G = finite group

- $\hat{G} = \text{set of (ordinary, complex) irreducible characters of } G$
 - $\mathbb{Z}\widehat{G}$ = lattice of virtual characters of G, i.e., \mathbb{Z} -linear combinations of characters

 $\mathbb{N}\widehat{G}$ = set of characters of G.

Theorem. (Frobenius-Schur) For $w \in G$, let

$$r_{2,G}(w) = \#\{u \in G : w = u^2\}.$$

If $\chi \in \widehat{G}$, then

 $\langle r_{2,G}, \chi \rangle = \left\{ \begin{array}{ll} 1, & \mbox{if } \chi \mbox{ is afforded by a real} \\ -1, & \mbox{if } \chi \mbox{ is real valued but not} \\ & \mbox{afforded by a real} \\ & \mbox{representation} \\ 0, & \mbox{if } \chi \mbox{ is not real valued}. \end{array} \right.$

Corollary. (a) $r_{2,G} \in \mathbb{Z}\widehat{G}$

(b) $r_{2,G} \in \mathbb{N}\widehat{G}$ if and only if every real character is afforded by a real representation.

(c) $r_{2,G} = \sum_{\chi \in \widehat{G}} \chi$ if and only if every character is afforded by a real representation.

Let f be a class function on \mathfrak{S}_n . Define the *characteristic map* ch by

$$\operatorname{ch}(f) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} f(w) p_{\rho(w)},$$

where $\rho(w)$ is the cycle type of w. If χ^{λ} is the irreducible character of \mathfrak{S}_n indexed by $\lambda \vdash n$, then $ch(\chi^{\lambda}) = s_{\lambda}$. Note that

$$\operatorname{ch}(r_{2,\mathfrak{S}_n}) = \frac{1}{n!} \sum_{u \in \mathfrak{S}_n} p_{\rho(u^2)}.$$

Corollary. We have

$$\frac{1}{n!} \sum_{u \in \mathfrak{S}_n} p_{\rho(u^2)} = \sum_{\lambda \vdash n} s_{\lambda}.$$

Equivalently,

$$\sum_{n\geq 0} \frac{1}{n!} \sum_{u\in\mathfrak{S}_n} p_{\rho(u^2)}$$
$$= \prod_i (1-x_i)^{-1} \cdot \prod_{i< j} (1-x_i x_j)^{-1}$$

3

1

TWO GENERAL THEOREMS

For any $k \geq 1$ and $w \in G$, let

$$r_{k,G}(w) = \#\{u \in G : w = u^k\}.$$

Theorem. $r_{k,G} \in \mathbb{Z}\widehat{G}$

Proof. M. Isaacs, *Character Theory of Finite Groups*, Problem 4.7. □

$$\begin{array}{lll} F_r &=& \text{free group on generators } x_1, \ldots, x_r \\ \gamma &=& \gamma(x_1, \ldots x_r) \in F_r, \quad w \in G \\ f_{\gamma,G}(w) &=& \#\{(u_1, \ldots, u_r) \in G^r \ : \ w = \gamma(u_1, \ldots, u_r)\} \\ \text{E.g., } f_{x_1^k,G} = r_{k,G}. \end{array}$$

Let K_G be the set of conjugacy classes of G. For $C \in K_G$ and $w \in G$, let

$$\chi_C(w) = \begin{cases} 1, & w \in C \\ 0, & \text{otherwise.} \end{cases}$$

Easy fact:

$$\chi_C = \frac{|C|}{|G|} \sum_{\chi \in \widehat{G}} \overline{\chi}(C) \chi.$$

Thus if every character of G is integer-valued (i.e., if $u, v \in G$ are conjugate whenever they generate the same cyclic subgroup), then

$$\frac{|G|}{|C|}\chi_C \in \mathbb{Z}\widehat{G}.$$

Theorem. Let $r \ge 2$. For any G and any $\gamma \in F_r$ we have that $f_{\gamma,G}$ is a \mathbb{Z} -combination of the $\frac{|G|}{|C|}\chi_C$'s. In particular, if every character of G is integer-valued, then $f_{\gamma,G} \in \mathbb{Z}\widehat{G}$.

Proof. To show:

$$#\{(u_1,\ldots,u_r)\in G^n : \gamma(u_1,\ldots,u_r)\in C\}$$
$$\equiv 0 \pmod{|G|}.$$

But this is exactly the special case m = 1of Theorem 1 of L. Solomon, *Arch. Math.* (*Basel*) **20** (1969), 241–247. Solomon defines an equivalence relation \sim on G^r such that (1) every class has size |G|, and (2) if $(u_1, \ldots, u_r) \sim$ (v_1, \ldots, v_r) , then $\gamma(u_1, \ldots, u_r)$ and $\gamma(v_1, \ldots, v_r)$ are conjugate. \Box Recall $r_k \in \mathbb{Z}\widehat{G}$, where $r_k(w) = \#\{u \in G : u^k = w\}$. What about $G = \mathfrak{S}_n$?

Theorem. (T. Scharf, 1991) For all k and n, r_k is a character of \mathfrak{S}_n .

In fact: let

$$L_d = \operatorname{ch}\operatorname{Lie}_d = \frac{1}{d}\sum_{e|d}\mu(e)p_e^{d/e} = \operatorname{ch}\operatorname{ind}_{C_d}^{\mathfrak{S}_d}e^{2\pi i/d},$$

so L_d is Schur-positive. Let

$$heta_{k,n} = \operatorname{ch} r_{k,\mathfrak{S}_n}.$$

Then

$$\sum_{n\geq 0} \theta_{k,n} = \sum_{n\geq 0} h_n \left[\sum_{d|k} L_d \right].$$

Open: If every character of G is rational, is r_k a character of G for all k?

$$\dim(r_{k,G}) = \#\{u \in G : u^k = 1\}$$
$$= \#\operatorname{Hom}(\mathbb{Z}/k\mathbb{Z}, G)$$
$$\sum_{n \ge 0} \dim(r_{k,\mathfrak{S}_n}) \frac{x^n}{n!} = \exp \sum_{d \mid k} \frac{x^d}{d}$$

Theorem. (Dey 1965, Wohlfahrt 1977) Let G be a finitely generated group, and let $j_d(G)$ denote the number of subgroups of G of index d. Then

$$\sum_{n\geq 0} \# \operatorname{Hom}(G,\mathfrak{S}_n) \frac{x^n}{n!} = \exp\left(\sum_{d\geq 1} j_d(G) \frac{x^d}{d}\right).$$

Theorem. Let

$$u_d(G) = \frac{1}{d} \sum_{[G:H]=d} [N(H):H],$$

where *H* ranges over all subgroups of *G* of index *d*, N(H) denotes the normalizer of *H* in *G*, and [N(H) : H] is the index of *H* in N(H). In particular, if every subgroup of *G* of index *d* is normal (e.g., if *G* is abelian) then $u_d(G) = j_d(G)$. Then

$$\sum_{n\geq 0} \# \mathsf{Hom}(G\times \mathbb{Z},\mathfrak{S}_n)\frac{x^n}{n!} = \prod_{d\geq 1} \left(1-x^d\right)^{-u_d(G)}.$$

Corollary. Let $c_m(n)$ be the number of commuting m-tuples $(u_1, \ldots, u_m) \in \mathfrak{S}_n^m$, i.e., $u_i u_j = u_j u_i$ for all i and j. Then

$$\sum_{n\geq 0}c_m(n)rac{x^n}{n!}=\prod_{d\geq 1}\left(1-x^d
ight)^{-j_d\left(\mathbb{Z}^{m-1}
ight)}.$$

Note (Hermite, Eisenstein, Siegel, Weyl):

$$\sum_{d\geq 1} j_d(\mathbb{Z}^{m-1})d^{-s} = \zeta(s)\zeta(s-1)\cdots\zeta(s-m+2)$$

Theorem. Let G be a finite group, and let f_1, \ldots, f_m be class functions on G. Define a class function F by

$$F(w) = \sum_{u_1 \cdots u_m = w} f_1(u_1) \cdots f_m(u_m).$$

Let χ be an irreducible character of G. Then

$$\langle F, \chi \rangle = \left(\frac{|G|}{\chi(1)}\right)^{m-1} \langle f_1, \chi \rangle \cdots \langle f_m, \chi \rangle.$$

(F is a kind of "Hadamard product" of f_1, \ldots, f_m .)

Corollary. Let $(a_1, \ldots, a_m) \in \mathbb{Z}^m$, and define a class function $h = h_{a_1, \ldots, a_m}$ on \mathfrak{S}_n by

 $h(w) = \#\{(u_1, \dots, u_m) \in \mathfrak{S}_n^m : w = u_1^{a_1} \cdots u_m^{a_m}\}.$ Then h is a character of \mathfrak{S}_n .

Note. Previous theorem for $G = \mathfrak{S}_n$ is equivalent to:

Let $\tilde{s}_{\lambda} = H_{\lambda}s_{\lambda}$, where $H_{\lambda} =$ product of hooklengths of λ . Define a bilinear product \Box on Λ by

$$\tilde{s}_{\lambda} \Box \tilde{s}_{\mu} = \delta_{\lambda \mu} \tilde{s}_{\lambda}.$$

Then for $\lambda, \mu \vdash n$,

$$p_{\lambda} \Box p_{\mu} = \frac{z_{\lambda} z_{\mu}}{n!} \sum_{\substack{\rho(u) = \lambda \\ \rho(v) = \mu}} p_{\rho(uv)}.$$

PERSIFICATION

Define a random walk $X = (w_0, w_1, ...)$ on \mathfrak{S}_n as follows. Let $w_0 = 1$. Given w_i , choose $u \in \mathfrak{S}_n$ uniformly, and let

$$w_{i+1} = w_i u^2.$$

Theorem. (a) The eigenvalues of this Markov chain are the numbers $1/f^{\lambda}$ with multiplicity $(f^{\lambda})^{2}$.

(b) For fixed m we have

$$||X^m - \mathcal{U}_{\mathfrak{S}_n}|| = O(n^{-(m-1)}).$$

In particular, X^m is "nearly uniform" on \mathfrak{S}_n for m = 2.

Open: What happens when u^2 is replaced by $\gamma(u_1, \ldots, u_r)$ for $\gamma \in F_r$?

COMMUTATORS

Let

 $f(w) = \#\{(u,v) \in G \times G : w = uvu^{-1}v^{-1}\}.$

Theorem. For all $\chi \in \hat{G}$, we have $\langle f, \chi \rangle = |G|/\chi(1).$

Proof (hint): $uvu^{-1}v^{-1} = u(vu^{-1}v^{-1})$ $= u \cdot (\text{conjugate of } u^{-1}). \square$

Open: Find a "natural" G-module affording the character f.

Recall: Let $\lambda = (4, 3, 3).$ 65410123432-101.321-2-10hook-lengthscontents

Corollary. We have

$$\frac{1}{n!} \sum_{u,v \in \mathfrak{S}_n} p_{\rho(uvu^{-1}v^{-1})} = \sum_{\lambda \vdash n} H_{\lambda} s_{\lambda},$$

where H_{λ} is the product of the hook-lengths of λ .

Recall: Let $\kappa(w)$ = number of cycles of w. Then

$$p_{\rho(w)}(1^q) = q^{\kappa(w)}$$

$$s_{\lambda}(1^q) = H_{\lambda}^{-1} \prod_{t \in \lambda} (q + c(t)).$$

Corollary. We have

$$\frac{1}{n!} \sum_{u,v \in \mathfrak{S}_n} q^{\kappa(uvu^{-1}v^{-1})} = \sum_{\lambda \vdash n} \prod_{t \in \lambda} (q + c(t)).$$

Corollary. If u, v are chosen at random (uniformly, independently) from \mathfrak{S}_n , then the expected number E_n of cycles of $uvu^{-1}v^{-1}$ is

$$E_{n} = H_{n} + \frac{1}{n!} \left[\sum_{\substack{1 \le i \le n \\ i \text{ odd}}} \frac{i! (n-i)!}{n-i+1} + \frac{(-1)^{n}}{2} \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} i!^{2} (n-1-2i)! \right],$$

where

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

= expected number of cycles of $w \in \mathfrak{S}_n$.

Proof (sketch). We have

$$E_n = \frac{1}{n!} \frac{d}{dq} \sum_{\lambda \vdash n} \prod_{t \in \lambda} (q + c(t)) \bigg|_{q=1}$$

Three cases: (i) No content of λ is equal to -1. Then $\lambda = (n)$ and the contribution of λ to E_n is H_n .

(ii) λ has exactly one content equal to -1. Then λ has the form $\langle a, b, 1^k \rangle$, where $a \ge b > 0$, $k \ge 0$, and a + b + k = n. In this case the contribution of λ to E_n is

$$\frac{1}{n!} \prod_{\substack{t \in \lambda \\ t \neq (2,1)}} (1 + c(t)) = (-1)^k a! (b-1)! k!.$$

(iii) λ has more than one content equal to -1. Then the contribution of λ to E_n is 0.

Sum (ii) over all a, b, k and simplify. \Box

Corollary. If u, v are chosen at random (uniformly, independently) from \mathfrak{S}_n , then the expected number e_{nj} of *j*-cycles of $uvu^{-1}v^{-1}$ is given by

$$e_{nj} = \frac{1}{j} \left[1 + \frac{1}{\binom{n}{j}} \sum_{i=0}^{j-1} \frac{(-1)^i}{\binom{j-1}{i}} \frac{n-j+i+1}{n-2j+i+1} \right],$$

where \sum' indicates that we are to omit the term i = 2j - n - 1 when 2j > n.

Proof (sketch). Let Γ_j be the functional on symmetric functions defined by

$$\Gamma_j(f) = \frac{\partial}{\partial p_j} f \Big|_{p_i = 1},$$

where $g|_{p_i=1}$ indicates that we are to expand g as a polynomial in the p_i 's and then set each $p_i = 1$. Then

$$e_{nj} = \frac{1}{n!} \Gamma_j \left(\sum_{\lambda \vdash n} H_\lambda s_\lambda \right).$$

One shows

$$\Gamma_{j}(s_{\lambda}) = \begin{cases} \frac{1}{j}(-1)^{\mathsf{ht}(B)}, & \text{if } \lambda/(n-j) \text{ is a border} \\ & \text{strip } B \\ 0, & \text{otherwise,} \end{cases}$$

etc. 🗆

A BASIC OPEN QUESTION

Let $\gamma \in F_r$. Recall $f_{\gamma,G}(w) = \#\{(u_1, \dots, u_r) \in G^r : \gamma(u_1, \dots, u_r) = w\}.$

- For what γ is $f_{\gamma,\mathfrak{S}_n}$ a character of \mathfrak{S}_n for all $n \geq 1$?
- For what γ is $f_{\gamma,G}$ a character of G for all finite groups G?

Random observations:

•
$$f_{xyx^2y,G}(w) = |G|.$$

Proof. Let a = uvu and b = uv. Then $u = b^{-1}a$ and $v = a^{-1}b^2$, so as (u, v) ranges over $G \times G$ so does (a, b). But $uvu^2v = ab$, which is clearly equidistributed over G. Thus we get

 $#\{(u,v) \in G \times G : w = uvu^2v\} = |G|. \square$

Key point: The homomorphism $\varphi : F_2 \rightarrow F_2$ defined by $\varphi(x) = x^{-1}y$ and $\varphi(y) = x^{-1}y^2$ is an *automorphism* of F_2 . All automorphisms of F_r have been classified, and there are no "surprises."

• Let $\gamma = x_1^6 x_2^5 x_3^6 x_4^3 x_5^5 x_6^3 x_7^6 x_8^6$. Then $f_{\gamma,G}$ is a character for all G.

Proof. Let $\chi \in \widehat{G}$. Then

 $\langle f, \chi \rangle = \left(\frac{|G|}{\chi(1)}\right)^7 \langle r_3, \chi \rangle^2 \cdot \langle r_5, \chi \rangle^2 \cdot \langle r_6, \chi \rangle^4 \in \mathbb{N}. \ \Box$

• Let
$$\gamma = xy^k xy^{-k}$$
. Then $f_{\gamma,\mathfrak{S}_n} \in \mathbb{N}\widehat{\mathfrak{S}}_n$.
Proof. Let $a = xy^k$ and $b = y^{-1}$. This is invertible, and $\gamma = a^2b^{2k}$. But $f_{a^2b^{2k},\mathfrak{S}_n}$ is a character. \Box

• Let
$$\gamma = xy^k x^{-1} y^k$$
. Then $f_{\gamma,\mathfrak{S}_n} \in \mathbb{N}\widehat{\mathfrak{S}}_n$.

Proof (hint). Show that for any $\chi \in \widehat{G}$,

$$\langle f_{\gamma,G}, \chi \rangle = \frac{|G|}{\chi(1)} \langle r_k, \chi \overline{\chi} \rangle.$$

But r_k is a character of \mathfrak{S}_n . \Box

 Suppose that every character of G is real (i.e., every element of G is conjugate to its inverse). Let k(G) be the number of conjugacy classes of G. Then

$$s(G) := \#\{(u,v) \in G \times G : u^2 = v^2\} = k(G) \cdot |G|.$$

Proof. Let a = u and $b = uv^{-1}$ (invertible). Then $u^2v^{-2} = (aba^{-1})b$. But $\{(aba^{-1})b\}$ $= \{(ab^{-1}a^{-1})b\} = \{b^{-1}a^{-1}ba\}$. Let k(a) be the number of conjugates of a. Then

$$s(G) = \#\{(a, b) \in G \times G : ab = ba\}$$
$$= \sum_{a \in G} \#C(a)$$
$$= \sum_{a \in G} \frac{|G|}{k(a)}$$
$$= k(G) \cdot |G|. \Box$$

• If γ is any of

$$x^{2} y^{2} x^{2} y^{2}$$
$$x^{2} y^{3} x^{2} y^{-3}$$
$$x^{2} y^{2} x^{2} y^{3},$$

then we don't know whether $f_{\gamma,\mathfrak{S}_n}$ is a character for all n. (The case $x^2 y^2 x^2 y^2$ has been checked for $n \leq 16$, and the other two for $n \leq 7$.)

• If γ is any of

$$x y^{-1} x^{2} y$$
$$x^{2} y^{3} x^{-2} y^{-3}$$
$$x^{2} y^{3} x^{5} y^{4},$$

then for some n, $f_{\gamma,\mathfrak{S}_n}$ is not a character.

Reference:

http://www-math.mit.edu/~rstan/ec/ec.html