Basic rules

- Two players: Blue and Red.
- Perfect information.
- Players move alternately.
- First player unable to move loses.
- The game *must* terminate.

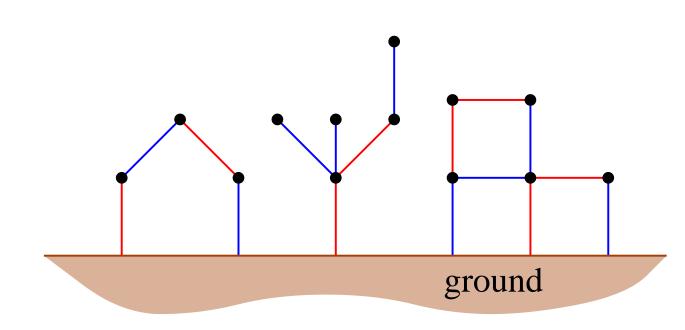
Outcomes (assuming perfect play)

- **Blue** wins (whoever moves first): G > 0
- Red wins (whoever moves first): G < 0
- Mover loses: G = 0
- Mover wins: $G \parallel 0$

Two elegant classes of games

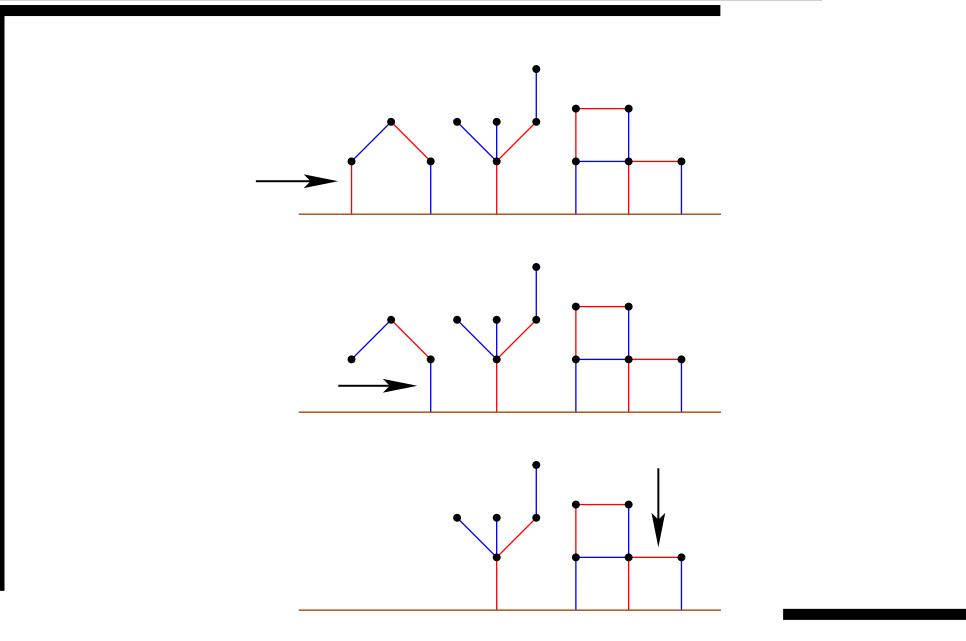
- number game: always disadvantageous to move (so never G||0)
- impartial game: same moves always available to each player

Blue-Red Hackenbush



prototypical number game:

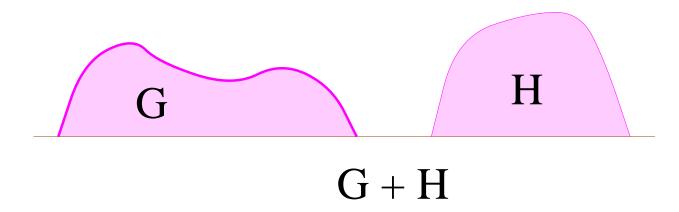
Blue-Red Hackenbush: A player removes one edge of his or her color. Any edges not connected to the ground are also removed. First person unable to move loses.



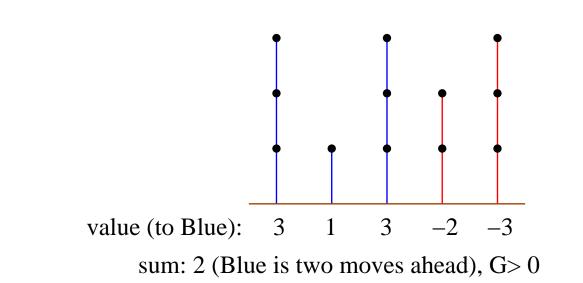
A Hackenbush sum

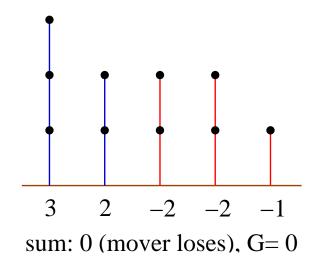
Let *G* be a Blue-Red Hackenbush position (or any game). Recall:

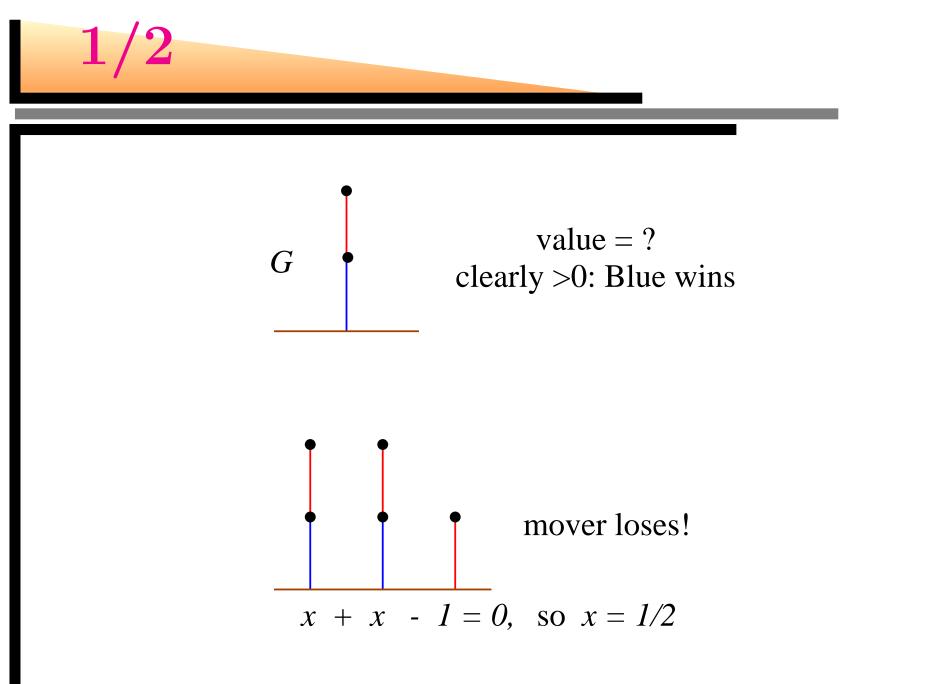
- **Blue** wins: $\mathbf{G} > \mathbf{0}$
- **.** Red wins: $\mathbf{G} < \mathbf{0}$
- Mover loses: $\mathbf{G} = \mathbf{0}$



A Hackenbush value



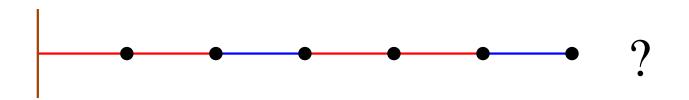




Blue is 1/2 move ahead in *G*.

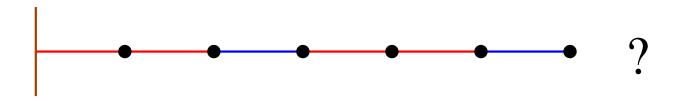
Another position

What about

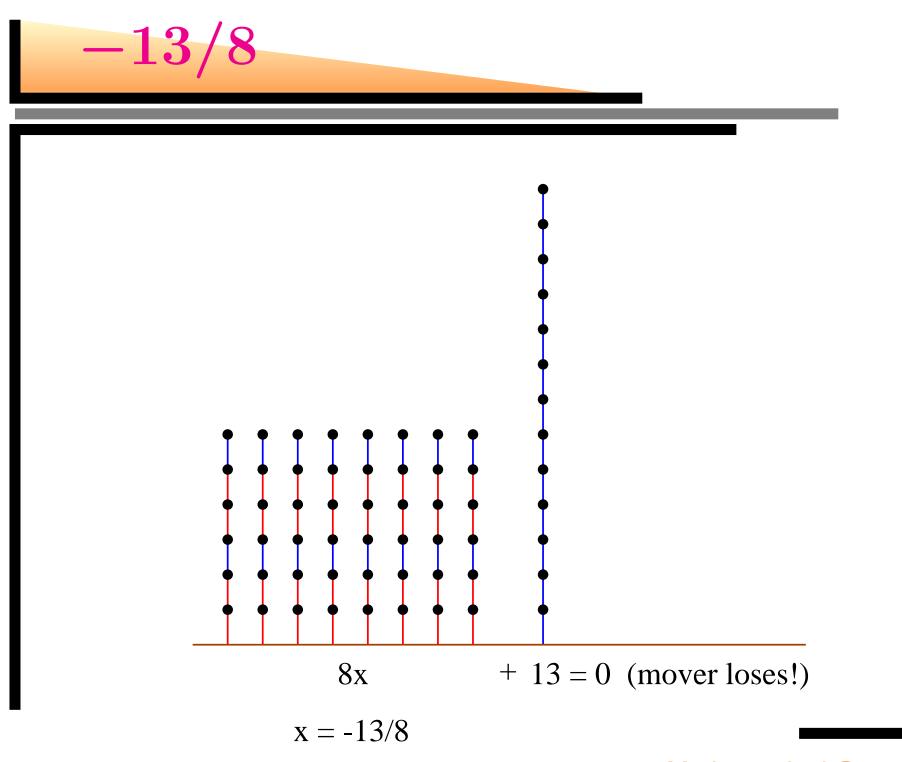


Another position

What about



Clearly G < 0.



b and r

How to compute the value v(G) of any Blue-Red Hackenbush position G?

Let *b* be the largest value of any position to which Blue can move. Let *r* be the smallest value of any position to which Red can move. (We will always have b < r.) The Simplicity Rule. (a) If there is an integer n satisfying b < n < r, then v(G) is the closest such integer to 0.

(b) Otherwise v(G) is the (unique) rational number x satisfying b < x < r whose denominator is the smallest possible power of 2. The Simplicity Rule. (a) If there is an integer n satisfying b < n < r, then v(G) is the closest such integer to 0.

(b) Otherwise v(G) is the (unique) rational number x satisfying b < x < r whose denominator is the smallest possible power of 2.

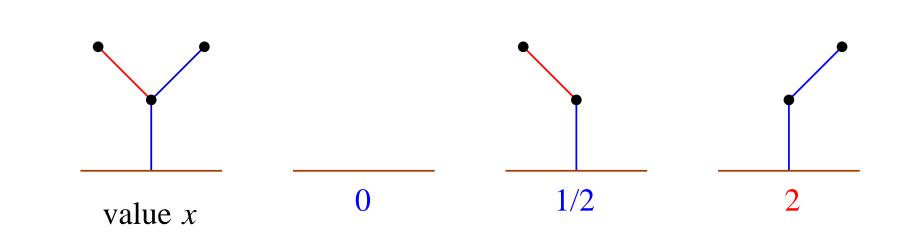
Moreover, v(G + H) = v(G) + v(H).

Some examples

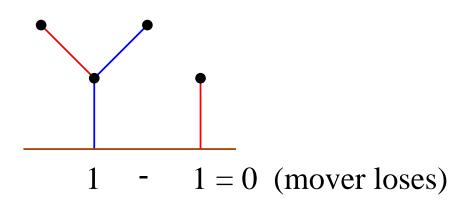
Examples.

b	r	x
$2\frac{3}{4}$	$6\frac{1}{2}$	3
-5	$6\frac{1}{2}$ $2\frac{5}{8}$	0
0	1	$\frac{1}{2}$
$\frac{1}{4}$	$\frac{5}{16}$	$\begin{array}{c c} \frac{1}{2} \\ \frac{9}{32} \\ \frac{3}{8} \end{array}$
$\frac{1}{4}$	$\frac{7}{16}$	$\frac{3}{8}$
$-2\frac{7}{8}$	$-2\frac{3}{32}$	$-2\frac{1}{2}$

A Hackenbush computation

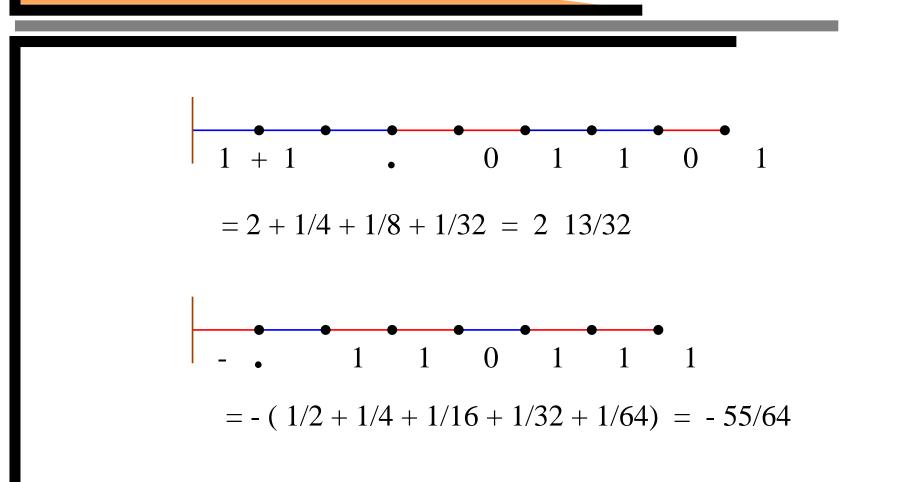


$$b = 1/2, r = 2, x = 1$$

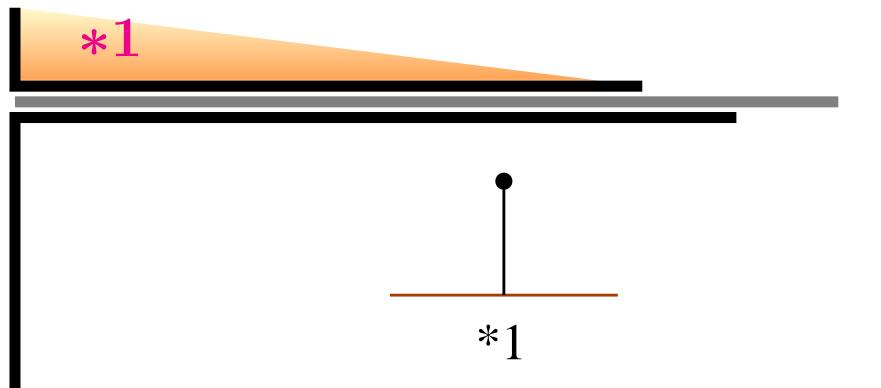


Mathematical Games – p. 14

Value of Blue-Red strings



Now suppose there are also **black** edges, which either player can remove. A game with all **black** edges is called an **impartial** (Hackenbush) game. At any stage of such a game, the two players always have the same available moves.



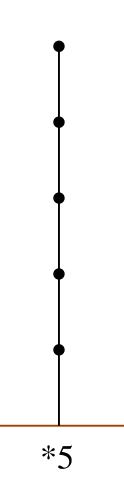
Mover wins! Not a number game.

Neither = 0, < 0, or > 0.

Two outcomes of any impartial game: mover wins or mover loses.

*n

Denote by *n (star n) the impartial game with one chain of length n.



We can still assign a number with useful properties to an impartial game, based on the following fact.

Fact. Given any (finite) impartial game G, there is a unique integer $n \ge 0$ such that mover loses in the sum of G and *n, i.e.,

G + *n = 0.

The Sprague-Grundy number

Fact. Given any (finite) impartial game G, there is a unique integer $n \ge 0$ such that mover loses in the sum of G and *n, i.e.,

G + *n = 0.

The Sprague-Grundy number

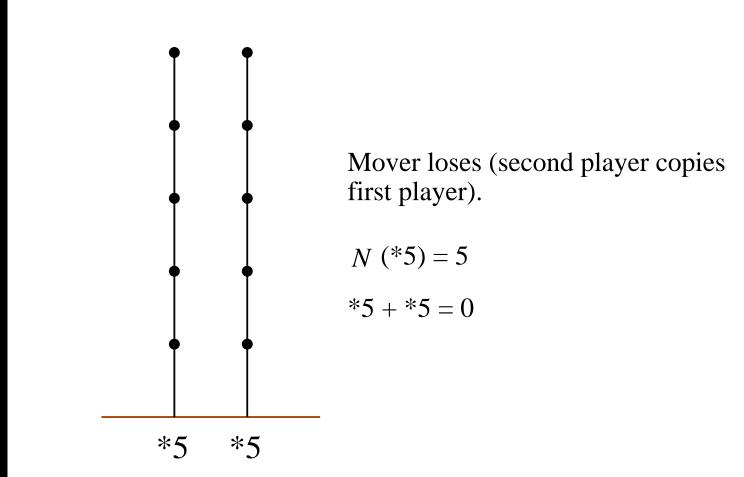
Fact. Given any (finite) impartial game G, there is a unique integer $n \ge 0$ such that mover loses in the sum of G and *n, i.e.,

G + *n = 0.

Denote this integer by N(G), the Sprague-Grundy number of G.

NOTE: Mover loses (i.e., G = 0) if and only if N(G) = 0.

A simple example



In general, N(*n) = n.

Nim addition. Define $m \oplus n$ by writing m and n in binary, adding without carrying (mod 2 addition in each column), and reading result in binary.

Nim addition. Define $m \oplus n$ by writing m and n in binary, adding without carrying (mod 2 addition in each column), and reading result in binary.

The Nim-Sum Theorem

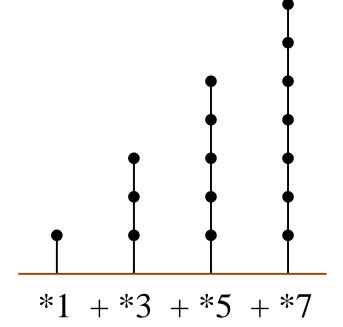
Nim-sum Theorem. Let G and H be impartial games. Then

$N(G+H) = N(G) \oplus N(H).$

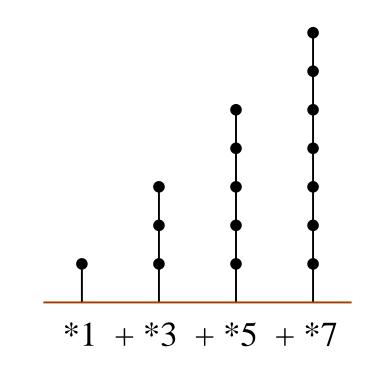
Nim: sum of *n's.

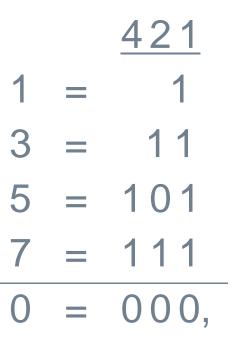
Nim: sum of *n's.

Last Year at Marienbad:



*1 + *3 + *5 + *7





so mover loses!

A Nim example

How to play Nim:

$$G = *23 + *18 + *13 + *7 + *5$$

$$23 = 10111$$

$$18 = 10010$$

$$13 = 1101 \longrightarrow 0111 = 7$$

$$7 = 111$$

$$5 = 101$$

A Nim example

How to play Nim:

$$G = *23 + *18 + *13 + *7 + *5$$

$$23 = 10111$$

$$18 = 10010$$

$$13 = 1101 \longrightarrow 0111 = 7$$

$$7 = 111$$

$$5 = 101$$

Only winning move is to change *13 to *7.

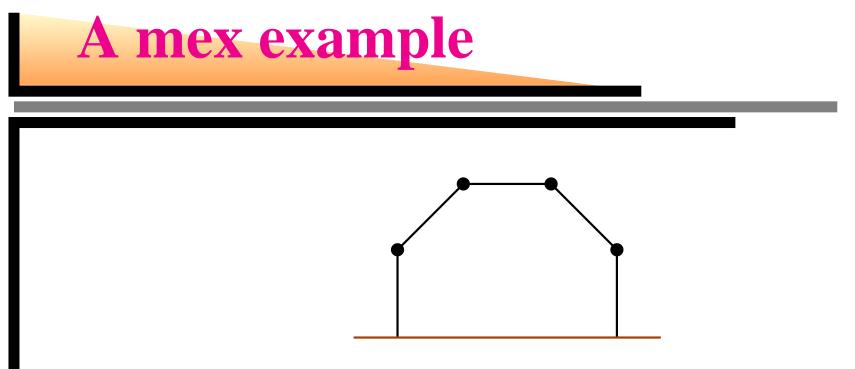
How to compute N(G) in general: If S is a set of nonnegative integers, let mex(S) (the minimal excludant of S) be the least nonnegative integer not in S.

 $\max\{0, 1, 2, 5, 6, 8\} = 3$

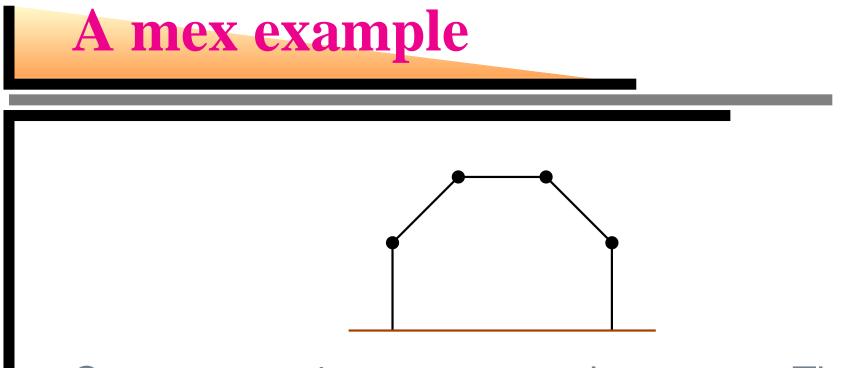
 $\max\{4, 7, 8, 12\} = 0.$

Mex Rule (analogue of Simplicity Rule). Let S be the set of all Sprague-Grundy numbers of positions that can be reached in one move from the impartial game G. Then

 $N(G) = \max(S).$

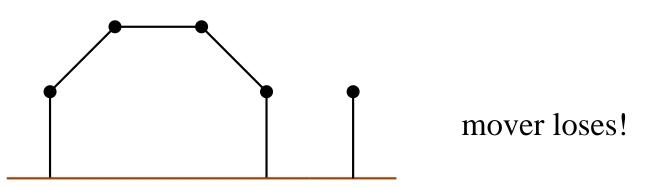


Can move to 4, $1 \oplus 3 = 2$, and $2 \oplus 2 = 0$. Thus $N(G) = \max\{0, 2, 4\} = 1.$

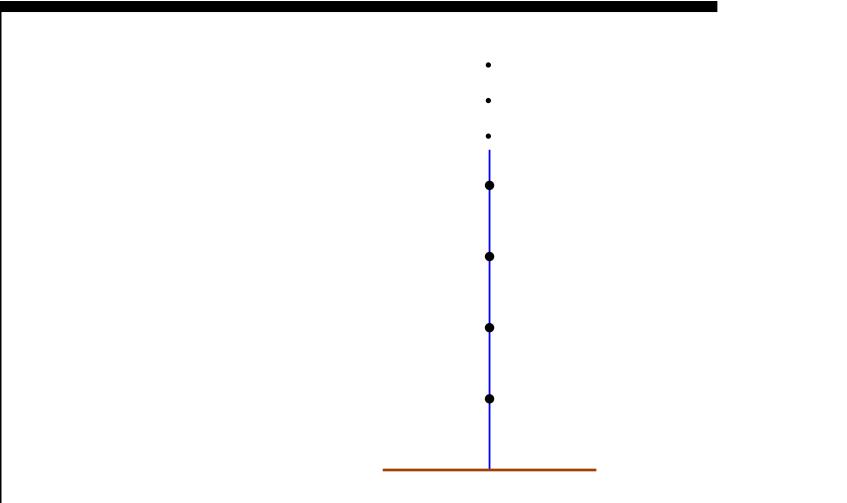


Can move to 4, $1 \oplus 3 = 2$, and $2 \oplus 2 = 0$. Thus

$$N(G) = \max\{0, 2, 4\} = 1.$$

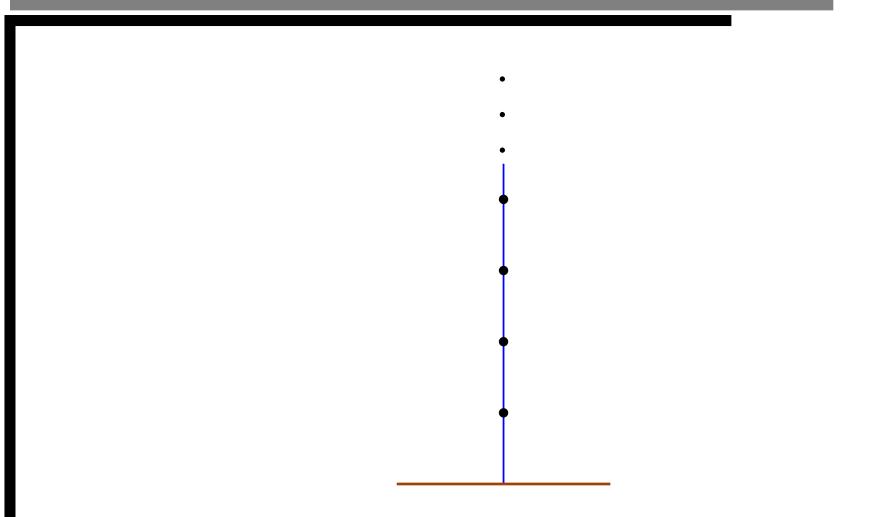


The infinite



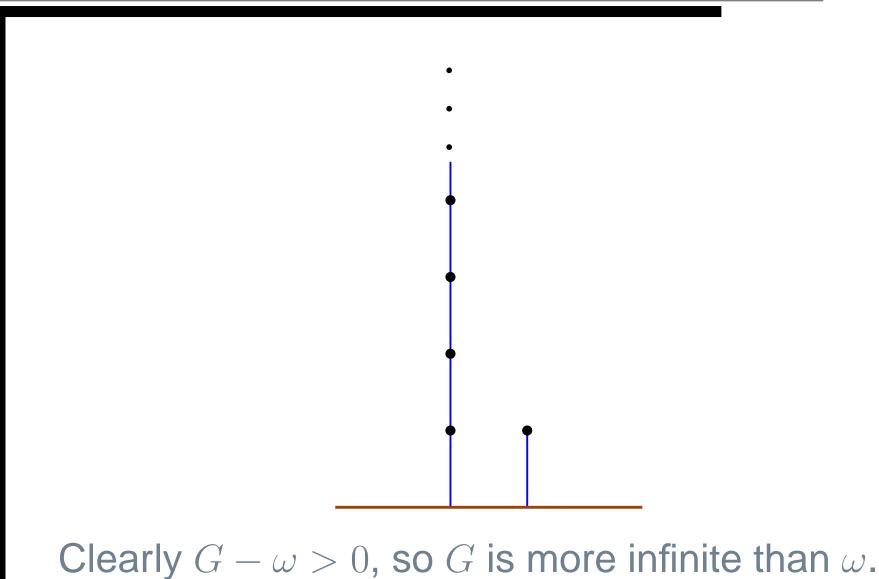
Clearly v(G) > n for all n, i.e., G is infinite. Say $v(G) = \boldsymbol{\omega}$.

The infinite



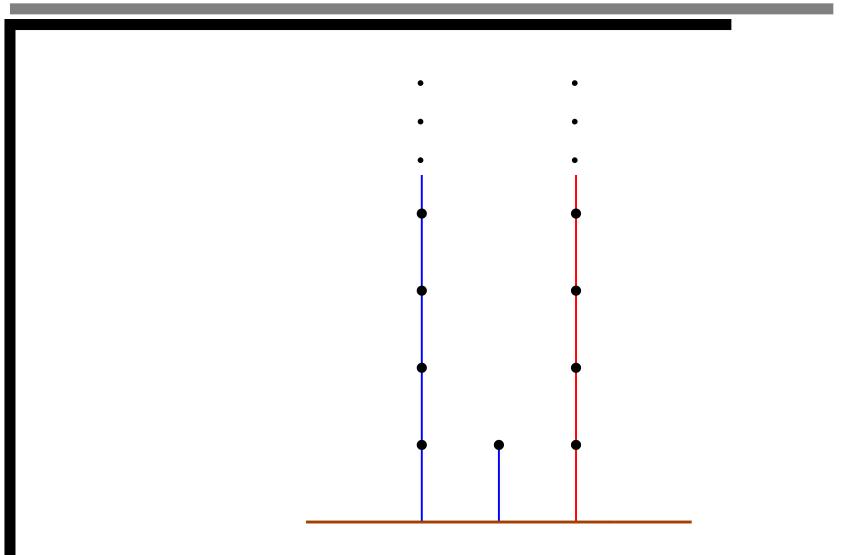
Clearly v(G) > n for all n, i.e., G is infinite. Say $v(G) = \omega$. (Still ends in finitely many moves.)

Even more infinite



 $Call v(G) = \omega + 1.$

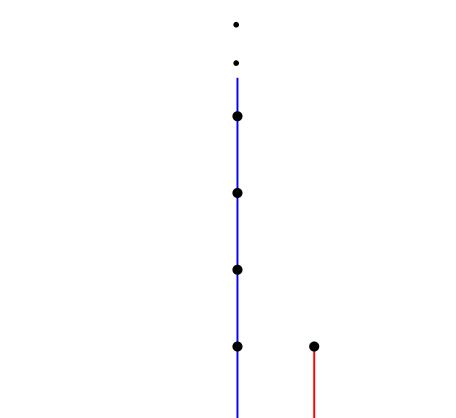
 $\omega + 1$ versus $-\omega$



Blue takes the isolated edge to win.

Ordinal games

Similarly, every **ordinal number** is the value of a game.



We can do more! $v(G) = \omega - 1$.

A big field

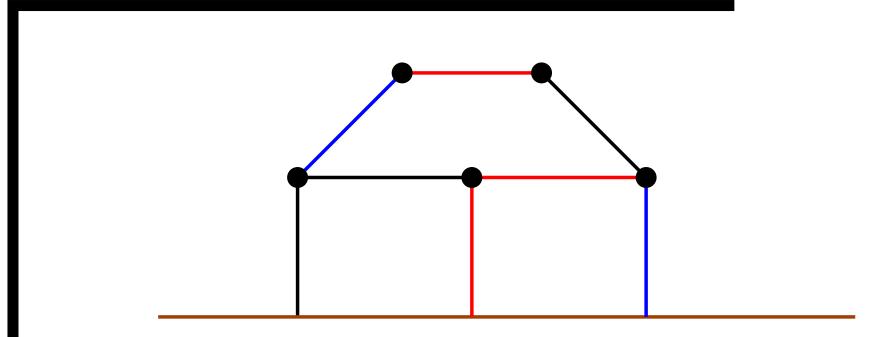
Can extend ordinal numbers to an **abelian** group \mathcal{N} .

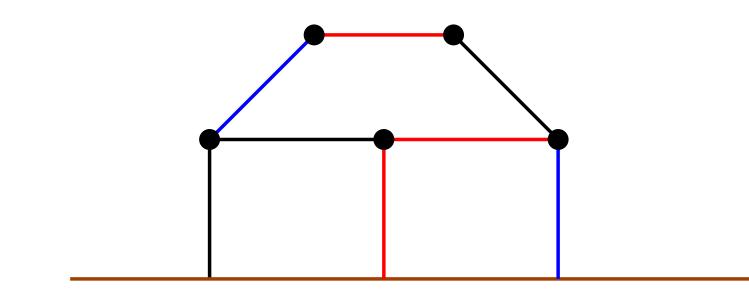
Can extend ordinal numbers to an **abelian** group \mathcal{N} .

Conway defined the product of $G \cdot H$ of any two games. This turns \mathcal{N} into a field. We can extend this to a real closed field, each element of which is a number game

The product $G \cdot H$ turns the set $\{*0, *1, *2, ...\}$ into a field \mathcal{I} ! Since *n + *n = 0, $char(\mathcal{I}) = 2$. The product $G \cdot H$ turns the set $\{*0, *1, *2, ...\}$ into a field \mathcal{I} ! Since *n + *n = 0, $char(\mathcal{I}) = 2$.

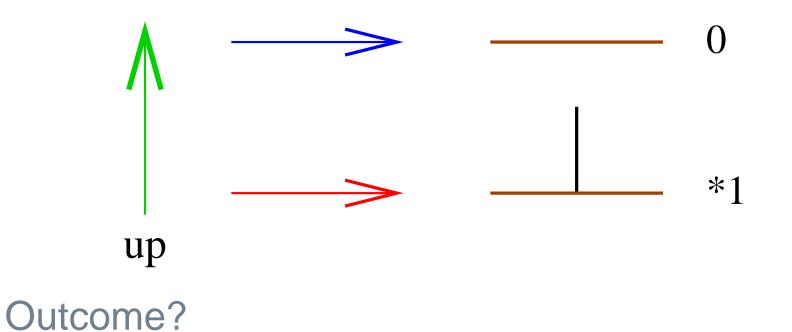
In fact, \mathcal{I} is the quadratic closure of \mathbb{F}_2 .

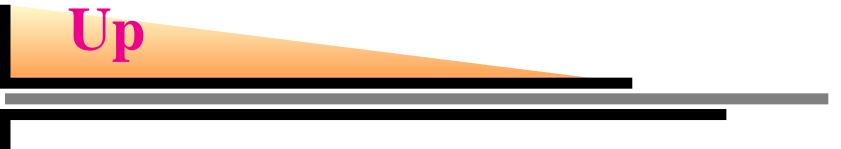




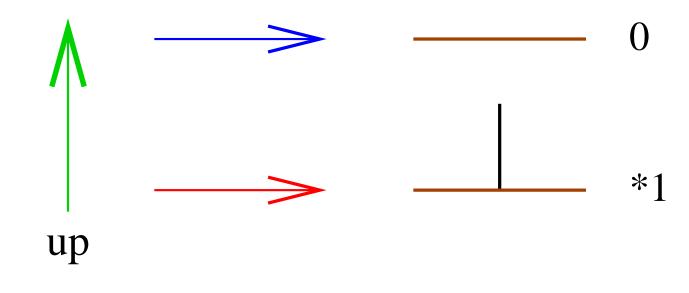
Much more complicated!

Not a Hackenbush game.



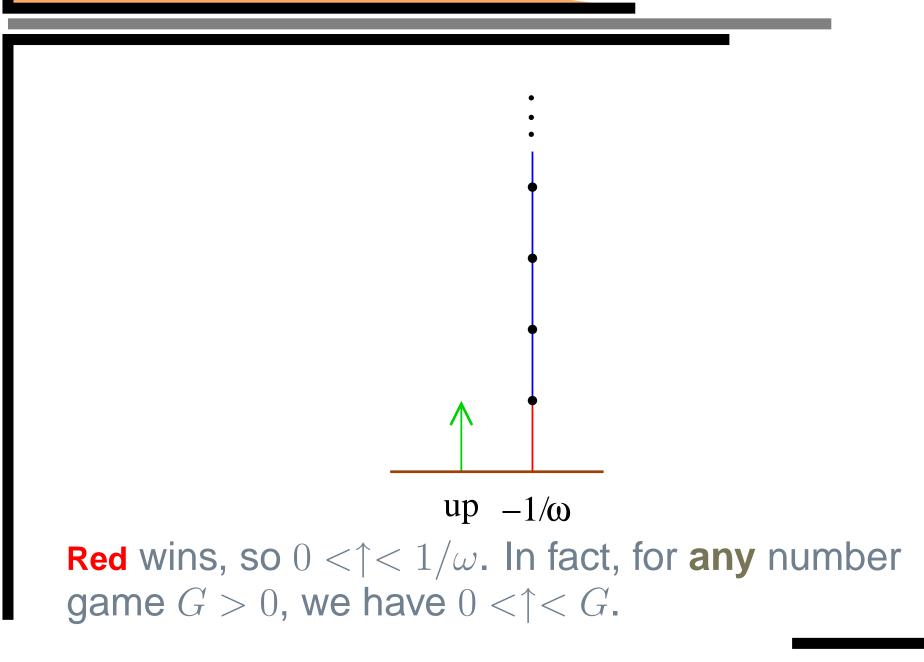


Not a Hackenbush game.



Outcome?

Blue wins, so $\uparrow > 0$.



Caveat

Caveat. \uparrow is not a number game. Red can move to *1, where it is **not** disadvantageous to move.

Mathematical Games – p. 4²

References

- E. R. Berlekamp, *The Dots and Boxes Game*, A K Peters, Natick, Massachusetts, 2000. The classic children's game Dots and Boxes is actually quite sophisticated and uses many deep aspects of the theory of impartial games.
- E. R. Berlekamp, J. H. Conway, and R. K. Guy, *Winning Ways*, Academic Press, New York, 1982. The Bible of the theory of mathematical games, with many general principles and interesting examples.

- 3. E. R. Berlekamp and D. Wolfe, *Mathematical Go*, A K Peters, Wellesley, MA, 1994. Applications of the theory to the game of Go.
- 4. J. H. Conway, *On Numbers and Games*, Academic Press, London/New York, 1976. The first development of a unified theory of mathematical games.

5. D. E. Knuth, *Surreal Numbers*, Addison-Wesley, Reading, MA, 1974. An exposition of the numerical aspects of Conway's theory of mathematical games and the resulting theory of infinitesimal and infinite numbers, in the form of a two-person dialogue.

 R. J. Nowakowski, ed., Games of No Chance, MSRI Publications 29, Cambridge University Press, New York/Cambridge, 1996. Many articles on mathematical games, including some applications to "real" games such as chess and Go. There are two sequels.

How can I get these slides?

Slides available at:

www-math.mit.edu/~rstan/transparencies/games.pdf

