

More interesting polytopes

Richard P. Stanley

M.I.T.

More interesting polytopes – p

Root polytopes, subdivision algebra

Karola Meszaros

Origin (Postnikov & RS): Let

$$\boldsymbol{M_n} = x_{12}x_{23}\cdots x_{n-1,n}.$$

Continually apply

$$x_{ij}x_{jk} \to x_{ik}(x_{ij} + x_{jk}),$$

ending with $P_n(x_{ij})$.

More interesting polytopes – p

An example

Example.

- $x_{12}x_{23}x_{34} \rightarrow x_{13}x_{12}x_{34} + x_{13}x_{23}x_{34}$
 - $\rightarrow x_{14}x_{13}x_{12} + x_{14}x_{34}x_{12}$
 - $+x_{14}x_{13}x_{23} + x_{14}x_{34}x_{23}$
 - $\rightarrow x_{14}x_{13}x_{12} + x_{14}x_{34}x_{12}$
 - $+x_{14}x_{13}x_{23} + x_{14}x_{24}x_{23} + x_{14}x_{24}x_{34}$ = $P_3(x_{ij}).$

The polynomials $P_n(x_{ij})$ depend on the sequence of operations. However:

Invariance of $P_n(x_{ij})$

The polynomials $P_n(x_{ij})$ depend on the sequence of operations. However:

Theorem. We have

$$P_n(1, 1, \dots, 1) = C_n = \frac{1}{n+1} {\binom{2n}{n}},$$

a Catalan number.

Full root polytopes

$$e_i$$
: *i*th unit vector in \mathbb{R}^{n+1}

 A_n^+ : the positive roots

$$\{e_i - e_j : 1 \le i < j \le n+1\}$$

full root polytope $\mathcal{P}(A_n^+)$: convex hull of A_n^+ and the origin in \mathbb{R}^{n+1} (Gelfand-Graev-Postnikov)

T: a tree on the vertex set [n+1]

root polytope $\mathcal{P}(T)$ (of type A_n): intersection of $\mathcal{P}(A_n^+)$ with the cone generated by $e_i - e_j$, where $ij \in E(T), i < j$

Noncrossing alternating trees

A graph *G* on [n + 1] is noncrossing if \nexists vertices i < j < k < l such that $ik \in E(G)$ and $jl \in E(G)$. *G* is alternating if $\nexists i < j < k$ such that $ij \in E(G)$ and $jk \in E(G)$.

Noncrossing alternating trees

A graph *G* on [n + 1] is noncrossing if \nexists vertices i < j < k < l such that $ik \in E(G)$ and $jl \in E(G)$. *G* is alternating if $\nexists i < j < k$ such that $ij \in E(G)$ and $jk \in E(G)$.

 \overline{G} : graph with vertex set [n+1] and edge set

 $\{ij : \exists ii_1, i_1i_2, \dots, i_k j \in E(G), i < i_1 < \dots < i_k < j\},\$

the transitive closure of G

 \overline{G} : graph with vertex set [n+1] and edge set

 $\{ij : \exists ii_1, i_1i_2, \dots, i_k j \in E(G), i < i_1 < \dots < i_k < j\},\$

the transitive closure of ${\cal G}$

T: a noncrossing tree on [n+1]

 T_1, \ldots, T_k : noncrossing, alternating spanning trees of \overline{T}

Volume of $\mathcal{P}(T)$

Theorem. The root polytopes $\mathcal{P}(T_1), \ldots, \mathcal{P}(T_k)$ are *n*-simplices with disjoint interior and union $\mathcal{P}(T)$. Moreover,

$$\operatorname{vol} \mathcal{P}(T) = \frac{f_T}{n!},$$

where f_T is the number of noncrossing alternating spanning trees of \overline{T} .

Volume of $\mathcal{P}(T)$

Theorem. The root polytopes $\mathcal{P}(T_1), \ldots, \mathcal{P}(T_k)$ are *n*-simplices with disjoint interior and union $\mathcal{P}(T)$. Moreover,

$$\operatorname{vol} \mathcal{P}(T) = \frac{f_T}{n!},$$

where f_T is the number of noncrossing alternating spanning trees of \overline{T} .

(several generalizations)

Yang-Baxter algebras

Proof of theorem:

 $\mathcal{B}(A_n)$: quasi-classical Yang-Baxter algebra or bracket algebra of type A (Anatol Kirillov). It is an associative algebra over $\mathbb{Q}[\beta]$ (β a central indeterminate) generated by

$$\{x_{ij} : 1 \le i < j \le n+1\},\$$

with relations

$$x_{ij}x_{jk} = x_{ik}x_{ij} + x_{jk}x_{ik} + \beta x_{ik}$$

$$x_{ij}x_{kl} = x_{kl}x_{ij}, \text{ if } i, j, k, l \text{ are distinct.}$$

$S(A_n)$: subdivision algebra (Meszaros). It is $\mathcal{B}(A_n)$ made commutative, i.e.,

 $x_{ij}x_{kl} = x_{kl}x_{ij}$ for **all** i, j, k, l.

Reduction rule

Treat the first relation as a **reduction rule**:

 $x_{ij}x_{jk} \to x_{ik}x_{ij} + x_{jk}x_{ik} + \beta x_{ik}.$

Reduction rule

Treat the first relation as a **reduction rule**:

$$x_{ij}x_{jk} \to x_{ik}x_{ij} + x_{jk}x_{ik} + \beta x_{ik}.$$

A reduced form of the monomial m in $\mathcal{B}(A_n)$ or $\mathcal{S}(A_n)$ is a polynomial obtained from m by applying successive reductions until no longer possible.

A reduced form of the monomial m in $\mathcal{B}(A_n)$ or $\mathcal{S}(A_n)$ is a polynomial obtained from m by applying successive reductions until no longer possible.

For $S(A_n)$ and $\beta = 0$, same as reduction of Postinikov and RS.

A reduction redux

 $\begin{array}{rcl} \boldsymbol{x_{12}x_{23}}x_{34} & \to & \boldsymbol{x_{13}}x_{12}\boldsymbol{x_{34}} + \boldsymbol{x_{13}}x_{23}\boldsymbol{x_{34}} \\ & \to & x_{14}x_{13}x_{12} + x_{14}x_{34}x_{12} \\ & & +x_{14}x_{13}x_{23} + x_{14}\boldsymbol{x_{34}}\boldsymbol{x_{23}} \\ & \to & x_{14}x_{13}x_{12} + x_{14}x_{34}x_{12} \\ & & +x_{14}x_{13}x_{23} + x_{14}x_{24}x_{23} + x_{14}x_{24}x_{34} \\ & = & P_3(x_{ij}). \end{array}$

Reduced form of a graph monomial

G: graph on vertex set [n+1]

$$\boldsymbol{m}_{\boldsymbol{G}} = \prod_{ij \in E(G)} x_{ij} \in \mathcal{S}(A_n)$$

Reduced form of a graph monomial

G: graph on vertex set
$$[n+1]$$

$$\boldsymbol{m}_{\boldsymbol{G}} = \prod_{ij \in E(G)} x_{ij} \in \mathcal{S}(A_n)$$

Theorem. Let T be a noncrossing tree on [n + 1]and P_T a reduced form of m_G . Then

$$P_T(x_{ij} = 1, \beta = 0) = f_T,$$

the number of noncrossing alternating spanning trees of \overline{T} .

Relation to root polytopes

The monomials appearing in the reduced form $P_T(x_{ij}, \beta = 0)$ correspond to the facets in a triangulation of $\mathcal{P}(A_n)$.

Relation to root polytopes

The monomials appearing in the reduced form $P_T(x_{ij}, \beta = 0)$ correspond to the facets in a triangulation of $\mathcal{P}(A_n)$.

 $x_{12}x_{23} \to x_{12}x_{13} + x_{23}x_{13}$

Interior faces of $\mathcal{P}(A_n)$

The interior faces (not necessarily facets) of $\mathcal{P}(A_n)$ correspond to the terms in the reduced form of $P_T(x_{ij}, \beta)$.

Interior faces of $\mathcal{P}(A_n)$

The interior faces (not necessarily facets) of $\mathcal{P}(A_n)$ correspond to the terms in the reduced form of $P_T(x_{ij}, \beta)$.

In the ring $\mathcal{B}(A_n)$, the reduced form of any monomial m is **unique** (up to commutations). Proof uses noncommutative Gröbner bases.

In the ring $\mathcal{B}(A_n)$, the reduced form of any monomial *m* is **unique** (up to commutations). Proof uses noncommutative Gröbner bases.

For $S(A_n)$ there in no longer uniqueness of reduced forms, but get a combinatorial interpretation of the monomials appearing in a reduced form. In the ring $\mathcal{B}(A_n)$, the reduced form of any monomial *m* is **unique** (up to commutations). Proof uses noncommutative Gröbner bases.

For $S(A_n)$ there in no longer uniqueness of reduced forms, but get a combinatorial interpretation of the monomials appearing in a reduced form.

Many generalizations ...

Flow polytopes

G = acyclic graph on vertex set

$$V(G) = \{1, 2, \dots, m+1\},\$$

with edge $i \xrightarrow{e} j$ only if i < j

E(G) = edge set of G

flow on G:

$$f\colon E(G)\to R_{\geq 0},$$

such that for 1 < i < m + 1,

flow into i = flow out of i

size of f: flow out of 1 (or into m + 1)

\mathbb{N} -flow: a flow $f: E(G) \to \mathbb{N}$

\mathbb{N} -flow: a flow $f: E(G) \to \mathbb{N}$

\mathbb{N} -flow: a flow $f: E(G) \to \mathbb{N}$

flow polytope $\mathcal{F}(G) \subset \mathbb{R}^{E(G)}$:

{flows $f: E(G) \to \mathbb{R}_{\geq 0}$ of size 1}

Root polytopes vs. flow polytopes

Note. The root polytopes $\mathcal{P}(T)$ of Meszaros are special cases of flow polytopes $\mathcal{F}(G)$. In particular,

$$\mathcal{P}(A_n^+) = \mathcal{F}(K_n).$$

vertices \leftrightarrow paths in *G* from 1 to m + 1

vertices \leftrightarrow paths in G from 1 to m+1

$12345 \ 1235 \ 125 \ 1345 \ 135$

More interesting polytopes – p. 2

excess flow vector $\boldsymbol{\gamma} = (a_1, \dots, a_m) \in \mathbb{N}^m$

flow with excess γ : flow out of $i = a_i + \text{ flow in}$

excess flow vector $\boldsymbol{\gamma} = (a_1, \dots, a_m) \in \mathbb{N}^m$

flow with excess γ : flow out of $i = a_i + \text{ flow in}$

Recall:

$$\boldsymbol{e_i} = (0 \cdots 0 \stackrel{i}{1} 0 \cdots 0) \in \mathbb{R}^{m+1}$$
$$\boldsymbol{e_{ij}} = e_i - e_j$$

Recall:

$$\boldsymbol{e_i} = (0 \cdots 0 \stackrel{i}{1} 0 \cdots 0) \in \mathbb{R}^{m+1}$$
$$\boldsymbol{e_{ij}} = e_i - e_j$$

$\mathbf{A}_{m}^{+} = \{ e_{ij} : 1 \le i < j \le m+1 \} \subset \mathbb{Z}^{m+1}$

More interesting polytopes – p.

(restricted) Kostant partition function

$$\boldsymbol{\nu} \in \mathbb{Z}^{m+1}, \quad \sum \nu_i = 0$$
$$\boldsymbol{A}_m^+ = \{e_{ij} : 1 \le i < j \le m+1\} \subset \mathbb{Z}^{m+1}$$
$$\boldsymbol{S} \subseteq A_m^+$$

(restricted) Kostant partition function

$$\boldsymbol{\nu} \in \mathbb{Z}^{m+1}, \quad \sum \nu_i = 0$$

$$\mathbf{A}_{\mathbf{m}}^{+} = \{e_{ij} : 1 \leq i < j \leq m+1\} \subset \mathbb{Z}^{m+1}$$
$$\mathbf{S} \subseteq A_{m}^{+}$$

$$\begin{split} \boldsymbol{K_S(\nu)} &= \# \left\{ \left(b_{ij} \right)_{e_{ij} \in S} \, : \, \nu = \sum b_{ij} e_{ij} \right\} \\ \boldsymbol{K(\nu)} &= K_{A_m^+}(\nu) \end{split}$$

More interesting polytopes – p. 2

An example

Example.

$$S = \{e_{12}, e_{23}, e_{13}\} = A_3^+$$

$$(2,0,-2) = 2e_{12} + 2e_{23} = e_{12} + e_{13} + e_{23} = 2e_{13}$$

$$\Rightarrow K_S(2,0,-2) = K(2,0,-2) = 3.$$

Flows and partitions

Proposition. Let

$$S = S(G) = \{e_{ij} : (i,j) \in E(G)\}.$$

The number of \mathbb{N} -flows with excess (a_1, \ldots, a_m) is equal to

$$K_S\left(a_1,\ldots,a_m,-\sum a_i\right).$$

Flows and partitions

Proposition. Let

$$S = S(G) = \{e_{ij} : (i,j) \in E(G)\}.$$

The number of \mathbb{N} -flows with excess (a_1, \ldots, a_m) is equal to

$$K_S\left(a_1,\ldots,a_m,-\sum a_i\right).$$

Now let $d_i = \text{outdeg}(i) - 1$.

Main thm. (D. Peterson for $S = A_m^+$

$$K_{S}\left(a_{1}, \dots, a_{m}, -\sum a_{i}\right) = \sum K_{S}(\nu_{1} - d_{1}, \dots, \nu_{m-1} - d_{m-1}, 0, 0) \\ \cdot \begin{pmatrix} a_{1} + d_{1} \\ \nu_{1} \end{pmatrix} \cdots \begin{pmatrix} a_{m-1} + d_{m-1} \\ \nu_{m-1} \end{pmatrix},$$

summed over all $\nu_1, \ldots, \nu_{m-1} \in \mathbb{N}$ satisfying

$$\nu_1 + \dots + \nu_i \geq d_1 + \dots + d_i$$
$$\sum \nu_i = d_1 + \dots + d_{m-1}$$

(Piecewise) polynomiality

Corollary. $K_S(a_1, \ldots, a_m, a_{m+1})$ is a polynomial function of a_1, \ldots, a_{m+1} in the cone

 $\mathcal{C}_{\mathbf{S}}: \quad x_1,\ldots,x_m \ge 0, \quad x_{m+1} \le 0.$

(Piecewise) polynomiality

Corollary. $K_S(a_1, \ldots, a_m, a_{m+1})$ is a polynomial function of a_1, \ldots, a_{m+1} in the cone

 $\boldsymbol{\mathcal{C}_{S}}: \quad x_1,\ldots,x_m \geq 0, \quad x_{m+1} \leq 0.$

Note. K_S is piecewise polynomial on \mathbb{Z}^{m+1} . Mimimum number of cones of nonzero polynomiality not known. For $S = A_m^+$, we have:

m	2	3	4	5	6
# cones	2	7	48	820	51133

An example

Example. m = 2:

$K(a,b,-a-b) = \begin{cases} a+1, a,b \ge 0\\ a+b+1, 0 \le -b \le a\\ 0, \text{ otherwise.} \end{cases}$

Example. m = 2:

$$K(a,b,-a-b) = \begin{cases} a+1, a,b \ge 0\\ a+b+1, 0 \le -b \le a\\ 0, \text{ otherwise.} \end{cases}$$

Proof of polynomiality based on Elliott-MacMahon algorithm. (There are other proofs.)

Volume of flow polytope

Corollary. Let
$$d = \dim \mathcal{F}(G)$$
. Then

 $d! \cdot \operatorname{vol}(\mathcal{F}(G)) := \widetilde{V}(\mathcal{F}(G))$

$$=K_S\left(d_{m-1},d_{m-2},\ldots,d_1,-\sum d_i\right).$$

Volume of flow polytope

Corollary. Let
$$d = \dim \mathcal{F}(G)$$
. Then

 $d! \cdot \operatorname{vol}(\mathcal{F}(G)) := \widetilde{V}(\mathcal{F}(G))$

$$=K_S\left(d_{m-1},d_{m-2},\ldots,d_1,-\sum d_i\right).$$

For $G = K_{m+1}$, we have

$$\widetilde{V}(\mathcal{F}_{K_{m+1}}) = K\left(1, 2, \dots, m-2, -\binom{m-1}{2}\right)$$

Chan-Robbins conjecture

Theorem (Zeilberger, Baldoni-Vergne). We have

$$V\left(\mathcal{F}_{K_{m+1}}\right) = C_1 \cdots C_{m-2},$$

where

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$
 (Catalan number).

Alternate formulation

Let f(n) be the number of $n \times n$ \mathbb{N} -matrices A such that

•
$$A_{ij} = 0$$
 if $j > i+1$

row and column sum vector

$$\left(1, 3, 6, \ldots, \binom{n+1}{2}\right)$$

Alternate formulation (cont.)

Alternate formulation (cont.)

$$\begin{bmatrix} 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 1 & 0 & 1 & 3 & 5 \\ 0 & 1 & 1 & 3 & 10 \end{bmatrix}$$

Then $f(n) = C_1 C_2 \cdots C_n$.

Alternate formulation (cont.)

$$\begin{bmatrix} 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 & 4 \\ 1 & 0 & 1 & 3 & 5 \\ 0 & 1 & 1 & 3 & 10 \end{bmatrix}$$

Then $f(n) = C_1 C_2 \cdots C_n$.

No combinatorial proof known.

Divisibility properties I

Theorem (easy consequence of Ehrhart's law of reciprocity). $K(a_1, \ldots, a_m, -\sum a_i)$ is divisible by

 $(a_1+1)(a_1+2)\cdots(a_1+m-1).$

Divisibility properties II

Theorem (J. R. Schmidt and A. M. Bincer, 1984) *Also divisible by*

$$a_1 + a_2 + \dots + a_{m-2} + 3a_{m-1} + 3.$$

In fact,

$$3K\left(a_{1},\ldots,a_{m},-\sum a_{i}\right) =$$

$$(a_{1}+\cdots+a_{m-2}+3a_{m-1}+3)$$

$$\cdot K_{\mathbf{no}} e_{m-1,m}\left(a_{1},\ldots,a_{m},-\sum a_{i}\right).$$

Example and conjecture

Example.

$$K(a, b, c, d, -a - b - c - d) =$$

$$\frac{1}{360}(a+1)(a+2)(a+3)(a+b+3c+3)$$

$$\cdot(a^2 + 5ab + 10b^2 + 9a + 30b + 20)$$

More interesting polytopes – p.

Example and conjecture

Example.

$$K(a, b, c, d, -a - b - c - d) =$$

$$\frac{1}{360}(a + 1)(a + 2)(a + 3)(a + b + 3c + 3)$$

$$\cdot(a^2 + 5ab + 10b^2 + 9a + 30b + 20)$$
Open: Are all coefficients of

$$K_S\left(a_1,\ldots,a_m,-\sum a_i\right)$$

nonnegative?

Matching polytopes (Ricky Liu)

$$G = (V, E)$$
: a graph; $n = #E$

 M_G : matching polytope of G, i.e.,

$$M_G = \left\{ w \colon E \to \mathbb{R}_{\geq 0} \, | \, \forall \, v \in V \sum_{v \in e} w(e) \leq 1 \right\} \subseteq \mathbb{R}^n.$$

matching M: a set of vertex-disjoint edges If $L \subseteq E$, define $\chi_L \in M_G$ by

$$\boldsymbol{\chi_L}(e) = \begin{cases} 1, & e \in L \\ 0, & e \notin L. \end{cases}$$

Note. M_G has integer vertices if and only if G is bipartite. In that case, the vertices are χ_M , where M is a matching of G.

matching M: a set of vertex-disjoint edges If $L \subseteq E$, define $\chi_L \in M_G$ by

$$\boldsymbol{\chi_L}(e) = \begin{cases} 1, & e \in L \\ 0, & e \notin L. \end{cases}$$

Note. M_G has integer vertices if and only if G is bipartite. In that case, the vertices are χ_M , where M is a matching of G.

Corollary. *G* bipartite \Rightarrow

$$V(G) := n! \cdot \operatorname{vol}(M_G) \in \mathbb{Z}$$

 G, G_1, G_2

$H = \text{graph}, u, v \in V(H), u \neq v$

G: adjoin pendant edges uu', vv' (so u', v' are endpoints)

- G_1 : adjoin pendant edge uu' and an edge uv
- G_2 : adjoin pendant edge vv' and an edge uv

Leaf recurrence

More interesting polytopes – p.

Leaf recurrence

 \mathcal{F} : set of all forests $f: \mathcal{F} \to \mathbb{R}$ satisfies the leaf recurrence if

 $f(G) = f(G_1) + f(G_2).$

Theorem. There is a unique $f: \mathcal{F} \to \mathbb{R}$:
• For the star $T_n = K_{n,1}$, we have $f(T_n) = 1$.

- For the star $T_n = K_{n,1}$, we have $f(T_n) = 1$.
- If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n m$, then

$$f(G_1 + G_2) = \binom{n}{m} f(G_1) f(G_2).$$

- For the star $T_n = K_{n,1}$, we have $f(T_n) = 1$.
- If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n m$, then

$$f(G_1 + G_2) = \binom{n}{m} f(G_1) f(G_2).$$

• f satisfies the leaf recurrence.

- For the star $T_n = K_{n,1}$, we have $f(T_n) = 1$.
- If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n m$, then

$$f(G_1 + G_2) = \binom{n}{m} f(G_1) f(G_2).$$

• f satisfies the leaf recurrence.

Then f(G) = V(G)*.*

Volume of M_G (continued)

Theorem. The previous theorem can be used to compute V(F) for any forest F.

Diagrams and tableaux

B: the set of unit squares in \mathbb{R}^2 with centers (i, j), $i, j \ge 1$. Denote also by (i, j) the unit square with center (i, j).

Diagrams and tableaux

B: the set of unit squares in \mathbb{R}^2 with centers (i, j), $i, j \ge 1$. Denote also by (i, j) the unit square with center (i, j).

Diagram D: a finite subset of B

Diagrams and tableaux

B: the set of unit squares in \mathbb{R}^2 with centers (i, j), $i, j \ge 1$. Denote also by (i, j) the unit square with center (i, j).

Diagram D: a finite subset of B

Row and column stabilizers

D: diagram with n boxes, ordered in some way \mathfrak{S}_n acts on D

Row and column stabilizers

D: diagram with n boxes, ordered in some way \mathfrak{S}_n acts on D

 $R_D(C_D)$: subgroup of \mathfrak{S}_n stabilizing each row (column) of D

 $R(D) = \sum_{w \in R_D} w, \qquad C(D) = \sum_{w \in C_D} \operatorname{sgn}(w)w$

The Specht module S^D

The Specht module S^D (over \mathbb{C}) is the left ideal

$$\mathbf{S}^{\mathbf{D}} = \mathbb{C}[\mathfrak{S}_n]C(D)R(D)$$

of $\mathbb{C}[\mathfrak{S}_n]$.

The Specht module S^D

The Specht module S^D (over \mathbb{C}) is the left ideal

$$\mathbf{S}^{\mathbf{D}} = \mathbb{C}[\mathfrak{S}_n]C(D)R(D)$$

of $\mathbb{C}[\mathfrak{S}_n]$.

Note. S^D affords a representation of \mathfrak{S}_n by left multiplication.

Irreducible Specht modules

Note. If *D* is the (Young) diagram of a partition λ of *n*, then S^D is irreducible. Conversely, if S^D is irreducible, then $S^D \cong S^{D'}$ for the diagram *D'* of some partition.

Irreducible Specht modules

Note. If *D* is the (Young) diagram of a partition λ of *n*, then S^D is irreducible. Conversely, if S^D is irreducible, then $S^D \cong S^{D'}$ for the diagram *D'* of some partition.

The diagram of a forest F

Let $V(F) = \mathbf{A} \cup \mathbf{B}$, so that all edges are between *A* and *B*. Label the *A*-vertices $1, \ldots, m$ and *B*-vertices $1, \ldots, n$. Let

 $D(F) = \{(i, j) : ij \in E(F), i \in A, j \in B\}.$

The diagram of a forest F

Let $V(F) = \mathbf{A} \cup \mathbf{B}$, so that all edges are between *A* and *B*. Label the *A*-vertices $1, \ldots, m$ and *B*-vertices $1, \ldots, n$. Let

 $D(F) = \{(i, j) : ij \in E(F), i \in A, j \in B\}.$

11	12	13
		23

The Specht module of D(F)

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.

The Specht module of D(F)

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.

Theorem. dim $S^{D(F)} = V(F)$

The Specht module of D(F)

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.

Theorem. dim $S^{D(F)} = V(F)$

Note for experts. The diagrams D(F) are not %-avoiding diagrams in the sense of Reiner and Shimozono.

Decomposition of $S^{D(F)}$

How does the Specht module $S^{D(F)}$ decompose into irreducible representations of \mathfrak{S}_n ?

Decomposition of $S^{D(F)}$

How does the Specht module $S^{D(F)}$ decompose into irreducible representations of \mathfrak{S}_n ?

Recall the leaf recurrence

$$f(G) = f(G_1) + f(G_2)$$

with initial conditions $f(K_{n,1}) = 1$.

How does the Specht module $S^{D(F)}$ decompose into irreducible representations of \mathfrak{S}_n ?

Recall the leaf recurrence

$$f(G) = f(G_1) + f(G_2)$$

with initial conditions $f(K_{n,1}) = 1$.

Change the initial conditions to $f(K_{n,1}) = h_n$, the complete homogeneous symmetric function (generic leaf recurrence).

Decomposition theorem

Theorem. For a forest F, f(F) is well-defined, and

 $f(F) = \operatorname{ch} S^{D(F)}.$

Decomposition theorem

Theorem. For a forest F, f(F) is well-defined, and

$$f(F) = \operatorname{ch} S^{D(F)}.$$

In other words, if

$$f(F) = \sum_{\lambda \vdash n} c_{\lambda} s_{\lambda},$$

where s_{λ} is a Schur function, then c_{λ} is the multiplicity of the irreducible representation of \mathfrak{S}_n indexed by λ in $S^{D(F)}$.

The Ehrhart polynomial of M_F

Open. What is the Ehrhart polynomial of M_F ?

Does it have any representation-theoretic significance?

