = anG(z)".
n>0
Makes sense formally since comput-
ing |2"|F(G(x)) involves only a finite
sum.



Examples. Let G(0) = 0. Then

n!
n>0
“log(1 - G(2)) = Y G(;f) .

n>1
Lifting principle: All “familiar” for-
mulas for convergent power series con-
tinue to hold whenever they make sense

formally. E.g., if G(0) = 0 then

10g(eG<x>) = G(x)
elog(l—l—G(x)) _ 1—|—G(5L‘).



Sets. Let n € N and

Z [

n| 1€l
a “list” of all subsets of n]. E.g.,

Fy(x) =14z + 29 + x129.

Since for each 7 € S either ¢ € T or
1 T, we have

Fp(x) = (1+21)(1 +x2)--- (14 2p).
Define

(Z’) — T CS . #T =k}

Put each z; = x to get

n
L+a)"=>" g
(14 x) ( k) T
k>0
[llustrates technique of “late specializa-

tion.”



Multisets. A multiset M on a set
S is a set with repeated elements
from S. E.g,

{1,1,1,2,4,4,4,7,7} = {1°,2,43, 72
is a multiset on [10]. Let

vpar(2) = # i’sin M.
Let

Z Hx”M

M on [n]1=1
a “list” of all multlsets on |n]. E.g.,

Go(x) = 1+x1+x2+x%+x1x2+x%+-u
— (l4+z+25+ - )14+ag+a5+--

1
(1 —21)(1 —ax9)

8
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In general,
1

(1 —2)(T—29) -+ (1 —2p)
Let ((Z’)) denote the number of k-element
multisets on [n]. E.g., ((S)) = 0:

11 22 33 12 13 23

Gp(x) =

Put x; = x to get

> ()" - =
=Y ()t

k>0

where

(Z)_t(t—l)--}jt—kJrl)

.






Combinatorial or bijective proot

-

Let
< <a<---<a.<n

be a k-multiset on |n]. Let b; = a; +
v — 1. Then

1< <by<--<bp.<n+k—-1,

and conversely (i.e., a; = b; — i + 1).

Thus

-
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RATIONAL GENERATING
FUNCTIONS

A generating function F(z) = ) apx"
is rational if there are polynomials P(x), Q(x)
such that
_ Pz)
Q(z)
ie., F(z)Q(x) = P(x). Can assume
Q0) = L.

F(z)

12



E.g.,

Zanxn - 1—1a:v'

n>0

More generally,

Note: (niﬁfl) is a polynomial in n of
degree d — 1.
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Fundamental theorem on ratio-
nal generating functions.
Fizoq,...,oszC, Cvd#o.

Let f N — C. TFAE:

e > fn)a" = P(x)/Q(),

n>0

where Q(z) = 1+ oz +- - -+ agz?,
P(z) € Clz],

deg(P) < deg(Q) = d.
e f'or all n > 0,
f(n+d)+oqf(n+d—1)+- : '+()édf(n) =

(linear recurrence with constant
coefficients).
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e for alln > 0,

k
f(n)=>_ PBilnnj,
1=1
where
k
l+aix+-- -+ozdatd = H(l—%x)di,
1=1

the ~;’s are distinct, and

Pi(n) € C|n|, deg(P;) < d;.

Idea of proof. Use partial fractions
to write P(x)/Q(x) as linear combina-
tion of terms (1 — v;x)¢ e < d;.

15



What if deg P > deg ()7 Then write
(uniquely)

P(z)

Q(z)

where L(x), R(x) € C|x] and

deg R(x) < deg Q(x).

Thus L(x) records the “exceptional val-

ues” (finitely many) where the funda-
mental theorem fails.

16



Example (the transfer-matrix method).
Let f(m) be the number of sequences
ai---an, a; = 1,23, with no a;a;11 =
11 or 23. Thus

f(n) = # paths of length n — 1 in:
2

011
Adjacency matrix: A= [110].
111

17



Thus (Ak) ~is the number of paths

1]

of length k from 7 to 7, so
3
flm)= > (a7
i.j=1 K
3
=S fe e = 3 (A
n=>0 1,7=1 \n=0

]
3

= > (I —=zA);"

1,7=1

18



Let (B : j,t) denote the matrix B
with row j and column ¢ removed. Then
det(B)

B = (-1

S fn+ )a" = SN =1 det(I — zA - j, 1)

det(I — xA)

B 3—|—a:—:132
B 1—2:13—:132—|—:U3'

n>0

19



EXPONENTIAL
GENERATING FUNCTIONS

Given f: N — C, write

Bp() =Y fn)

n>0

Proposition. Gwen f,g: N — C,
define h : N — C by

h(#X) = > [(#S)g(#T).
(S.T)

where #£X < oo and S, T C X such
that

SUT =X, SNT=10.
Then
Ey(w) Ey(x) = Ey(x).

20



Proof. Let #X = n. There are (})
pairs (S,T) with #5 = k and #T =

n — k. Hence

21



Example. Find the number A(n) of
ways to let [n] = SUT with SNT = ),
choose a subset of S, and choose an

element of T. Here f(n) = 2" and
g(n) =n. Thus

" 9
Ep(z) =) 2"— =™
= ™
xn
Ey(z) = Z n— = re’
= ™
3T

whence h(n) = n3"? 1.

22



Iterate previous proposition:

Proposition. Fixk € P and f1,..., fi:
N — C. DeﬁneirN%(C by

= fi#S1) - fr(#S).

where USZ- = X and S;NS; = 0 if
1 # 7. Then

Ep(x) = Ey(z)--- Ef (z).

23



A partition of a finite set .S is a col-
lection {Bj, ..., Bj} of subsets (called
blocks) of S such that

UB; =S, B;#0, BZ'HB]' =(ifi # 4.

Write IT(.S) for the set of partitions of
S.

Partitions of [3]:
1—2—-3 12—-3 13—-2 1-23 123

24



Exponential formula. Given f
P— C, define h : N — C by

h(O)
Zf (#B1)--- [(#By), #S >0,

where ™ = {Bl, ..., B} € 11(S). Then
En(z) = ePr®).

Proof. Set f(0) = 0. For fixed k
let

ge#8) = Y f#B1) - f(#By),

where { By, ..., Bi} € T1(.S). Thus
By (x) = Ep(x)".

25



Since T; # (), all k! orderingsof 17, ..., T},
are distinct. Thus for fixed k&, it

hip(#5) = > f#By) - f(#By),
{Bl,...,Bk}€H<S>
1 1

then By, (1) = 5By (x) = EEf(aj)k.
Hence |

Ep(x) = 14+ Ep (x)

k>1

k
- Y=

26



Examples. (a) Let II,, = II([n])
and B(n) = #II, (Bell number).
If f(i) =1 Vi then

B(n)= Y f(#B1)-- f(#By).

{Bl ..... Bk}EHn
Thus
" "
D B =exp) —
n>0 n>1

27



(b) Let f(n) be the number of con-

nected graphs on the vertex set |n].
Thus A(n) is the total number of graphs

on nl, so h(n ) —2(2). Hence
> Jn)— =log Z 2l nl
n>1 n >0

(Note that these series diverge for all

xr #£0.)

28



(¢) Let t5.(n) be the number of per-
mutations w of [n] satisfying w® = 1.
Thus every cycle length d of w satisfies
d|k. We can choose w by partitioning
in] into blocks of sizes d|k and placing
a cycle on each such block in (d — 1)!

way. Hence
N :Cd
Z tk(n)ﬁ = exp Z(d — 1)!5
n>0 d|k

d
s

d|k

29



TREES

A rooted tree is a connected graph
without cycles with one distinguished
vertex (the root).

/N

30



Let r(n) be the number of rooted trees

on the vertex set [n]. E.g., r(3) = 9:

le 1y 2¢ 29 3¢ 3¢

36 26 3o

24 3¢ 1é 3¢

le 2e

1e 29

16

2 3 1 3 1 2

31



To obtain a rooted tree T on |n], choose
a Toot r In n ways, choose a partition
m € Il([n] — {r}), place a rooted tree
T; on each block of 7, and “join” r to
the roots of each T;.

32



Let

xn
R(z) = » r (n)m
n>1
n
S = F(n) =
n>0
Thus f(n) is the number of forests

of rooted trees on [n], so zel®) is
the exponential generating function for
choosing a 1-element subset of [n| (the
root) and placing a forest of rooted trees
on the remaining elements. Since this
structure is equivalent to a rooted tree

on |n], we have

R(z) = zeli(®),

33



Given

F(x) = a1z 4 aox’ + -, a; # 0,
define F(z){—1) by

F(F Y (2) = FUU(F(2) =2
(exists and is unique). Then

R(z) = zeltl®)
= R(x) = (xe_x)<_1>.

How to find the coefficients r(n)/n! of
(ze—%) =107

34



Bijective proof (Joyal). A dou-
ble rooted tree is a tree with one
vertex labelled s (start) and one ver-
tex (possibly the same) labelled e (end).
The number of double rooted trees on
in]isn-r(n). Let T be such a tree, and
let P be the unique path from s to e.

1 3 6 9 11 12 16
12 6 16 9 3 1 11

AR
17 14 ¢2

35



The vertices from s to e form a per-
mutation of its elements written in in-
creasing order. Write this permutation
in cycle form as a directed graph:

1 3 6 9 11 12
12 6 16 9 3 1

6 16 1 O/
] :
3 11 12

36



Attach the subtrees of the path P back
to their attached vertices and directed
into the cycles:

$8
14 2
16
6 1
0
3 12 N\
10¢ 24

37



We obtain a digraph on |n| for which
every vertex has outdegree one, i.e., the
graph of a function f : [n] — [n]. Con-
versely, every such f comes from a unique
double rooted tree T'.

#of f:|n] — n]: n™

= # double-rooted trees on [n]: n"

= r(n)=n""1

38



Can we generalize this argument to
find coefficients of other F' <_1>(a:)?

Lagrange inversion formula. Let
F(x) =aw+aw”+---, a; #0.
Let k,n € Z. Then

39



Proof. A combinatorial proof can be
given based on counting trees. Proof of
Lagrange:

Consider Laurent series

n>ngeZ
For instance,
I 1
F(x)*  (ajz 4 agx? + - )k
1

40



d
—1
—G(x) =0
ety
Set [~ szx SO
1>k
2" =" pF(z)
1>k
Apply %:
k= ZZPZF( )Z 1F/( )
1>k
= Fa > ipiF(x) F'(x).

41



Take [z~ 1] on both sides. Since

1 d
1 —ndr
the coefficient of ™1 of the right-hand
side 1s

[x_l}npnF/(x) — [z Ynpp ( a + 2a0x + - - - )

F(z) " F(2) = F(z)™™, i+n,

1
x
Hence
B i _
= gy = e = nla"IF U @),

which is equivalent to

[z FCD (2)F = k"] ( ’ )n =

=
S
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R(z) = (ze™™) 0 = 3 r(n)=

n!’
n>1

Thus if rg(n) is the number of forests
of k rooted trees on |n|, then

SR = 3 ry(n)

n!’
n>k

n
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By Lagrange inversion,

nlz"|R(z)" = klz" " ( T

re *
= k'xn—k'enx
vk
T (n—k)

SO

44




ALGEBRAIC FUNCTIONS

A power series F'(x) = ag+ajx+- - - is
algebraic if 9 a polynomial L(u,v) #
0 such that

Lz, F(z)) = 0.

Examples. (a) Rational functions F'(z) =
P(x)/Q(x) are algebraic, since

Q(x)F(x) — P(x) = 0.

b) Easy to check that

(”2) (1) ()

0= (0)" -7

45




(c) Let F(z) =) _,> (37?) x'". Then
(272 — 4)F(x)° + 3F(z) + 1 = 0.
(d) Not algebraic:

() S

n>0 n>0

Theorem. Let Fi(x) = ), ~( f(n)z"
be algebraic. Then dd > 1 and polyno-
mials Py(n), ..., Pg(n) (not all 0) such
that for all n > 0
Fy(n)f(n+d) + Fg_y(n)f(n+d—1)

44+ Py(n)f(n) = 0.
One says F'(x) is D-finite and f(n) is
P-recursive.
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Proof (sketch). Let L(u, v) be a nonzero
polynomial such that L(z, F(x)) = 0.
Thus

Ly(x, F(z)) 4+ F'(2)Ly(z, F(z)) = 0
~ Lu(z, F(z))
Ly(z, F(x))
Similarly all higher derivatives F(!)(z) €
C(z, F(x)). Since F(x) is algebraic

= F'(x) = e C(x, F(z)).

dimg,) Clz, F(z)) < .

Thus F(z), F'(z), F"(x), ... arelinearly
dependent over C(x). Write down this
linear dependence relation, clear denom-
inators, and equate coefficients of " to
get an equation

Fy(n)f(n+d)+---+Py(n)f(n) =0. O
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Example. Let f(m,n) be the num-
ber of paths from (0,0) to (m,n) with
steps (1,0),(0,1),(1,1) (Delannoy num-
ber). Thus

Z(x +y+ ay)

m,n=>0 k>0

Ponsy
3
=
&

3
<
S
I

1
l—x—vy—ay
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Then
y =Y flnn)a" =t

n>0

_ ot oot
[Hﬁ—cv(t—cv t—ﬁ)’

where a = %(1—:6—\/1—637"‘552);
5:%(1—x+\/1—6x+x2). Hence

y - [to] 1 ( ta~! N 1 )
V1—6zx+22 \1—ta™l 1-t713
B 1
- V1—6x+ a2
and we get for g(n) = f(n,n),

(n+2)g(n+2)—3(2n+3)g(n+1)+(n+1)g(n) =0

1

1—xt—%—x

(challenging to prove directly!).
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E-ARY PLANE TREES

A k-ary plane tree is a rooted tree
for which every non-endpoint vertex has
k cyclically ordered subtrees.

Let fi.(n) denote the number of k-
ary plane trees with n vertices and

y=Fp(x) =) feln)a"

n>0

Then y = x + xyk, SO

o\
v (1+xk> |

By Lagrange inversion,
nla"y = [+ 2t
1 (n :
=(:), n=kj+1
= fr(n) = {n(]) ho

0, otherwise.
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Special case: k = 2 (plane binary
trees). Then

fo2n+1) = — (2”)

n+1\n

a Catalan number C,,.

66 combinatorial interpretations of C;:
Exercise 6.19 of Enumerative Combi-
natorics, vol. 2.

36 additional interpretations (as of 22
December 2002):
www-math.mit.edu/~rstan/ec
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Examples.

e triangulations of a convex (n+2)-gon
into n triangles by n — 1 diagonals
that do not intersect in their interiors

IR IR IR BN

e binary parenthesizations of a string
of n + 1 letters

e lattice paths from (0, 0) to (n, n) with
steps (0, 1) or (1, 0), never rising above
the line y =«

R R TS B
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e 1 nonintersecting chords joining 2n
points on the circumference of a cir-
cle

N NN S

I N \\ . / e

e permutations ajas - - - ap of [n| with
longest decreasing subsequence of length

at most two (i.e., there does not exist
i <j <k, a;>a; > a)

123 213 132 312 231

e ways to stack coins in the plane, the
bottom row consisting of n consecu-

t1ve coins

O
OO0 QQQQ QQQQ QQQQQ QQQQQ
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e n-tuples (ay, a9, ...,ap) of integers
a; > 2 such that in the sequence

layas - - - anl, each a; divides the sum
of its two neighbors

14321 13521 13231 12531 12341
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Bijective proof that there are C, =
TLLH (27;7“ ) plane binary trees with 2n + 1
vertices: do a depth-first (preorder) search
through the tree, labeling down edges 1,

up edges —1, and ignoring the last edge.

11-11-1---1
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This converts trees to sequences of n + 1
1’'s and n —1’s such that every partial
sum 1s positive.

Claim. For any sequence a1a9 - -+ a9511
of n+1 1'sand n —1’s, there is exactly
one value of ¢ for which every partial
sum of a;a; 11+ agpr1a1a9 - a;_1 13
positive.
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Claim. For any sequence a1a9 - -+ a9n11
of n+1 1'sand n —1’s, there is exactly
one value of ¢ for which every partial
sum of a;a;1 1+ agpr1a1a9 - a;_1 13
positive.

Proof (naive). Induction on n. Clear
for n = 0. Assume for n — 1. Given
= aj--- a4, can always find a; =
1, aj41 = —1 (subscripts modulo 2n +
1). Remove aj,aj4 from «, giving
B =0b1---by,—1. By the induction hy-
pothesis there is a unique ¢ for which
b; - - - b;_1 has all partial sums positive.
If b; = aj., then k is the unique integer
for which aj. - - - aj._1 has every partial
sum positive. U
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There are (27? 1) sequences of n + 1
I's and n —1’s. All their 2n + 1 “cyclic
shifts” are distinct since ged(n, n+1) =
1. Thus the number of plane binary

trees with 2n + 1 vertices is

Lo (1) 1 (2
2n + 1 n Cn+1\n ) T
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