More interesting polytopes

Richard P. Stanley
M.I.T.

Root polytopes, subdivision algebra

Karola Meszaros
Origin (Postnikov \& RS): Let

$$
\boldsymbol{M}_{\boldsymbol{n}}=x_{12} x_{23} \cdots x_{n-1, n}
$$

Continually apply

$$
x_{i j} x_{j k} \rightarrow x_{i k}\left(x_{i j}+x_{j k}\right),
$$

ending with $P_{n}\left(x_{i j}\right)$.

An example

Example.

$$
\begin{aligned}
\boldsymbol{x}_{\mathbf{1 2}} \boldsymbol{x}_{\mathbf{2 3}} x_{34} \longrightarrow & \boldsymbol{x}_{\mathbf{1 3}} x_{12} \boldsymbol{x}_{\mathbf{3 4}}+\boldsymbol{x}_{\mathbf{1 3}} x_{23} \boldsymbol{x}_{\mathbf{3 4}} \\
& \rightarrow x_{14} x_{13} x_{12}+x_{14} x_{34} x_{12} \\
& \quad+x_{14} x_{13} x_{23}+x_{14} \boldsymbol{x}_{\mathbf{3 4}} \boldsymbol{x}_{\mathbf{2 3}} \\
\longrightarrow & x_{14} x_{13} x_{12}+x_{14} x_{34} x_{12} \\
& \quad+x_{14} x_{13} x_{23}+x_{14} x_{24} x_{23}+x_{14} x_{24} x_{34} \\
= & P_{3}\left(x_{i j}\right) .
\end{aligned}
$$

Invariance of $P_{n}\left(x_{i j}\right)$

The polynomials $P_{n}\left(x_{i j}\right)$ depend on the sequence of operations. However:

Invariance of $P_{n}\left(x_{i j}\right)$

The polynomials $P_{n}\left(x_{i j}\right)$ depend on the sequence of operations. However:
Theorem. We have

$$
P_{n}(1,1, \ldots, 1)=C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

a Catalan number.

Full root polytopes

\boldsymbol{e}_{i} : i th unit vector in \mathbb{R}^{n+1}
A_{n}^{+}: the positive roots

$$
\left\{e_{i}-e_{j}: 1 \leq i<j \leq n+1\right\}
$$

full root polytope $\mathcal{P}\left(\boldsymbol{A}_{n}^{+}\right)$: convex hull of A_{n}^{+}and the origin in \mathbb{R}^{n+1} (Gelfand-Graev-Postnikov)

Root polytopes

\boldsymbol{T} : a tree on the vertex set $[n+1]$
root polytope $\mathcal{P}(T)$ (of type A_{n}): intersection of $\mathcal{P}\left(A_{n}^{+}\right)$with the cone generated by $e_{i}-e_{j}$, where $i j \in E(T), i<j$

Noncrossing alternating trees

A graph G on $[n+1]$ is noncrossing if \nexists vertices $i<j<k<l$ such that $i k \in E(G)$ and $j l \in E(G)$.
G is alternating if $\nexists i<j<k$ such that
$i j \in E(G)$ and $j k \in E(G)$.

Noncrossing alternating trees

A graph G on $[n+1]$ is noncrossing if \nexists vertices $i<j<k<l$ such that $i k \in E(G)$ and $j l \in E(G)$.
G is alternating if $\nexists i<j<k$ such that
$i j \in E(G)$ and $j k \in E(G)$.

Some notation

\bar{G} : graph with vertex set $[n+1]$ and edge set
$\left\{i j: \exists i i_{1}, i_{1} i_{2}, \ldots, i_{k} j \in E(G), i<i_{1}<\cdots<i_{k}<j\right\}$, the transitive closure of G

Some notation

$\bar{G}:$ graph with vertex set $[n+1]$ and edge set
$\left\{i j: \exists i i_{1}, i_{1} i_{2}, \ldots, i_{k} j \in E(G), i<i_{1}<\cdots<i_{k}<j\right\}$, the transitive closure of G
\boldsymbol{T} : a noncrossing tree on $[n+1]$
T_{1}, \ldots, T_{k} : noncrossing, alternating spanning trees of \bar{T}

Volume of $\mathcal{P}(T)$

Theorem. The root polytopes $\mathcal{P}\left(T_{1}\right), \ldots, \mathcal{P}\left(T_{k}\right)$ are n-simplices with disjoint interior and union $\mathcal{P}(T)$. Moreover,

$$
\operatorname{vol} \mathcal{P}(T)=\frac{f_{T}}{n!},
$$

where \boldsymbol{f}_{T} is the number of noncrossing alternating spanning trees of \bar{T}.

Volume of $\mathcal{P}(T)$

Theorem. The root polytopes $\mathcal{P}\left(T_{1}\right), \ldots, \mathcal{P}\left(T_{k}\right)$ are n-simplices with disjoint interior and union $\mathcal{P}(T)$. Moreover,

$$
\operatorname{vol} \mathcal{P}(T)=\frac{f_{T}}{n!},
$$

where \boldsymbol{f}_{T} is the number of noncrossing alternating spanning trees of \bar{T}.
(several generalizations)

Example

T

T_{1}

\bar{T}

T_{2}

$$
\operatorname{vol} \mathcal{P}(T)=\frac{2}{3!}
$$

Yang-Baxter algebras

Proof of theorem:

$\mathcal{B}\left(A_{n}\right)$: quasi-classical Yang-Baxter algebra or bracket algebra of type \boldsymbol{A} (Anatol Kirillov). It is an associative algebra over $\mathbb{Q}[\beta]$ ($\boldsymbol{\beta}$ a central indeterminate) generated by

$$
\left\{x_{i j}: 1 \leq i<j \leq n+1\right\},
$$

with relations

$$
\begin{aligned}
x_{i j} x_{j k} & =x_{i k} x_{i j}+x_{j k} x_{i k}+\beta x_{i k} \\
x_{i j} x_{k l} & =x_{k l} x_{i j}, \text { if } i, j, k, l \text { are distinct. }
\end{aligned}
$$

Subdivision algebra

$\mathcal{S}\left(A_{n}\right)$: subdivision algebra (Meszaros). It is $\mathcal{B}\left(A_{n}\right)$ made commutative, i.e.,

$$
x_{i j} x_{k l}=x_{k l} x_{i j} \text { for all } i, j, k, l .
$$

Reduction rule

Treat the first relation as a reduction rule:

$$
x_{i j} x_{j k} \rightarrow x_{i k} x_{i j}+x_{j k} x_{i k}+\beta x_{i k} .
$$

Reduction rule

Treat the first relation as a reduction rule:

$$
\begin{aligned}
& x_{i j} x_{j k} \rightarrow x_{i k} x_{i j}+x_{j k} x_{i k}+\beta x_{i k} .
\end{aligned}
$$

Reduced forms

A reduced form of the monomial m in $\mathcal{B}\left(A_{n}\right)$ or $\mathcal{S}\left(A_{n}\right)$ is a polynomial obtained from m by applying successive reductions until no longer possible.

Reduced forms

A reduced form of the monomial m in $\mathcal{B}\left(A_{n}\right)$ or $\mathcal{S}\left(A_{n}\right)$ is a polynomial obtained from m by applying successive reductions until no longer possible.

For $\mathcal{S}\left(A_{n}\right)$ and $\beta=0$, same as reduction of Postinikov and RS.

A reduction redux

$$
\begin{aligned}
\boldsymbol{x}_{\mathbf{1 2}} \boldsymbol{x}_{\mathbf{2 3}} x_{34} & \rightarrow \boldsymbol{x}_{\mathbf{1 3}} x_{12} \boldsymbol{x}_{\mathbf{3 4}}+\boldsymbol{x}_{\mathbf{1 3}} x_{23} \boldsymbol{x}_{\mathbf{3 4}} \\
& \rightarrow x_{14} x_{13} x_{12}+x_{14} x_{34} x_{12} \\
& \quad+x_{14} x_{13} x_{23}+x_{14} \boldsymbol{x}_{\mathbf{3 4}} \boldsymbol{x}_{\mathbf{2 3}} \\
\longrightarrow & x_{14} x_{13} x_{12}+x_{14} x_{34} x_{12} \\
& \quad+x_{14} x_{13} x_{23}+x_{14} x_{24} x_{23}+x_{14} x_{24} x_{34} \\
= & P_{3}\left(x_{i j}\right) .
\end{aligned}
$$

Reduced form of a graph monomial

G: graph on vertex set $[n+1]$

$$
\boldsymbol{m}_{\boldsymbol{G}}=\prod_{i j \in E(G)} x_{i j} \in \mathcal{S}\left(A_{n}\right)
$$

Reduced form of a graph monomial

G: graph on vertex set $[n+1]$

$$
\boldsymbol{m}_{\boldsymbol{G}}=\prod_{i j \in E(G)} x_{i j} \in \mathcal{S}\left(A_{n}\right)
$$

Theorem. Let \boldsymbol{T} be a noncrossing tree on $[n+1]$ and $\boldsymbol{P}_{\boldsymbol{T}}$ a reduced form of m_{G}. Then

$$
P_{T}\left(x_{i j}=1, \beta=0\right)=f_{T}
$$

the number of noncrossing alternating spanning trees of \bar{T}.

Relation to root polytopes

The monomials appearing in the reduced form $P_{T}\left(x_{i j}, \beta=0\right)$ correspond to the facets in a triangulation of $\mathcal{P}\left(A_{n}\right)$.

Relation to root polytopes

The monomials appearing in the reduced form $P_{T}\left(x_{i j}, \beta=0\right)$ correspond to the facets in a triangulation of $\mathcal{P}\left(A_{n}\right)$.

Interior faces of $\mathcal{P}\left(A_{n}\right)$

The interior faces (not necessarily facets) of $\mathcal{P}\left(A_{n}\right)$ correspond to the terms in the reduced form of $P_{T}\left(x_{i j}, \beta\right)$.

Interior faces of $\mathcal{P}\left(A_{n}\right)$

The interior faces (not necessarily facets) of $\mathcal{P}\left(A_{n}\right)$ correspond to the terms in the reduced form of $P_{T}\left(x_{i j}, \beta\right)$.

Uniqueness

In the ring $\mathcal{B}\left(A_{n}\right)$, the reduced form of any monomial m is unique (up to commutations).

Proof uses noncommutative Gröbner bases.

Uniqueness

In the ring $\mathcal{B}\left(A_{n}\right)$, the reduced form of any monomial m is unique (up to commutations).
Proof uses noncommutative Gröbner bases.
For $\mathcal{S}\left(A_{n}\right)$ there in no longer uniqueness of reduced forms, but get a combinatorial interpretation of the monomials appearing in a reduced form.

Uniqueness

In the ring $\mathcal{B}\left(A_{n}\right)$, the reduced form of any monomial m is unique (up to commutations).
Proof uses noncommutative Gröbner bases.
For $\mathcal{S}\left(A_{n}\right)$ there in no longer uniqueness of reduced forms, but get a combinatorial interpretation of the monomials appearing in a reduced form.

Many generalizations ...

Flow polytopes

$G=$ acyclic graph on vertex set

$$
\boldsymbol{V}(\boldsymbol{G})=\{1,2, \ldots, m+1\}
$$

with edge $i \xrightarrow{e} j$ only if $i<j$

$$
\boldsymbol{E}(\boldsymbol{G})=\text { edge set of } G
$$

Flows
flow on G :

$$
f: E(G) \rightarrow R_{\geq 0}
$$

such that for $1<i<m+1$,
flow into $i=$ flow out of i
size of f : flow out of 1 (or into $m+1$)
\mathbb{N}-flows

\mathbb{N}-flow: a flow $f: E(G) \rightarrow \mathbb{N}$

\mathbb{N}-flows
\mathbb{N}-flow: a flow $f: E(G) \rightarrow \mathbb{N}$

size $=8$
\mathbb{N}-flows
\mathbb{N}-flow: a flow $f: E(G) \rightarrow \mathbb{N}$

$$
\text { size }=8
$$

flow polytope $\mathcal{F}(G) \subset \mathbb{R}^{E(G)}$:
$\left\{\right.$ flows $f: E(G) \rightarrow \mathbb{R}_{\geq 0}$ of size 1$\}$

Root polytopes vs. flow polytopes

Note. The root polytopes $\mathcal{P}(T)$ of Meszaros are special cases of flow polytopes $\mathcal{F}(G)$. In particular,

$$
\mathcal{P}\left(A_{n}^{+}\right)=\mathcal{F}\left(K_{n}\right) .
$$

Vertices of $\mathcal{F}(G)$

vertices \leftrightarrow paths in G from 1 to $m+1$

Vertices of $\mathcal{F}(G)$

vertices \leftrightarrow paths in G from 1 to $m+1$

size $=8$

1234512351251345135

Excess flows

excess flow vector $\gamma=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}^{m}$
flow with excess γ : flow out of $i=a_{i}+$ flow in

Excess flows

excess flow vector $\gamma=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}^{m}$
flow with excess γ : flow out of $i=a_{i}+$ flow in

The positive roots A_{m}^{+}

Recall:

$$
\begin{gathered}
\boldsymbol{e}_{\boldsymbol{i}}=\left(0 \cdots 0 \stackrel{i}{1}_{1}^{i} \cdots 0\right) \in \mathbb{R}^{m+1} \\
\boldsymbol{e}_{\boldsymbol{i j}}=e_{i}-e_{j}
\end{gathered}
$$

The positive roots A_{m}^{+}

Recall:

$$
\begin{gathered}
\boldsymbol{e}_{\boldsymbol{i}}=(0 \cdots 0 \stackrel{i}{1} 0 \cdots 0) \in \mathbb{R}^{m+1} \\
\boldsymbol{e}_{i j}=e_{i}-e_{j} \\
\boldsymbol{A}_{\boldsymbol{m}}^{+}=\left\{e_{i j}: 1 \leq i<j \leq m+1\right\} \subset \mathbb{Z}^{m+1}
\end{gathered}
$$

(restricted) Kostant partition function

$$
\begin{gathered}
\boldsymbol{\nu} \in \mathbb{Z}^{m+1}, \quad \sum \nu_{i}=0 \\
\boldsymbol{A}_{m}^{+}=\left\{e_{i j}: 1 \leq i<j \leq m+1\right\} \subset \mathbb{Z}^{m+1} \\
\boldsymbol{S} \subseteq A_{m}^{+}
\end{gathered}
$$

(restricted) Kostant partition function

$$
\begin{gathered}
\boldsymbol{\nu} \in \mathbb{Z}^{m+1}, \quad \sum \nu_{i}=0 \\
\boldsymbol{A}_{m}^{+}=\left\{e_{i j}: 1 \leq i<j \leq m+1\right\} \subset \mathbb{Z}^{m+1} \\
\boldsymbol{S} \subseteq A_{m}^{+} \\
\boldsymbol{K}_{S}(\boldsymbol{\nu})=\#\left\{\left(b_{i j}\right)_{e_{i j} \in S}: \nu=\sum b_{i j} e_{i j}\right\} \\
\boldsymbol{K}(\boldsymbol{\nu})=K_{A_{m}^{+}}(\nu)
\end{gathered}
$$

An example

Example.

$$
S=\left\{e_{12}, e_{23}, e_{13}\right\}=A_{3}^{+}
$$

$$
(2,0,-2)=2 e_{12}+2 e_{23}=e_{12}+e_{13}+e_{23}=2 e_{13}
$$

$$
\Rightarrow K_{S}(2,0,-2)=K(2,0,-2)=3 .
$$

Flows and partitions

Proposition. Let

$$
S=S(G)=\left\{e_{i j}:(i, j) \in E(G)\right\}
$$

The number of \mathbb{N}-flows with excess $\left(a_{1}, \ldots, a_{m}\right)$ is equal to

$$
K_{S}\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right) .
$$

Flows and partitions

Proposition. Let

$$
S=S(G)=\left\{e_{i j}:(i, j) \in E(G)\right\}
$$

The number of \mathbb{N}-flows with excess $\left(a_{1}, \ldots, a_{m}\right)$ is equal to

$$
K_{S}\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right) .
$$

Now let $\boldsymbol{d}_{\boldsymbol{i}}=\operatorname{outdeg}(i)-1$.

Main thm. (D. Peterson for $S=A_{m}^{+}$

$$
\begin{gathered}
K_{S}\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right)= \\
\sum K_{S}\left(\nu_{1}-d_{1}, \ldots, \nu_{m-1}-d_{m-1}, 0,0\right) \\
\cdot\binom{a_{1}+d_{1}}{\nu_{1}} \ldots\binom{a_{m-1}+d_{m-1}}{\nu_{m-1}}
\end{gathered}
$$

summed over all $\nu_{1}, \ldots, \nu_{m-1} \in \mathbb{N}$ satisfying

$$
\begin{aligned}
\nu_{1}+\cdots+\nu_{i} & \geq d_{1}+\cdots+d_{i} \\
\sum \nu_{i} & =d_{1}+\cdots+d_{m-1}
\end{aligned}
$$

An example

$$
\left(\nu_{1}, \nu_{2}\right)=(2,0),(1,1)
$$

$S=\left\{e_{12}, e_{13}, e_{23}, e_{24}, e_{34}\right\}, K_{S}(\alpha, \beta)=K_{S}(\alpha, \beta, 0,0)$

An example

$$
\left(\nu_{1}, \nu_{2}\right)=(2,0),(1,1)
$$

$$
S=\left\{e_{12}, e_{13}, e_{23}, e_{24}, e_{34}\right\}, K_{S}(\alpha, \beta)=K_{S}(\alpha, \beta, 0,0)
$$

$$
K_{S}(a, b, c,-a-b-c)=
$$

$$
K_{S}(1,-1)\binom{a+1}{2}+K_{S}(0,0)\binom{a+1}{1}\binom{b+1}{1}
$$

$$
=\binom{a+1}{2}+(a+1)(b+1)
$$

(Piecewise) polynomiality

Corollary. $K_{S}\left(a_{1}, \ldots, a_{m}, a_{m+1}\right)$ is a polynomial function of a_{1}, \ldots, a_{m+1} in the cone

$$
\mathcal{C}_{S}: \quad x_{1}, \ldots, x_{m} \geq 0, \quad x_{m+1} \leq 0
$$

(Piecewise) polynomiality

Corollary. $K_{S}\left(a_{1}, \ldots, a_{m}, a_{m+1}\right)$ is a polynomial function of a_{1}, \ldots, a_{m+1} in the cone

$$
\mathcal{C}_{S}: \quad x_{1}, \ldots, x_{m} \geq 0, \quad x_{m+1} \leq 0
$$

Note. K_{S} is piecewise polynomial on \mathbb{Z}^{m+1}. Mimimum number of cones of nonzero polynomiality not known. For $S=A_{m}^{+}$, we have:

m	2	3	4	5	6
\# cones	2	7	48	820	51133

An example

Example. $m=2$:

$$
K(a, b,-a-b)=\left\{\begin{aligned}
a+1, & a, b \geq 0 \\
a+b+1, & 0 \leq-b \leq a \\
0, & \text { otherwise }
\end{aligned}\right.
$$

An example

Example. $m=2$:

$$
K(a, b,-a-b)=\left\{\begin{aligned}
a+1, & a, b \geq 0 \\
a+b+1, & 0 \leq-b \leq a \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Proof of polynomiality based on
Elliott-MacMahon algorithm. (There are other proofs.)

Volume of flow polytope

Corollary. Let $d=\operatorname{dim} \mathcal{F}(G)$. Then

$$
\begin{aligned}
& d!\cdot \operatorname{vol}(\mathcal{F}(G)):=\widetilde{V}(\mathcal{F}(G)) \\
& \quad=K_{S}\left(d_{m-1}, d_{m-2}, \ldots, d_{1},-\sum d_{i}\right) .
\end{aligned}
$$

Volume of flow polytope

Corollary. Let $d=\operatorname{dim} \mathcal{F}(G)$. Then

$$
\begin{aligned}
& d!\cdot \operatorname{vol}(\mathcal{F}(G)):=\widetilde{V}(\mathcal{F}(G)) \\
& \quad=K_{S}\left(d_{m-1}, d_{m-2}, \ldots, d_{1},-\sum d_{i}\right) .
\end{aligned}
$$

For $G=K_{m+1}$, we have

$$
\widetilde{V}\left(\mathcal{F}_{K_{m+1}}\right)=K\left(1,2, \ldots, m-2,-\binom{m-1}{2}\right) .
$$

Chan-Robbins conjecture

Theorem (Zeilberger, Baldoni-Vergne). We have

$$
\widetilde{V}\left(\mathcal{F}_{K_{m+1}}\right)=C_{1} \cdots C_{m-2},
$$

where

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \text { (Catalan number). }
$$

Alternate formulation

Let $f(n)$ be the number of $n \times n \mathbb{N}$-matrices A such that

- $A_{i j}=0$ if $j>i+1$
- row and column sum vector

$$
\left(1,3,6, \ldots,\binom{n+1}{2}\right)
$$

Alternate formulation (cont.)

$$
\left[\begin{array}{ccccc}
0 & 1 & & & \\
0 & 1 & 2 & & \\
0 & 0 & 2 & 4 & \\
1 & 0 & 1 & 3 & 5 \\
0 & 1 & 1 & 3 & 10
\end{array}\right]
$$

Alternate formulation (cont.)

$$
\left[\begin{array}{ccccc}
0 & 1 & & & \\
0 & 1 & 2 & & \\
0 & 0 & 2 & 4 & \\
1 & 0 & 1 & 3 & 5 \\
0 & 1 & 1 & 3 & 10
\end{array}\right]
$$

Then $f(n)=C_{1} C_{2} \cdots C_{n}$.

Alternate formulation (cont.)

$$
\left[\begin{array}{ccccc}
0 & 1 & & & \\
0 & 1 & 2 & & \\
0 & 0 & 2 & 4 & \\
1 & 0 & 1 & 3 & 5 \\
0 & 1 & 1 & 3 & 10
\end{array}\right]
$$

Then $f(n)=C_{1} C_{2} \cdots C_{n}$.
No combinatorial proof known.

Divisibility properties I

Theorem (easy consequence of Ehrhart's law of reciprocity). $K\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right)$ is divisible by

$$
\left(a_{1}+1\right)\left(a_{1}+2\right) \cdots\left(a_{1}+m-1\right) .
$$

Divisibility properties II

Theorem (J. R. Schmidt and A. M. Bincer, 1984) Also divisible by

$$
a_{1}+a_{2}+\cdots+a_{m-2}+3 a_{m-1}+3 .
$$

In fact,

$$
\begin{aligned}
& 3 K\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right)= \\
& \quad\left(a_{1}+\cdots+a_{m-2}+3 a_{m-1}+3\right) \\
& \cdot K_{\mathbf{n o}} e_{m-1, m}\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right) .
\end{aligned}
$$

Example and conjecture

Example.

$$
\begin{gathered}
K(a, b, c, d,-a-b-c-d)= \\
\frac{1}{360}(a+1)(a+2)(a+3)(a+b+3 c+3) \\
\cdot\left(a^{2}+5 a b+10 b^{2}+9 a+30 b+20\right)
\end{gathered}
$$

Example and conjecture

Example.

$$
\begin{gathered}
K(a, b, c, d,-a-b-c-d)= \\
\frac{1}{360}(a+1)(a+2)(a+3)(a+b+3 c+3) \\
\cdot\left(a^{2}+5 a b+10 b^{2}+9 a+30 b+20\right)
\end{gathered}
$$

Open: Are all coefficients of

$$
K_{S}\left(a_{1}, \ldots, a_{m},-\sum a_{i}\right)
$$

nonnegative?

Matching polytopes (Ricky Liu)

$\boldsymbol{G}=(V, E):$ a graph; $\boldsymbol{n}=\# E$
M_{G} : matching polytope of G, i.e.,

$$
M_{G}=\left\{w: E \rightarrow \mathbb{R}_{\geq 0} \mid \forall v \in V \sum_{v \in e} w(e) \leq 1\right\} \subseteq \mathbb{R}^{n}
$$

Vertices of M_{G}

matching M : a set of vertex-disjoint edges
If $\boldsymbol{L} \subseteq E$, define $\chi_{L} \in M_{G}$ by

$$
\chi_{L}(e)= \begin{cases}1, & e \in L \\ 0, & e \notin L\end{cases}
$$

Note. M_{G} has integer vertices if and only if G is bipartite. In that case, the vertices are χ_{M}, where M is a matching of G.

Vertices of M_{G}

matching M : a set of vertex-disjoint edges
If $\boldsymbol{L} \subseteq E$, define $\chi_{L} \in M_{G}$ by

$$
\chi_{L}(e)= \begin{cases}1, & e \in L \\ 0, & e \notin L\end{cases}
$$

Note. M_{G} has integer vertices if and only if G is bipartite. In that case, the vertices are χ_{M}, where M is a matching of G.
Corollary. G bipartite \Rightarrow

$$
\boldsymbol{V}(\boldsymbol{G}):=n!\cdot \operatorname{vol}\left(M_{G}\right) \in \mathbb{Z}
$$

G, G_{1}, G_{2}

$\boldsymbol{H}=$ graph, $\boldsymbol{u}, \boldsymbol{v} \in V(H), u \neq v$
G : adjoin pendant edges $u u^{\prime}, v v^{\prime}$ (so u^{\prime}, v^{\prime} are endpoints)
G_{1} : adjoin pendant edge $u u^{\prime}$ and an edge $u v$
G_{2} : adjoin pendant edge $v v^{\prime}$ and an edge $u v$

Leaf recurrence

Leaf recurrence

G

G_{I}

$\int 2$
\mathcal{F} : set of all forests
$f: \mathcal{F} \rightarrow \mathbb{R}$ satisfies the leaf recurrence if

$$
f(G)=f\left(G_{1}\right)+f\left(G_{2}\right)
$$

Volume of M_{G}

Theorem. There is a unique $f: \mathcal{F} \rightarrow \mathbb{R}$:

Volume of M_{G}

Theorem. There is a unique $f: \mathcal{F} \rightarrow \mathbb{R}$:

- For the star $T_{n}=K_{n, 1}$, we have $f\left(T_{n}\right)=1$.

Volume of M_{G}

Theorem. There is a unique $f: \mathcal{F} \rightarrow \mathbb{R}$:

- For the star $T_{n}=K_{n, 1}$, we have $f\left(T_{n}\right)=1$.
- If G_{1} and G_{2} are disjoint, $\# V\left(G_{1}\right)=m$, and $\# V\left(G_{2}\right)=n-m$, then

$$
f\left(G_{1}+G_{2}\right)=\binom{n}{m} f\left(G_{1}\right) f\left(G_{2}\right)
$$

Volume of M_{G}

Theorem. There is a unique $f: \mathcal{F} \rightarrow \mathbb{R}$:

- For the star $T_{n}=K_{n, 1}$, we have $f\left(T_{n}\right)=1$.
- If G_{1} and G_{2} are disjoint, $\# V\left(G_{1}\right)=m$, and $\# V\left(G_{2}\right)=n-m$, then

$$
f\left(G_{1}+G_{2}\right)=\binom{n}{m} f\left(G_{1}\right) f\left(G_{2}\right)
$$

- f satisfies the leaf recurrence.

Volume of M_{G}

Theorem. There is a unique $f: \mathcal{F} \rightarrow \mathbb{R}$:

- For the star $T_{n}=K_{n, 1}$, we have $f\left(T_{n}\right)=1$.
- If G_{1} and G_{2} are disjoint, $\# V\left(G_{1}\right)=m$, and $\# V\left(G_{2}\right)=n-m$, then

$$
f\left(G_{1}+G_{2}\right)=\binom{n}{m} f\left(G_{1}\right) f\left(G_{2}\right)
$$

- f satisfies the leaf recurrence.

Then $f(G)=V(G)$.

Volume of M_{G} (continued)

Theorem. The previous theorem can be used to compute $V(F)$ for any forest F.

Diagrams and tableaux

\mathcal{B} : the set of unit squares in \mathbb{R}^{2} with centers (i, j), $i, j \geq 1$. Denote also by (i, j) the unit square with center (i, j).

Diagrams and tableaux

\mathcal{B} : the set of unit squares in \mathbb{R}^{2} with centers (i, j), $i, j \geq 1$. Denote also by (i, j) the unit square with center (i, j).

Diagram D : a finite subset of \mathcal{B}

Diagrams and tableaux

\mathcal{B} : the set of unit squares in \mathbb{R}^{2} with centers (i, j), $i, j \geq 1$. Denote also by $(\boldsymbol{i}, \boldsymbol{j})$ the unit square with center (i, j).

Diagram D : a finite subset of \mathcal{B}

Row and column stabilizers

\boldsymbol{D} : diagram with n boxes, ordered in some way \mathfrak{S}_{n} acts on D

Row and column stabilizers

\boldsymbol{D} : diagram with n boxes, ordered in some way \mathfrak{S}_{n} acts on D
$\boldsymbol{R}_{\boldsymbol{D}}\left(\boldsymbol{C}_{\boldsymbol{D}}\right)$: subgroup of \mathfrak{S}_{n} stabilizing each row (column) of D

$$
\boldsymbol{R}(\boldsymbol{D})=\sum_{w \in R_{D}} w, \quad \boldsymbol{C}(\boldsymbol{D})=\sum_{w \in C_{D}} \operatorname{sgn}(w) w
$$

The Specht module S^{D}

The Specht module S^{D} (over \mathbb{C}) is the left ideal

$$
\boldsymbol{S}^{\boldsymbol{D}}=\mathbb{C}\left[\mathfrak{S}_{n}\right] C(D) R(D)
$$

of $\mathbb{C}\left[\mathfrak{S}_{n}\right]$.

The Specht module S^{D}

The Specht module S^{D} (over \mathbb{C}) is the left ideal

$$
\boldsymbol{S}^{\boldsymbol{D}}=\mathbb{C}\left[\mathfrak{S}_{n}\right] C(D) R(D)
$$

of $\mathbb{C}\left[\mathfrak{S}_{n}\right]$.
Note. S^{D} affords a representation of \mathfrak{S}_{n} by left multiplication.

Irreducible Specht modules

Note. If D is the (Young) diagram of a partition λ of n, then S^{D} is irreducible. Conversely, if S^{D} is irreducible, then $S^{D} \cong S^{D^{\prime}}$ for the diagram D^{\prime} of some partition.

Irreducible Specht modules

Note. If D is the (Young) diagram of a partition λ of n, then S^{D} is irreducible. Conversely, if S^{D} is irreducible, then $S^{D} \cong S^{D^{\prime}}$ for the diagram D^{\prime} of some partition.

The diagram of a forest F

Let $V(F)=\boldsymbol{A} \cup \boldsymbol{B}$, so that all edges are between A and B. Label the A-vertices $1, \ldots, m$ and B-vertices $1, \ldots, n$. Let

$$
\boldsymbol{D}(\boldsymbol{F})=\{(i, j): i j \in E(F), i \in A, j \in B\} .
$$

The diagram of a forest F

Let $V(F)=\boldsymbol{A} \cup \boldsymbol{B}$, so that all edges are between A and B. Label the A-vertices $1, \ldots, m$ and B-vertices $1, \ldots, n$. Let

$$
\boldsymbol{D}(\boldsymbol{F})=\{(i, j): i j \in E(F), i \in A, j \in B\} .
$$

The Specht module of $D(F)$

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.

The Specht module of $D(F)$

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.
Theorem. $\operatorname{dim} S^{D(F)}=V(F)$

The Specht module of $D(F)$

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.
Theorem. $\operatorname{dim} S^{D(F)}=V(F)$
Note for experts. The diagrams $D(F)$ are not \%-avoiding diagrams in the sense of Reiner and Shimozono.

Decomposition of $S^{D(F)}$

How does the Specht module $S^{D(F)}$ decompose into irreducible representations of \mathfrak{S}_{n} ?

Decomposition of $S^{D(F)}$

How does the Specht module $S^{D(F)}$ decompose into irreducible representations of \mathfrak{S}_{n} ?

Recall the leaf recurrence

$$
f(G)=f\left(G_{1}\right)+f\left(G_{2}\right)
$$

with initial conditions $f\left(K_{n, 1}\right)=1$.

Decomposition of $S^{D(F)}$

How does the Specht module $S^{D(F)}$ decompose into irreducible representations of \mathfrak{S}_{n} ?

Recall the leaf recurrence

$$
f(G)=f\left(G_{1}\right)+f\left(G_{2}\right)
$$

with initial conditions $f\left(K_{n, 1}\right)=1$.
Change the initial conditions to $f\left(K_{n, 1}\right)=\boldsymbol{h}_{\boldsymbol{n}}$, the complete homogeneous symmetric function (generic leaf recurrence).

Decomposition theorem

Theorem. For a forest $F, f(F)$ is well-defined, and

$$
f(F)=\operatorname{ch} S^{D(F)}
$$

Decomposition theorem

Theorem. For a forest $F, f(F)$ is well-defined, and

$$
f(F)=\operatorname{ch} S^{D(F)} .
$$

In other words, if

$$
f(F)=\sum_{\lambda \vdash n} c_{\boldsymbol{\lambda}} s_{\lambda},
$$

where s_{λ} is a Schur function, then c_{λ} is the multiplicity of the irreducible representation of \mathfrak{S}_{n} indexed by λ in $S^{D(F)}$.

The Ehrhart polynomial of M_{F}

Open. What is the Ehrhart polynomial of M_{F} ?
Does it have any representation-theoretic significance?

