
Basic rules

Two players: Blue and Red.

Perfect information.

Players move alternately.

First player unable to move loses .

The game must terminate.
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Outcomes (assuming perfect play)

Blue wins (whoever moves first): G > 0

Red wins (whoever moves first): G < 0

Mover loses: G = 0

Mover wins: G‖0
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Two elegant classes of games

number game : always disadvantageous to
move (so never G‖0)

impartial game : same moves always
available to each player
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Blue-Red Hackenbush

ground

prototypical number game:

Blue-Red Hackenbush : A player removes one
edge of his or her color. Any edges not
connected to the ground are also removed. First
person unable to move loses.
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An example
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A Hackenbush sum

Let G be a Blue-Red Hackenbush position (or
any game). Recall:

Blue wins: G > 0

Red wins: G < 0

Mover loses: G = 0

G + H

HG
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A Hackenbush value

sum: 0 (mover loses), G= 0

sum: 2 (Blue is two moves ahead), G> 0

−1−2−223

−3−2313value (to Blue):
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1/2

value = ?
clearly >0: Blue wins

mover loses!

x  +  x   -  1 = 0,  so x = 1/2

G

Blue is 1/2 move ahead in G.
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Another position

What about

?
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Another position

What about

?

Clearly G < 0.
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−13/8

8x + 13 = 0  (mover loses!)

x = -13/8
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b and r

How to compute the value v(G) of any Blue-Red
Hackenbush position G?

Let b be the largest value of any position to which
Blue can move. Let r be the smallest value of any
position to which Red can move. (We will always
have b < r.)
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The simplicity rule

The Simplicity Rule. (a) If there is an integer n
satisfying b < n < r, then v(G) is the closest
such integer to 0.

(b) Otherwise v(G) is the (unique) rational
number x satisfying b < x < r whose
denominator is the smallest possible power of 2.
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The simplicity rule

The Simplicity Rule. (a) If there is an integer n
satisfying b < n < r, then v(G) is the closest
such integer to 0.

(b) Otherwise v(G) is the (unique) rational
number x satisfying b < x < r whose
denominator is the smallest possible power of 2.

Moreover, v(G + H) = v(G) + v(H).
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Some examples

Examples.

b r x
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A Hackenbush computation

0 1/2 2

b = 1/2,  r = 2,  x = 1

1 = 0  (mover loses)1 -

xvalue
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Value of Blue-Red strings

1 +  1           . 0 1 1 0 1

= 2 + 1/4 + 1/8 + 1/32  =  2  13/32

.- 1 1 0 1 1 1

= - ( 1/2 + 1/4 + 1/16 + 1/32 + 1/64)  =  - 55/64
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Impartial Hackenbush

Now suppose there are also black edges, which
either player can remove. A game with all black
edges is called an impartial (Hackenbush) game.
At any stage of such a game, the two players
always have the same available moves.
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∗1

*1

Mover wins! Not a number game.

Neither = 0, < 0, or > 0.

Two outcomes of any impartial game: mover
wins or mover loses.
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∗n

Denote by ∗n (star n) the impartial game with
one chain of length n.

*5
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A nice fact

We can still assign a number with useful
properties to an impartial game, based on the
following fact.

Fact. Given any (finite) impartial game G, there is
a unique integer n ≥ 0 such that mover loses in
the sum of G and ∗n, i.e.,

G + ∗n = 0.
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The Sprague-Grundy number

Fact. Given any (finite) impartial game G, there
is a unique integer n ≥ 0 such that mover loses
in the sum of G and ∗n, i.e.,

G + ∗n = 0.
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The Sprague-Grundy number

Fact. Given any (finite) impartial game G, there
is a unique integer n ≥ 0 such that mover loses
in the sum of G and ∗n, i.e.,

G + ∗n = 0.

Denote this integer by N(G), the Sprague-Grundy
number of G.

NOTE: Mover loses (i.e., G = 0) if and only if
N(G) = 0.
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A simple example

N (*5) = 5

*5 *5

Mover loses (second player copies
first player).

*5 + *5 = 0

In general, N(∗n) = n.
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Nim addition

Nim addition . Define m⊕n by writing m and n in
binary, adding without carrying (mod 2 addition
in each column), and reading result in binary.
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Nim addition

Nim addition . Define m⊕n by writing m and n in
binary, adding without carrying (mod 2 addition
in each column), and reading result in binary.

Example. 13 ⊕ 11 ⊕ 7 ⊕ 4 = 5

8 4 2 1
13 = 1 1 0 1
11 = 1 0 1 1
7 = 1 1 1
4 = 1 0 0
5 = 0 1 0 1
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The Nim-Sum Theorem

Nim-sum Theorem. Let G and H be impartial
games. Then

N(G + H) = N(G) ⊕ N(H).
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Nim

Nim : sum of ∗n’s.
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Nim

Nim : sum of ∗n’s.

Last Year at Marienbad :

*1  + *3  + *5  + *7
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∗1 + ∗3 + ∗5 + ∗7

*1  + *3  + *5  + *7

4 2 1
1 = 1
3 = 1 1
5 = 1 0 1
7 = 1 1 1
0 = 0 0 0,

so mover loses!
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A Nim example

How to play Nim :

G = ∗23 + ∗18 + ∗13 + ∗7 + ∗5

23 = 10111
18 = 10010

  7 =     111
  5 =     101

113 =     1  10 0111 = 7
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A Nim example

How to play Nim :

G = ∗23 + ∗18 + ∗13 + ∗7 + ∗5

23 = 10111
18 = 10010

  7 =     111
  5 =     101

113 =     1  10 0111 = 7

Only winning move is to change ∗13 to ∗7.
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The minimal excludant

How to compute N(G) in general : If S is a set
of nonnegative integers, let mex(S) (the
minimal excludant of S) be the least
nonnegative integer not in S.

mex{0, 1, 2, 5, 6, 8} = 3

mex{4, 7, 8, 12} = 0.
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The Mex Rule

Mex Rule (analogue of Simplicity Rule). Let S be
the set of all Sprague-Grundy numbers of
positions that can be reached in one move from
the impartial game G. Then

N(G) = mex(S).
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A mex example

Can move to 4, 1 ⊕ 3 = 2, and 2 ⊕ 2 = 0. Thus

N(G) = mex{0, 2, 4} = 1.
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A mex example

Can move to 4, 1 ⊕ 3 = 2, and 2 ⊕ 2 = 0. Thus

N(G) = mex{0, 2, 4} = 1.

mover loses!
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The infinite

.

.

.

Clearly v(G) > n for all n, i.e., G is infinite . Say
v(G) = ω.
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The infinite

.

.

.

Clearly v(G) > n for all n, i.e., G is infinite . Say
v(G) = ω. (Still ends in finitely many moves.)
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Even more infinite

.

.

.

Clearly G − ω > 0, so G is more infinite than ω.
Call v(G) = ω + 1.
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ω + 1 versus −ω

.

.

.

.

.

.

Blue takes the isolated edge to win.
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Ordinal games

Similarly, every ordinal number is the value of a
game.
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ω − 1

.

.

.

We can do more! v(G) = ω − 1.
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A big field

Can extend ordinal numbers to an abelian
group N .
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A big field

Can extend ordinal numbers to an abelian
group N .

Conway defined the product of G · H of any two
games. This turns N into a field. We can extend
this to a real closed field, each element of which
is a number game . . . .
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The field I

The product G · H turns the set {∗0, ∗1, ∗2, . . . }
into a field I! Since ∗n + ∗n = 0, char(I) = 2.
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The field I

The product G · H turns the set {∗0, ∗1, ∗2, . . . }
into a field I! Since ∗n + ∗n = 0, char(I) = 2.

In fact, I is the quadratic closure of F2.
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Mixed games
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Mixed games

Much more complicated!
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Up

Not a Hackenbush game.

0

*1
up

Outcome?

Mathematical Games – p. 38



Up

Not a Hackenbush game.

0

*1
up

Outcome?

Blue wins, so ↑> 0.
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↑ is very tiny

up −1/ω

..

.

Red wins, so 0 <↑< 1/ω. In fact, for any number
game G > 0, we have 0 <↑< G.
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Caveat

Caveat. ↑ is not a number game. Red can move
to ∗1, where it is not disadvantageous to move.
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How can I get these slides?

Slides available at:

www-math.mit.edu/ ∼rstan/transparencies/games.pdf
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