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| The function £ (.S, )

Let S C R, #5 < o0, a € R.

F(S,a) =#{T CS: > i=a}

€T’
NOTE. > . .4¢ =0
Example. f({1,2,4,5,7,10},7) = 3:
7=245=14+2+4

—
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| The conjecture for S C R

Example. Va f({1,+/2,7,10,100},a) = 0,1

Erd 0s-Moser Conjecture.

#HS =2n+1
:f(svoé) gf({—n,—n+1,...,n},0)

#S = 2n
= f(5,0) < f{—n+1,-n+2,...,n},0)

—
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| The conjecture for S C R*

LetRT ={i e R : i > 0}.
Erd 0s-Moser Conjecture.

SCRY, #S=n

= f(S,a) < f <{1>2»~°>”}’ B(ngl)J)

NoTE. (") =11 +2+-- +n)

—



| Posets

A poset (partially ordered set) is a set P with a
binary relation < satisfying:

o Reflexivity: t <t
o Antisymmetry: s <t t<s=s=1
o Transitivity: s <t t<u=s<u

—



| Graded posets

chain: uw;, < wu, < -+ < uy



| Graded posets

chain: u; < wus < -+ <

Assume P is finite . P Is graded of rank mn if
P=PUPU---UP,,

such that every maximal chain has the form

o<ti<---<t,, t ekl

—



I Diagram of a graded poset
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Let p; = #P.

Rank-generating function:  /»(g) = Zpiqi
1=0
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I Rank-symmetry and unimodality

Let p; = #P.

Rank-generating function:  /»(g) = Zp@-qi
1=0

Rank-symmetric: p;, = p,,_; Vi

Rank-unimodal:
po<p1 <---<p;j>pjr1 =+ > py forsome j

rank-unimodal and rank-symmetric = j = |n/2

—
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antichain A C P:
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I The Sperner property
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I The Sperner property

antichain A C P:

s,teA, s<t=s=t

NOTE. P IS an antichain
P Is Sperner (or has the Sperner property ) if

max H#A = max p;
1

—



| An example

rank-symmetric, rank-unimodal, F'p(q) = 3 + 3¢

—



| An example

rank-symmetric, rank-unimodal, Fp(q) = 3 + 3¢

not Sperner



| The boolean algebra

B,,: subsets of {1,2,...,n}, ordered by inclusion



| The boolean algebra

B,,: subsets of {1,2,...,n}, ordered by inclusion

pi=(}), Fp,(q)=(14+¢q)"

rank-symmetric, rank-unimodal

—



I Diagram of B;

12

123

23



Sperner’s theorem, 1927

Theorem. B, IS Sperner.



Sperner’s theorem, 1927

Theorem. B, IS Sperner.

Emanuel Sperner
9 December 1905 — 31 January 1980
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| The posetM (n)

M (n): subsets of {1,2,...,n}, ordered as
follows:

Let
n>a >ay>--->ap > 1
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S:{&l,...,@k}, T:{blaab]}
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| The posetM (n)

M (n): subsets of {1,2,...,n}, ordered as
follows:

Let
n>a >ay>--->ap > 1

n2b1>b2>--->bj21

S={ai,...,ar}, T =A{b,...,b;}
Define S > T if £ > 5 and

@12[?1, CLQZbQ,..., aj>bj.

—



| M(@1),M(2), M(3)

e 321
¢ 32
o 21
31
1 L Y
I 3 21
P ol
2
°P
ol
o



¢ 4321

¢ 432

321

¢ 0



| Rank function of M (n)




| Rank function of M (n)

= Fp(g) = (1+q)(1+¢°) - (1+¢")
Rank-symmetry clear: p; = #M(n); = P(rs1) — 0

—



| Rank function of M (n)

M(n), = {SC{l,....n} : Y i=k}
€S
f{1,....,n}, k)

=

S

3
|

= Fr(g) = (1+q)(1+¢)-- (14+¢")
Rank-symmetry clear: p; = #M(n); = P(rs1) — ?
Rank-unimodality Is (no combinatorial

oroof known). |
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| Lindstrom’s observation

Theorem. If M(n) is Sperner, then the weak
Erdos-Moser conjecture holds for #S = n.

Weak Erd 0s-Moser Conjecture.

SCR" #S=n

= f(S,a) < f (({172»---7”}’ E(WQHM)



| Lindstrom’s observation

Theorem. If M(n) is Sperner, then the weak
Erdos-Moser conjecture holds for #S = n.

Proof. Suppose S ={aq,...,ar}, a1 > --- > a.
L et

e I
where t; > -+ > 1,, 51 > -+ > 4.

—



| Conclusion of proof

Now {iy, ... .45} > {1, s in M(n)

= Qy, ijm ey Ay >bj3

— =8, a;, :bzk VEk.

— 7“287 11 Zj17°°°7i3>j3



| Conclusion of proof

NOW {i1, i} > {ju,.. ., js} in M(n)

= T 28,1 2 P15l = s
— A, ijlv ceey g ijs
= I =S, a;, :bzk VEk.

ThUSCLil—F"'—FCLZ‘T:bj1—|—°°°—|—bjs

= {i1,...,%-} and {j1,...,Js} are incomparable
or equal in M(n)

»ws<mepas (0 [3(17)]) o




| Linear algebra to the rescue!

M (n) is Sperner.



| Linear algebra to the rescue!

M (n) is Sperner.

P=FU---UPF, : graded poset
QFP; : vector space with basis Q

U:QF, — QF,., I1s order-raising If

Ul(s) € spangit € Py 1 s <t}

—



| Order-matchings

Order matching: : 7, — F..i: Injective and
u(t) <t



| Order-matchings

Order matching: : 7, — F..i: Injective and
u(t) <t

VLU

—




| Order-raising and order-matchings

Key Lemma. IfU: QP — QF,,; is injective and
order-raising, then there exists an
order-matching u: P, — P,1.




| Order-raising and order-matchings

Key Lemma. IfU: QF, — QF, IS Injective and
order-raising, then there exists an
order-matching u: P, — P,1.

Proof. Consider the matrix of U with respect to
the bases P, and P,_;.

B



| Key lemma proof

th b ty

S1 # 0 %

: *

S = 0|  *
det # 0O




| Key lemma proof

t tm tn
S1 _#O X _
: *
Sm | #0[  x
det # 0O
= 51 < t1,...,8m < ln



| Minor variant

Similarly If there exists surjective order-raising
U: QF, — QF,1, then there exists an
order-matching u: P, — P,.



I A criterion for Spernicity

P=PFU---UP,: finite graded poset

Proposition. If for some j there exist
order-raising operators

Surj. surj.

QP() 1nj. Qpl 1nj. .“m,] QP surj. @P]+1 S @Pm

then P Is rank-unimodal and Sperner.

B



| A criterion for Spernicity

P=PFU---UP,: finite graded poset

Proposition. If for some j there exist
order-raising operators

surj. surj.

@P surj. @P]+1 S QP?%

inj.

@PO IDJ @Pl lnj o

then P Is rank-unimodal and Sperner.

Proof. “Glue together” the order-matchings.

B



| Gluing example
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| Gluing example

B



| Gluing example









| A chain.decomposition

P=CU---UC),, (chains)
A = antichain,C' = chain = #(ANC) <1




| Back to M (n)

Since M (n) has rank (") and is self-dual,

suffices to find injective order-raising operators

U: QM (n); — QM(n)it1, @ < Kn;lﬂ

B



| How to find U ?



| How to find U ?




| Definition.of U

For s € M (n); define

U(s) = Z t



| Definition.of U

For s € M (n); define

U(s) = Z t

tGM(n)Hl
s<t

We don’t know how to choose x(s), SO we make
all possible choices at once (a “qguantum’”

matching).



I How to prove Injectivity?



I How to prove Injectivity?




| A lowering operator

Define D: QF, — QF,_; by
D(t) = Z c(s,t)s,

SGM(n)i—l
s<t

where c(s, t) is given as follows.

s = {ay>--->a;} C{1,...,n}
t = {by>--->b}C{l,...,n}

There Is a unique r for which a, = b, — 1 (and

a,, = b, for all other m). In the case b, = 1 we set |
a, = 0.



I Two examples

Example. s =4{8,7,4,2},t ={8,7,5,2} = r =3



I Two examples

Example. s =4{8,7,4,2},t ={8,7,5,2} = r =3
Example. s =1{5,4}, t =1{5,4,1} =r =3



| Definition of c¢(s, t)

, (") if ay = 0
c(s,t) = <
(n—a)(n+a+1), if a. > 0.

D(t)= » c(s.t)s, t€M(n),

SEM(n)i—l
s<t

—



| Why this choice of U and D?

Lemma.

1
et vami= (") -2)1

(Subscripts denote level at which operator acts.)

—



| Why this choice of U and D?

Lemma.

1
bt (1) -21) 1

(Subscripts denote level at which operator acts.)

Proof. Straightforward computation.

—



I Injectivity

Di+1UZ‘Z @M(Tl)z — @M(ﬂ)l has pOSitive
eigenvalues fori < | ("1 |.

DO | —



I Injectivity

D@+1U@I @M(Tl)z — @M(TL)Z has pOSitive

eigenvalues fori < | ("1 |.

Proof: Induction on z. Trivial to check : = 0: the
matrix is [1].

—



| Injectivity

D;1U;: QM (n); — QM (n); has positive

eigenvalues fori < | ("1 |.

Proof: Induction on 7. Trivial to check : = 0: the
matrix is [1].

Recall from linear algebra:
V, W : finite-dimensional vector spaces

A:V —-1W, B:W — V: linear transformations
= 9" W det(] — 2BA) = 9™V det(I — 2AB)

B



| Eigenvalues ofD;  1;

Thus AB and BA have same nonzero
eigenvalues.

Recall: Di+1UZ‘ —U,_1D; = ((n—;l) — 22) L.

—



| Eigenvalues ofD;  1;

Thus AB and BA have same nonzero
eigenvalues.

Recall: Dz’+1Uz' —U;_1D; = ((n—gl) — 22) I;.

# Assume induction hypothesis for: — 1, I.e.,
D;U;_; has positive eigenvalues.

—



| Eigenvalues ofD;  1;

Thus AB and BA have same nonzero
eigenvalues.

Recall: Dz’+1Uz' —U;_1D; = ((n—2|—1) — 22) I;.

# Assume induction hypothesis for: — 1, I.e.,
D;U;_; has positive eigenvalues.

#® Thus U;_{D; has eigenvalues.

—



| Eigenvalues ofD;  1;

Thus AB and BA have same nonzero
eigenvalues.

Recall: D¢+1U¢ —U;_1D; = ((n—2|—1) — 22) I;.

# Assume induction hypothesis for: — 1, I.e.,
D;U;_; has positive eigenvalues.

#® Thus U;_{D; has eigenvalues.

# Eigenvalues of D, U, exceed those of U;_1 D;

by (") — 2i > 0. |




| Completion of proof

We showed: D, 1U; has positive eigenvalues,
- 1 (n+1

i< 3(")]

Thus: D, 1U; Is Invertible.

If v € ker(U;) then v € ker(D;;1U;), so U; IS
Injective.

—



| Completion of proof

We showed: D, 1U; has positive eigenvalues,
- 1 (n+1

i< 3(")]

Thus: D, 1U; Is Invertible.

If v € ker(U;) then v € ker(D;;1U;), so U; IS
Injective.

—- weak Erd 6s-Moser conjecture is true!
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| Completion of proof

We showed: D, 1U; has positive eigenvalues,
- 1 (n+1

i< 3(")]

Thus: D, 1U; Is Invertible.

If v € ker(U;) then v € ker(D;;1U;), so U; IS
Injective.

—- weak Erd 6s-Moser conjecture is true!

= o
®

F




| The original conjecture

Recall weak conjecture was for S C R™*, original
conjecture for S C R.

Original conjecture can be proved in several
ways:

—



| The original conjecture

Recall weak conjecture was for S C R™*, original
conjecture for S C R.

Original conjecture can be proved in several

ways:

» Combinatorial argument using the weak
conjecture (Kleitman)

» Spernicity of M (n) x M(n)* using same
methods, where M (n)* is the dual of M (n).
Note: M(n) = M(n)*

» Use results on preservation of Spernicity |
under product.



| How were U and D found?

QM (n) = H*(SO(2n +1,C)/P; Q)




| How were U and D found?

QM (n) = H*(SO(2n+1,C)/P; Q)
= ‘/Spin)

the weight space of the spin representation of
SO(2n +1,C).

—



| How were U and D found?

QM (n) = H*(SO(2n+1,C)/P; Q)
= ‘/Spinv

the weight space of the spin representation of
SO(2n +1,C).

Reduced to linear algebra by Proctor .

—
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