A = (discrete) hyperplane arrangement in R"




R =R 4 = set of regions of A

If R 4 is finite, then let

r(A) = number of regions of A.



If R, R € R then let
d(R, R") = number of hyperplanes in A

separating R and R/,
the distance between R and R'.

Fix a base region Ry € R, and
set d(R) = d(Rp, R). Define the dis-
tance enumerator D 4(q) of A (with
respect to Ry) by

Dalg)="Y" ¢/,
ReR

NOTE: D 4(1) =r(A)if R 4 is finite.



431234
32 1 23
.21 0 12
32 1 23
43 2 34

49

D(@) = 1+ 4q+ 8 + 120° 4 o= -~

D(g) = 1+ 49+ 59% + 39>




Archetypal example:
braid arrangement.

By wi—r;=0,1<i<j<n(nR")
Let Ry be defined by
r1 >T9 >+ > Ip.

The symmetric group &,, acts regularly
on R, ie., for each R € 'R there is a
unique w = w(R) € &y, such that

w - Ry = R.



X5X 3=0

231
213 321

X1=X>=0
123 312

132

X~-X3=0



Let w = w(R) and ¢ < j. Then
r; — x; = 0 separates R from Ry if
and only if w(i) > w(j), i.e., (i,7) is an
inversion of w. Hence

d(R) = l{w),

the number of inversions (or length) of
w. Thus

Dg,(q) = ¥y ¢

wes,,
= (1+q)(1+q+¢%
g+ P+,



Alternative labelling rule:

e Set A\(Ry) = (0,0,...,0) € Z".

o If R is labelled, R’ is separated from
Ronly by ; —x; =0 (i < j), and
R’ is unlabelled, then set

AR = MR) + e,

where e; is the ¢th unit coordinate
vector.



X2'X 3:0

X1=X,=0

123 312

000 110
132
010

X-X3=0



NOTE. Let w = w(R). Then
AR)j = #{i - i <j, w(i) > w(j)},

so A(R) is essentially the inversion
table or code of w. A sequence (ay,...,ap)
is such a code if and only if 0 < a; <
n—i. Moreover, if \(R) = (ay,...,an)
then

n—I1 0
Dp,(0) = 3+ 3 gt

a1:O an:O

= (14+q) - (1+qg+---+¢" .
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The Shi arrangement

Sptowi—x;=0,1, 1<i<j<n (inR")

(after J.-Y. Shi, 1986)
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Xo~-X 3=0

X1X,=0

X=X>=1

Xl'X 3:1 Xl'X3:O
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Theorem (Shi). r(Sy) = (n + 1)"~ L
the number of rooted forests on n
(or unrooted trees on n + 1 vertices).

Later proots by Headley, Lewis, Pak-

Stanley, Athanasiadis-Linusson, Postnikov,
et al.
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(2,7), © > j, 1 above j

6 o He
11 2o
J 3
1 12
10 4
13 8

inversions. (6,1), (6,3), (6,4), (9,1),
(9,8), (11,10), (11,4), (5,2)

inv(F) = 8
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on 1,....n
Ii(q) =1
Ir(q) = 2+¢
I5(q) = 64 6¢+ 3¢+ ¢°
;I- 2 1 2
0 2 1

15



Theorem. (a) I(1 4 q) =
Z qn+#(edges)

connected graphs
on 1,2..n
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Parking functions

Car C; prefers space a;. If a; is oc-
cupied, then C; takes the next available
space. If all the cars can park, then
(a1,...,ap) is a parking function
(Konheim and Weiss, 1966).

Easy theorem. Let by > by >
.-+ > by, be the decreasing rearrange-
ment of (a1, ...,an) € P*. Then (ay,...,ap)
1s a parking function if and only if

b; <n—au.
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Theorem (H. Pollak). Let
G=Z/(n+1)Z=41,2,...,n+ 1}.

Then each coset of the subgroup of
G" generated by (1,1,...,1) contains
a unique parking function.

Corollary (Konheim-Weiss) There
are P(n) = (n+ 1) parking func-
tions of length n.

Theorem (G. Kreweras). q(g)]n(l/q) =

a1+ +ap—"n
> g

parking functions
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Labelling the Shi arrangement
(conjectured by 1. Pak)

base region Ry: x1 > --- > xy

e \(Ry)=(1,1,...,1) e Z"

o If R is labelled, R’ is separated from
Ronly by z; — 2z, =0 (i < j), and
R’ is unlabelled, then set

MR = MR) + ¢,

o If R is labelled, R’ is separated from
Ronly by z; —x; =1 (i < j), and
R’ is unlabelled, then set

AR') = XR) + e,

19



Xo~-X 3=0

102
X=X ,=0
002
X=X5=1
012 /o011 020 120

021

XiX3=1  XX3=0
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Theorem (R.S.) The labels of the
regions of Sy, are just the parking func-
tions of length n (each occurring once),
with entries decreased by one.

Corollary. Dg (q) = q@)]n(l/Q)
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Generalizations of the Shi arrangement

Let £ > 1. Define the extended Shi
arrangement S¥ by

v, —x;=—(k—=1), =(k—=2),...,k,
1 <1<y <n,

SO S%J =Sy

All properties of §,, extend elegantly
to Sf;:

e inversions of k-trees

e t-analogues of connected graphs

e k-parking functions

e labelling rule

22



When £ — oo we get the affine braid
arrangement

Bn:xi—xj:kEZ, 1 <1<y <n.

23



5454545

O/ a\3/4\3/4\2

5/ \5/ \b

D(q) =1 + 3q + 602+ 993 + 129*+ 155+ ---
=(1+q+q)/(1-q)*?
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Labelling rule for By,

base region Ry: x1 > --- > xy

e \(Ry)=(1,1,...,1) e Z"

o If R is labelled, R’ is separated from
Ronly by z; —xz; =k <0 (i < j),
and R’ is unlabelled, then set

MR = MR) +e¢;,

o If R is labelled, R’ is separated from
Ronly by z; —z; =k >0 (i < j),
and R’ is unlabelled, then set

AR') = XR) + e,
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302 401\ / 500

202,/ \301/ \400
203 201\ / 300\ /410

103/ \ 101/ \ 200/ \ 310
104\ / 102\ /100 210\ /320

004,/ \002/ \00O 110/ \220
005 003\ /001\ /010\ /120\ /230

013/ \011 020 130
014\ /012 021\ /030 140

022/ \031/ \040
023\ /032\ /041\ /050
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Theorem. The labels of Rgn are the
sequences (ai,...,an) € N with at
least one zero. FEach label appears ex-
actly once.

Corollary (Bott, 1956)
1 q"
Dy (q) = -
5.\ = g T - g
Lt g

(1—gnt
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Other arrangements

Catalan arrangement
Ch: z;=2;,=0,£1(1<i<yj<n)
T(Cn) — TL' On,

| 2
Ch = ( n) (Catalan number).

n
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De, (q) = (n!)q Cnlq),

where

(n))g = (14q)(1+q+q°) - - (L4q+- - -+¢" )

Colg) = g,
A

where A = (A, A9,...) is a partition
with A\; < n —u.
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Threshold arrangement

Tn: zi+2;=0(1<i<j<n)

ZT(%)ZL _ e’(1 — x)

2 — el
n>0

D%(q) =77

NOTE: Somewhat nicer is the aug-
mented threshold arrangement:

ﬂ:%amdxi:O(lgign)

r

ST =

n>0
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Linial arrangement:

Ln: zi—2;=1(1<i<j<n)

r(Ly) = #alternating trees on {0,1,...

1.e., every vertex 1s < all its neighbors
or > all its neighbors.

v =Y e
n>0 '
=y = exp <§(y -+ 1)) .

Dp (q) =77
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By-Shi arrangement:

37?: r,—r;=0,1, 1<i<j<n
rp+x; =01, 1<i1<jy<n
20; = 0,1, 1<1<n

X(87 @) = (x = 2n)"
r(SP) = (2n+1)"
DS§<Q> = 77

Similarly for C),-Shi, BC)y-Shi, and
Dy-Shi arrangements.
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4
4 3
3
4 3 2 4
3 21012 3
2 1
2
4 3 3 4
4 3
4

1+ 3g+ 50%+ 8q° + 8q*
B,- Shi
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Archilochus (died ¢. 652 BC):

“The fox knows many things, but the
hedgehog knows one big thing.”
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Distance matrix M = M 4 of A:
For R,R' € R,

/
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Theorem (Varchenko)

det M = H ( ii+1) )

Recall that the Smlth normal form
(SNF) of M is a canonical form for AM B,
where A, B € GL(n,7Z), det A = +1,
det B = £1. It has the form

diag(p1(q), - - ., pnlq)),

where p;|p;1. Note
pi(q) - - - pnlg) = £det M.
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SNE of M 4 not known in general, even
for the braid arrangement. However:

Theorem (Denham-Hanlon). Let a;

be the number of diagonal entries of
the SNF of M 4 exactly divisible by
(g —1)*. Then

X(Az) =) (=1)'aa"",

the characteristic polynomial of A.

What about the highest power of g+ 1
dividing the SNF entries?
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Transparencies available at:

http:/ /www-math.mit.edu/

~rstan /trans.html
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