The Erdős-Moser Conjecture

An Application of Linear Algebra to Combinatorics

Richard P. Stanley

M.I.T.

The function $f(S, \alpha)$

Let $S \subset \mathbb{R}$, $\#S < \infty$, $\alpha \in \mathbb{R}$.

$$f(S, \alpha) = \#\{T \subseteq S : \sum_{i \in T} i = \alpha\}$$

Note.
$$\sum_{i \in \emptyset} i = 0$$

The function $f(S, \alpha)$

Let $S \subset \mathbb{R}$, $\#S < \infty$, $\alpha \in \mathbb{R}$.

$$f(S, \alpha) = \#\{T \subseteq S : \sum_{i \in T} i = \alpha\}$$

Note.
$$\sum_{i \in \emptyset} i = 0$$

Example. $f(\{1, 2, 4, 5, 7, 10\}, 7) = 3$:

$$7 = 2 + 5 = 1 + 2 + 4$$

The conjecture for $S \subset \mathbb{R}$

Example. $\forall \alpha \ f(\{1, \sqrt{2}, \pi, 10, 100\}, \alpha) = 0, 1$

The conjecture for $S \subset \mathbb{R}$

Example. $\forall \alpha \ f(\{1, \sqrt{2}, \pi, 10, 100\}, \alpha) = 0, 1$

Erdős-Moser Conjecture.

$$#S = 2n + 1$$

$$\Rightarrow f(S, \alpha) \le f(\{-n, -n + 1, \dots, n\}, 0)$$

$$#S = 2n$$

$$\Rightarrow f(S, \alpha) \le f(\{-n+1, -n+2, \dots, n\}, 0)$$

The conjecture for $S \subset \mathbb{R}^+$

Let
$$\mathbb{R}^+ = \{i \in \mathbb{R} : i > 0\}$$
.

The conjecture for $S \subset \mathbb{R}^+$

Let
$$\mathbb{R}^+ = \{i \in \mathbb{R} : i > 0\}$$
.

Weak Erdős-Moser Conjecture.

$$S \subset \mathbb{R}^+, \ \#S = n$$

$$\Rightarrow f(S,\alpha) \le f\left(\{1,2,\ldots,n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor \right)$$

The conjecture for $S \subset \mathbb{R}^+$

Let
$$\mathbb{R}^+ = \{i \in \mathbb{R} : i > 0\}$$
.

Weak Erdős-Moser Conjecture.

$$S \subset \mathbb{R}^+, \ \#S = n$$

$$\Rightarrow f(S,\alpha) \le f\left(\{1,2,\ldots,n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor \right)$$

Note.
$$\frac{1}{2} \binom{n+1}{2} = \frac{1}{2} (1 + 2 + \dots + n)$$

Posets

A **poset** (partially ordered set) is a set P with a binary relation \leq satisfying:

- Reflexivity: $t \leq t$
- Antisymmetry: $s \le t, \ t \le s \Rightarrow s = t$
- Transitivity: $s \le t, \ t \le u \Rightarrow s \le u$

Graded posets

chain: $u_1 < u_2 < \cdots < u_k$

Graded posets

chain: $u_1 < u_2 < \cdots < u_k$

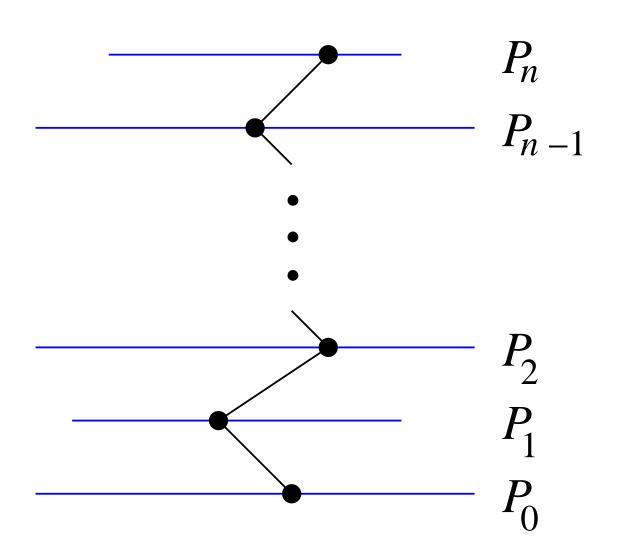
Assume P is finite. P is graded of rank n if

$$P = P_0 \cup P_1 \cup \cdots \cup P_n,$$

such that every maximal chain has the form

$$t_0 < t_1 < \cdots < t_n, \quad t_i \in P_i.$$

Diagram of a graded poset



Let
$$p_i = \#P_i$$
.

Rank-generating function:
$$F_P(q) = \sum_{i=0}^{\infty} p_i q^i$$

Let
$$p_i = \#P_i$$
.

Rank-generating function: $F_P(q) = \sum_{i=0}^{\infty} p_i q^i$

Rank-symmetric: $p_i = p_{n-i} \ \forall i$

Let
$$p_i = \#P_i$$
.

Rank-generating function: $F_P(q) = \sum_{i=0}^{\infty} p_i q^i$

Rank-symmetric: $p_i = p_{n-i} \ \forall i$

Rank-unimodal:

$$p_0 \le p_1 \le \cdots \le p_i \ge p_{i+1} \ge \cdots \ge p_n$$
 for some j

Let
$$p_i = \#P_i$$
.

Rank-generating function: $F_P(q) = \sum_{i=0}^{\infty} p_i q^i$

Rank-symmetric: $p_i = p_{n-i} \ \forall i$

Rank-unimodal:

$$p_0 \le p_1 \le \cdots \le p_j \ge p_{j+1} \ge \cdots \ge p_n$$
 for some j

rank-unimodal and rank-symmetric $\Rightarrow j = \lfloor n/2 \rfloor$

The Sperner property

antichain $A \subseteq P$:

$$s, t \in A, \ s \le t \Rightarrow s = t$$

The Sperner property

antichain $A \subseteq P$:

$$s, t \in A, \ s \le t \Rightarrow s = t$$

Note. P_i is an antichain

The Sperner property

antichain $A \subseteq P$:

$$s, t \in A, \ s \le t \Rightarrow s = t$$

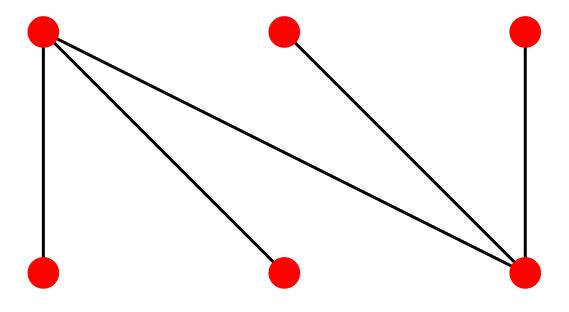
• • • •

Note. P_i is an antichain

P is Sperner (or has the Sperner property) if

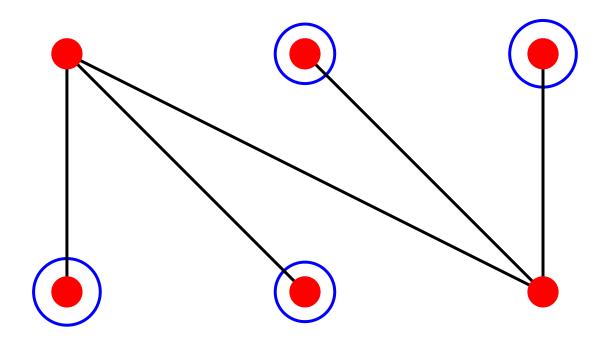
$$\max_{A} \#A = \max_{i} p_{i}$$

An example



rank-symmetric, rank-unimodal, $F_P(q) = 3 + 3q$

An example



rank-symmetric, rank-unimodal, $F_P(q) = 3 + 3q$ not Sperner

The boolean algebra

 $\boldsymbol{B_n}$: subsets of $\{1, 2, \dots, n\}$, ordered by inclusion

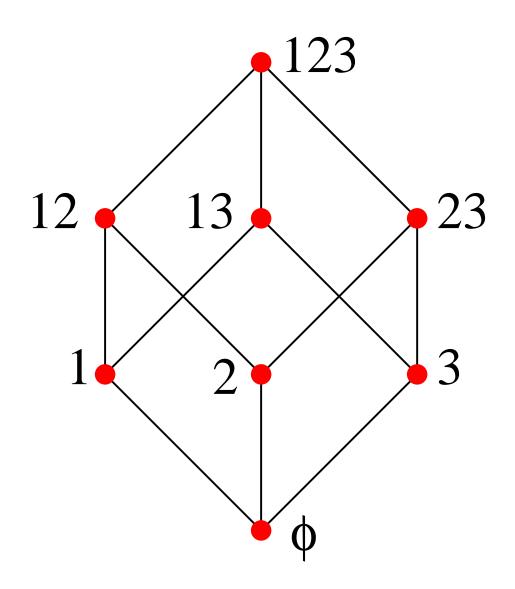
The boolean algebra

 $\boldsymbol{B_n}$: subsets of $\{1, 2, \dots, n\}$, ordered by inclusion

$$p_i = \binom{n}{i}, F_{B_n}(q) = (1+q)^n$$

rank-symmetric, rank-unimodal

Diagram of B_3



Sperner's theorem, 1927

Theorem. B_n is Sperner.

Sperner's theorem, 1927

Theorem. B_n is Sperner.

Emanuel Sperner 9 December 1905 – 31 January 1980

The poset M(n)

M(n): subsets of $\{1, 2, \dots, n\}$, ordered as follows:

The poset M(n)

M(n): subsets of $\{1, 2, \dots, n\}$, ordered as follows:

Let

$$n \ge a_1 > a_2 > \dots > a_k \ge 1$$

 $n \ge b_1 > b_2 > \dots > b_j \ge 1$
 $S = \{a_1, \dots, a_k\}, T = \{b_1, \dots, b_j\}$

The poset M(n)

M(n): subsets of $\{1, 2, \dots, n\}$, ordered as follows:

Let

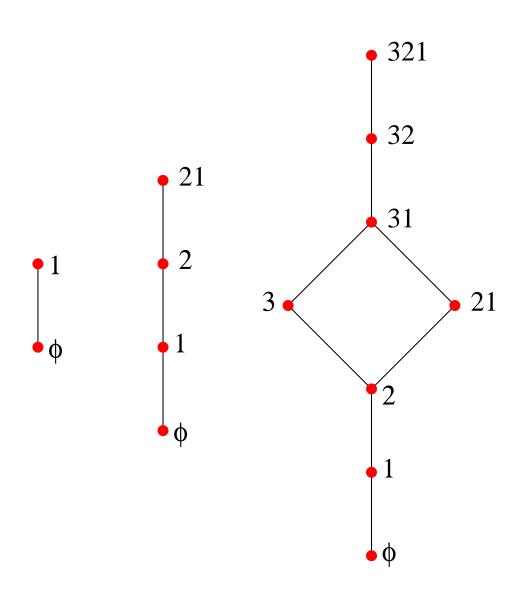
$$n \ge a_1 > a_2 > \dots > a_k \ge 1$$

 $n \ge b_1 > b_2 > \dots > b_j \ge 1$
 $S = \{a_1, \dots, a_k\}, T = \{b_1, \dots, b_j\}$

Define $S \geq T$ if $k \geq j$ and

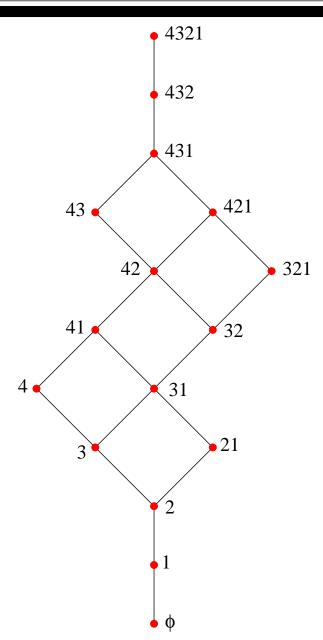
$$a_1 \ge b_1, \quad a_2 \ge b_2, \dots, \quad a_j \ge b_j.$$

M(1),M(2),M(3)



The Frdős-Moser Conjecture – p. 15

M(4)



The Erdős-Moser Conjecture – p. 16

Rank function of M(n)

Easy:

$$M(n)_k = \{S \subseteq \{1, \dots, n\} : \sum_{i \in S} i = k\}$$

 $\# M(n)_k = f(\{1, \dots, n\}, k)$

$$\Rightarrow F_P(q) = (1+q)(1+q^2)\cdots(1+q^n)$$

Rank function of M(n)

Easy:

$$M(n)_k = \{S \subseteq \{1, \dots, n\} : \sum_{i \in S} i = k\}$$

 $\# M(n)_k = f(\{1, \dots, n\}, k)$

$$\Rightarrow F_P(q) = (1+q)(1+q^2)\cdots(1+q^n)$$

Rank-symmetry clear: $p_i = \#M(n)_i = p_{\binom{n+1}{2}} - i$

Rank function of M(n)

Easy:

$$M(n)_k = \{S \subseteq \{1, \dots, n\} : \sum_{i \in S} i = k\}$$

 $\#M(n)_k = f(\{1, \dots, n\}, k)$

$$\Rightarrow F_P(q) = (1+q)(1+q^2)\cdots(1+q^n)$$

Rank-symmetry clear: $p_i = \#M(n)_i = p_{\binom{n+1}{2}} - i$

Rank-unimodality is unclear (no combinatorial proof known).

Lindström's observation

Theorem. If M(n) is Sperner, then the weak Erdős-Moser conjecture holds for #S = n.

Lindström's observation

Theorem. If M(n) is Sperner, then the weak Erdős-Moser conjecture holds for #S = n.

Weak Erdős-Moser Conjecture.

$$S \subset \mathbb{R}^+, \ \#S = n$$

$$\Rightarrow f(S,\alpha) \le f\left((\{1,2,\ldots,n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor \right)$$

Lindström's observation

Theorem. If M(n) is Sperner, then the weak Erdős-Moser conjecture holds for #S = n.

Proof. Suppose $S = \{a_1, \ldots, a_k\}$, $a_1 > \cdots > a_k$. Let

$$a_{i_1} + \dots + a_{i_r} = a_{j_1} + \dots + a_{j_s},$$

where $i_1 > \cdots > i_r$, $j_1 > \cdots > j_s$.

Conclusion of proof

Now
$$\{i_1, \dots, i_r\} \ge \{j_1, \dots, j_s\}$$
 in $M(n)$

$$\Rightarrow r \ge s, \ i_1 \ge j_1, \dots, i_s \ge j_s$$

$$\Rightarrow a_{i_1} \ge b_{j_1}, \dots, a_{i_s} \ge b_{j_s}$$

$$\Rightarrow r = s, \ a_{i_k} = b_{i_k} \ \forall k.$$

Conclusion of proof

Now
$$\{i_1, \dots, i_r\} \ge \{j_1, \dots, j_s\}$$
 in $M(n)$

$$\Rightarrow r \ge s, i_1 \ge j_1, \dots, i_s \ge j_s$$

$$\Rightarrow a_{i_1} \ge b_{j_1}, \dots, a_{i_s} \ge b_{j_s}$$

$$\Rightarrow r = s, a_{i_k} = b_{i_k} \forall k.$$

Thus
$$a_{i_1} + \cdots + a_{i_r} = b_{j_1} + \cdots + b_{j_s}$$

 $\Rightarrow \{i_1, \dots, i_r\} \text{ and } \{j_1, \dots, j_s\} \text{ are incomparable}$ or equal in M(n)

$$\Rightarrow \#S \le \max_{A} \#A = f\left(\{1,\dots,n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor \right) \square$$

Linear algebra to the rescue!

To prove: M(n) is Sperner.

Linear algebra to the rescue!

To prove: M(n) is Sperner.

$$\mathbf{P} = P_0 \cup \cdots \cup P_m$$
: graded poset

 $\mathbb{Q}P_i$: vector space with basis \mathbb{Q}

$$U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$$
 is order-raising if

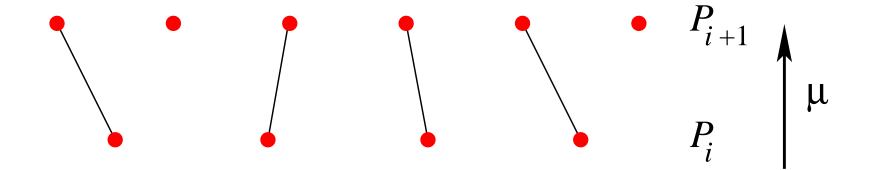
$$U(s) \in \operatorname{span}_{\mathbb{Q}} \{ t \in P_{i+1} : s < t \}$$

Order-matchings

Order matching: $\mu \colon P_i \to P_{i+1}$: injective and $\mu(t) < t$

Order-matchings

Order matching: $\mu \colon P_i \to P_{i+1}$: injective and $\mu(t) < t$



Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_i \to P_{i+1}$.

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_i \to P_{i+1}$.

Proof. Consider the matrix of U with respect to the bases P_i and P_{i+1} .

Key lemma proof

Key lemma proof

$$P_{i+1}$$
 $t_1 \cdots t_m \cdots t_n$
 $P_i \begin{cases} s_1 & \neq 0 & | * \\ \vdots & | * \\ s_m & \neq 0 | * \end{cases}$
 $\det \neq 0$

$$\Rightarrow s_1 < t_1, \dots, s_m < t_m$$

Minor variant

Similarly if there exists **surjective** order-raising $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$, then there exists an order-matching $\mu: P_{i+1} \to P_i$.

A criterion for Spernicity

$$\mathbf{P} = P_0 \cup \cdots \cup P_n$$
: finite graded poset

Proposition. If for some j there exist order-raising operators

$$\mathbb{Q}P_0 \xrightarrow{\text{inj.}} \mathbb{Q}P_1 \xrightarrow{\text{inj.}} \cdots \xrightarrow{\text{inj.}} \mathbb{Q}P_j \xrightarrow{\text{surj.}} \mathbb{Q}P_{j+1} \xrightarrow{\text{surj.}} \cdots \xrightarrow{\text{surj.}} \mathbb{Q}P_n,$$

then P is rank-unimodal and Sperner.

A criterion for Spernicity

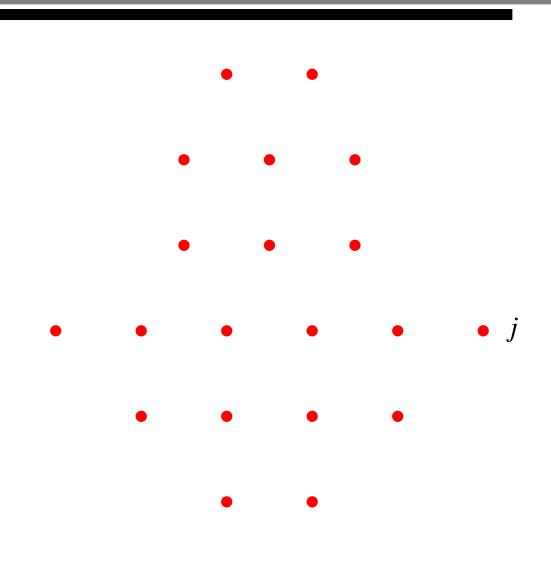
$$\mathbf{P} = P_0 \cup \cdots \cup P_n$$
: finite graded poset

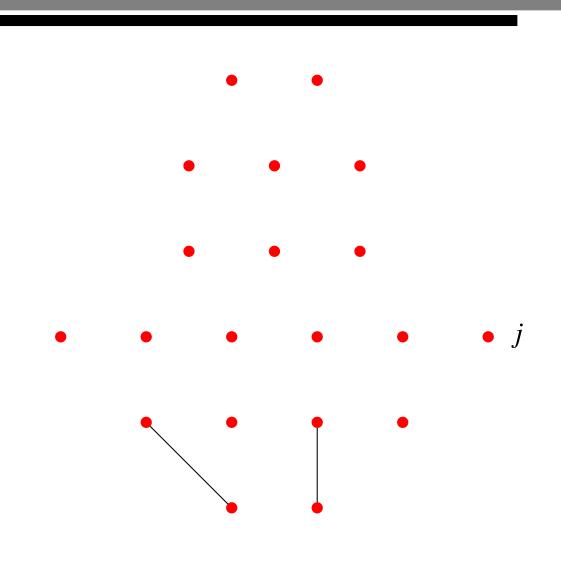
Proposition. If for some j there exist order-raising operators

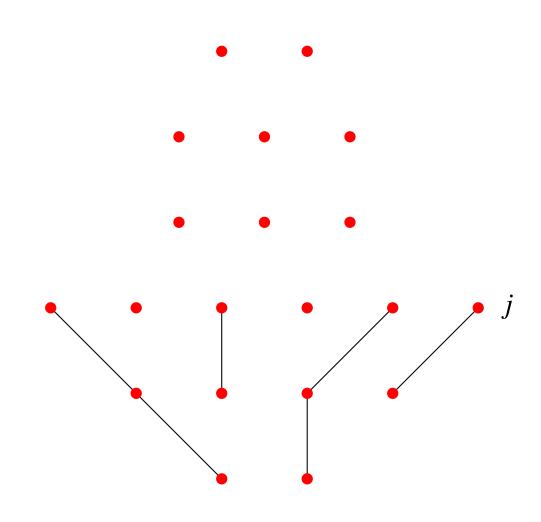
$$\mathbb{Q}P_0 \xrightarrow{\text{inj.}} \mathbb{Q}P_1 \xrightarrow{\text{inj.}} \cdots \xrightarrow{\text{inj.}} \mathbb{Q}P_j \xrightarrow{\text{surj.}} \mathbb{Q}P_{j+1} \xrightarrow{\text{surj.}} \cdots \xrightarrow{\text{surj.}} \mathbb{Q}P_n,$$

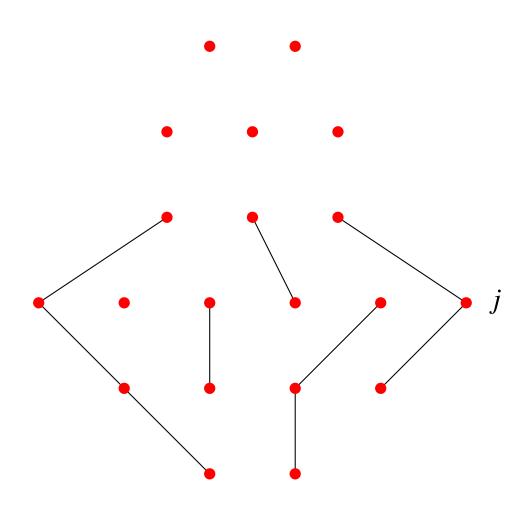
then P is rank-unimodal and Sperner.

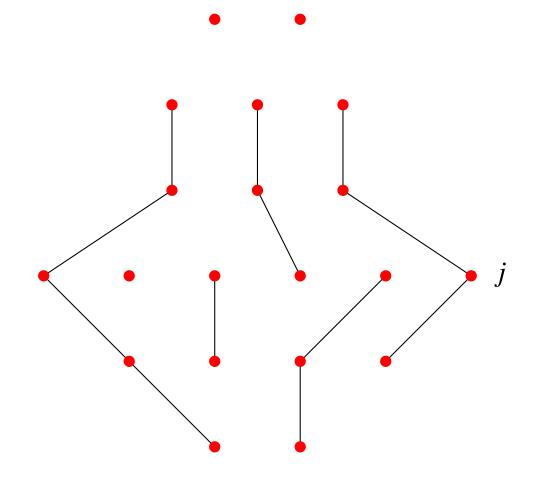
Proof. "Glue together" the order-matchings.

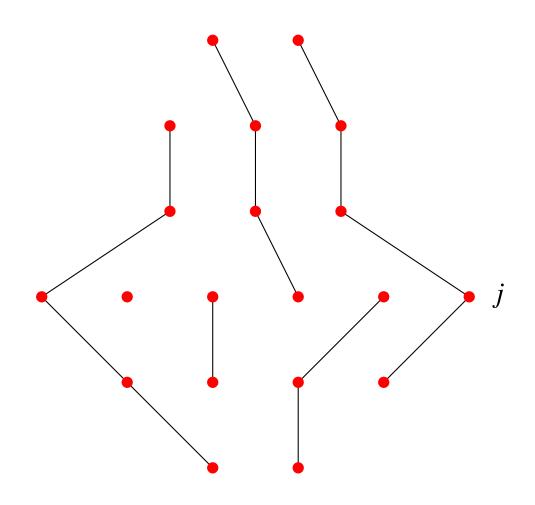












A chain decomposition

$$P = C_1 \cup \cdots \cup C_{p_j}$$
 (chains)
 $A = \text{antichain}, C = \text{chain} \Rightarrow \#(A \cap C) \leq 1$
 $\Rightarrow \#A \leq p_j.$

Back to M(n)

Since M(n) has rank $\binom{n+1}{2}$ and is self-dual, suffices to find injective order-raising operators

$$U: \mathbb{Q}M(n)_i \to \mathbb{Q}M(n)_{i+1}, i < \left\lfloor \binom{n+1}{2} \right\rfloor$$

How to find U?

How to find U?

The Erdős-Moser Conjecture – p. 29

Definition of *U*

For $s \in M(n)_i$ define

$$oldsymbol{U(s)} = \sum_{\substack{t \in M(n)_{i+1} \ s < t}} t$$

Definition of *U*

For $s \in M(n)_i$ define

$$oldsymbol{U(s)} = \sum_{\substack{t \in M(n)_{i+1} \ s < t}} t$$

We don't know how to choose $\mu(s)$, so we make all possible choices at once (a "quantum" matching).

How to prove injectivity?

How to prove injectivity?

A lowering operator

Define $D: \mathbb{Q}P_i \to \mathbb{Q}P_{i-1}$ by

$$\mathbf{D(t)} = \sum_{\substack{s \in M(n)_{i-1} \\ s < t}} c(s, t)s,$$

where c(s,t) is given as follows.

$$s = \{a_1 > \dots > a_j\} \subseteq \{1, \dots, n\}$$

 $t = \{b_1 > \dots > b_k\} \subseteq \{1, \dots, n\}$

There is a unique r for which $a_r = b_r - 1$ (and $a_m = b_m$ for all other m). In the case $b_r = 1$ we set $a_r = 0$.

Two examples

Example. $s = \{8, 7, 4, 2\}, t = \{8, 7, 5, 2\} \Rightarrow r = 3$

Two examples

Example. $s = \{8, 7, 4, 2\}, t = \{8, 7, 5, 2\} \Rightarrow r = 3$

Example. $s = \{5, 4\}, t = \{5, 4, 1\} \Rightarrow r = 3$

Definition of c(s,t)

$$c(s,t) = \begin{cases} (n+1), & \text{if } a_r = 0\\ (n-a_r)(n+a_r+1), & \text{if } a_r > 0. \end{cases}$$

$$\mathbf{D(t)} = \sum_{\substack{s \in M(n)_{i-1} \\ s < t}} c(s, t)s, \quad t \in M(n)_i$$

Why this choice of U and D?

Lemma.

$$D_{i+1}U_i - U_{i-1}D_i = \left(\binom{n+1}{2} - 2i\right)I_i.$$

(Subscripts denote level at which operator acts.)

Why this choice of U and D?

Lemma.

$$D_{i+1}U_i - U_{i-1}D_i = \left(\binom{n+1}{2} - 2i\right)I_i.$$

(Subscripts denote level at which operator acts.)

Proof. Straightforward computation.

Injectivity

Claim: $D_{i+1}U_i$: $\mathbb{Q}M(n)_i \to \mathbb{Q}M(n)_i$ has positive eigenvalues for $i < \lfloor \frac{1}{2} \binom{n+1}{2} \rfloor$.

Injectivity

Claim: $D_{i+1}U_i$: $\mathbb{Q}M(n)_i \to \mathbb{Q}M(n)_i$ has positive eigenvalues for $i < \lfloor \frac{1}{2} \binom{n+1}{2} \rfloor$.

Proof: Induction on i. Trivial to check i=0: the matrix is [1].

Injectivity

Claim: $D_{i+1}U_i$: $\mathbb{Q}M(n)_i \to \mathbb{Q}M(n)_i$ has positive eigenvalues for $i < \lfloor \frac{1}{2} \binom{n+1}{2} \rfloor$.

Proof: Induction on i. Trivial to check i = 0: the matrix is [1].

Recall from linear algebra:

 $oldsymbol{V}, oldsymbol{W}$: finite-dimensional vector spaces

 $A: V \to W, \quad B: W \to V: \text{ linear transformations}$ $\Rightarrow x^{\dim W} \det(I - xBA) = x^{\dim V} \det(I - xAB)$

Thus AB and BA have same nonzero eigenvalues.

Recall:
$$D_{i+1}U_i - U_{i-1}D_i = \binom{n+1}{2} - 2i I_i$$
.

Thus AB and BA have same nonzero eigenvalues.

Recall:
$$D_{i+1}U_i - U_{i-1}D_i = \binom{n+1}{2} - 2i I_i$$
.

• Assume induction hypothesis for i-1, i.e., D_iU_{i-1} has positive eigenvalues.

Thus AB and BA have same nonzero eigenvalues.

Recall:
$$D_{i+1}U_i - U_{i-1}D_i = \binom{n+1}{2} - 2i I_i$$
.

- Assume induction hypothesis for i-1, i.e., D_iU_{i-1} has positive eigenvalues.
- Thus $U_{i-1}D_i$ has nonnegative eigenvalues.

Thus AB and BA have same nonzero eigenvalues.

Recall:
$$D_{i+1}U_i - U_{i-1}D_i = \binom{n+1}{2} - 2i I_i$$
.

- Assume induction hypothesis for i-1, i.e., D_iU_{i-1} has positive eigenvalues.
- Thus $U_{i-1}D_i$ has nonnegative eigenvalues.
- Eigenvalues of $D_{i+1}U_i$ exceed those of $U_{i-1}D_i$ by $\binom{n+1}{2}-2i>0$. \square

Completion of proof

We showed: $D_{i+1}U_i$ has positive eigenvalues,

$$i < \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor$$
.

Thus: $D_{i+1}U_i$ is invertible.

If $v \in \ker(U_i)$ then $v \in \ker(D_{i+1}U_i)$, so U_i is injective.

Completion of proof

We showed: $D_{i+1}U_i$ has positive eigenvalues, $i < \left| \frac{1}{2} \binom{n+1}{2} \right|$.

Thus: $D_{i+1}U_i$ is invertible.

If $v \in \ker(U_i)$ then $v \in \ker(D_{i+1}U_i)$, so U_i is injective.

⇒ weak Erdős-Moser conjecture is true!

Completion of proof

We showed: $D_{i+1}U_i$ has positive eigenvalues, $i < \left| \frac{1}{2} \binom{n+1}{2} \right|$.

Thus: $D_{i+1}U_i$ is invertible.

If $v \in \ker(U_i)$ then $v \in \ker(D_{i+1}U_i)$, so U_i is injective.

⇒ weak Erdős-Moser conjecture is true!

The original conjecture

Recall weak conjecture was for $S \subset \mathbb{R}^+$, original conjecture for $S \subset \mathbb{R}$.

Original conjecture can be proved in several ways:

The original conjecture

Recall weak conjecture was for $S \subset \mathbb{R}^+$, original conjecture for $S \subset \mathbb{R}$.

Original conjecture can be proved in several ways:

- Combinatorial argument using the weak conjecture (Kleitman)
- Spernicity of $M(n) \times M(n)^*$ using same methods, where $M(n)^*$ is the dual of M(n). Note: $M(n) \cong M(n)^*$
- Use results on preservation of Spernicity under product.

How were *U* and *D* found?

$$\mathbb{Q}M(n) \cong H^*(SO(2n+1,\mathbb{C})/P;\mathbb{Q})$$

How were U and D found?

$$\mathbb{Q}M(n) \cong H^*(SO(2n+1,\mathbb{C})/P;\mathbb{Q})$$
$$\cong V_{\text{spin}},$$

the weight space of the spin representation of $SO(2n+1,\mathbb{C})$.

How were U and D found?

$$\mathbb{Q}M(n) \cong H^*(SO(2n+1,\mathbb{C})/P;\mathbb{Q})$$
$$\cong V_{\text{spin}},$$

the weight space of the spin representation of $SO(2n+1,\mathbb{C})$.

Reduced to linear algebra by **Proctor**.

What next?

What next?

The Erdős-Moser Conjecture – p. 4