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Root polytopes, subdivision algebras

Karola Meszaros

Origin (Postnikov & RS): Let

Mn = x12x23 · · ·xn−1,n.

Continually apply

xijxjk → xik(xij + xjk),

ending with Pn(xij).
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An example

Example.

x12x23x34 → x13x12x34 + x13x23x34

→ x14x13x12 + x14x34x12

+x14x13x23 + x14x34x23

→ x14x13x12 + x14x34x12

+x14x13x23 + x14x24x23 + x14x24x34

= P3(xij).
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Invariance of Pn(xij)

The polynomials Pn(xij) depend on the
sequence of operations. However:

Theorem. We have

Pn(1, 1, . . . , 1) = Cn =
1

n + 1

(
2n

n

)
,

a Catalan number.
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Full root polytopes

ei: ith unit vector in Rn+1

A+
n : the positive roots

{ei − ej : 1 ≤ i < j ≤ n + 1}

full root polytope P(A+
n ): convex hull of A+

n and
the origin in Rn+1 (Gelfand-Graev-Postnikov)
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Root polytopes

T : a tree on the vertex set [n + 1]

root polytope P(T ) (of type An): intersection of
P(A+

n ) with the cone generated by ei − ej, where
ij ∈ E(T ), i < j

1 3 2

T

P T

e  − e

e  − e

1

1

e  − e2 3 3

2

(  )
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Noncrossing alternating trees

A graph G on [n + 1] is noncrossing if 6 ∃ vertices
i < j < k < l such that ik ∈ E(G) and jl ∈ E(G).

G is alternating if 6 ∃ i < j < k such that
ij ∈ E(G) and jk ∈ E(G).

51 2 3 4 6 7 8
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Some notation

G: graph with vertex set [n + 1] and edge set

{ij : ∃ ii1, i1i2, . . . , ikj ∈ E(G), i < i1 < · · · < ik < j},

the transitive closure of G

T : a noncrossing tree on [n + 1]

T1, . . . , Tk: noncrossing, alternating spanning
trees of T
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Volume of P(T )

Theorem. The root polytopes P(T1), . . . ,P(Tk)
are n-simplices with disjoint interior and union
P(T ). Moreover,

volP(T ) =
fT

n!
,

where fT is the number of noncrossing
alternating spanning trees of T .

(several generalizations)
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Example

T T

T T2

_

1

volP(T ) =
2

3!
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Yang-Baxter algebras

Proof of theorem:

B(An): quasi-classical Yang-Baxter algebra
or bracket algebra of type A (Anatol Kirillov). It
is an associative algebra over Q[β] (β a central
indeterminate) generated by

{xij : 1 ≤ i < j ≤ n + 1},

with relations

xijxjk = xikxij + xjkxik + βxik

xijxkl = xklxij, if i, j, k, l are distinct.
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Subdivision algebra

S(An): subdivision algebra (Meszaros). It is
B(An) made commutative, i.e.,

xijxkl = xklxij for all i, j, k, l.
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Reduction rule

Treat the first relation as a reduction rule:

xijxjk → xikxij + xjkxik + βxik.

i j

j

i

0

k

k

e  − e

e  − e

e  − e
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Reduced forms

A reduced form of the monomial m in B(An) or
S(An) is a polynomial obtained from m by
applying successive reductions until no longer
possible.

For S(An) and β = 0, same as reduction of
Postinikov and RS.
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A reduction redux

x12x23x34 → x13x12x34 + x13x23x34

→ x14x13x12 + x14x34x12

+x14x13x23 + x14x34x23

→ x14x13x12 + x14x34x12

+x14x13x23 + x14x24x23 + x14x24x34

= P3(xij).
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Reduced form of a graph monomial

G: graph on vertex set [n + 1]

mG =
∏

ij∈E(G)

xij ∈ S(An)

Theorem. Let T be a noncrossing tree on [n + 1]
and PT a reduced form of mG. Then

PT (xij = 1, β = 0) = fT ,

the number of noncrossing alternating spanning
trees of T .
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Relation to root polytopes

The monomials appearing in the reduced form
PT (xij , β = 0) correspond to the facets in a
triangulation of P(An).

x12x23 → x12x13 + x23x13

0 2

2

3

311
e  − e

e  − e

e  − e
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Interior faces of P(An)

The interior faces (not necessarily facets) of
P(An) correspond to the terms in the reduced
form of PT (xij, β).

x12x23 → x12x13 + x23x13 + βx13

0 2

2

3
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Uniqueness

In the ring B(An), the reduced form of any
monomial m is unique (up to commutations).

Proof uses noncommutative Gröbner bases.

For S(An) there in no longer uniqueness of
reduced forms, but get a combinatorial
interpretation of the monomials appearing in a
reduced form.

Many generalizations . . .
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Flow polytopes

G = acyclic graph on vertex set

V (G) = {1, 2, . . . ,m + 1},

with edge i
e

→ j only if i < j

E(G) = edge set of G
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Flows

flow on G:
f : E(G) → R≥0,

such that for 1 < i < m + 1,

flow into i = flow out of i

size of f : flow out of 1 (or into m + 1)
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N-flows

N-flow: a flow f : E(G) → N

2

5 3

3

size = 8

4

1

41 2 3 4 5

flow polytope F(G) ⊂ RE(G):

{flows f : E(G) → R≥0 of size 1}
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Root polytopes vs. flow polytopes

Note. The root polytopes P(T ) of Meszaros are
special cases of flow polytopes F(G). In
particular,

P(A+
n ) = F(Kn).
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Vertices of F(G)

vertices ↔ paths in G from 1 to m + 1

2

5 3

3

size = 8

4

1

41 2 3 4 5

12345 1235 125 1345 135
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Excess flows

excess flow vector γ = (a1, . . . , am) ∈ Nm

flow with excess γ: flow out of i = ai + flow in

1 2 53

1
0

2

γ  =

4 51 2 3

(3, 1, 0, 2)
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The positive roots A+
m

Recall:

ei = (0 · · · 0
i

1 0 · · · 0) ∈ Rm+1

eij = ei − ej

A+
m = {eij : 1 ≤ i < j ≤ m + 1} ⊂ Zm+1
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(restricted) Kostant partition function

ν ∈ Zm+1,
∑

νi = 0

A+
m = {eij : 1 ≤ i < j ≤ m + 1} ⊂ Zm+1

S ⊆ A+
m

KS(ν) = #
{

(bij)eij∈S : ν =
∑

bijeij

}

K(ν) = KA+
m
(ν)

More interesting polytopes – p. 27



(restricted) Kostant partition function

ν ∈ Zm+1,
∑

νi = 0

A+
m = {eij : 1 ≤ i < j ≤ m + 1} ⊂ Zm+1

S ⊆ A+
m

KS(ν) = #
{

(bij)eij∈S : ν =
∑

bijeij

}

K(ν) = KA+
m
(ν)

More interesting polytopes – p. 27



An example

Example.

S = {e12, e23, e13} = A+
3

(2, 0,−2) = 2e12 + 2e23 = e12 + e13 + e23 = 2e13

⇒ KS(2, 0,−2) = K(2, 0,−2) = 3.
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Flows and partitions

Proposition. Let

S = S(G) = {eij : (i, j) ∈ E(G)}.

The number of N-flows with excess (a1, . . . , am) is
equal to

KS

(
a1, . . . , am,−

∑
ai

)
.

Now let di = outdeg(i) − 1.
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Main thm. (D. Peterson for S = A+
m)

KS

(
a1, . . . , am,−

∑
ai

)
=

∑
KS(ν1 − d1, . . . , νm−1 − dm−1, 0, 0)

·

(
a1 + d1

ν1

)
· · ·

(
am−1 + dm−1

νm−1

)
,

summed over all ν1, . . . , νm−1 ∈ N satisfying

ν1 + · · · + νi ≥ d1 + · · · + di∑
νi = d1 + · · · + dm−1.
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An example

21d  = 1         d  = 1

 (ν1, ν2) = (2, 0), (1, 1)

S = {e12, e13, e23, e24, e34}, KS(α, β) = KS(α, β, 0, 0)

KS(a, b, c,−a − b − c) =

KS(1,−1)

(
a + 1

2

)
+ KS(0, 0)

(
a + 1

1

)(
b + 1

1

)

=

(
a + 1

2

)
+ (a + 1)(b + 1).
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(Piecewise) polynomiality

Corollary. KS(a1, . . . , am, am+1) is a polynomial
function of a1, . . . , am+1 in the cone

CS : x1, . . . , xm ≥ 0, xm+1 ≤ 0.

Note. KS is piecewise polynomial on Zm+1.
Mimimum number of cones of nonzero
polynomiality not known. For S = A+

m, we have:

m 2 3 4 5 6
# cones 2 7 48 820 51133
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An example

Example. m = 2:

K(a, b,−a − b) =





a + 1, a, b ≥ 0

a + b + 1, 0 ≤ −b ≤ a

0, otherwise.

Proof of polynomiality based on
Elliott-MacMahon algorithm. (There are other
proofs.)
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Volume of flow polytope

Corollary. Let d = dimF(G). Then

d! · vol(F(G)) := Ṽ (F(G))

= KS

(
dm−1, dm−2, . . . , d1,−

∑
di

)
.

For G = Km+1, we have

Ṽ (FKm+1
) = K

(
1, 2, . . . ,m − 2,−

(
m − 1

2

))
.
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Chan-Robbins conjecture

Theorem (Zeilberger, Baldoni-Vergne). We
have

Ṽ
(
FKm+1

)
= C1 · · ·Cm−2,

where

Cn =
1

n + 1

(
2n

n

)
(Catalan number).
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Alternate formulation

Let f(n) be the number of n × n N-matrices A
such that

Aij = 0 if j > i + 1

row and column sum vector
(

1, 3, 6, . . . ,

(
n + 1

2

))
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Alternate formulation (cont.)




0 1

0 1 2

0 0 2 4

1 0 1 3 5

0 1 1 3 10




Then f(n) = C1C2 · · ·Cn.

No combinatorial proof known.
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Divisibility properties I

Theorem (easy consequence of Ehrhart’s law of
reciprocity). K (a1, . . . , am,−

∑
ai) is divisible by

(a1 + 1)(a1 + 2) · · · (a1 + m − 1).
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Divisibility properties II

Theorem (J. R. Schmidt and A. M. Bincer,
1984) Also divisible by

a1 + a2 + · · · + am−2 + 3am−1 + 3.

In fact,

3K
(
a1, . . . , am,−

∑
ai

)
=

(a1 + · · · + am−2 + 3am−1 + 3)

·Kno em−1,m

(
a1, . . . , am,−

∑
ai

)
.
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Example and conjecture

Example.

K(a, b, c, d,−a − b − c − d) =

1

360
(a + 1)(a + 2)(a + 3)(a + b + 3c + 3)

·(a2 + 5ab + 10b2 + 9a + 30b + 20)

Open: Are all coefficients of

KS

(
a1, . . . , am,−

∑
ai

)

nonnegative?
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Matching polytopes (Ricky Liu)

G = (V,E): a graph; n = #E

MG: matching polytope of G, i.e.,

MG =

{
w : E → R≥0 | ∀ v ∈ V

∑

v∈e

w(e) ≤ 1

}
⊆ Rn.
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Vertices of MG

matching M : a set of vertex-disjoint edges
If L ⊆ E, define χL ∈ MG by

χL(e) =

{
1, e ∈ L

0, e 6∈ L.

Note. MG has integer vertices if and only if G is
bipartite. In that case, the vertices are χM ,
where M is a matching of G.

Corollary. G bipartite ⇒

V (G) := n! · vol(MG) ∈ Z
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G, G1, G2

H = graph, u, v ∈ V (H), u 6= v

G: adjoin pendant edges uu′, vv′ (so u′, v′ are
endpoints)

G1: adjoin pendant edge uu′ and an edge uv

G2: adjoin pendant edge vv′ and an edge uv
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Leaf recurrence

H G G G1 2

u v

u’ v’

vu u

u’

v u v

v’

F : set of all forests

f : F → R satisfies the leaf recurrence if

f(G) = f(G1) + f(G2).
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Volume of MG

Theorem. There is a unique f : F → R:

For the star Tn = Kn,1, we have f(Tn) = 1.

If G1 and G2 are disjoint, #V (G1) = m, and
#V (G2) = n − m, then

f(G1 + G2) =

(
n

m

)
f(G1)f(G2).

f satisfies the leaf recurrence.

Then f(G) = V (G).
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Volume of MG (continued)

Theorem. The previous theorem can be used to
compute V (F ) for any forest F .
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Diagrams and tableaux

B: the set of unit squares in R2 with centers (i, j),
i, j ≥ 1. Denote also by (i, j) the unit square
with center (i, j).

Diagram D: a finite subset of B

13

25

31 32 33 35 36

16
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Row and column stabilizers

D: diagram with n boxes, ordered in some way

Sn acts on D

RD (CD): subgroup of Sn stabilizing each row
(column) of D

R(D) =
∑

w∈RD

w, C(D) =
∑

w∈CD

sgn(w)w
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The Specht module SD

The Specht module SD (over C) is the left ideal

SD = C[Sn]C(D)R(D)

of C[Sn].

Note. SD affords a representation of Sn by left
multiplication.
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Irreducible Specht modules

Note. If D is the (Young) diagram of a partition λ

of n, then SD is irreducible. Conversely, if SD is
irreducible, then SD ∼= SD′

for the diagram D′ of
some partition.
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The diagram of a forest F

Let V (F ) = A ∪B, so that all edges are between
A and B. Label the A-vertices 1, . . . ,m and
B-vertices 1, . . . , n. Let

D(F ) = {(i, j) : ij ∈ E(F ), i ∈ A, j ∈ B}.

1

1 3

2

2

1 11 2 13

2 3

More interesting polytopes – p. 51



The diagram of a forest F

Let V (F ) = A ∪B, so that all edges are between
A and B. Label the A-vertices 1, . . . ,m and
B-vertices 1, . . . , n. Let

D(F ) = {(i, j) : ij ∈ E(F ), i ∈ A, j ∈ B}.

1

1 3

2

2

1 11 2 13

2 3

More interesting polytopes – p. 51



The Specht module of D(F )

Note. SD(F ) is independent (up to isomorphism)
of the labeling.

Theorem. dim SD(F ) = V (F )

Note for experts. The diagrams D(F ) are not
%-avoiding diagrams in the sense of Reiner and
Shimozono.

More interesting polytopes – p. 52



The Specht module of D(F )

Note. SD(F ) is independent (up to isomorphism)
of the labeling.

Theorem. dim SD(F ) = V (F )

Note for experts. The diagrams D(F ) are not
%-avoiding diagrams in the sense of Reiner and
Shimozono.

More interesting polytopes – p. 52



The Specht module of D(F )

Note. SD(F ) is independent (up to isomorphism)
of the labeling.

Theorem. dim SD(F ) = V (F )

Note for experts. The diagrams D(F ) are not
%-avoiding diagrams in the sense of Reiner and
Shimozono.

More interesting polytopes – p. 52



Decomposition of SD(F )

How does the Specht module SD(F ) decompose
into irreducible representations of Sn?

Recall the leaf recurrence

f(G) = f(G1) + f(G2)

with initial conditions f(Kn,1) = 1.

Change the initial conditions to f(Kn,1) = hn, the
complete homogeneous symmetric function
(generic leaf recurrence).
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Decomposition theorem

Theorem. For a forest F , f(F ) is well-defined,
and

f(F ) = ch SD(F ).

In other words, if

f(F ) =
∑

λ`n

cλsλ,

where sλ is a Schur function, then cλ is the
multiplicity of the irreducible representation of Sn

indexed by λ in SD(F ).
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The Ehrhart polynomial of MF

Open. What is the Ehrhart polynomial of MF ?

Does it have any representation-theoretic
significance?
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