$G=$ finite group

$\widehat{G}=$ set of (ordinary, complex) irreducible characters of G
$\mathbb{Z} \widehat{G}=$ lattice of virtual characters of G, i.e., \mathbb{Z}-linear combinations of characters $\mathbb{N} \widehat{G}=$ set of characters of G.

Theorem. (Frobenius-Schur) For $w \in G$, let

$$
r_{2, G}(w)=\#\left\{u \in G: w=u^{2}\right\} .
$$

If $\chi \in \hat{G}$, then

$$
\left.\left\langle r_{2, G}, \chi\right\rangle=\left\{\begin{array}{c}
1, \text { if } \chi \text { is afforded by a real } \\
\text { representation }
\end{array}\right\} \begin{array}{c}
-1, \text { if } \chi \text { is real valued but not } \\
\text { afforded by a real } \\
\text { representation }
\end{array}\right\}
$$

Corollary. (a) $r_{2, G} \in \mathbb{Z} \widehat{G}$

(b) $r_{2, G} \in \mathbb{N} \hat{G}$ if and only if every real character is afforded by a real representation.
(c) $r_{2, G}=\sum_{\chi \in \hat{G}} \chi$ if and only if every character is afforded by a real representation.

Let f be a class function on \mathfrak{S}_{n}. Define the characteristic map ch by

$$
\operatorname{ch}(f)=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} f(w) p_{\rho(w)}
$$

where $\rho(w)$ is the cycle type of w. If χ^{λ} is the irreducible character of \mathfrak{S}_{n} indexed by $\lambda \vdash n$, then $\operatorname{ch}\left(\chi^{\lambda}\right)=s_{\lambda}$. Note that

$$
\operatorname{ch}\left(r_{2, \mathfrak{S}_{n}}\right)=\frac{1}{n!} \sum_{u \in \mathfrak{S}_{n}} p_{\rho\left(u^{2}\right)}
$$

Corollary. We have

$$
\frac{1}{n!} \sum_{u \in \mathfrak{S}_{n}} p_{\rho\left(u^{2}\right)}=\sum_{\lambda \vdash n} s_{\lambda}
$$

Equivalently,

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{1}{n!} \sum_{u \in \mathfrak{S}_{n}} p_{\rho\left(u^{2}\right)} \\
& =\prod_{i}\left(1-x_{i}\right)^{-1} \cdot \prod_{i<j}\left(1-x_{i} x_{j}\right)^{-1}
\end{aligned}
$$

TWO GENERAL THEOREMS

For any $k \geq 1$ and $w \in G$, let

$$
r_{k, G}(w)=\#\left\{u \in G: w=u^{k}\right\}
$$

Theorem. $r_{k, G} \in \mathbb{Z} \widehat{G}$

Proof. M. Isaacs, Character Theory of Finite Groups, Problem 4.7. \square
$F_{r}=$ free group on generators x_{1}, \ldots, x_{r} $\gamma=\gamma\left(x_{1}, \ldots x_{r}\right) \in F_{r}, \quad w \in G$
$f_{\gamma, G}(w)=\#\left\{\left(u_{1}, \ldots, u_{r}\right) \in G^{r}: w=\gamma\left(u_{1}, \ldots, u_{r}\right)\right\}$
E.g., $f_{x_{1}^{k}, G}=r_{k, G}$.

Let K_{G} be the set of conjugacy classes of G. For $C \in K_{G}$ and $w \in G$, let

$$
\chi_{C}(w)= \begin{cases}1, & w \in C \\ 0, & \text { otherwise }\end{cases}
$$

Easy fact:

$$
\chi_{C}=\frac{|C|}{|G|} \sum_{\chi \in \widehat{G}} \bar{\chi}(C) \chi
$$

Thus if every character of G is integer-valued (i.e., if $u, v \in G$ are conjugate whenever they generate the same cyclic subgroup), then

$$
\frac{|G|}{|C|} \chi_{C} \in \mathbb{Z} \widehat{G}
$$

Theorem. Let $r \geq 2$. For any G and any $\gamma \in F_{r}$ we have that $f_{\gamma, G}$ is a \mathbb{Z}-combination of the $\frac{|G|}{|C|} \chi_{C}$'s. In particular, if every character of G is integer-valued, then $f_{\gamma, G} \in \mathbb{Z} \widehat{G}$.

Proof. To show:

$$
\begin{gathered}
\#\left\{\left(u_{1}, \ldots, u_{r}\right) \in G^{n}: \gamma\left(u_{1}, \ldots, u_{r}\right) \in C\right\} \\
\equiv \\
\equiv 0(\bmod |G|) .
\end{gathered}
$$

But this is exactly the special case $m=1$ of Theorem 1 of L. Solomon, Arch. Math. (Basel) 20 (1969), 241-247. Solomon defines an equivalence relation \sim on G^{r} such that (1) every class has size $|G|$, and (2) if (u_{1}, \ldots, u_{r}) ~ $\left(v_{1}, \ldots, v_{r}\right)$, then $\gamma\left(u_{1}, \ldots, u_{r}\right)$ and $\gamma\left(v_{1}, \ldots, v_{r}\right)$ are conjugate.

Recall $r_{k} \in \mathbb{Z} \widehat{G}$, where $r_{k}(w)=\#\left\{u \in G: u^{k}=\right.$ $w\}$. What about $G=\mathfrak{S}_{n}$?

Theorem. (T. Scharf, 1991) For all k and n, r_{k} is a character of \mathfrak{S}_{n}.

In fact: let

$$
L_{d}=\operatorname{ch\mathrm {Lie}_{d}}=\frac{1}{d} \sum_{e \mid d} \mu(e) p_{e}^{d / e}=\operatorname{chind}_{C_{d}}^{\mathcal{E}_{d}} e^{2 \pi i / d},
$$

so L_{d} is Schur-positive. Let

$$
\theta_{k, n}=\operatorname{ch} r_{k, \mathfrak{S}_{n}} .
$$

Then

$$
\sum_{n \geq 0} \theta_{k, n}=\sum_{n \geq 0} h_{n}\left[\sum_{d \mid k} L_{d}\right] .
$$

Open: If every character of G is rational, is r_{k} a character of G for all k ?

$$
\begin{aligned}
& \operatorname{dim}\left(r_{k, G}\right)=\#\left\{u \in G: u^{k}=1\right\} \\
&=\# \operatorname{Hom}(\mathbb{Z} / k \mathbb{Z}, G) \\
& \sum_{n \geq 0} \operatorname{dim}\left(r_{k, \mathfrak{S}_{n}}\right) \frac{x^{n}}{n!}=\exp \sum_{d \mid k} \frac{x^{d}}{d}
\end{aligned}
$$

Theorem. (Dey 1965, Wohlfahrt 1977) Let G be a finitely generated group, and let $j_{d}(G)$ denote the number of subgroups of G of index d. Then

$$
\sum_{n \geq 0} \# \operatorname{Hom}\left(G, \mathfrak{S}_{n}\right) \frac{x^{n}}{n!}=\exp \left(\sum_{d \geq 1} j_{d}(G) \frac{x^{d}}{d}\right)
$$

Theorem. Let

$$
u_{d}(G)=\frac{1}{d} \sum_{[G: H]=d}[N(H): H]
$$

where H ranges over all subgroups of G of index $d, N(H)$ denotes the normalizer of H in G, and $[N(H): H]$ is the index of H in $N(H)$. In particular, if every subgroup of G of index d is normal (e.g., if G is abelian) then $u_{d}(G)=j_{d}(G)$. Then
$\sum_{n \geq 0} \# \operatorname{Hom}\left(G \times \mathbb{Z}, \mathfrak{S}_{n}\right) \frac{x^{n}}{n!}=\prod_{d \geq 1}\left(1-x^{d}\right)^{-u_{d}(G)}$.

Corollary. Let $c_{m}(n)$ be the number of commuting m-tuples $\left(u_{1}, \ldots, u_{m}\right) \in \mathfrak{S}_{n}^{m}$, i.e., $u_{i} u_{j}=$ $u_{j} u_{i}$ for all i and j. Then

$$
\sum_{n \geq 0} c_{m}(n) \frac{x^{n}}{n!}=\prod_{d \geq 1}\left(1-x^{d}\right)^{-j_{d}\left(\mathbb{Z}^{m-1}\right)}
$$

Note (Hermite, Eisenstein, Siegel, Weyl):

$$
\sum_{d \geq 1} j_{d}\left(\mathbb{Z}^{m-1}\right) d^{-s}=\zeta(s) \zeta(s-1) \cdots \zeta(s-m+2)
$$

Theorem. Let G be a finite group, and let f_{1}, \ldots, f_{m} be class functions on G. Define a class function F by

$$
F(w)=\sum_{u_{1} \cdots u_{m}=w} f_{1}\left(u_{1}\right) \cdots f_{m}\left(u_{m}\right)
$$

Let χ be an irreducible character of G. Then

$$
\langle F, \chi\rangle=\left(\frac{|G|}{\chi(1)}\right)^{m-1}\left\langle f_{1}, \chi\right\rangle \cdots\left\langle f_{m}, \chi\right\rangle
$$

(F is a kind of "Hadamard product" of f_{1}, \ldots, f_{m}.)

Corollary. Let $\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$, and define a class function $h=h_{a_{1}, \ldots, a_{m}}$ on \mathfrak{S}_{n} by
$h(w)=\#\left\{\left(u_{1}, \ldots, u_{m}\right) \in \mathfrak{S}_{n}^{m}: w=u_{1}^{a_{1}} \cdots u_{m}^{a_{m}}\right\}$.
Then h is a character of \mathfrak{S}_{n}.

Note. Previous theorem for $G=\mathfrak{S}_{n}$ is equivalent to:

Let $\tilde{s}_{\lambda}=H_{\lambda} s_{\lambda}$, where $H_{\lambda}=$ product of hooklengths of λ. Define a bilinear product \square on \wedge by

$$
\tilde{s}_{\lambda} \square \tilde{s}_{\mu}=\delta_{\lambda \mu} \tilde{s}_{\lambda}
$$

Then for $\lambda, \mu \vdash n$,

$$
p_{\lambda} \square p_{\mu}=\frac{z_{\lambda} z_{\mu}}{n!} \sum_{\substack{\rho(u)=\lambda \\ \rho(v)=\mu}} p_{\rho(u v)}
$$

PERSIFICATION

Define a random walk $X=\left(w_{0}, w_{1}, \ldots\right)$ on \mathfrak{S}_{n} as follows. Let $w_{0}=1$. Given w_{i}, choose $u \in \mathfrak{S}_{n}$ uniformly, and let

$$
w_{i+1}=w_{i} u^{2}
$$

Theorem. (a) The eigenvalues of this Markov chain are the numbers $1 / f^{\lambda}$ with multiplicity $\left(f^{\lambda}\right)^{2}$.
(b) For fixed m we have

$$
\left\|X^{m}-\mathcal{U}_{\mathfrak{S}_{n}}\right\|=O\left(n^{-(m-1)}\right)
$$

In particular, X^{m} is "nearly uniform" on \mathfrak{S}_{n} for $m=2$.

Open: What happens when u^{2} is replaced by $\gamma\left(u_{1}, \ldots, u_{r}\right)$ for $\gamma \in F_{r}$?

COMMUTATORS

Let

$$
f(w)=\#\left\{(u, v) \in G \times G: w=u v u^{-1} v^{-1}\right\}
$$

Theorem. For all $\chi \in \widehat{G}$, we have

$$
\langle f, \chi\rangle=|G| / \chi(1)
$$

Proof (hint):

$$
\begin{aligned}
u v u^{-1} v^{-1} & =u\left(v u^{-1} v^{-1}\right) \\
& =u \cdot\left(\text { conjugate of } u^{-1}\right) .
\end{aligned}
$$

Open: Find a "natural" G-module affording the character f.

Recall: Let $\lambda=(4,3,3)$.

6	5	4	1	0	1	2	3
4	3	2		-1	0	1	
3	2	1		-2	-1	0	

hook-lengths contents

Corollary. We have

$$
\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} p_{\rho\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda},
$$

where H_{λ} is the product of the hook-lengths of λ.

Recall: Let $\kappa(w)=$ number of cycles of w.
Then

$$
\begin{aligned}
p_{\rho(w)}\left(1^{q}\right) & =q^{k(w)} \\
s_{\lambda}\left(1^{q}\right) & =H_{\lambda}^{-1} \prod_{t \in \lambda}(q+c(t)) .
\end{aligned}
$$

Corollary. We have

$$
\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} q^{\kappa\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} \prod_{t \in \lambda}(q+c(t)) .
$$

Corollary. If u, v are chosen at random (uniformly, independently) from \mathfrak{S}_{n}, then the expected number E_{n} of cycles of $u v u^{-1} v^{-1}$ is

$$
\begin{aligned}
E_{n} & =H_{n}+\frac{1}{n!}\left[\sum_{\substack{1 \leq i \leq n \\
i \text { odd }}} \frac{i!(n-i)!}{n-i+1}\right. \\
& \left.+\frac{(-1)^{n}}{2} \sum_{i=0}^{\lfloor(n-1) / 2\rfloor} i!^{2}(n-1-2 i)!\right],
\end{aligned}
$$

where

$$
H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

$=$ expected number of cycles of $w \in \mathfrak{S}_{n}$.

Proof (sketch). We have

$$
E_{n}=\left.\frac{1}{n!} \frac{d}{d q} \sum_{\lambda \vdash n} \prod_{t \in \lambda}(q+c(t))\right|_{q=1}
$$

Three cases: (i) No content of λ is equal to
-1 . Then $\lambda=(n)$ and the contribution of λ to E_{n} is H_{n}.
(ii) λ has exactly one content equal to -1 . Then λ has the form $\left\langle a, b, 1^{k}\right\rangle$, where $a \geq b>0$, $k \geq 0$, and $a+b+k=n$. In this case the contribution of λ to E_{n} is

$$
\frac{1}{n!} \prod_{\substack{t \in \lambda \\ t \neq(2,1)}}(1+c(t))=(-1)^{k} a!(b-1)!k!
$$

(iii) λ has more than one content equal to -1 . Then the contribution of λ to E_{n} is 0 .

Sum (ii) over all a, b, k and simplify. \square

Corollary. If u, v are chosen at random (uniformly, independently) from \mathfrak{S}_{n}, then the expected number $e_{n j}$ of j-cycles of $u v u^{-1} v^{-1}$ is given by

$$
e_{n j}=\frac{1}{j}\left[1+\frac{1}{\binom{n}{j}} \sum_{i=0}^{j-1} \frac{(-1)^{i}}{\left(\begin{array}{c}
\binom{1}{i}
\end{array} \frac{n-j+i+1}{n-2 j+i+1}\right], ~, ~, ~}\right.
$$

where \sum^{\prime} indicates that we are to omit the term $i=2 j-n-1$ when $2 j>n$.

Proof (sketch). Let Γ_{j} be the functional on symmetric functions defined by

$$
\Gamma_{j}(f)=\left.\frac{\partial}{\partial p_{j}} f\right|_{p_{i}=1}
$$

where $\left.g\right|_{p_{i}=1}$ indicates that we are to expand g as a polynomial in the p_{i} 's and then set each $p_{i}=1$. Then

$$
e_{n j}=\frac{1}{n!} \Gamma_{j}\left(\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}\right) .
$$

One shows

$$
\Gamma_{j}\left(s_{\lambda}\right)=\left\{\begin{array}{cc}
\frac{1}{j}(-1)^{\mathrm{ht}(B)}, & \text { if } \lambda /(n-j) \text { is a border } \\
\text { strip } B \\
0, & \text { otherwise }
\end{array}\right.
$$

etc. \quad

A BASIC OPEN QUESTION

Let $\gamma \in F_{r}$. Recall
$f_{\gamma, G}(w)=\#\left\{\left(u_{1}, \ldots, u_{r}\right) \in G^{r}: \gamma\left(u_{1}, \ldots, u_{r}\right)=w\right\}$.

- For what γ is $f_{\gamma, \mathfrak{S}_{n}}$ a character of \mathfrak{S}_{n} for all $n \geq 1$?
- For what γ is $f_{\gamma, G}$ a character of G for all finite groups G ?

Random observations:

- $f_{x y x^{2} y, G}(w)=|G|$.

Proof. Let $a=u v u$ and $b=u v$. Then $u=$ $b^{-1} a$ and $v=a^{-1} b^{2}$, so as (u, v) ranges over $G \times G$ so does (a, b). But $u v u^{2} v=a b$, which is clearly equidistributed over G. Thus we get

$$
\#\left\{(u, v) \in G \times G: w=u v u^{2} v\right\}=|G|
$$

Key point: The homomorphism $\varphi: F_{2} \rightarrow$ F_{2} defined by $\varphi(x)=x^{-1} y$ and $\varphi(y)=$ $x^{-1} y^{2}$ is an automorphism of F_{2}. All automorphisms of F_{r} have been classified, and there are no "surprises."

- Let $\gamma=x_{1}^{6} x_{2}^{5} x_{3}^{6} x_{4}^{3} x_{5}^{5} x_{6}^{3} x_{7}^{6} x_{8}^{6}$. Then $f_{\gamma, G}$ is a character for all G.

Proof. Let $\chi \in \widehat{G}$. Then
$\langle f, \chi\rangle=\left(\frac{|G|}{\chi(1)}\right)^{7}\left\langle r_{3}, \chi\right\rangle^{2} \cdot\left\langle r_{5}, \chi\right\rangle^{2} \cdot\left\langle r_{6}, \chi\right\rangle^{4} \in \mathbb{N} . \square$

- Let $\gamma=x y^{k} x y^{-k}$. Then $f_{\gamma, \mathfrak{S}_{n}} \in \mathbb{N} \widehat{\mathfrak{S}}_{n}$.

Proof. Let $a=x y^{k}$ and $b=y^{-1}$. This is invertible, and $\gamma=a^{2} b^{2 k}$. But $f_{a^{2} b^{2 k}, \mathfrak{S}_{n}}$ is a character.

- Let $\gamma=x y^{k} x^{-1} y^{k}$. Then $f_{\gamma, \mathfrak{S}_{n}} \in \mathbb{N} \widehat{\mathfrak{S}}_{n}$. Proof (hint). Show that for any $\chi \in \widehat{G}$,

$$
\left\langle f_{\gamma, G}, \chi\right\rangle=\frac{|G|}{\chi(1)}\left\langle r_{k}, \chi \bar{\chi}\right\rangle .
$$

But r_{k} is a character of $\mathfrak{S}_{n} . \quad \square$

- Suppose that every character of G is real (i.e., every element of G is conjugate to its inverse). Let $k(G)$ be the number of conjugacy classes of G. Then
$s(G):=\#\left\{(u, v) \in G \times G: u^{2}=v^{2}\right\}=k(G) \cdot|G|$.
Proof. Let $a=u$ and $b=u v^{-1}$ (invertidle). Then $u^{2} v^{-2}=\left(a b a^{-1}\right) b$. But $\left\{\left(a b a^{-1}\right) b\right\}$
$=\left\{\left(a b^{-1} a^{-1}\right) b\right\}=\left\{b^{-1} a^{-1} b a\right\}$. Let $k(a)$ be the number of conjugates of a. Then

$$
\begin{aligned}
s(G) & =\#\{(a, b) \in G \times G: a b=b a\} \\
& =\sum_{a \in G} \# C(a) \\
& =\sum_{a \in G} \frac{|G|}{k(a)} \\
& =k(G) \cdot|G| .
\end{aligned}
$$

- If γ is any of

$$
\begin{aligned}
& x^{2} y^{2} x^{2} y^{2} \\
& x^{2} y^{3} x^{2} y^{-3} \\
& x^{2} y^{2} x^{2} y^{3}
\end{aligned}
$$

then we don't know whether $f_{\gamma, \mathfrak{S}_{n}}$ is a character for all n. (The case $x^{2} y^{2} x^{2} y^{2}$ has been checked for $n \leq 16$, and the other two for $n \leq 7$.)

- If γ is any of

$$
\begin{gathered}
x y^{-1} x^{2} y \\
x^{2} y^{3} x^{-2} y^{-3} \\
x^{2} y^{3} x^{5} y^{4}
\end{gathered}
$$

then for some $n, f_{\gamma, \mathfrak{S}_{n}}$ is not a character.

Reference:

http://www-math.mit.edu/~rstan/ec/ec.html

