PROBLEMS AND CONJECTURES ON F-VECTORS

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:
http://www-math.mit.edu/~rstan/trans.html
$\boldsymbol{\Gamma}=$ "geometric object" made out of faces of well-defined dimensions.
E.g., simplicial complex, polyhedral complex, regular cell complex, ...

$$
\mathbf{f}_{\mathbf{i}}=\#(i \text {-dimensional faces })
$$

$\mathbf{d}=1+\operatorname{dim} \Gamma=1+\max \{\operatorname{dim} F: F$ is a face $\}$

$$
\mathbf{f}(\boldsymbol{\Gamma})=\left(f_{0}, \ldots, f_{d-1}\right),
$$

the f-vector of Γ.

$$
\left(f_{-1}=1 \text { unless } \Gamma=\emptyset\right)
$$

Define the h-vector $\mathbf{h}(\boldsymbol{\Gamma})=\left(h_{0}, \ldots, h_{d}\right)$ by

$$
\sum_{i=0}^{d} h_{i} x^{d-i}=\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}
$$

Let $X=|\boldsymbol{\Gamma}|$ denote the geometric realization of Γ. Γ is CohenMacaulay (C-M) over K if $\forall p \in X$ and $i<\operatorname{dim} \Gamma=d-1$,

$$
\tilde{H}_{i}(X ; K)=H_{i}(X, X-p ; K)=0 .
$$

Γ is Gorenstein* if in addition $\tilde{H}_{d-1}(X ; K)=\tilde{H}_{d-1}(X, X-p ; K)=K$.

Dehn-Sommerville equations: If
Γ is a Gorenstein* simplicial complex, then $h_{i}=h_{d-i}$.

Theorem (GLBT for simplicial polytopes). If Γ is the boundary complex of a simplicial d-polytope (and hence Gorenstein*), then

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}
$$

Problem 1. Does the GLBT hold for Gorenstein* simplicial complexes (or even complete simplicial fans, PL-spheres, or spheres)?

Known for the boundary of a $(d-1)$ ball that is a subcomplex of the boundary complex of a simplicial d-polytope.

Centrally-symmetric polytopes:

 abysmal ignorance (except lower bound theorems).
Problem 2. (a) What is the maxi-

 mum number of facets (or i-dimensional faces) of a centrally-symmetric (simplicial) d-polytope with n vertices? Or of a Gorenstein* simplicial complex of dimension $d-1$ and with n vertices and a free involution? Answers are different!(b) (Kalai) Does every centrally-symmetric d-polytope (or Gorenstein* complex as above) have at least 3^{d} nonempty faces?

Flag complex: a simplicial complex for which every minimal nonface (or missing face) has two elements.
E.g., the order complex (set of chains) of a poset.

Same as clique complexes or independent set complexes of graphs.

Balanced complex: a $(d-1)$ dimensional simplicial complex whose vertices can be colored with d colors so that no edge is monochromatic. E.g., order complexes.

Problem 3. (a) (Kalai) Is the f vector of a flag complex also the f-vector of a balanced complex?

flag

balanced

$$
f=(5,5)
$$

(b) (Charney-Davis) Let Γ be a ($2 e-1$)-dimensional Gorenstein* flag complex with $h(\Gamma)=\left(h_{0}, \ldots, h_{2 e}\right)$. Is it true that
$(-1)^{e}\left(h_{0}-h_{1}+h_{2}-\cdots+h_{2 e}\right) \geq 0$?
True for face posets of convex polytopes.

Matroid complex: a simplicial complex Γ on the vertex set V such that the restriction of Γ to any subset of V is pure (i.e., all maximal faces have same dimension).

Example. The linearly independent subsets of a subset of a vector space.

Multicomplex: a collection Λ of multisets such that $F \in \Lambda$ and $G \subset F \Rightarrow$ $G \in \Lambda . \Lambda$ is pure if all maximal elements have the same cardinality. Define $f(\Lambda)$ just like $f(\Gamma)$.

Problem 4. Is the h-vector of a matroid complex the f-vector of a pure multicomplex?

Note: A matroid complex is C-M (even shellable), and the h-vector of any C-M complex is the f-vector of a multicomplex.

Example. $(1,3,1)$ is the f-vector of the multicomplex $\{\emptyset, 1,2,3,11\}$ or $\{\emptyset, 1,2,3,12\}$ but is not the f-vector of a pure multicomplex.

Partitioning. An interval of a simplicial complex Γ is a set

$$
\begin{aligned}
& \quad\left[F, F^{\prime}\right]=\left\{G: F \subseteq G \subseteq F^{\prime}\right\} \subseteq \Gamma \\
& \text { (so } \left.F \subseteq F^{\prime} \in \Gamma\right) .
\end{aligned}
$$

An interval partition Π of Γ is a collection of nonempty pairwise disjoint intervals whose union is Γ.

Theorem. If Γ is acyclic (vanishing reduced homology), then there is a partition Π of Γ into two-element intervals $\left[F, F^{\prime}\right]$ such that

$$
\Delta:=\left\{F:\left[F, F^{\prime}\right] \in \Pi\right\}
$$

is a subcomplex of Γ.
Corollary. $f(\Gamma)=f(C(\Delta))$, where $C(\Delta)$ is the cone over Δ.

Duval: generalization that gives a "partitioning proof" of the result of BjörnerKalai characterizing the f-vector of simplicial complexes with prescribed Betti numbers.

Problem 5. (a) Suppose that Γ is acyclic, as well as $\operatorname{lk}(v)$ for every vertex v of Γ. Can Γ be partitioned into fourelement intervals such that

$$
\Delta:=\left\{F:\left[F, F^{\prime}\right] \in \Pi\right\}
$$

is a subcomplex of Γ ?
(b) Suppose that Γ is C-M. Can Γ be partitioned into intervals $\left[F, F^{\prime}\right]$ such that each F^{\prime} is a facet (maximal face) of Γ ?

Note: If Γ has a partition Π as in (b), then

$$
\sum_{i} h_{i} x^{i}=\sum_{\left[F, F^{\prime}\right] \in \Pi} x^{\# F}
$$

Cubical complexes. Regard a (finite, abstract) cubical complex as a finite meet-semilattice such that every interval $[\hat{0}, t]$ is isomorphic to the facelattice of a cube (whose dimension depends on t).

Let L be a pure cubical complex of rank d (or dimension $d-1$). Let s be a vertex (element covering $\hat{0}$). The subposet $\{t \in L: t \geq s\}$ is the face poset of a simplicial complex $\Gamma_{S}=\operatorname{lk}(s)$. Let

$$
h\left(\Gamma_{S}, x\right)=\sum_{i=0}^{d-1} h_{i}\left(\Gamma_{S}\right) x^{i}
$$

Define $h_{i}(L)$ by the equation

$$
\begin{gathered}
\sum_{i=0}^{d} h_{i}(L) x^{i}=\frac{1}{1+x}\left(2^{d-1}\right. \\
\left.+x \sum_{s} h\left(\Gamma_{s}, x\right)+(-2)^{d-1} \widetilde{\chi}(L) x^{d+1}\right),
\end{gathered}
$$

where s ranges over all vertices of L and

$$
\widetilde{\chi}(L)=\sum_{t \in L}(-1)^{\operatorname{rank}(t)-1}
$$

the reduced Euler characteristic of L.
Easy: Right-hand side is a polynomial in x.

$$
\begin{gathered}
\sum_{i=0}^{3} h_{i}(L) x^{i}= \\
\frac{1}{1+x}\left[2^{2}+x(4+4(1+x)\right. \\
\left.\left.+\left(1+2 x+x^{2}\right)\right)+(-2)^{2} \cdot 0 \cdot x^{4}\right] \\
=4+5 x+x^{2} \\
\Rightarrow h(L)=(4,5,1,0)
\end{gathered}
$$

Problem 6. (a) Let L be a pure cubical complex of rank d. If L is a CM poset (i.e., the order complex of L is C-M), then is $h_{i}(L) \geq 0$ for all i ? (True if L is shellable.)
(b) (Adin) If L is in addition a Gorenstein* poset, then is it true that

$$
\begin{aligned}
& \quad h_{0}(L) \leq h_{1}(L) \leq \cdots \leq h_{\lfloor d / 2\rfloor}(L) ? \\
& \text { (Adin: } h_{i}=h_{d-i} \text {.) }
\end{aligned}
$$

Simplicial posets. Intuitively, a simplicial complex for which two faces can intersect in any subcomplex of both, not just a face.

Rigorously: a (finite) poset with $\hat{0}$ for which every interval is a boolean algebra.

$|P| \approx \mathbb{S}^{2} \Rightarrow P-\hat{0}$ is Gorenstein*

$$
\begin{aligned}
f(P)= & (4,6,4) \\
\sum_{i=0}^{3} h_{i} x^{3-i}= & (x-1)^{3}+4(x-1)^{2} \\
& +6(x-1)+4 \\
= & x^{3}+x^{2}+x+1 \\
\Rightarrow & h(P)=(1,1,1,1) .
\end{aligned}
$$

Theorem. (a) If P is a C - M simplicial poset, then $h_{0}=1$ and $h_{i} \geq 0$ (complete characterization).
(b) If P is a Gorenstein* simplicial poset, then $h_{0}=1, h_{i} \geq 0$, and $h_{i}=h_{d-i}$ (complete characterization if f_{d-1} is even, e.g., d odd).

Problem 7. Characterize the h-vector

 of Gorenstein* simplicial posets when f_{d-1} is odd.$$
\text { E.g, }(1,0,1,0,1) \text { is not the } h \text {-vector }
$$ of a Gorenstein* simplicial poset.

Subdivisions.

Δ^{\prime} is a quasigeometric subdivision of Δ if the vertices of an i-dimensional face of Δ^{\prime} do not all lie on a face of Δ of smaller dimension.

geometric \Rightarrow quasigeometric \Rightarrow topological

Theorem. If Δ^{\prime} is a quasigeometric subdivision of the $C-M$ (or even Buchsbaum) complex, then

$$
\forall i \quad h_{i}\left(\Delta^{\prime}\right) \geq h_{i}(\Delta)
$$

Problem 8. Does the above result hold for topological subdivisions?

Local h-vectors. Let $\# V=d$, and let Γ be a (simplicial) subdivision (geometric or quasigeometric) of the simplex 2^{V}. Let

$$
\begin{gathered}
\boldsymbol{\Gamma}_{\mathbf{W}}=\text { restriction of } \Gamma \text { to } W \subseteq V \\
\mathbf{h}\left(\boldsymbol{\Gamma}_{\mathbf{W}}, \mathbf{x}\right)=\sum_{i} h_{i}\left(\Gamma_{W}\right) x^{i} \\
\ell_{\mathbf{V}}(\boldsymbol{\Gamma}, \mathbf{x})=\sum_{W \subseteq V}(-1)^{\#(V-W)} h\left(\Gamma_{W}, x\right)
\end{gathered}
$$

$$
\begin{aligned}
\ell_{V}(\Gamma, x)= & -1+3 \cdot 1-[1+(1+x)+(1+2 x) \\
& +\left(1+5 x+2 x^{2}\right) \\
= & 2 x+2 x^{2}
\end{aligned}
$$

Problem 9. When does $\ell_{V}(\Gamma, x)=$ 0 ?

