Georg Alexander Pick (1859-1942)

\boldsymbol{P} : lattice polygon in \mathbb{R}^{2} (vertices $\in \mathbb{Z}^{2}$, no self-intersections)

$\mathrm{A}=$ area of P
$\mathbf{I}=\#$ interior points of $P(=4)$
B $=$ \#boundary points of $P(=10)$
Then
$\mathrm{A}=\frac{2 \mathbf{I}+\mathrm{B}-2}{2}=\frac{2 \cdot \mathbf{4}+10-2}{2}=9$.

Pick's theorem (seemingly) fails in higher dimensions. For example, let T_{1} and T_{2} be the tetrahedra with vertices

$$
\begin{aligned}
& v\left(T_{1}\right)=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\} \\
& v\left(T_{2}\right)=\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}
\end{aligned}
$$

Then

$$
\begin{gathered}
I\left(T_{1}\right)=I\left(T_{2}\right)=0 \\
B\left(T_{1}\right)=B\left(T_{2}\right)=4 \\
A\left(T_{1}\right)=1 / 6, \quad A\left(T_{2}\right)=1 / 3 .
\end{gathered}
$$

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^{d}. For $n \geq 1$, let

$$
\boldsymbol{n \mathcal { P }}=\{n \alpha: \alpha \in \mathcal{P}\} .
$$

Let

$$
\begin{aligned}
i(\mathcal{P}, \boldsymbol{n}) & =\#\left(n \mathcal{P} \cap \mathbb{Z}^{d}\right) \\
& =\#\left\{\alpha \in \mathcal{P}: n \alpha \in \mathbb{Z}^{d}\right\}
\end{aligned}
$$

the number of lattice points in $n \mathcal{P}$.
Similarly let
$\mathcal{P}^{\circ}=$ interior of $\mathcal{P}=\mathcal{P}-\partial \mathcal{P}$
$\bar{i}(\mathcal{P}, n)=\#\left(n \mathcal{P}^{\circ} \cap \mathbb{Z}^{d}\right)$

$$
=\#\left\{\alpha \in \mathcal{P}^{\circ}: n \alpha \in \mathbb{Z}^{d}\right\}
$$

$$
\begin{aligned}
& i(\mathcal{P}, n)=(n+1)^{2} \\
& \bar{i}(\mathcal{P}, n)=(n-1)^{2}=i(\mathcal{P},-n) .
\end{aligned}
$$

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1), \bar{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$.

Theorem (Ehrhart 1962, Macdonald 1963) Let
$\mathcal{P}=$ lattice polytope in $\mathbb{R}^{N}, \operatorname{dim} \mathcal{P}=d$.
Then $i(\mathcal{P}, n)$ is a polynomial (the $\boldsymbol{E h r}$ hart polynomial of \mathcal{P}) in n of degree d. Moreover,

$$
\begin{aligned}
i(\mathcal{P}, 0) & =1 \\
\bar{i}(\mathcal{P}, n) & =(-1)^{d} i(\mathcal{P},-n), n>0 \\
\quad & \quad \text { reciprocity) } .
\end{aligned}
$$

If $d=N$ then
$i(\mathcal{P}, n)=V(\mathcal{P}) n^{d}+$ lower order terms, where $\boldsymbol{V}(\mathcal{P})$ is the volume of \mathcal{P}.

Corollary (generalized Pick's theorem). Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\operatorname{dim} \mathcal{P}=d$. Knowing any d of $i(\mathcal{P}, n)$ or $\bar{i}(\mathcal{P}, n)$ for $n>0$ determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0)=1$, this data determines $d+1$ values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. \square

Example. When $d=3, V(\mathcal{P})$ is determined by

$$
\begin{aligned}
& i(\mathcal{P}, 1)=\#\left(\mathcal{P} \cap \mathbb{Z}^{3}\right) \\
& i(\mathcal{P}, 2)=\#\left(2 \mathcal{P} \cap \mathbb{Z}^{3}\right) \\
& \bar{i}(\mathcal{P}, 1)=\#\left(\mathcal{P}^{\circ} \cap \mathbb{Z}^{3}\right),
\end{aligned}
$$

which gives Reeve's theorem.

Example (magic squares). Let $\mathcal{B}_{M} \subset$ $\mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A=\left(a_{i j}\right)$, i.e.,

$$
\begin{aligned}
a_{i j} & \geq 0 \\
\sum_{i} a_{i j} & =1(\text { column sums } 1) \\
\sum_{j} a_{i j} & =1(\text { row sums } 1) .
\end{aligned}
$$

Note. $B=\left(b_{i j}\right) \in n \mathcal{B}_{M} \cap \mathbb{Z}^{M \times M}$ if and only if

$$
\begin{aligned}
& \quad b_{i j} \in \mathbb{N}=\{0,1,2, \ldots\} \\
& \sum_{i} b_{i j}=n \\
& \sum_{j} b_{i j}=n . \\
& {\left[\begin{array}{llll}
2 & 1 & 0 & 4 \\
3 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 \\
1 & 2 & 4 & 0
\end{array}\right] \quad(M=4, n=7)}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{H}_{M}(\boldsymbol{n}) & :=\#\{M \times M \mathbb{N} \text {-matrices, line sums } n\} \\
& =i\left(\mathcal{B}_{M}, n\right) .
\end{aligned}
$$

E.g.,

$$
\begin{gathered}
H_{1}(n)=1 \\
H_{2}(n)=n+1 \\
{\left[\begin{array}{cc}
a & n-a \\
n-a & a
\end{array}\right], \quad 0 \leq a \leq n .} \\
H_{3}(n)=\binom{n+2}{4}+\binom{n+3}{4}+\binom{n+4}{4} \\
\text { (MacMahon) }
\end{gathered}
$$

$$
\begin{aligned}
H_{M}(0) & =1 \\
H_{M}(1) & =M!\text { (permutation matrices) }
\end{aligned}
$$

Theorem (Birkhoff-von Neumann) The vertices of \mathcal{B}_{M} consist of the $M!M \times$ M permutation matrices. Hence \mathcal{B}_{M} is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture) $H_{M}(n)$ is a polynomial in n (of degree $(M-1)^{2}$).
Example. $H_{4}(n)=\frac{1}{11340}\left(11 n^{9}\right.$
$+198 n^{8}+1596 n^{7}+7560 n^{6}+23289 n^{5}$
$+48762 n^{5}+70234 n^{4}+68220 n^{2}$ $+40950 n+11340)$.

Reciprocity \Rightarrow
$\pm H_{M}(-n)=\#\{M \times M$ matrices B of positive integers, line sum $n\}$.

But every such B can be obtained from an $M \times M$ matrix A of nonnegative integers by adding 1 to each entry.

Corollary. $H_{M}(-1)=H_{M}(-2)=$ $\cdots=H_{M}(-M+1)=0$

$$
H_{M}(-M-n)=(-1)^{M-1} H_{M}(n)
$$

(greatly reduces computation)
Applications e.g. to statistics (contingency tables).

Zonotopes. Let $v_{1}, \ldots, v_{k} \in \mathbb{R}^{d}$. The zonotope $Z\left(v_{1}, \ldots, v_{k}\right)$ generated by v_{1}, \ldots, v_{k} :

$$
Z\left(v_{1}, \ldots, v_{k}\right)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}: 0 \leq \lambda_{i} \leq 1\right\}
$$

Example. $v_{1}=(4,0), v_{2}=(3,1)$, $v_{3}=(1,2)$

Theorem. Let

$$
Z=Z\left(v_{1}, \ldots, v_{k}\right) \subset \mathbb{R}^{d}
$$

where $v_{i} \in \mathbb{Z}^{d}$. Then

$$
i(Z, 1)=\sum_{X} h(X)
$$

where X ranges over all linearly independent subsets of $\left\{v_{1}, \ldots, v_{k}\right\}$, and $h(X)$ is the gcd of all $j \times j$ minors ($j=\# X$) of the matrix whose rows are the elements of X.

Example. $v_{1}=(4,0), v_{2}=(3,1)$, $v_{3}=(1,2)$

$$
\begin{aligned}
i(Z, 1)= & \left|\begin{array}{ll}
4 & 0 \\
3 & 1
\end{array}\right|+\left|\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right| \\
& +\operatorname{gcd}(4,0)+\operatorname{gcd}(3,1) \\
& +\operatorname{gcd}(1,2)+\operatorname{det}(\emptyset) \\
= & 4+8+5+4+1+1+1 \\
= & 24 .
\end{aligned}
$$

Let G be a graph (with no loops or multiple edges) on the vertex set $\boldsymbol{V}(\boldsymbol{G})=$ $\{1,2, \ldots, n\}$. Let
$d_{i}=$ degree (\# incident edges) of vertex i.
Define the ordered degree sequence $d(G)$ of G by

$$
d(G)=\left(d_{1}, \ldots, d_{n}\right)
$$

Example. $d(G)=(2,4,0,3,2,1)$

Let $f(n)$ be the number of distinct $d(G)$, where $V(G)=\{1,2, \ldots, n\}$.

Example. If $n \leq 3$, all $d(G)$ are distinct, so $f(1)=1, f(2)=2^{1}=2$, $f(3)=2^{3}=8$. For $n \geq 4$ we can have $G \neq H$ but $d(G)=d(H)$, e.g.,

In fact, $f(4)=54<2^{6}=64$.

Let conv denote convex hull, and
$\mathcal{D}_{n}=\operatorname{conv}\{d(G): V(G)=\{1, \ldots, n\}\}$,
the polytope of degree sequences (Perles, Koren).

Easy fact. Let e_{i} be the i th unit coordinate vector in \mathbb{R}^{n}. E.g., if $n=5$ then $e_{2}=(0,1,0,0,0)$. Then

$$
\mathcal{D}_{n}=Z\left(e_{i}+e_{j}: 1 \leq i<j \leq n\right)
$$

Theorem (Erdős-Gallai). Let $\boldsymbol{\alpha}=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$. Then $\alpha=d(G)$ for some G if and only if

- $\alpha \in \mathcal{D}_{n}$
- $a_{1}+a_{2}+\cdots+a_{n}$ is even.
"Fiddling around" leads to:
Theorem. Let

$$
\begin{aligned}
F(x) & =\sum_{n \geq 0} f(n) \frac{x^{n}}{n!} \\
& =1+x+2 \frac{x^{2}}{2!}+8 \frac{x^{3}}{3!}+54 \frac{x^{4}}{4!}+\cdots .
\end{aligned}
$$

Then

$$
\begin{gathered}
F(x)=\frac{1}{2}\left[\left(1+2 \sum_{n \geq 1} n^{n} \frac{x^{n}}{n!}\right)^{1 / 2}\right. \\
\left.\times\left(1-\sum_{n \geq 1}(n-1)^{n-1} \frac{x^{n}}{n!}\right)+1\right] \\
\times \exp \sum_{n \geq 1} n^{n-2} \frac{x^{n}}{n!}
\end{gathered}
$$

The h-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} denote the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0),(1,1,13)$. Then

$$
i(\mathcal{P}, n)=\frac{13}{6} n^{3}+n^{2}-\frac{1}{6} n+1
$$

Thus in general the coefficients of Ehrhart polynomials are not "nice." Is there a "better" basis?

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree $d, \exists h_{i} \in \mathbb{Z}$ such that
$\sum_{n \geq 0} i(\mathcal{P}, n) x^{n}=\frac{h_{0}+h_{1} x+\cdots+h_{d} x^{d}}{(1-x)^{d+1}}$.
Definition. Define

$$
\boldsymbol{h}(\mathcal{P})=\left(h_{0}, h_{1}, \ldots, h_{d}\right)
$$

the \boldsymbol{h}-vector of \mathcal{P}.

Example. Recall

$$
\begin{gathered}
i\left(\mathcal{B}_{4}, n\right)=\frac{1}{11340}\left(11 n^{9}\right. \\
+198 n^{8}+1596 n^{7}+7560 n^{6}+23289 n^{5} \\
+48762 n^{5}+70234 n^{4}+68220 n^{2} \\
+40950 n+11340) .
\end{gathered}
$$

Then
$h\left(\mathcal{B}_{4}\right)=(1,14,87,148,87,14,1,0,0,0)$.

Elementary properties of

$$
h(\mathcal{P})=\left(h_{0}, \ldots, h_{d}\right):
$$

- $h_{0}=1$
- $h_{d}=(-1)^{\left.\operatorname{dim} \mathcal{P}_{i(\mathcal{P}},-1\right)=I(\mathcal{P}), ~(~}$
- $\max \left\{i: h_{i} \neq 0\right\}=\min \{j \geq 0$:

$$
\begin{aligned}
& i(\mathcal{P},-1)=i(\mathcal{P},-2)=\cdots \\
& \quad=i(\mathcal{P},-(d-j))=0\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { E.g., } h(\mathcal{P})=\left(h_{0}, \ldots, h_{d-2}, 0,0\right) \Leftrightarrow \\
& i(\mathcal{P},-1)=i(\mathcal{P},-2)=0
\end{aligned}
$$

- $i(\mathcal{P},-n-k)=(-1)^{d} i(\mathcal{P}, n) \forall n \Leftrightarrow$

$$
h_{i}=h_{d+1-k-i} \forall i, \text { and }
$$

$$
h_{d+2-k-i}=h_{d+3-k-i}=\cdots=h_{d}=0
$$

Recall:

$$
h\left(\mathcal{B}_{4}\right)=(1,14,87,148,87,14,1,0,0,0) .
$$

Thus

$$
\begin{gathered}
i\left(\mathcal{B}_{4},-1\right)=i\left(\mathcal{B}_{4},-2\right)=i\left(\mathcal{B}_{4},-3\right)=0 \\
i\left(\mathcal{B}_{4},-n-4\right)=-i\left(\mathcal{B}_{4}, n\right)
\end{gathered}
$$

Theorem A (nonnegativity). (McMullen, RS) $h_{i} \geq 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then $h_{i}(\mathcal{Q}) \leq h_{i}(\mathcal{P}) \forall i$.
$\mathrm{B} \Rightarrow \mathrm{A}$: take $\mathcal{Q}=\emptyset$.
Theorem A can be proved geometrically, but Theorem B requires commutative algebra.

$$
\mathcal{P}=\text { lattice polytope in } \mathbb{R}^{d}
$$

$\boldsymbol{R}=\boldsymbol{R}_{\mathcal{P}}=$ vector space over K with basis $\left\{x^{\alpha} y^{n}: \alpha \in \mathbb{Z}^{d}, n \in \mathbb{P}, \alpha / n \in \mathcal{P}\right\} \cup\{1\}$, where if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ then

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}} .
$$

If $\alpha / m, \beta / n \in \mathcal{P}$, then

$$
(\alpha+\beta) /(m+n) \in \mathcal{P}
$$

by convexity. Hence $R_{\mathcal{P}}$ is a subalgebra of the polynomial ring $K\left[x_{1}, \ldots, x_{d}, y\right]$.

Example. (a) Let

$$
\mathcal{P}=\operatorname{conv}\{(0,0),(0,1),(1,0),(1,1)\} .
$$

Then

$$
R_{\mathcal{P}}=K\left[y, x_{1} y, x_{2} y, x_{1} x_{2} y\right] .
$$

(b) Let
$\mathcal{P}=\operatorname{conv}\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}$.
Then
$R_{\mathcal{P}}=K\left[y, x_{1} x_{2} y, x_{1} x_{3} y, x_{2} x_{3} y, x_{1} x_{2} x_{3} y^{2}\right]$.

Let

$$
\boldsymbol{R}_{n}=\operatorname{span}_{K}\left\{x^{\alpha} y^{n}: \alpha / n \in \mathcal{P}\right\}
$$

with $\boldsymbol{R}_{0}=\operatorname{span}_{K}\{1\}=K$. Then

$$
\begin{gathered}
R=R_{0} \oplus R_{1} \oplus \cdots \quad(\text { vector space } \oplus) \\
R_{i} R_{j} \subseteq R_{i+j}
\end{gathered}
$$

Thus R is a graded algebra. Moreover,

$$
\begin{aligned}
\operatorname{dim}_{K} R_{n} & =\#\left\{x^{\alpha} y^{n}: \alpha / n \in \mathcal{P}\right\} \\
& =i(\mathcal{P}, n)
\end{aligned}
$$

Thus $i(\mathcal{P}, n)$ is the Hilbert function of R. Moreover,

$$
F(\mathcal{P}, x):=\sum_{n \geq 0} i(\mathcal{P}, n) x^{n}
$$

is the Hilbert series of $R_{\mathcal{P}}$.

Theorem (Hochster). Let \mathcal{P} be a lattice polytope of dimension d. Then $R_{\mathcal{p}}$ is a Cohen-Macaulay ring.

This means: \exists algebraically independent $\theta_{1}, \ldots, \theta_{d+1} \in R_{1}$ (called a homogeneous system of parameters or h.s.o.p.) such that $R_{\mathcal{P}}$ is a finitely generated free module over

$$
S=K\left[\theta_{1}, \ldots, \theta_{d+1}\right]
$$

Thus $\exists \eta_{1}, \ldots, \eta_{s}\left(\eta_{i} \in R_{e_{i}}\right)$ such that

$$
R_{\mathcal{P}}=\bigoplus_{i=1}^{s} \eta_{i} S
$$

and $\eta_{i} S \cong S$ (as S-modules).

Now

$$
\begin{aligned}
F\left(R_{\mathcal{P}}, x\right) & :=\sum_{n \geq 0} i(\mathcal{P}, n) x^{n} \\
& =\sum_{i=1}^{s} x^{e_{i}} F(S, x) \\
& =\frac{\sum_{i=1}^{s} x^{e_{i}}}{(1-x)^{d+1}}
\end{aligned}
$$

Compare with

$$
F\left(R_{\mathcal{P}}, x\right)=\frac{h_{0}+h_{1} x+\cdots+h_{d} x^{d}}{(1-x)^{d+1}}
$$

to conclude:

$$
\text { Corollary. } \sum_{i=1}^{s} x^{e_{i}}=\sum_{j=0}^{d} h_{j} x^{j} . \text { In }
$$ particular, $h_{i} \geq 0$.

Now suppose:
\mathcal{P}, \mathcal{Q} : lattice polytopes in \mathbb{R}^{N}

$$
\begin{gathered}
\operatorname{dim} \mathcal{P}=d, \quad \operatorname{dim} \mathcal{Q}=e \\
\mathcal{Q} \subseteq \mathcal{P}
\end{gathered}
$$

Let
$\boldsymbol{I}=\operatorname{span}_{K}\left\{x^{\alpha} y^{n}: \alpha \in \mathbb{Z}^{N}, \alpha / n \in \mathcal{P}-\mathcal{Q}\right\}$.
Easy: I is an ideal of $R_{\mathcal{P}}$ and

$$
R_{\mathcal{P}} / I \cong R_{\mathcal{Q}}
$$

Lemma. \exists an h.s.o.p. $\theta_{1}, \ldots, \theta_{d+1}$ for $R_{\mathcal{P}}$ such that $\theta_{1}, \ldots, \theta_{e+1}$ is an h.s.o.p. for $R_{\mathcal{Q}}$ and

$$
\theta_{e+2}, \ldots, \theta_{d+1} \in I
$$

Thus
$R_{\mathcal{Q}} /\left(\theta_{1}, \ldots, \theta_{e+1}\right) \cong R_{\mathcal{Q}} /\left(\theta_{1}, \ldots, \theta_{d+1}\right)$,
so the natural surjection $\boldsymbol{f}: R_{\mathcal{P}} \rightarrow R_{\mathcal{Q}}$ induces a (degree-preserving) surjection

$$
\begin{aligned}
\bar{f}: A_{\mathcal{P}} & :=R_{\mathcal{P}} /\left(\theta_{1}, \ldots, \theta_{d+1}\right) \\
\rightarrow A_{\mathcal{Q}} & :=R_{\mathcal{Q}} /\left(\theta_{1}, \ldots, \theta_{e+1}\right)
\end{aligned}
$$

Since $R_{\mathcal{P}}$ and $R_{\mathcal{Q}}$ are Cohen-Macaulay, $\operatorname{dim}\left(A_{\mathcal{P}}\right)_{i}=h_{i}(\mathcal{P}), \operatorname{dim}\left(A_{\mathcal{Q}}\right)_{i}=h_{i}(\mathcal{Q})$.
The surjection

$$
\begin{array}{r}
\left(A_{\mathcal{P}}\right)_{i} \rightarrow\left(A_{\mathcal{Q}}\right)_{i} \\
\text { gives } h_{i}(\mathcal{P}) \geq h_{i}(\mathcal{Q}) .
\end{array}
$$

Zeros of Ehrhart polynomials.

Sample theorem (de Loera, Develin, Pfeifle, RS) Let \mathcal{P} be a lattice d-polytope. Then
$i(\mathcal{P}, \alpha)=0, \alpha \in \mathbb{R} \Rightarrow-d \leq \alpha \leq\lfloor d / 2\rfloor$.
Theorem. Let d be odd. There exists a 0/1 d-polytope \mathcal{P}_{d} and a real zero α_{d} of $i\left(\mathcal{P}_{d}, n\right)$ such that

$$
\lim _{\substack{d \rightarrow \infty \\ d \text { odd }}} \frac{\alpha_{d}}{d}=\frac{1}{2 \pi e}=0.0585 \cdots
$$

Open. Is the set of all complex zeros of all Ehrhart polynomials of lattice polytopes dense in \mathbb{C} ? (True for chromatic polynomials of graphs.)

Further directions

- $R_{\mathcal{P}}$ is the coordinate ring of a projective algebraic variety $X_{\mathcal{P}}$, a toric variety. Leads to deep connections with toric geometry, including new formulas for $i(\mathcal{P}, n)$.
- Complexity. Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is $\# \boldsymbol{P}$-complete. Thus an "efficient" (polynomial time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed $\operatorname{dim} \mathcal{P}, \exists$ polynomial-time algorithm for computing $i(\mathcal{P}, n)$.

Reference. M. Barvinok and J. Pommersheim, An algorithmic theory of lattice points in polyhedra, in New Perspectives in Algebraic Combinatorics, MSRI Publications, vol. 38, 1999, pp. 91147.

