Georg Alexander Pick (1859–1942) \mathbf{P} : lattice polygon in \mathbb{R}^2 (vertices $\in \mathbb{Z}^2$, no self-intersections)

A = area of P I = # interior points of P(=4) B = # boundary points of P(=10)Then $A = \frac{2I + B - 2}{2} = \frac{2 \cdot 4 + 10 - 2}{2} = 9.$

Pick's theorem (seemingly) fails in higher dimensions. For example, let T_1 and T_2 be the tetrahedra with vertices

 $v(T_1) = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$ $v(T_2) = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}.$

Then

$$I(T_1) = I(T_2) = 0$$

 $B(T_1) = B(T_2) = 4$
 $A(T_1) = 1/6, \quad A(T_2) = 1/3.$

Let \mathcal{P} be a convex polytope (convex hull of a finite set of points) in \mathbb{R}^d . For $n \geq 1$, let

$$\boldsymbol{n\mathcal{P}} = \{n\alpha : \alpha \in \mathcal{P}\}.$$

Let $i(\mathcal{P}, n) = \#(n\mathcal{P} \cap \mathbb{Z}^d)$ $= \#\{\alpha \in \mathcal{P} : n\alpha \in \mathbb{Z}^d\},$ the number of lattice points in $n\mathcal{P}$.

Similarly let

 $\mathcal{P}^{\circ} = \text{interior of } \mathcal{P} = \mathcal{P} - \partial \mathcal{P}$ $\overline{i}(\mathcal{P}, n) = \#(n\mathcal{P}^{\circ} \cap \mathbb{Z}^{d})$ $= \#\{\alpha \in \mathcal{P}^{\circ} : n\alpha \in \mathbb{Z}^{d}\},\$

$$i(\mathcal{P}, n) = (n+1)^2$$
$$\overline{i}(\mathcal{P}, n) = (n-1)^2 = i(\mathcal{P}, -n).$$

lattice polytope: polytope with integer vertices

Theorem (Reeve, 1957). Let \mathcal{P} be a three-dimensional lattice polytope. Then the volume $V(\mathcal{P})$ is a certain (explicit) function of $i(\mathcal{P}, 1)$, $\overline{i}(\mathcal{P}, 1)$, and $i(\mathcal{P}, 2)$. **Theorem** (Ehrhart 1962, Macdonald 1963) *Let*

 \mathcal{P} = lattice polytope in \mathbb{R}^N , dim $\mathcal{P} = d$. Then $i(\mathcal{P}, n)$ is a polynomial (the **Ehr**hart polynomial of \mathcal{P}) in n of degree d. Moreover,

$$i(\mathcal{P}, 0) = 1$$

$$\overline{i}(\mathcal{P}, n) = (-1)^d i(\mathcal{P}, -n), \ n > 0$$

(reciprocity).

If d = N then $i(\mathcal{P}, n) = V(\mathcal{P})n^d + \text{lower order terms},$ where $V(\mathcal{P})$ is the volume of \mathcal{P} . **Corollary** (generalized Pick's theorem). Let $\mathcal{P} \subset \mathbb{R}^d$ and dim $\mathcal{P} = d$. Knowing any d of $i(\mathcal{P}, n)$ or $\overline{i}(\mathcal{P}, n)$ for n > 0 determines $V(\mathcal{P})$.

Proof. Together with $i(\mathcal{P}, 0) = 1$, this data determines d + 1 values of the polynomial $i(\mathcal{P}, n)$ of degree d. This uniquely determines $i(\mathcal{P}, n)$ and hence its leading coefficient $V(\mathcal{P})$. \Box

Example. When d = 3, $V(\mathcal{P})$ is determined by

$i(\mathcal{P},1)$	—	$\#(\mathcal{P} \cap \mathbb{Z}^3)$
$i(\mathcal{P},2)$	—	$#(2\mathcal{P} \cap \mathbb{Z}^3)$
$\overline{i}(\mathcal{P},1)$	=	$\#(\mathcal{P}^{\circ} \cap \mathbb{Z}^3),$

which gives Reeve's theorem.

Example (magic squares). Let $\mathcal{B}_M \subset \mathbb{R}^{M \times M}$ be the Birkhoff polytope of all $M \times M$ doubly-stochastic matrices $A = (a_{ij})$, i.e., $a_{ij} \geq 0$ $\sum_i a_{ij} = 1$ (column sums 1) $\sum_j a_{ij} = 1$ (row sums 1). **Note.** $B = (b_{ij}) \in n\mathcal{B}_M \cap \mathbb{Z}^{M \times M}$ if and only if

$$b_{ij} \in \mathbb{N} = \{0, 1, 2, \ldots\}$$
$$\sum_{i} b_{ij} = n$$
$$\sum_{j} b_{ij} = n.$$
$$[2\ 1\ 0\ 4\]$$

$$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 4 & 0 \end{bmatrix} \qquad (M = 4, \ n = 7)$$

 $\begin{aligned} \boldsymbol{H}_{\boldsymbol{M}}(\boldsymbol{n}) &:= \#\{M \times M \; \mathbb{N}\text{-matrices, line sums } n\} \\ &= i(\mathcal{B}_M, n). \end{aligned}$

E.g.,

$$H_1(n) = 1$$
$$H_2(n) = n+1$$

$$\begin{bmatrix} a & n-a \\ n-a & a \end{bmatrix}, \quad 0 \le a \le n.$$

$$H_{3}(n) = \binom{n+2}{4} + \binom{n+3}{4} + \binom{n+4}{4}$$
(MacMahon)

 $H_M(0) = 1$ $H_M(1) = M!$ (permutation matrices)

Theorem (Birkhoff-von Neumann) The vertices of \mathcal{B}_M consist of the $M! M \times M$ permutation matrices. Hence \mathcal{B}_M is a lattice polytope.

Corollary (Anand-Dumir-Gupta conjecture) $H_M(n)$ is a polynomial in n (of degree $(M-1)^2$).

Example. $H_4(n) = \frac{1}{11340} \left(11n^9 + 198n^8 + 1596n^7 + 7560n^6 + 23289n^5 + 48762n^5 + 70234n^4 + 68220n^2 + 40950n + 11340 \right).$

Reciprocity \Rightarrow $\pm H_M(-n) = \#\{M \times M \text{ matrices } B \text{ of }$ **positive** integers, line sum $n\}.$

But every such B can be obtained from an $M \times M$ matrix A of **nonnegative** integers by adding 1 to each entry.

Corollary. $H_M(-1) = H_M(-2) =$ $\dots = H_M(-M+1) = 0$ $H_M(-M-n) = (-1)^{M-1} H_M(n)$

(greatly reduces computation)

Applications e.g. to statistics (contingency tables).

Zonotopes. Let $v_1, \ldots, v_k \in \mathbb{R}^d$. The **zonotope** $Z(v_1, \ldots, v_k)$ generated by v_1, \ldots, v_k : $Z(v_1, \ldots, v_k) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : 0 \le \lambda_i \le 1\}$

Example. $v_1 = (4, 0), v_2 = (3, 1), v_3 = (1, 2)$

Theorem. Let

$$Z = Z(v_1, \dots, v_k) \subset \mathbb{R}^d,$$

where $v_i \in \mathbb{Z}^d$. Then

$$i(Z,1) = \sum_X h(X),$$

where X ranges over all linearly independent subsets of $\{v_1, \ldots, v_k\}$, and h(X) is the gcd of all $j \times j$ minors (j = #X) of the matrix whose rows are the elements of X.

$$i(Z,1) = \begin{vmatrix} 4 & 0 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 4 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \\ +\gcd(4,0) + \gcd(3,1) \\ +\gcd(1,2) + \det(\emptyset) \\ = 4 + 8 + 5 + 4 + 1 + 1 + 1 \\ = 24.$$

Let G be a graph (with no loops or multiple edges) on the vertex set V(G) = $\{1, 2, ..., n\}$. Let

 d_i = degree (# incident edges) of vertex *i*. Define the **ordered degree sequence** d(G) of G by

$$d(G) = (d_1, \ldots, d_n).$$

Example. d(G) = (2, 4, 0, 3, 2, 1)

Let f(n) be the number of distinct d(G), where $V(G) = \{1, 2, ..., n\}$.

Example. If $n \leq 3$, all d(G) are distinct, so f(1) = 1, $f(2) = 2^1 = 2$, $f(3) = 2^3 = 8$. For $n \geq 4$ we can have $G \neq H$ but d(G) = d(H), e.g.,

Let **conv** denote convex hull, and $\mathcal{D}_n = \operatorname{conv} \{ d(G) : V(G) = \{1, \ldots, n\} \},$ the **polytope of degree sequences** (Perles, Koren).

Easy fact. Let e_i be the *i*th unit coordinate vector in \mathbb{R}^n . E.g., if n = 5 then $e_2 = (0, 1, 0, 0, 0)$. Then

 $\mathcal{D}_n = Z(e_i + e_j : 1 \le i < j \le n).$

Theorem (Erdős-Gallai). Let $\boldsymbol{\alpha} = (a_1, \ldots, a_n) \in \mathbb{Z}^n$. Then $\alpha = d(G)$ for some G if and only if

• $\alpha \in \mathcal{D}_n$

•
$$a_1 + a_2 + \cdots + a_n$$
 is even.

"Fiddling around" leads to:

Theorem. Let $F(x) = \sum_{n \ge 0} f(n) \frac{x^n}{n!}$ $= 1 + x + 2 \frac{x^2}{2!} + 8 \frac{x^3}{3!} + 54 \frac{x^4}{4!} + \cdots$

Then

$$F(x) = \frac{1}{2} \left[\left(1 + 2\sum_{n \ge 1} n^n \frac{x^n}{n!} \right)^{1/2} \right]$$
$$\times \left(1 - \sum_{n \ge 1} (n-1)^{n-1} \frac{x^n}{n!} \right) + 1 \right]$$
$$\times \exp \sum_{n \ge 1} n^{n-2} \frac{x^n}{n!}.$$

The *h*-vector of $i(\mathcal{P}, n)$

Let \mathcal{P} denote the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 13). Then

$$i(\mathcal{P}, n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$

Thus in general the coefficients of Ehrhart polynomials are not "nice." Is there a "better" basis?

Let \mathcal{P} be a lattice polytope of dimension d. Since $i(\mathcal{P}, n)$ is a polynomial of degree $d, \exists h_i \in \mathbb{Z}$ such that

$$\sum_{n \ge 0} i(\mathcal{P}, n) x^n = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1 - x)^{d + 1}}.$$

Definition. Define

$$\boldsymbol{h}(\boldsymbol{\mathcal{P}}) = (h_0, h_1, \dots, h_d),$$

the *h***-vector** of \mathcal{P} .

Example. Recall

$$i(\mathcal{B}_4, n) = \frac{1}{11340} (11n^9)$$

+198n⁸ + 1596n⁷ + 7560n⁶ + 23289n⁵
+48762n⁵ + 70234n⁴ + 68220n²
+40950n + 11340).

Then

 $h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$

Elementary properties of
$$h(\mathcal{P}) = (h_0, \dots, h_d)$$
:

•
$$h_0 = 1$$

• $h_d = (-1)^{\dim \mathcal{P}} i(\mathcal{P}, -1) = I(\mathcal{P})$
• $\max\{i : h_i \neq 0\} = \min\{j \ge 0 : i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = \cdots$
 $= i(\mathcal{P}, -(d - j)) = 0\}$
E.g., $h(\mathcal{P}) = (h_0, \dots, h_{d-2}, 0, 0) \Leftrightarrow$
 $i(\mathcal{P}, -1) = i(\mathcal{P}, -2) = 0.$
• $i(\mathcal{P}, -n - k) = (-1)^d i(\mathcal{P}, n) \forall n \Leftrightarrow$
 $h_i = h_{d+1-k-i} \forall i$, and
 $h_{d+2-k-i} = h_{d+3-k-i} = \cdots = h_d = 0$

Recall:

$$h(\mathcal{B}_4) = (1, 14, 87, 148, 87, 14, 1, 0, 0, 0).$$

Thus
 $i(\mathcal{B}_4, -1) = i(\mathcal{B}_4, -2) = i(\mathcal{B}_4, -3) = 0$
 $i(\mathcal{B}_4, -n-4) = -i(\mathcal{B}_4, n).$

Theorem A (nonnegativity). (Mc-Mullen, RS) $h_i \ge 0$.

Theorem B (monotonicity). (RS) If \mathcal{P} and \mathcal{Q} are lattice polytopes and $\mathcal{Q} \subseteq \mathcal{P}$, then $h_i(\mathcal{Q}) \leq h_i(\mathcal{P}) \forall i$.

 $B \Rightarrow A$: take $Q = \emptyset$.

Theorem A can be proved geometrically, but Theorem B requires **commutative algebra**. $\mathcal{P} = \text{lattice polytope in } \mathbb{R}^d$ $\mathbf{R} = \mathbf{R}_{\mathcal{P}} = \text{vector space over } K \text{ with basis}$ $\{x^{\alpha}y^n : \alpha \in \mathbb{Z}^d, n \in \mathbb{P}, \alpha/n \in \mathcal{P}\} \cup \{1\},$ where if $\alpha = (\alpha_1, \dots, \alpha_d)$ then $\mathbf{x}^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d}.$ If $\alpha/m, \beta/n \in \mathcal{P}$, then $(\alpha + \beta)/(m + n) \in \mathcal{P}$

by convexity. Hence $R_{\mathcal{P}}$ is a **subalgebra** of the polynomial ring $K[x_1, \ldots, x_d, y]$. **Example.** (a) Let $\mathcal{P} = \operatorname{conv}\{(0,0), (0,1), (1,0), (1,1)\}.$ Then

$$R_{\mathcal{P}} = K[y, x_1 y, x_2 y, x_1 x_2 y].$$

(b) Let

 $\mathcal{P} = \operatorname{conv}\{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\}.$ Then

 $R_{\mathcal{P}} = K[y, x_1 x_2 y, x_1 x_3 y, x_2 x_3 y, x_1 x_2 x_3 y^2].$

Let

 $\mathbf{R}_{n} = \operatorname{span}_{K} \{ x^{\alpha} y^{n} : \alpha/n \in \mathcal{P} \},$ with $\mathbf{R}_{0} = \operatorname{span}_{K} \{ 1 \} = K.$ Then $R = R_{0} \oplus R_{1} \oplus \cdots$ (vector space \oplus) $R_{i}R_{j} \subseteq R_{i+j}.$

Thus R is a **graded algebra**. Moreover,

$$\dim_K R_n = \#\{x^{\alpha}y^n : \alpha/n \in \mathcal{P}\}\$$

= $i(\mathcal{P}, n).$

Thus $i(\mathcal{P}, n)$ is the **Hilbert function** of R. Moreover,

$$F(\mathcal{P}, x) := \sum_{n \ge 0} i(\mathcal{P}, n) x^n$$

is the **Hilbert series** of $R_{\mathcal{P}}$.

Theorem (Hochster). Let \mathcal{P} be a lattice polytope of dimension d. Then $R_{\mathcal{P}}$ is a **Cohen-Macaulay** ring.

This means: \exists algebraically independent $\theta_1, \ldots, \theta_{d+1} \in R_1$ (called a **ho-mogeneous system of parameters** or **h.s.o.p.**) such that $R_{\mathcal{P}}$ is a finitely generated free module over

$$S = K[\theta_1, \dots, \theta_{d+1}].$$

Thus $\exists \eta_1, \ldots, \eta_s \ (\eta_i \in R_{e_i})$ such that

$$R_{\mathcal{P}} = \bigoplus_{i=1}^{s} \eta_i S$$

and $\eta_i S \cong S$ (as *S*-modules).

Now

$$F(R_{\mathcal{P}}, x) := \sum_{n \ge 0} i(\mathcal{P}, n) x^n$$
$$= \sum_{i=1}^s x^{e_i} F(S, x)$$
$$= \frac{\sum_{i=1}^s x^{e_i}}{(1-x)^{d+1}}.$$

Compare with

$$F(R_{\mathcal{P}}, x) = \frac{h_0 + h_1 x + \dots + h_d x^d}{(1 - x)^{d+1}}$$

to conclude:

Corollary.
$$\sum_{i=1}^{s} x^{e_i} = \sum_{j=0}^{d} h_j x^j$$
. In particular, $h_i \ge 0$.

Now suppose:

$$\mathcal{P}, \ \mathcal{Q}: \text{ lattice polytopes in } \mathbb{R}^{N}$$
$$\dim \mathcal{P} = \mathbf{d}, \quad \dim \mathcal{Q} = \mathbf{e}$$
$$\mathcal{Q} \subseteq \mathcal{P}.$$

Let

 $I = \operatorname{span}_{K} \{ x^{\alpha} y^{n} : \alpha \in \mathbb{Z}^{N}, \ \alpha/n \in \mathcal{P} - \mathcal{Q} \}.$ Easy: *I* is an ideal of $R_{\mathcal{P}}$ and $R_{\mathcal{P}}/I \cong R_{\mathcal{Q}}.$ **Lemma.** \exists an h.s.o.p. $\theta_1, \ldots, \theta_{d+1}$ for $R_{\mathcal{P}}$ such that $\theta_1, \ldots, \theta_{e+1}$ is an h.s.o.p. for $R_{\mathcal{Q}}$ and

$$\theta_{e+2},\ldots,\theta_{d+1}\in I.$$

Thus

 $R_{\mathcal{Q}}/(\theta_1, \dots, \theta_{e+1}) \cong R_{\mathcal{Q}}/(\theta_1, \dots, \theta_{d+1}),$ so the natural surjection $\boldsymbol{f} : R_{\mathcal{P}} \to R_{\mathcal{Q}}$ induces a (degree-preserving) surjection

 $\bar{\boldsymbol{f}} : A_{\mathcal{P}} := R_{\mathcal{P}}/(\theta_1, \dots, \theta_{d+1})$ $\to A_{\mathcal{Q}} := R_{\mathcal{Q}}/(\theta_1, \dots, \theta_{e+1}).$ Since $R_{\mathcal{P}}$ and $R_{\mathcal{Q}}$ are Cohen-Macaulay, $\dim(A_{\mathcal{P}})_i = h_i(\mathcal{P}), \ \dim(A_{\mathcal{Q}})_i = h_i(\mathcal{Q}).$ The surjection

 $(A_{\mathcal{P}})_i \to (A_{\mathcal{Q}})_i$

gives $h_i(\mathcal{P}) \ge h_i(\mathcal{Q})$. \Box

Zeros of Ehrhart polynomials.

Sample theorem (de Loera, Develin, Pfeifle, RS) Let \mathcal{P} be a lattice d-polytope. Then

 $i(\mathcal{P}, \alpha) = 0, \ \alpha \in \mathbb{R} \Rightarrow -d \le \alpha \le \lfloor d/2 \rfloor.$

Theorem. Let d be odd. There exists a 0/1 d-polytope \mathcal{P}_d and a real zero α_d of $i(\mathcal{P}_d, n)$ such that

$$\lim_{\substack{d \to \infty \\ d \text{ odd}}} \frac{\alpha_d}{d} = \frac{1}{2\pi e} = 0.0585 \cdots$$

Open. Is the set of all complex zeros of all Ehrhart polynomials of lattice polytopes dense in \mathbb{C} ? (True for chromatic polynomials of graphs.)

Further directions

- $R_{\mathcal{P}}$ is the coordinate ring of a projective algebraic variety $X_{\mathcal{P}}$, a **toric variety**. Leads to deep connections with toric geometry, including new formulas for $i(\mathcal{P}, n)$.
- Complexity. Computing $i(\mathcal{P}, n)$, or even $i(\mathcal{P}, 1)$ is $\#\mathbf{P}$ -complete. Thus an "efficient" (polynomial time) algorithm is extremely unlikely. However:

Theorem (A. Barvinok, 1994). For fixed dim \mathcal{P} , \exists polynomial-time algorithm for computing $i(\mathcal{P}, n)$. **Reference.** M. Barvinok and J. Pommersheim, An algorithmic theory of lattice points in polyhedra, in *New Perspectives in Algebraic Combinatorics*, MSRI Publications, vol. 38, 1999, pp. 91– 147.