Arrangements and Combinatorics

Richard P. Stanley
M.I.T.

The main reference

An introduction to hyperplane arrangements, in Geometric Combinatorics (E. Miller, V. Reiner, and B. Sturmfels, eds.), IAS/Park City Mathematics Series, vol. 13, American Mathematical Society, Providence, RI, 2007, pp. 389-496.
math.mit.edu/~rstan/arrangements/arr.html

Posets

A poset (partially ordered set) is a set P and relation \leq satisfying $\forall x, y, z \in P$:
(P1) (reflexivity) $x \leq x$
(P2) (antisymmetry) If $x \leq y$ and $y \leq x$, then $x=y$.
(P3) (transitivity) If $x \leq y$ and $y \leq z$, then $x \leq z$.

Arrangements

\boldsymbol{K} : a field

\mathcal{A} : a (finite) arrangement in $V=K^{n}$
$\operatorname{rk}(\mathcal{A})(\mathbf{r a n k}$ of $\mathcal{A})$: dimension of space spanned by normals to $H \in \mathcal{A}$

Subspaces X, Y, W

$\boldsymbol{Y}=$ any complement to subspace X of K^{n} spanned by normals to $H \in \mathcal{A}$

$$
\boldsymbol{W}=\{v \in V: v \cdot y=0 \quad \forall y \in Y\} .
$$

If $\operatorname{char}(K)=0$ can take $W=X$.

Essentialization

$$
\operatorname{codim}_{W}(H \cap W)=1, \quad \forall H \in \mathcal{A}
$$

Essentialization of \mathcal{A} :

$$
\operatorname{ess}(\mathcal{A})=\{H \cap W: H \in \mathcal{A}\}
$$

an arrangment in W.

Essentialization

$$
\operatorname{codim}_{W}(H \cap W)=1, \quad \forall H \in \mathcal{A}
$$

Essentialization of \mathcal{A} :

$$
\operatorname{ess}(\mathcal{A})=\{H \cap W: H \in \mathcal{A}\}
$$

an arrangment in W.

$$
\operatorname{rk}(\operatorname{ess}(\mathcal{A}))=\operatorname{rk}(\mathcal{A})
$$

Essentialization

$$
\operatorname{codim}_{W}(H \cap W)=1, \quad \forall H \in \mathcal{A}
$$

Essentialization of \mathcal{A} :

$$
\operatorname{ess}(\mathcal{A})=\{H \cap W: H \in \mathcal{A}\}
$$

an arrangment in W.

$$
\operatorname{rk}(\operatorname{ess}(\mathcal{A}))=\operatorname{rk}(\mathcal{A})
$$

\mathcal{A} is essential if $\operatorname{ess}(\mathcal{A})=\mathcal{A}$, i.e.,
$\operatorname{rk}(\mathcal{A})=\operatorname{dim}(\mathcal{A})$.

Example of essentialization

A
$\operatorname{ess}(A)$

The intersection poset

$\boldsymbol{L}(\mathcal{A})$: nonempty intersections of hyperplanes in \mathcal{A}, ordered by reverse inclusion

Include V as the bottom element of $L(\mathcal{A})$, denoted 0 .

Note. $L(\mathcal{A}) \cong L(\operatorname{ess}(\mathcal{A}))$

The intersection poset

$\boldsymbol{L}(\mathcal{A})$: nonempty intersections of hyperplanes in \mathcal{A}, ordered by reverse inclusion

Include V as the bottom element of $L(\mathcal{A})$, denoted 0 .

Note. $L(\mathcal{A}) \cong L(\operatorname{ess}(\mathcal{A}))$
$L(\mathcal{A})$ is the most important combinatorial object associated with \mathcal{A}.

Examples of intersection posets

Rank function

Chain of length $\boldsymbol{k}: x_{0}<x_{1}<\cdots<x_{k}$
Graded poset of rank \boldsymbol{n} : every maximal chain has length n

Rank function: $\rho(x)$ is the length k of longest chain $x_{0}<x_{1}<\cdots<x_{k}=x$.

Rank function on $L(\mathcal{A})$

Proposition. $L(\mathcal{A})$ is graded of rank equal to $\operatorname{rk}(\mathcal{A})$. Rank function:

$$
\operatorname{rk}(x)=\operatorname{codim}(x)=n-\operatorname{dim}(x),
$$

where $\operatorname{dim}(x)$ is the dimension of x as an affine subspace of V.

Rank function on $L(\mathcal{A})$

Proposition. $L(\mathcal{A})$ is graded of rank equal to rk (\mathcal{A}). Rank function:

$$
\operatorname{rk}(x)=\operatorname{codim}(x)=n-\operatorname{dim}(x),
$$

where $\operatorname{dim}(x)$ is the dimension of x as an affine subspace of V.

Proof. Straightforward. \square

Example of $L(\mathcal{A})$

rank dim
2
0

1
1

0
2

The Möbius function

P is locally finite: every interval $[x, y]=\{z: x \leq z \leq y\}$ is finite.
$\boldsymbol{I n t}(\boldsymbol{P})=$ set of (nonempty) intervals of P

The Möbius function

P is locally finite: every interval
$[x, y]=\{z: x \leq z \leq y\}$ is finite.
$\boldsymbol{\operatorname { l n t }}(\boldsymbol{P})=$ set of (nonempty) intervals of P
Define $\boldsymbol{\mu}=\boldsymbol{\mu}_{P}: \operatorname{Int}(P) \rightarrow \mathbb{Z}$ (the Möbius
function of P) by:

$$
\begin{aligned}
& \mu(x, x)=1, \text { for all } x \in P \\
& \mu(x, y)=-\sum_{x \leq z<y} \mu(x, z), \text { for all } x<y \text { in } P .
\end{aligned}
$$

The Möbius function

P is locally finite: every interval
$[x, y]=\{z: x \leq z \leq y\}$ is finite.
$\boldsymbol{\operatorname { l n t }}(\boldsymbol{P})=$ set of (nonempty) intervals of P
Define $\boldsymbol{\mu}=\boldsymbol{\mu}_{P}: \operatorname{Int}(P) \rightarrow \mathbb{Z}$ (the Möbius
function of P) by:

$$
\begin{aligned}
& \mu(x, x)=1, \text { for all } x \in P \\
& \mu(x, y)=-\sum_{x \leq z<y} \mu(x, z), \text { for all } x<y \text { in } P .
\end{aligned}
$$

Write $\boldsymbol{\mu}(\boldsymbol{x})=\mu(\hat{0}, x)$.

Example of Möbius function

Numbers denote $\mu(x)$.

Möbius inversion formula

$P=$ finite poset
$f, g: P \rightarrow L$ (a field, or even just an abelian group)

Theorem. Equivalent:

$$
\begin{aligned}
& f(x)=\sum_{y \geq x} g(y), \text { for all } x \in P \\
& g(x)=\sum_{y \geq x} \mu(x, y) f(y), \text { for all } x \in P .
\end{aligned}
$$

Möbius inversion formula

$P=$ finite poset
$f, g: P \rightarrow L$ (a field, or even just an abelian group)

Theorem. Equivalent:

$$
\begin{aligned}
& f(x)=\sum_{y \geq x} g(y), \text { for all } x \in P \\
& g(x)=\sum_{y \geq x} \mu(x, y) f(y), \text { for all } x \in P .
\end{aligned}
$$

Proof. Straightforward. \square

The characteristic polynomial

Definition. The characteristic polynomial $\chi_{\mathcal{A}}(t)$ of the arrangement \mathcal{A} is defined by

$$
\boldsymbol{\chi}_{\mathcal{A}}(\boldsymbol{t})=\sum_{x \in L(\mathcal{A})} \mu(x) t^{\operatorname{dim}(x)}
$$

The characteristic polynomial

Definition. The characteristic polynomial $\chi_{\mathcal{A}}(t)$ of the arrangement \mathcal{A} is defined by

$$
\chi_{\mathcal{A}}(t)=\sum_{x \in L(\mathcal{A})} \mu(x) t^{\operatorname{dim}(x)}
$$

Note. $x=V$ contributes t^{n}, and each $H \in \mathcal{A}$ contributes $-t^{n-1}$. Hence

$$
\chi_{\mathcal{A}}(t)=t^{n}-(\# \mathcal{A}) t^{n-1}+\cdots .
$$

An example

Example.

$\chi_{\mathcal{A}}(t)=t^{3}-4 t^{2}+5 t-2=(t-1)^{2}(t-2)$.

The boolean algebra

Suppose all hyperplanes in \mathcal{A} are linearly independent, and $\# \mathcal{A}=n$. Then all intersections are nonempty and distinct, so

$$
L(\mathcal{A}) \cong \boldsymbol{B}_{n}
$$

the boolean algebra of all subsets of $[\boldsymbol{n}]=\{1, \ldots, n\}$, ordered by inclusion.

Characteristic polynomial of \boldsymbol{B}_{n}

Easy induction argument: $\mu(\hat{0}, x)=(-1)^{n-\operatorname{dim} x}$. Hence

$$
\chi_{\mathcal{A}}(t)=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} t^{i}=(t-1)^{n} .
$$

Regions

Let $\boldsymbol{K}=\mathbb{R}$. Region (or chamber) of \mathcal{A} : connected component of $\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H$.

$$
\boldsymbol{r}(\mathcal{A})=\text { number of regions of } \mathcal{A}
$$

A region R of \mathcal{A} is relatively bounded if it becomes bounded in ess (\mathcal{A}).
$\boldsymbol{b}(\mathcal{A})=$ number of relatively bounded regions of \mathcal{A}

Example of $r(\mathcal{A})$ and $b(\mathcal{A})$

$$
r(\mathcal{A})=10, \quad b(\mathcal{A})=2
$$

Zaslavsky's theorem (1975)

Current goal:

Theorem. Let \mathcal{A} be an arrangement of rank r in \mathbb{R}^{n}. Then

$$
\begin{aligned}
& r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1) \\
& b(\mathcal{A})=(-1)^{r} \chi_{\mathcal{A}}(1)
\end{aligned}
$$

Zaslavsky's theorem (1975)

Current goal:

Theorem. Let \mathcal{A} be an arrangement of rank r in \mathbb{R}^{n}. Then

$$
\begin{aligned}
& r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1) \\
& b(\mathcal{A})=(-1)^{r} \chi_{\mathcal{A}}(1)
\end{aligned}
$$

Proof will be by induction on $\# \mathcal{A}$ (the number of hyperplanes).

Subarrangements and restrictions

subarrangement of \mathcal{A} : a subset $\mathcal{B} \subseteq \mathcal{A}$
For $x \in L(\mathcal{A})$ define

$$
\mathcal{A}_{\boldsymbol{x}}=\{H \in \mathcal{A}: x \subseteq H\} \subseteq \mathcal{A}
$$

Subarrangements and restrictions

subarrangement of \mathcal{A} : a subset $\mathcal{B} \subseteq \mathcal{A}$
For $x \in L(\mathcal{A})$ define

$$
\mathcal{A}_{x}=\{H \in \mathcal{A}: x \subseteq H\} \subseteq \mathcal{A}
$$

Also define the restriction of \mathcal{A} to x to be the arrangement in the affine space \mathcal{A} :

$$
\mathcal{A}^{x}=\left\{x \cap H \neq \emptyset: H \in \mathcal{A}-\mathcal{A}_{x}\right\} .
$$

$L\left(\mathcal{A}_{x}\right)$ and $L\left(\mathcal{A}^{x}\right)$

Note that if $x \in L(\mathcal{A})$, then

$$
\begin{aligned}
& L\left(\mathcal{A}_{x}\right) \cong \Lambda_{x}:=\{y \in L(\mathcal{A}): y \leq x\} \\
& L\left(\mathcal{A}^{x}\right) \cong V_{x}:=\{y \in L(\mathcal{A}): y \geq x\} .
\end{aligned}
$$

Example of \mathcal{A}_{x} and \mathcal{A}^{x}

Triple of arrangments

Choose $H_{0} \in \mathcal{A}$. Define

$$
\begin{aligned}
& \mathcal{A}^{\prime}=\mathcal{A}-\left\{H_{0}\right\} \\
& \mathcal{A}^{\prime \prime}=\mathcal{A}^{H_{0}}
\end{aligned}
$$

Triple of arrangments

Choose $H_{0} \in \mathcal{A}$. Define

$$
\begin{aligned}
\mathcal{A}^{\prime} & =\mathcal{A}-\left\{H_{0}\right\} \\
\mathcal{A}^{\prime \prime} & =\mathcal{A}^{H_{0}}
\end{aligned}
$$

Call $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ a triple of arrangements with distinguished hyperplane H_{0}.

Recurrence for $r(\mathcal{A})$ and $b(\mathcal{A})$

Lemma. Let $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ be a triple of real arrangements with distinguished hyperplane H_{0}. Then
$r(\mathcal{A})=r\left(\mathcal{A}^{\prime}\right)+r\left(\mathcal{A}^{\prime \prime}\right)$
$b(\mathcal{A})=\left\{\begin{aligned} b\left(\mathcal{A}^{\prime}\right)+b\left(\mathcal{A}^{\prime \prime}\right), & \text { if } \operatorname{rk}(\mathcal{A})=\operatorname{rk}\left(\mathcal{A}^{\prime}\right) \\ 0, & \text { if } \operatorname{rk}(\mathcal{A})=\operatorname{rk}\left(\mathcal{A}^{\prime}\right)+1 .\end{aligned}\right.$

The $\operatorname{case} \operatorname{rk}(\mathcal{A})=\operatorname{rk}\left(\mathcal{A}^{\prime}\right)+1$

Proof of lemma (sketch)

Note that $r(\mathcal{A})$ equals $r\left(\mathcal{A}^{\prime}\right)$ plus the number of regions of \mathcal{A}^{\prime} cut into two regions by H_{0}. Easy to give a bijection between regions of \mathcal{A}^{\prime} cut in two by H_{0} and regions of $\mathcal{A}^{\prime \prime}$, proving

$$
r(\mathcal{A})=r\left(\mathcal{A}^{\prime}\right)+r\left(\mathcal{A}^{\prime \prime}\right)
$$

Proof of lemma (sketch)

Note that $r(\mathcal{A})$ equals $r\left(\mathcal{A}^{\prime}\right)$ plus the number of regions of \mathcal{A}^{\prime} cut into two regions by H_{0}. Easy to give a bijection between regions of \mathcal{A}^{\prime} cut in two by H_{0} and regions of $\mathcal{A}^{\prime \prime}$, proving

$$
r(\mathcal{A})=r\left(\mathcal{A}^{\prime}\right)+r\left(\mathcal{A}^{\prime \prime}\right)
$$

Proof of recurrence for $b(\mathcal{A})$ analogous. \square

The deletion-restriction recurrence

Lemma. Let $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ be a triple of real arrangements. Then

$$
\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}^{\prime}}(t)-\chi_{\mathcal{A}^{\prime \prime}}(t)
$$

The deletion-restriction recurrence

Lemma. Let $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ be a triple of real arrangements. Then

$$
\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}^{\prime}}(t)-\chi_{\mathcal{A}^{\prime \prime}}(t)
$$

Zaslavsky's theorem $\left(r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1)\right)$ is an immediate consequence of above lemma and the recurrence $r(\mathcal{A})=r\left(\mathcal{A}^{\prime}\right)+r\left(\mathcal{A}^{\prime \prime}\right)$.

The deletion-restriction recurrence

Lemma. Let $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ be a triple of real arrangements. Then

$$
\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}^{\prime}}(t)-\chi_{\mathcal{A}^{\prime \prime}}(t)
$$

Zaslavsky's theorem $\left(r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1)\right)$ is an immediate consequence of above lemma and the recurrence $r(\mathcal{A})=r\left(\mathcal{A}^{\prime}\right)+r\left(\mathcal{A}^{\prime \prime}\right)$.

The proof for $b(\mathcal{A})$ is analogous but a little more complicated.

Whitney's theorem

To prove: $\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}^{\prime}}(t)-\chi_{\mathcal{A}^{\prime \prime}}(t)$.
Basic tool (H. Whitney, 1935, for linear arrangements). A subarrangement $\mathcal{B} \subseteq \mathcal{A}$ is central if $\bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

Whitney's theorem

To prove: $\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}^{\prime}}(t)-\chi_{\mathcal{A}^{\prime \prime}}(t)$.
Basic tool (H. Whitney, 1935, for linear arrangements). A subarrangement $\mathcal{B} \subseteq \mathcal{A}$ is central if $\bigcap_{H \in \mathcal{B}} H \neq \emptyset$.

Theorem. Let \mathcal{A} be an arrangement in an n-dimensional vector space. Then

$$
\chi_{\mathcal{A}}(t)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central }}}(-1)^{\# \mathcal{B}} t^{n-\mathrm{rk}(\mathcal{B})}
$$

Example of Whitney's theorem

| \mathcal{B} | $\# \mathcal{B}$ | $\operatorname{rk}(\mathcal{B})$ | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | | | |
| a | 1 | 1 | $b c$ | 2 | 2 |
| b | 1 | 1 | $b d$ | 2 | 2 |
| c | 1 | 1 | $c d$ | 2 | 2 |
| d | 1 | 1 | $a c d$ | 3 | 2 |
| $a c$ | 2 | 2 | | | |
| $a d$ | 2 | 2 | | | |

$\Rightarrow \chi_{\mathcal{A}}(t)=t^{2}-4 t+(5-1)=t^{2}-4 t+4$.

The crosscut theorem

Easy fact: Every interval $[\hat{0}, z]$ of $L(\mathcal{A})$ is a lattice, i.e., any two elements x, y have a meet (greatest lower bound) $x \wedge y$ and join (least upper bound) $x \vee y$.

The crosscut theorem

Easy fact: Every interval $[\hat{0}, z]$ of $L(\mathcal{A})$ is a lattice, i.e., any two elements x, y have a meet (greatest lower bound) $x \wedge y$ and join (least upper bound) $x \vee y$.

Lemma (crosscut theorem for $L(\mathcal{A})$). For all $z \in L(\mathcal{A})$,

$$
\mu(z)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A}_{z} \\ z=\bigcap_{H \in \mathcal{B}} H}}(-1)^{\# \mathcal{B}} .
$$

Proof of Whitney's theorem

Lemma (crosscut theorem for $L(\mathcal{A})$). For all
$z \in L(\mathcal{A})$,

$$
\mu(z)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A}_{z} \\ z=\bigcap_{H \in \mathcal{B}} H}}(-1)^{\# \mathcal{B}} .
$$

Proof of Whitney's theorem

Lemma (crosscut theorem for $L(\mathcal{A})$). For all
$z \in L(\mathcal{A})$,

$$
\mu(z)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A}_{z} \\ z=\bigcap_{H \in \mathcal{B}} H}}(-1)^{\# \mathcal{B}} .
$$

Note that $z=\bigcap_{H \in \mathcal{B}} H$ implies that
$\operatorname{rk}(\mathcal{B})=n-\operatorname{dim} z$. Multiply both sides by $t^{\operatorname{dim}(z)}$ and sum over z to obtain

$$
\chi_{\mathcal{A}}(t)=\sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \mathcal{B} \text { central }}}(-1)^{\# \mathcal{B}} t^{n-\operatorname{rk}(\mathcal{B})}
$$

Alternative formulation

Later: coefficients of $\chi_{\mathcal{A}}(t)$ alternate in sign. More strongly, if $\mathrm{rk}(x)=i$ then

$$
(-1)^{i} \mu(x)>0 .
$$

Alternative formulation

Later: coefficients of $\chi_{\mathcal{A}}(t)$ alternate in sign. More strongly, if $r k(x)=i$ then

$$
(-1)^{i} \mu(x)>0 .
$$

Thus:

$$
\begin{aligned}
& r(\mathcal{A})=\sum_{x \in L_{\mathcal{A}}}|\mu(x)| \\
& b(\mathcal{A})=\left|\sum_{x \in L_{\mathcal{A}}} \mu(x)\right| .
\end{aligned}
$$

A corollary

Corollary. Let \mathcal{A} be a real arrangement. Then $r(\mathcal{A})$ and $b(\mathcal{A})$ depend only on $L(\mathcal{A})$.

A corollary

Corollary. Let \mathcal{A} be a real arrangement. Then $r(\mathcal{A})$ and $b(\mathcal{A})$ depend only on $L(\mathcal{A})$.

Faces

$\mathcal{R}(\mathcal{A})$: set of regions of \mathcal{A}
Definition. A (closed) face of a real arrangement \mathcal{A} is a set

$$
\emptyset \neq \boldsymbol{F}=\bar{R} \cap x
$$

where $R \in \mathcal{R}(\mathcal{A}), x \in L(\mathcal{A})$, and $\overline{\boldsymbol{R}}=$ closure of R.

Faces

$\mathcal{R}(\mathcal{A})$: set of regions of \mathcal{A}
Definition. A (closed) face of a real arrangement \mathcal{A} is a set

$$
\emptyset \neq \boldsymbol{F}=\bar{R} \cap x
$$

where $R \in \mathcal{R}(\mathcal{A})$, $x \in L(\mathcal{A})$, and $\overline{\boldsymbol{R}}=$ closure of R.
$\boldsymbol{f}_{k}(\mathcal{A})$: number of k-dimensional faces (\boldsymbol{k}-faces) of \mathcal{A}

Example of $f_{i}(\mathcal{A})$

$f_{0}(\mathcal{A})=3, \quad f_{1}(\mathcal{A})=9, \quad f_{2}(\mathcal{A})=r(\mathcal{A})=7$

Formula for $f_{k}(\mathcal{A})$

$$
f_{k}(\mathcal{A})=\sum_{\substack{x \in L(\mathcal{A}) \\ \operatorname{corank}(x)=k}} \sum_{y \geq x}|\mu(x, y)|
$$

Formula for $f_{k}(\mathcal{A})$

$$
f_{k}(\mathcal{A})=\sum_{\substack{x \in L(\mathcal{A}) \\ \operatorname{corank}(x)=k}} \sum_{y \geq x}|\mu(x, y)|
$$

Proof. Easy consequence of Zaslavsky's formula for $r(\mathcal{A})$.

Zonotopes

Let $X, Y \subseteq K^{n}$
Minkowski sum:
$\boldsymbol{X}+\boldsymbol{Y}=\{x+y: x \in X, y \in Y\}$
zonotope: a Minkowski sum $L_{1}+\cdots+L_{k}$ of line segments in \mathbb{R}^{n}

Example of zonotope

Arrangements and Combinatorics - D. 4

Example of zonotope

Arrangements and Combinatorics - D. 4

Characterization of zonotopes

Theorem. Let \mathcal{P} be a convex polytope. The following are equivalent.

- \mathcal{P} is a zonotope.
- Every face of \mathcal{P} is centrally-symmetric.
- Every 2-dimensional face of \mathcal{P} is centrally-symmetric.

The zonotope of a real arrangement

\mathcal{A} : a real central arrangement n_{1}, \ldots, n_{k} : normals to $H \in \mathcal{A}$
L_{i} : line segment from 0 to n_{i}
$\boldsymbol{Z}(\mathcal{A})$: the zonotope $L_{1}+\cdots+L_{k}$

Number of faces of $Z(\mathcal{A})$

Theorem. Let $f_{i}(Z(\mathcal{A}))$ denote the number of i-dimensional faces of $Z(\mathcal{A})$. Then

$$
f_{i}(Z(\mathcal{A}))=f_{n-i}(\mathcal{A})
$$

Number of faces of $Z(\mathcal{A})$

Theorem. Let $f_{i}(Z(\mathcal{A}))$ denote the number of i-dimensional faces of $Z(\mathcal{A})$. Then

$$
f_{i}(Z(\mathcal{A}))=f_{n-i}(\mathcal{A})
$$

Informally, $Z(\mathcal{A})$ is a "dual object" to \mathcal{A}.

An example of $Z(\mathcal{A})$

Arrangements and Combinatorics - D .

An example of $Z(\mathcal{A})$

Arrangements and Combinatorics - D .

Another example

Another example

hexagonal prism

Another example

Another example

rhombic dodecahedron

Graphical arrangements

G : graph on vertex set $[n]$ (no loops or multiple edges)

Graphical arrangements

G: graph on vertex set $[n]$ (no loops or multiple edges)
$\boldsymbol{E}(\boldsymbol{G})$: edge set of G

Graphical arrangements

G: graph on vertex set $[n]$ (no loops or multiple edges)
$\boldsymbol{E}(\boldsymbol{G})$: edge set of G
\mathcal{A}_{G} : arrangement in K^{n} with hyperplanes $x_{i}=x_{j}$
if $i j \in E(G)$

Graphical arrangements

G: graph on vertex set $[n]$ (no loops or multiple edges)
$\boldsymbol{E}(\boldsymbol{G})$: edge set of G
\mathcal{A}_{G} : arrangement in K^{n} with hyperplanes $x_{i}=x_{j}$ if $i j \in E(G)$

If $G=K_{n}$, the complete graph on $[n]$, then $\mathcal{A}_{K_{n}}$ is the braid arrangement \mathcal{B}_{n}.

Set partitions

partition of a finite set $S: \boldsymbol{\pi}=\left\{B_{1}, \ldots, B_{k}\right\}$, such that

$$
B_{i} \neq \emptyset, \quad \bigcup B_{i}=S, \quad B_{i} \cap B_{j}=\emptyset(i \neq j)
$$

B_{i} is a block of π.
Π_{S} : set of partitions of S
Let $\pi, \sigma \in \Pi_{S}$. Then π is a refinement of σ, written $\boldsymbol{\pi} \leq \boldsymbol{\sigma}$, if every block of π is contained in a block of σ.

The bond lattice of G

G : graph on vertex set $[n]$
connected partition of $[n]$: a partition of $[n]$ for which each block induces a connected subgraph of G

The bond lattice of G

G : graph on vertex set $[n]$
connected partition of $[n]$: a partition of $[n]$ for which each block induces a connected subgraph of G
bond lattice $L(G)$ of G : set of connected partitions of $[n]$, ordered by refinement

Example of bond lattice

Bond lattices and intersection posets

G: graph with bond lattice $L(G)$
\mathcal{A}_{G} : graphical arrangement
Theorem. $L(G) \cong L(\mathcal{A}(G))$

G: graph with bond lattice $L(G)$
\mathcal{A}_{G} : graphical arrangement
Theorem. $L(G) \cong L(\mathcal{A}(G))$
Proof. Let $H_{i j}$ be the hyperplane defined by
$x_{i}=x_{j}, i j \in E(G)$. Let $x \in L(\mathcal{A})$. Define vertices
$i \sim j$ if $x \subseteq H_{i j}$. Then \sim is an equivalence relation whose equivalence classes form a connected partition of $[n]$, etc. \square

Chromatic polynomial of G

coloring of G is $\kappa:[n] \rightarrow \mathbb{P}=\{1,2, \ldots\}$

Chromatic polynomial of G
coloring of G is $\kappa:[n] \rightarrow \mathbb{P}=\{1,2, \ldots\}$
proper coloring: $\kappa(i) \neq \kappa(j)$ if $i j \in E(G)$

Chromatic polynomial of G
coloring of G is $\kappa:[n] \rightarrow \mathbb{P}=\{1,2, \ldots\}$
proper coloring: $\kappa(i) \neq \kappa(j)$ if $i j \in E(G)$
chromatic polynomial: For $q \geq 1$,

$$
\boldsymbol{\chi}_{G}(\boldsymbol{q})=\#\{\text { proper } \kappa:[n] \rightarrow[q]\}
$$

Chromatic polynomial of G
coloring of G is $\kappa:[n] \rightarrow \mathbb{P}=\{1,2, \ldots\}$
proper coloring: $\kappa(i) \neq \kappa(j)$ if $i j \in E(G)$
chromatic polynomial: For $q \geq 1$,

$$
\boldsymbol{\chi}_{G}(\boldsymbol{q})=\#\{\text { proper } \kappa:[n] \rightarrow[q]\}
$$

Easy fact: $\chi_{G}(q) \in \mathbb{Z}[q]$

$\chi_{\mathcal{A}(G)}(t)$

Theorem. $\chi_{\mathcal{A}(G)}(t)=\chi_{G}(t)$

$\chi_{\mathcal{A}(G)}(t)$

Theorem. $\chi_{\mathcal{A}(G)}(t)=\chi_{G}(t)$
Proof. Let $\sigma \in L(G)$.
$\boldsymbol{\chi}_{\boldsymbol{\sigma}}(\boldsymbol{q})=$ number of $f:[n] \rightarrow[q]$ such that:

- a, b in same block of $\sigma \Rightarrow f(a)=f(b)$
- a, b in different blocks, $a b \in E \Rightarrow f(a) \neq f(b)$.

Continuation of proof

Given any $f:[n] \rightarrow[q]$, there is a unique $\sigma \in L(G)$ such that f is enumerated by $\chi_{\sigma}(q)$. Hence $\forall \pi \in L(G)$,

$$
q^{\# \pi}=\sum_{\sigma \geq \pi} \chi_{\sigma}(q)
$$

Continuation of proof

Given any $f:[n] \rightarrow[q]$, there is a unique $\sigma \in L(G)$ such that f is enumerated by $\chi_{\sigma}(q)$. Hence $\forall \pi \in L(G)$,

$$
q^{\# \pi}=\sum_{\sigma \geq \pi} \chi_{\sigma}(q)
$$

Möbius inversion $\Rightarrow \chi_{\pi}(q)=\sum_{\sigma \geq \pi} q^{\# \sigma} \mu(\pi, \sigma)$.

Continuation of proof

Given any $f:[n] \rightarrow[q]$, there is a unique $\sigma \in L(G)$ such that f is enumerated by $\chi_{\sigma}(q)$. Hence $\forall \pi \in L(G)$,

$$
q^{\# \pi}=\sum_{\sigma \geq \pi} \chi_{\sigma}(q)
$$

Möbius inversion $\Rightarrow \chi_{\pi}(q)=\sum_{\sigma \geq \pi} q^{\# \sigma} \mu(\pi, \sigma)$.
Note $\chi_{\hat{0}}(q)=\chi_{G}(q) . \square$

Characteristic polynomial of \mathcal{B}_{n}

Recall: $\mathcal{B}_{n}=\mathcal{A}\left(K_{n}\right)$ (braid arrangement)

Characteristic polynomial of \mathcal{B}_{n}

Recall: $\mathcal{B}_{n}=\mathcal{A}\left(K_{n}\right)$ (braid arrangement)

$$
L_{\mathcal{B}_{n}} \cong \Pi_{n},
$$

the lattice of all partitions of $[n]$ (ordered by refinement)

Characteristic polynomial of \mathcal{B}_{n}

Recall: $\mathcal{B}_{n}=\mathcal{A}\left(K_{n}\right)$ (braid arrangement)

$$
L_{\mathcal{B}_{n}} \cong \Pi_{n},
$$

the lattice of all partitions of $[n]$ (ordered by refinement)

Clearly $\chi_{K_{n}}(q)=q(q-1) \cdots(q-n+1)$.

$$
\Rightarrow \chi_{\mathcal{B}_{n}}(t)=t(t-1) \cdots(t-n+1) .
$$

Chordal graphs

A graph G is chordal (triangulated, rigid circuit) if the vertices can be ordered v_{1}, \ldots, v_{n} so that for all i, v_{i} is connected to a clique (complete subgraph) of the restriction of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Chordal graphs

A graph G is chordal (triangulated, rigid circuit) if the vertices can be ordered v_{1}, \ldots, v_{n} so that for all i, v_{i} is connected to a clique (complete subgraph) of the restriction of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Known fact: G is chordal if and only if every cycle of length at least four has a chord.

Example of a chordal graph

Chordal graph coloring

Let v_{1}, \ldots, v_{n} be a vertex ordering so that for all i, v_{i} is connected to a clique of the restriction \boldsymbol{G}_{i-1} of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Chordal graph coloring

Let v_{1}, \ldots, v_{n} be a vertex ordering so that for all i, v_{i} is connected to a clique of the restriction \boldsymbol{G}_{i-1} of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Let \boldsymbol{a}_{i} be the number of vertices of G_{i-1} to which v_{i} is connected (so $a_{1}=0$). Once v_{1}, \ldots, v_{i-1} are (properly) colored, there are $q-a_{i}$ ways to color v_{i}. Hence

Chordal graph coloring

Let v_{1}, \ldots, v_{n} be a vertex ordering so that for all i, v_{i} is connected to a clique of the restriction \boldsymbol{G}_{i-1} of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Let \boldsymbol{a}_{i} be the number of vertices of G_{i-1} to which v_{i} is connected (so $a_{1}=0$). Once v_{1}, \ldots, v_{i-1} are (properly) colored, there are $q-a_{i}$ ways to color v_{i}. Hence

$$
\chi_{G}(q)=\left(q-a_{1}\right)\left(q-a_{2}\right) \cdots\left(q-a_{n}\right) .
$$

Acyclic orientations

Orientation of G : assignment o of a direction $i \rightarrow j$ or $j \rightarrow i$ to each edge.

Acyclic orientation: an orientation with no directed cycles

$\chi_{G}(-1)$

Given o, define

$$
R_{\mathfrak{o}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}<x_{j} \text { whenever } i \rightarrow j \text { in } \mathfrak{o}\right\} .
$$

$\chi_{G}(-1)$

Given o, define

$$
R_{\mathfrak{o}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}<x_{j} \text { whenever } i \rightarrow j \text { in } \mathfrak{o}\right\} .
$$

Then R_{0} is a region of $\mathcal{A}(G)$, and conversely. (Conditions are consistent because \mathfrak{o} is acyclic.)

$\chi_{G}(-1)$

Given o, define
$R_{\mathfrak{o}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}<x_{j}\right.$ whenever $i \rightarrow j$ in $\left.\mathfrak{o}\right\}$.
Then R_{0} is a region of $\mathcal{A}(G)$, and conversely. (Conditions are consistent because \mathfrak{o} is acyclic.) $\operatorname{ao}(G)$: number of acyclic orientations of G

Theorem. $r\left(\mathcal{A}_{G}\right)=(-1)^{n} \chi_{G}(-1)=\operatorname{ao}(G)$.

$\chi_{G}(-1)$

Given o, define
$R_{\mathfrak{o}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}<x_{j}\right.$ whenever $i \rightarrow j$ in $\left.\mathfrak{o}\right\}$.
Then R_{0} is a region of $\mathcal{A}(G)$, and conversely. (Conditions are consistent because \mathfrak{o} is acyclic.) $\operatorname{ao}(G)$: number of acyclic orientations of G

Theorem. $r\left(\mathcal{A}_{G}\right)=(-1)^{n} \chi_{G}(-1)=\operatorname{ao}(G)$.
This proof is due to Greene (1977).
$(-1)^{i} \mu(x, y)$

Goal: interpret $(-1)^{i} \mu(x, y)$ combinatorially, where $i=\operatorname{rank}(x, y)$.
$(-1)^{i} \mu(x, y)$

Goal: interpret $(-1)^{i} \mu(x, y)$ combinatorially, where $i=\operatorname{rank}(x, y)$.

For simplicity we deal only with hyperplane arrangements, though the "right" level of generality is matroid theory.

Broken circuits

\mathcal{A} : centrall arrangement
circuit: a minimal linearly dependent subset of \mathcal{A}
$\boldsymbol{H}_{1}, \boldsymbol{H}_{2}, \ldots, \boldsymbol{H}_{m}$: ordering of \mathcal{A}

Broken circuits

\mathcal{A} : central arrangement
circuit: a minimal linearly dependent subset of \mathcal{A}
$\boldsymbol{H}_{1}, \boldsymbol{H}_{2}, \ldots, \boldsymbol{H}_{m}$: ordering of \mathcal{A}
broken circuit: a set $C-\{H\}$, where C is a circuit and H the last element of C in the above ordering

Broken circuits

\mathcal{A} : central arrangement
circuit: a minimal linearly dependent subset of \mathcal{A}
$\boldsymbol{H}_{1}, \boldsymbol{H}_{2}, \ldots, \boldsymbol{H}_{m}$: ordering of \mathcal{A}
broken circuit: a set $C-\{H\}$, where C is a circuit and H the last element of C in the above ordering
broken circuit complex:
$\mathrm{BC}(\mathcal{A})=\{F \subseteq \mathcal{A}: F$ contains no broken circuit $\}$

An example

Note: $\operatorname{BC}(\mathcal{A})$ is a simplicial complex, i.e.,
$F \in \mathrm{BC}(\mathcal{A}), \quad G \subseteq F \Rightarrow G \in \mathrm{BC}(\mathcal{A})$.

An example

Note: $\operatorname{BC}(\mathcal{A})$ is a simplicial complex, i.e.,
$F \in \mathrm{BC}(\mathcal{A}), \quad G \subseteq F \Rightarrow G \in \mathrm{BC}(\mathcal{A})$.

An example

Note: $\operatorname{BC}(\mathcal{A})$ is a simplicial complex, i.e.,
$F \in \mathrm{BC}(\mathcal{A}), \quad G \subseteq F \Rightarrow G \in \mathrm{BC}(\mathcal{A})$.

Example (continued)

Example (continued)

$$
\begin{aligned}
& \boldsymbol{f}_{\boldsymbol{i}}=\boldsymbol{f}_{\boldsymbol{i}}(\mathrm{BC}(\mathcal{A})): \# i \text {-dim. faces of } \mathrm{BC}(\mathcal{A}) \\
& f_{-1}=1, \quad f_{0}=5, \quad f_{1}=8, \quad f_{2}=4
\end{aligned}
$$

Example (continued)

$\boldsymbol{f}_{i}=\boldsymbol{f}_{i}(\mathrm{BC}(\mathcal{A})): \# i$-dim. faces of $\mathrm{BC}(\mathcal{A})$

$$
\begin{gathered}
f_{-1}=1, \quad f_{0}=5, \quad f_{1}=8, \quad f_{2}=4 \\
\chi_{\mathcal{A}}(t)=t^{3}-5 t^{2}+8 t-4
\end{gathered}
$$

Covers

$\boldsymbol{L}=L_{\mathcal{A}}$
y covers x in $L: x<y, \nexists x<z<y$
$\mathcal{E}(\boldsymbol{L})$: edges of Hasse diagram of L, i.e,

$$
\mathcal{E}(L)=\{(x, y): y \text { covers } x\}
$$

Labelings

$\boldsymbol{\lambda}: \mathcal{E}(L) \rightarrow \mathbb{P}$ is a labeling of L

Labelings

$\boldsymbol{\lambda}: \mathcal{E}(L) \rightarrow \mathbb{P}$ is a labeling of L
If $\boldsymbol{C}: x=x_{0}<x_{1}<\cdots<x_{k}=y$ is a saturated chain from x to y (i.e., each x_{i+1} covers x_{i}), define

$$
\boldsymbol{\lambda}(\boldsymbol{C})=\left(\lambda\left(x_{0}, x_{1}\right), \lambda\left(x_{1}, x_{2}\right), \ldots, \lambda\left(x_{k-1}, x_{k}\right)\right)
$$

Labelings

$\boldsymbol{\lambda}: \mathcal{E}(L) \rightarrow \mathbb{P}$ is a labeling of L
If $\boldsymbol{C}: x=x_{0}<x_{1}<\cdots<x_{k}=y$ is a saturated chain from x to y (i.e., each x_{i+1} covers x_{i}), define

$$
\boldsymbol{\lambda}(\boldsymbol{C})=\left(\lambda\left(x_{0}, x_{1}\right), \lambda\left(x_{1}, x_{2}\right), \ldots, \lambda\left(x_{k-1}, x_{k}\right)\right)
$$

C is increasing if

$$
\lambda\left(x_{0}, x_{1}\right) \leq \lambda\left(x_{1}, x_{2}\right) \leq \cdots \leq \lambda\left(x_{k-1}, x_{k}\right)
$$

E-labelings

(a)

(b)

(c)

E-labelings

(a)

(b)

(c)

E-labeling: a labeling for which every interval $[x, y]$ has a unique increasing chain.

Labeling and Möbius functions

Theorem. Let λ be an E-labeling of L, and let $x \leq y$ in $L, \operatorname{rank}(x, y)=k$. Then $(-1)^{k} \mu(x, y)$ is equal to the number of strictly decreasing saturated chains from x to y, i.e.,

$$
\begin{array}{r}
(-1)^{k} \mu(x, y)=\#\left\{x=x_{0}<x_{1}<\cdots<x_{k}=y:\right. \\
\left.\lambda\left(x_{0}, x_{1}\right)>\lambda\left(x_{1}, x_{2}\right)>\cdots>\lambda\left(x_{k-1}, x_{k}\right)\right\} .
\end{array}
$$

Labeling $L(\mathcal{A})$

$\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{m}$: ordering of \mathcal{A} (as before) If y covers x in $L(\mathcal{A})$ then define

$$
\tilde{\lambda}(x, y)=\max \left\{i: x \vee H_{i}=y\right\} .
$$

Example of λ

Properties of λ

Claim 1. Define $\boldsymbol{\lambda}: \mathcal{E}(L(\mathcal{A})) \rightarrow \mathbb{P}$ by

$$
\boldsymbol{\lambda}(\boldsymbol{x}, \boldsymbol{y})=m+1-\tilde{\lambda}(x, y) .
$$

Then λ is an E-labeling.

Properties of λ

Claim 1. Define $\boldsymbol{\lambda}: \mathcal{E}(L(\mathcal{A})) \rightarrow \mathbb{P}$ by

$$
\boldsymbol{\lambda}(\boldsymbol{x}, \boldsymbol{y})=m+1-\tilde{\lambda}(x, y)
$$

Then λ is an E-labeling.
Claim 2. The broken circuit complex $\mathrm{BC}(M)$ consists of all chain labels $\tilde{\lambda}(C)$ (regarded as a set), where C is an increasing saturated chain from 0 to some $x \in L(M)$. Moreover, all such $\tilde{\lambda}(C)$ are distinct.

Example of Claim 2.

Example of Claim 2.

broken circuits: 12, 34, 124
$B C(\mathcal{A})=\{\emptyset, 1,2,3,4,5,13,14,15,23,24,25,35,45$,
$135,145,235,245\}$

Broken circuit theorem

Immediate consequence of Claims 1 and 2:
Theorem. $\chi_{\mathcal{A}}(t)=\sum(-1)^{\# F} t^{n-\# F}$

$$
F \in \mathrm{BC}(\mathcal{A})
$$

Broken circuit theorem

Immediate consequence of Claims 1 and 2:
Theorem. $\chi_{\mathcal{A}}(t)=\sum(-1)^{\# F} t^{n-\# F}$

$$
F \in \mathrm{BC}(\mathcal{A})
$$

Corollary. The coefficients of $\chi_{\mathcal{A}}(t)$ alternate in sign, i.e., $\chi_{\mathcal{A}}(t)=t^{n}-a_{1} t^{n-1}+a_{2} t^{n-2}-\cdots$, where $a_{i} \geq 0$. In fact

$$
(-1)^{i} \mu(x, y)>0, \quad \text { where } i=\operatorname{rank}(x, y)
$$

A glimpse of topology

$[\boldsymbol{x}, \boldsymbol{y}]$: (finite) interval in a poset P
c_{i} : number of chains $x=x_{0}<x_{1}<\cdots<x_{i}=y$
Note. $c_{0}=0$ unless $x=y$.

A glimpse of topology

[x, y]: (finite) interval in a poset P
c_{i} : number of chains $x=x_{0}<x_{1}<\cdots<x_{i}=y$
Note. $c_{0}=0$ unless $x=y$.
Philip Hall's theorem (1936).
$\mu(x, y)=c_{0}-c_{1}+c_{2}-\cdots$

The order complex

\boldsymbol{P} : a poset
order complex of P :

$$
\boldsymbol{\Delta}(\boldsymbol{P})=\{\text { chains of } P\}
$$

an abstract simplicial complex.
Write $\Delta(x, y)$ for the order complex of the open interval $(x, y)=\{z \in P: x<z<y\}$.

Example of an order complex

P
$\Delta(P)$

Euler characteristic

Δ : finite simplicial complex
$\boldsymbol{f}_{\boldsymbol{i}}=\# i$-dimensional faces of Δ
Note: $f_{-1}=1$ unless $\Delta=\emptyset$.

Euler characteristic

Δ : finite simplicial complex
$\boldsymbol{f}_{\boldsymbol{i}}=\# i$-dimensional faces of Δ
Note: $f_{-1}=1$ unless $\Delta=\emptyset$.
Euler characteristic: $\chi(\Delta)=f_{0}-f_{1}+f_{2}-\cdots$

Euler characteristic

Δ : finite simplicial complex
$\boldsymbol{f}_{\boldsymbol{i}}=\# i$-dimensional faces of Δ
Note: $f_{-1}=1$ unless $\Delta=\emptyset$.
Euler characteristic: $\boldsymbol{\chi}(\boldsymbol{\Delta})=f_{0}-f_{1}+f_{2}-\cdots$
reduced Euler characteristic:
$\tilde{\chi}(\boldsymbol{\Delta})=-f_{-1}+f_{0}-f_{1}+f_{2}-\cdots$
Note: $\tilde{\chi}(\Delta)=\chi(\Delta)-1$ unless $\Delta=\emptyset$.

Philip Hall's theorem restated

Theorem. For $x<y$ in a finite poset,

$$
\mu(x, y)=\tilde{\chi}(\Delta(x, y)) .
$$

Philip Hall's theorem restated

Theorem. For $x<y$ in a finite poset,

$$
\mu(x, y)=\tilde{\chi}(\Delta(x, y))
$$

Recall for any finite simplicial complex Δ,

$$
\tilde{\chi}(\Delta)=\sum_{j}(-1)^{j} \operatorname{dim} \widetilde{H}_{j}(\Delta ; K),
$$

where $\widetilde{\boldsymbol{H}}_{j}(\boldsymbol{\Delta} ; \boldsymbol{K})$ denotes reduced simplicial homology over the field K.

A topological question

For $x<y$ in $L(\mathcal{A})$, with $i=\operatorname{rank}(x, y)$, we have

$$
\boldsymbol{d}:=\operatorname{dim} \Delta(x, y)=i-2 .
$$

In particular, $(-1)^{d}=(-1)^{i}$.

A topological question

For $x<y$ in $L(\mathcal{A})$, with $i=\operatorname{rank}(x, y)$, we have

$$
\boldsymbol{d}:=\operatorname{dim} \Delta(x, y)=i-2 .
$$

In particular, $(-1)^{d}=(-1)^{i}$.
We get:

$$
\sum_{j=0}^{d}(-1)^{d-j} \operatorname{dim} \widetilde{H}_{j}(\Delta ; K)=(-1)^{i} \mu(x, y)>0
$$

A topological question

For $x<y$ in $L(\mathcal{A})$, with $i=\operatorname{rank}(x, y)$, we have

$$
\boldsymbol{d}:=\operatorname{dim} \Delta(x, y)=i-2 .
$$

In particular, $(-1)^{d}=(-1)^{i}$.
We get:

$$
\sum_{j=0}^{d}(-1)^{d-j} \operatorname{dim} \widetilde{H}_{j}(\Delta ; K)=(-1)^{i} \mu(x, y)>0
$$

Is there a topological reason for this?

Folkman's theorem

Previous slide: $\sum_{j=0}^{d}(-1)^{d-j} \operatorname{dim} \widetilde{H}_{j}(\Delta ; K)>0$.

Folkman's theorem

Previous slide: $\sum_{j=0}^{d}(-1)^{d-j} \operatorname{dim} \widetilde{H}_{j}(\Delta ; K)>0$.
Theorem (Folkman, 1966).

$$
\widetilde{H}_{j}(\Delta ; K)\left\{\begin{array}{l}
=0, j \neq d \\
\neq 0, j=d
\end{array}\right.
$$

Note. $\operatorname{dim} \widetilde{H}_{d}(\Delta ; K)=(-1)^{d} \mu(x, y)$

Folkman's theorem

Previous slide: $\sum_{j=0}^{d}(-1)^{d-j} \operatorname{dim} \widetilde{H}_{j}(\Delta ; K)>0$.
Theorem (Folkman, 1966).

$$
\widetilde{H}_{j}(\Delta ; K)\left\{\begin{array}{l}
=0, j \neq d \\
\neq 0, j=d
\end{array}\right.
$$

Note. $\operatorname{dim} \widetilde{H}_{d}(\Delta ; K)=(-1)^{d} \mu(x, y)$
Early result in topological combinatorics.

Cohen-Macaulay posets

A finite poset P is Cohen-Macaulay (over K) if after adjoining a top and bottom element to P, every interval $[x, y]$ satisfies:
If $d=\operatorname{dim} \Delta(x, y)$ then $\widetilde{H}_{j}(\Delta(x, y) ; K)=0$ whenever $j \neq d$.

Cohen-Macaulay posets

A finite poset P is Cohen-Macaulay (over K) if after adjoining a top and bottom element to P, every interval $[x, y]$ satisfies:
If $d=\operatorname{dim} \Delta(x, y)$ then $\widetilde{H}_{j}(\Delta(x, y) ; K)=0$ whenever $j \neq d$.

Folkman's theorem, restated. If \mathcal{A} is central then $L(\mathcal{A})$ is Cohen-Macaulay.

Modular elements

Let \mathcal{A} be central. An element $x \in L(\mathcal{A})$ is modular if for all $y \in L$ we have

$$
\operatorname{rk}(x)+\operatorname{rk}(y)=\operatorname{rk}(x \wedge y)+\operatorname{rk}(x \vee y) .
$$

Modular elements

Let \mathcal{A} be central. An element $x \in L(\mathcal{A})$ is modular if for all $y \in L$ we have

$$
\operatorname{rk}(x)+\operatorname{rk}(y)=\operatorname{rk}(x \wedge y)+\operatorname{rk}(x \vee y)
$$

x is not modular: $\operatorname{rk}(x)+\operatorname{rk}(y)=2+2=4$, $\operatorname{rk}(x \wedge y)+\operatorname{rk}(x \vee y)=0+3=3$

Simple properties

Easy: $\hat{0}=K^{n}, \hat{1}=\bigcap_{H \in \mathcal{A}} H$ (the top element), and each $H \in \mathcal{A}$ is modular.

More properties

$x, y \in L(\mathcal{A})$ are complements if $x \wedge y=\hat{0}$,
$x \vee y=\hat{1}$.

More properties

$x, y \in L(\mathcal{A})$ are complements if $x \wedge y=\hat{0}$,
$x \vee y=\hat{1}$.
Theorem. Let $r=\operatorname{rk}(\mathcal{A})$. Let $x \in L$. The following four conditions are equivalent.
(i) x is a modular element of L.
(ii) If $x \wedge y=\hat{0}$, then $\mathrm{rk}(x)+\operatorname{rk}(y)=\operatorname{rk}(x \vee y)$.
(iii) If x and y are complements, then $\operatorname{rk}(x)+\operatorname{rk}(y)=n$.
(iv) All complements of x are incomparable.

Two additional results

Theorem.

(a) (transitivity of modularity) If x is a modular element of L and y is modular in the interval $[\hat{0}, x]$, then y is a modular element of L.
(b) If x and y are modular elements of L, then $x \wedge y$ is also modular.

Modular element factorization thm.

Theorem. Let z be a modular element of $L(\mathcal{A})$, \mathcal{A} central of rankr. Write $\chi_{z}(t)=\chi_{[0, z]}(t)$. Then

$$
\chi_{L}(t)=\chi_{z}(t)\left[\sum_{y: y \wedge z=\hat{0}} \mu_{L}(y) t^{n-\operatorname{rk}(y)-\mathrm{rk}(z)}\right]
$$

Modular element factorization thm.

Theorem. Let z be a modular element of $L(\mathcal{A})$, \mathcal{A} central of rankr. Write $\boldsymbol{\chi}_{\boldsymbol{z}}(\boldsymbol{t})=\chi_{[\hat{0}, z]}(t)$. Then

$$
\chi_{L}(t)=\chi_{z}(t)\left[\sum_{y: y \wedge z=\hat{0}} \mu_{L}(y) t^{n-\operatorname{rk}(y)-\operatorname{rk}(z)}\right] .
$$

Since each $H \in \mathcal{A}$ is modular in $L(\mathcal{A})$, we get:
Corollary. For all $H \in \mathcal{A}$,

$$
\chi_{L}(t)=(t-1) \sum_{y \wedge H=\hat{0}} \mu(y) t^{n-1-\mathrm{rk}(y)} .
$$

Supersolvability

A central arrangement \mathcal{A} (or $L(\mathcal{A})$) is supersolvable if $L(\mathcal{A})$ has a maximal chain $\hat{0}=x_{0}<x_{1}<\cdots<x_{r}=\hat{1}$ of modular elements x_{i}.

Supersolvability

A central arrangement $\mathcal{A}($ or $L(\mathcal{A})$) is supersolvable if $L(\mathcal{A})$ has a maximal chain $\hat{0}=x_{0}<x_{1}<\cdots<x_{r}=\hat{1}$ of modular elements x_{i}.

In this case, let
$\boldsymbol{a}_{\boldsymbol{i}}=\#\left\{H \in \mathcal{A}: H \leq x_{i}, H \not 又 x_{i-1}\right\}$.
Corollary. If \mathcal{A} is supersolvable, then

$$
\chi_{\mathcal{A}}(t)=t^{n-r}\left(t-a_{1}\right)\left(t-a_{2}\right) \cdots\left(t-a_{r}\right) .
$$

Chordal graphs, revisited

For what graphs G is \mathcal{A}_{G} supersolvable?
Recall: $x_{i}=x_{j}$ for $i j \in E(G)$

Chordal graphs, revisited

For what graphs G is \mathcal{A}_{G} supersolvable?
Recall: $x_{i}=x_{j}$ for $i j \in E(G)$
Recall that a chordal graph has a vertex ordering v_{1}, \ldots, v_{n} so that for all i, v_{i} is connected to a clique of the restriction \boldsymbol{G}_{i-1} of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Chordal graphs, revisited

For what graphs G is \mathcal{A}_{G} supersolvable?
Recall: $x_{i}=x_{j}$ for $i j \in E(G)$
Recall that a chordal graph has a vertex ordering v_{1}, \ldots, v_{n} so that for all i, v_{i} is connected to a clique of the restriction $\boldsymbol{G}_{\boldsymbol{i - 1}}$ of G to $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

If v_{i} is connected to a_{i} vertices of G_{i-1}, then

$$
\chi_{G}(q)=\left(q-a_{1}\right)\left(q-a_{2}\right) \cdots\left(q-a_{n}\right) .
$$

Supersolvable graphs

Suggests that

$$
G \text { chordal } \Rightarrow G\left(\text { or } \mathcal{A}_{G}\right) \text { supersolvable. }
$$

Supersolvable graphs

Suggests that

$$
G \text { chordal } \Rightarrow G\left(\text { or } \mathcal{A}_{G}\right) \text { supersolvable. }
$$

In fact:
Theorem. G is chordal if and only if \mathcal{A}_{G} is supersolvable.

Free arrangements

Saito defined free arrangements \mathcal{A}. Terao (1980) proved

$$
\chi_{\mathcal{A}}(t)=\left(t-a_{1}\right) \cdots\left(t-a_{n}\right),
$$

where $a_{i} \in\{0,1,2, \ldots\}$. (Definition not given here.)

Free arrangements

Saito defined free arrangements \mathcal{A}. Terao (1980) proved

$$
\chi_{\mathcal{A}}(t)=\left(t-a_{1}\right) \cdots\left(t-a_{n}\right),
$$

where $a_{i} \in\{0,1,2, \ldots\}$. (Definition not given here.)

Supersolvable arrangements are free.

Free arrangements

Saito defined free arrangements \mathcal{A}. Terao

 (1980) proved$$
\chi_{\mathcal{A}}(t)=\left(t-a_{1}\right) \cdots\left(t-a_{n}\right),
$$

where $a_{i} \in\{0,1,2, \ldots\}$. (Definition not given here.)

Supersolvable arrangements are free.
Open: is freeness of \mathcal{A} a combinatorial property? That is, does it just depend on $\chi_{\mathcal{A}}(t)$?

Finite fields and good reduction

\mathcal{A} : arrangement over \mathbb{Q}
By multiplying hyperplane equations by a suitable integer, can assume \mathcal{A} is defined over \mathbb{Z}.

Finite fields and good reduction

\mathcal{A} : arrangement over \mathbb{Q}
By multiplying hyperplane equations by a suitable integer, can assume \mathcal{A} is defined over \mathbb{Z}.

Consider coefficients modulo a prime \boldsymbol{p} to get an arrangment \mathcal{A}_{q} defined over the finite field \mathbb{F}_{q}, $q=p^{k}$.

Finite fields and good reduction

\mathcal{A} : arrangement over \mathbb{Q}
By multiplying hyperplane equations by a suitable integer, can assume \mathcal{A} is defined over \mathbb{Z}.

Consider coefficients modulo a prime \boldsymbol{p} to get an arrangment \mathcal{A}_{q} defined over the finite field \mathbb{F}_{q}, $q=p^{k}$.
\mathcal{A}_{q} has good reduction if $L_{\mathcal{A}} \cong L_{\mathcal{A}_{q}}$.

Almost always good reduction

Example. $\mathcal{A}=\{2,10\}$: affine arrangement in $\mathbb{Q}^{1}=\mathbb{Q}$. Good reduction $\Leftrightarrow p \neq 2,5$.

Almost always good reduction

Example. $\mathcal{A}=\{2,10\}$: affine arrangement in $\mathbb{Q}^{1}=\mathbb{Q}$. Good reduction $\Leftrightarrow p \neq 2,5$.

Theorem. Let \mathcal{A} be an arrangement defined over \mathbb{Z}. Then \mathcal{A} has good reduction for all but finitely many primes p.

Almost always good reduction

Example. $\mathcal{A}=\{2,10\}$: affine arrangement in $\mathbb{Q}^{1}=\mathbb{Q}$. Good reduction $\Leftrightarrow p \neq 2,5$.

Theorem. Let \mathcal{A} be an arrangement defined over \mathbb{Z}. Then \mathcal{A} has good reduction for all but finitely many primes p.

Proof idea. Consider minors of the coefficient matrix, etc. \square

The finite field method

Theorem. Let \mathcal{A} be an arrangement in \mathbb{Q}^{n}, and suppose that $L(\mathcal{A}) \cong L\left(\mathcal{A}_{q}\right)$ for some prime power q. Then

$$
\begin{aligned}
\chi_{\mathcal{A}}(q) & =\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}_{q}} H\right) \\
& =q^{n}-\# \bigcup_{H \in \mathcal{A}_{q}} H
\end{aligned}
$$

Proof

Let $x \in L\left(\mathcal{A}_{q}\right)$ so $\# x=q^{\operatorname{dim}(x)}$ (computed either over \mathbb{Q} or $\left.F_{q}\right)$. Define $f, g: L\left(\mathcal{A}_{q}\right) \rightarrow \mathbb{Z}$ by

$$
\begin{aligned}
f(x) & =\# x \\
g(x) & =\#\left(x-\bigcup_{y>x} y\right) \\
\Rightarrow g(\hat{0}) & =g\left(\mathbb{F}_{q}^{n}\right)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}_{q}} H\right) .
\end{aligned}
$$

Proof concluded

Clearly $f(x)=\sum_{y \geq x} g(y)$.

Proof concluded

Clearly $f(x)=\sum_{y \geq x} g(y)$.
Möbius inversion \Rightarrow

$$
\begin{aligned}
g(x) & =\sum_{y \geq x} \mu(x, y) f(y) \\
& =\sum_{y \geq x} \mu(x, y) q^{\operatorname{dim}(y)}
\end{aligned}
$$

Proof concluded

Clearly $f(x)=\sum_{y \geq x} g(y)$.
Möbius inversion \Rightarrow

$$
\begin{array}{r}
g(x)=\sum_{y \geq x} \mu(x, y) f(y) \\
=\sum_{y \geq x} \mu(x, y) q^{\operatorname{dim}(y)} \\
x=\hat{0} \Rightarrow g(\hat{0})=\sum_{y} \mu(y) q^{\operatorname{dim}(y)}=\chi_{\mathcal{A}}(q)
\end{array}
$$

Graphical arrangements

G: graph on vertex set $1,2, \ldots, n$
\mathcal{A}_{G} : graphical arrangement $x_{i}=x_{j}, \quad i j \in E(G)$

Graphical arrangements

G : graph on vertex set $1,2, \ldots, n$
\mathcal{A}_{G} : graphical arrangement $x_{i}=x_{j}, \quad$ ij $\in E(G)$
finite field method: for $p \gg 0$ (actually, all p),
$\chi_{\mathcal{A}_{G}}(q)=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q}^{n}: \alpha_{i} \neq \alpha_{j}\right.$ if $\left.i j \in E(G)\right\}$

Graphical arrangements

G : graph on vertex set $1,2, \ldots, n$
\mathcal{A}_{G} : graphical arrangement $x_{i}=x_{j}, \quad$ ij $\in E(G)$
finite field method: for $p \gg 0$ (actually, all p),

$$
\begin{aligned}
\chi_{\mathcal{A}_{G}}(q) & =\#\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q}^{n}: \alpha_{i} \neq \alpha_{j} \text { if } i j \in E(G)\right\} \\
& =\chi_{G}(q)
\end{aligned}
$$

Graphical arrangements

G : graph on vertex set $1,2, \ldots, n$
\mathcal{A}_{G} : graphical arrangement $x_{i}=x_{j}, \quad$ ij $\in E(G)$
finite field method: for $p \gg 0$ (actually, all p),

$$
\begin{aligned}
\chi_{\mathcal{A}_{G}}(q) & =\#\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q}^{n}: \alpha_{i} \neq \alpha_{j} \text { if } i j \in E(G)\right\} \\
& =\chi_{G}(q)
\end{aligned}
$$

The braid arrangement $\mathcal{B}\left(\boldsymbol{B}_{n}\right)$

$$
\begin{aligned}
x_{i}-x_{j}=0, & 1 \leq i<j \leq n \\
x_{i}+x_{j}=0, & 1 \leq i<j \leq n \\
x_{i}=0, & 1 \leq i \leq n
\end{aligned}
$$

The braid arrangement $\mathcal{B}\left(\boldsymbol{B}_{n}\right)$

$$
\begin{aligned}
x_{i}-x_{j}=0, & 1 \leq i<j \leq n \\
x_{i}+x_{j}=0, & 1 \leq i<j \leq n \\
x_{i}=0, & 1 \leq i \leq n
\end{aligned}
$$

Thus for $p \gg 0$ (actually $p>2$),

$$
\begin{aligned}
\chi_{\mathcal{B}\left(B_{n}\right)}(q) & =\#\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q}^{n}:\right. \\
\alpha_{i} & \left.\neq \pm \alpha_{j}(i \neq j), \alpha_{i} \neq 0\right\} .
\end{aligned}
$$

The braid arrangement $\mathcal{B}\left(\boldsymbol{B}_{n}\right)$

$$
\begin{aligned}
x_{i}-x_{j}=0, & 1 \leq i<j \leq n \\
x_{i}+x_{j}=0, & 1 \leq i<j \leq n \\
x_{i}=0, & 1 \leq i \leq n
\end{aligned}
$$

Thus for $p \gg 0$ (actually $p>2$),

$$
\begin{aligned}
\chi_{\mathcal{B}\left(B_{n}\right)}(q) & =\#\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q}^{n}\right. \\
\alpha_{i} & \left.\neq \pm \alpha_{j}(i \neq j), \alpha_{i} \neq 0\right\} .
\end{aligned}
$$

Choose α_{1} in $q-1$ ways, then α_{2} in $q-3$ ways, etc.

Characteristic polynomial of $\mathcal{B}\left(B_{n}\right)$

$$
\Rightarrow \chi_{\mathcal{B}\left(B_{n}\right)}(q)=(q-1)(q-3) \cdots(q-2 n+1)
$$

Characteristic polynomial of $\mathcal{B}\left(B_{n}\right)$

$$
\Rightarrow \chi_{\mathcal{B}\left(B_{n}\right)}(q)=(q-1)(q-3) \cdots(q-2 n+1)
$$

In fact, $\mathcal{B}\left(B_{n}\right)$ is supersolvable.

$$
\begin{aligned}
& x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n \\
& x_{i}+x_{j}=0, \quad 1 \leq i<j \leq n
\end{aligned}
$$

$$
\begin{aligned}
& x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n \\
& x_{i}+x_{j}=0, \quad 1 \leq i<j \leq n
\end{aligned}
$$

Exercise: If $n \geq 3$ then

$$
\chi_{\mathcal{B}\left(D_{n}\right)}=(q-1)(q-3) \cdots(q-2 n+3) \cdot(q-n+1) .
$$

$$
\begin{aligned}
& x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n \\
& x_{i}+x_{j}=0, \quad 1 \leq i<j \leq n
\end{aligned}
$$

Exercise: If $n \geq 3$ then
$\chi_{\mathcal{B}\left(D_{n}\right)}=(q-1)(q-3) \cdots(q-2 n+3) \cdot(q-n+1)$.

Not supersolvable $(n \geq 4)$, but it is free.

The Shi arrangement

$$
\begin{gathered}
\mathcal{S}_{n}: x_{i}-x_{j}=0,1, \quad 1 \leq i<j \leq n \\
\operatorname{dim} \mathcal{S}_{n}=n, \quad \operatorname{rk} \mathcal{S}_{n}=n-1, \quad \# \mathcal{S}_{n}=n(n-1)
\end{gathered}
$$

The Shi arrangement

$$
\mathcal{S}_{n}: x_{i}-x_{j}=0,1, \quad 1 \leq i<j \leq n
$$

$$
\operatorname{dim} \mathcal{S}_{n}=n, \quad \operatorname{rk} \mathcal{S}_{n}=n-1, \quad \# \mathcal{S}_{n}=n(n-1)
$$

Characteristic polynomial of \mathcal{S}_{n}

Theorem. $\chi_{\mathcal{S}_{n}}(t)=t(t-n)^{n-1}$, so

$$
r\left(\mathcal{S}_{n}\right)=(n+1)^{n-1}, \quad b\left(\mathcal{S}_{n}\right)=(n-1)^{n-1}
$$

Characteristic polynomial of \mathcal{S}_{n}

Theorem. $\chi_{\mathcal{S}_{n}}(t)=t(t-n)^{n-1}$, so

$$
r\left(\mathcal{S}_{n}\right)=(n+1)^{n-1}, \quad b\left(\mathcal{S}_{n}\right)=(n-1)^{n-1}
$$

Proof. Finite field method \Rightarrow

$$
\begin{gathered}
\chi_{\mathcal{S}_{n}}(p)=\#\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{p}^{n}:\right. \\
\left.i<j \Rightarrow \alpha_{i} \neq \alpha_{j} \text { and } \alpha_{i} \neq \alpha_{j}+1\right\}
\end{gathered}
$$

for $p \gg 0$ (actually, all p).

Proof continued

Choose $\boldsymbol{\pi}=\left(B_{1}, \ldots, B_{p-n}\right)$ such that

$$
\bigcup B_{i}=[n], \quad B_{i} \cap B_{j}=\emptyset \text { if } i \neq j, \quad 1 \in B_{1} .
$$

Proof continued

Choose $\boldsymbol{\pi}=\left(B_{1}, \ldots, B_{p-n}\right)$ such that

$$
\bigcup B_{i}=[n], \quad B_{i} \cap B_{j}=\emptyset \text { if } i \neq j, \quad 1 \in B_{1} .
$$

For $2 \leq k \leq n$ there are $p-n$ choices for i such that $k \in B_{i}$, so $(p-n)^{n-1}$ choices in all.

Circular placement of \mathbb{F}_{p}

Arrange the elements of \mathbb{F}_{p} clockwise on a circle.
Place $1,2, \ldots, n$ on some n of these points as follows.

Place elements of B_{1} consecutively (clockwise) in increasing order with 1 placed at some element $\alpha_{1} \in \mathbb{F}_{p}$.
Skip a space and place the elements of B_{2} consecutively in increasing order.

Skip another space and place the elements of B_{3} consecutively in increasing order, etc.

Example for $p=11, n=6$

$$
\pi=(\{1,4\},\{5\}, \emptyset,\{2,3,6\}, \emptyset)
$$

Conclusion of proof

$\boldsymbol{\alpha}_{i}$: position (element of \mathbb{F}_{p}) at which i was placed

Conclusion of proof

$\boldsymbol{\alpha}_{i}$: position (element of \mathbb{F}_{p}) at which i was placed
Previous example:
$\left(\alpha_{1}, \ldots, \alpha_{6}\right)=(6,1,2,7,9,3) \in \mathbb{F}_{11}^{6}$

Conclusion of proof

$\boldsymbol{\alpha}_{i}$: position (element of \mathbb{F}_{p}) at which i was placed
Previous example:
$\left(\alpha_{1}, \ldots, \alpha_{6}\right)=(6,1,2,7,9,3) \in \mathbb{F}_{11}^{6}$
Gives bijection

$$
\left\{\left(\pi=\left(B_{1}, \ldots, B_{p-n}\right), \alpha_{1}\right)\right\} \rightarrow \mathbb{F}_{p}^{n}-\bigcup_{H \in\left(\mathcal{S}_{n}\right)_{p}} H
$$

Conclusion of proof

$\boldsymbol{\alpha}_{i}$: position (element of \mathbb{F}_{p}) at which i was placed
Previous example:
$\left(\alpha_{1}, \ldots, \alpha_{6}\right)=(6,1,2,7,9,3) \in \mathbb{F}_{11}^{6}$
Gives bijection

$$
\left\{\left(\pi=\left(B_{1}, \ldots, B_{p-n}\right), \alpha_{1}\right)\right\} \rightarrow \mathbb{F}_{p}^{n}-\bigcup_{H \in\left(\mathcal{S}_{n}\right)_{p}} H
$$

$(p-n)^{n-1}$ choices for π and p choices for α_{1}, so

$$
\chi_{\mathcal{S}_{n}}(p)=p(p-n)^{n-1}
$$

The Catalan arrangement

$$
\mathcal{C}_{n}: x_{i}-x_{j}=0,-1,1, \quad 1 \leq i<j \leq n
$$

$$
\operatorname{dim} \mathcal{C}_{n}=n, \quad \operatorname{rk} \mathcal{C}_{n}=n-1, \quad \# \mathcal{S}_{n}=3\binom{n}{2}
$$

The Catalan arrangement

$$
\mathcal{C}_{n}: x_{i}-x_{j}=0,-1,1, \quad 1 \leq i<j \leq n
$$

$$
\operatorname{dim} \mathcal{C}_{n}=n, \quad \operatorname{rk} \mathcal{C}_{n}=n-1, \quad \# \mathcal{S}_{n}=3\binom{n}{2}
$$

Char. poly. of Catalan arrangment

Theorem.
$\chi_{\mathcal{C}_{n}}(t)=t(t-n-1)(t-n-2)(t-n-3) \cdots(t-2 n+1)$, so

$$
r\left(\mathcal{C}_{n}\right)=n!C_{n}, \quad b\left(\mathcal{C}_{n}\right)=n!C_{n-1},
$$

where $\boldsymbol{C}_{\boldsymbol{m}}=\frac{1}{m+1}\binom{2 m}{m}$ (Catalan number).

Char. poly. of Catalan arrangment

Theorem.
$\chi_{\mathcal{C}_{n}}(t)=t(t-n-1)(t-n-2)(t-n-3) \cdots(t-2 n+1)$, so

$$
r\left(\mathcal{C}_{n}\right)=n!C_{n}, \quad b\left(\mathcal{C}_{n}\right)=n!C_{n-1},
$$

where $\boldsymbol{C}_{m}=\frac{1}{m+1}\binom{2 m}{m}$ (Catalan number).
Easy to prove using finite field method.

Char. poly. of Catalan arrangment

Theorem.
$\chi_{\mathcal{C}_{n}}(t)=t(t-n-1)(t-n-2)(t-n-3) \cdots(t-2 n+1)$, SO

$$
r\left(\mathcal{C}_{n}\right)=n!C_{n}, \quad b\left(\mathcal{C}_{n}\right)=n!C_{n-1},
$$

where $\boldsymbol{C}_{\boldsymbol{m}}=\frac{1}{m+1}\binom{2 m}{m}$ (Catalan number).
Easy to prove using finite field method.
Each region of the braid arrangement \mathcal{B}_{n} contains C_{n} regions and C_{n-1} relatively bounded regions of the Catalan arrangment \mathcal{C}_{n}.

Catalan numbers

≥ 172 combinatorial interpretations of C_{n} at

> math.mit.edu/~rstan/ec

The Linial arrangement

$$
\mathcal{L}_{n}: x_{i}-x_{j}=1, \quad 1 \leq i<j \leq n
$$

$$
\operatorname{dim} \mathcal{L}_{n}=n, \quad \operatorname{rk} \mathcal{L}_{n}=n-1, \quad \# \mathcal{L}_{n}=\binom{n}{2}
$$

The Linial arrangement

$$
\mathcal{L}_{n}: x_{i}-x_{j}=1, \quad 1 \leq i<j \leq n
$$

$$
\operatorname{dim} \mathcal{L}_{n}=n, \quad \text { rk } \mathcal{L}_{n}=n-1, \quad \# \mathcal{L}_{n}=\binom{n}{2}
$$

Char. poly. of Linial arrangment

Theorem. $\chi_{\mathcal{L}_{n}}(t)=\frac{t}{2^{n}} \sum_{k=1}^{n}\binom{n}{k}(t-k)^{n-1}$, SO

$$
\begin{aligned}
& r\left(\mathcal{L}_{n}\right)=\frac{1}{2^{n}} \sum_{k=1}^{n}\binom{n}{k}(k+1)^{n-1} \\
& b\left(\mathcal{L}_{n}\right)=\frac{1}{2^{n}} \sum_{k=1}^{n}\binom{n}{k}(k-1)^{n-1}
\end{aligned}
$$

Two proofs

Postnikov: (difficult) proof using Whitney's theorem

Athanasiadis: (difficult) proof using finite field method

Alternating trees

An alternating tree on $[n]$ is a tree on the vertex set $[n]$ such that every vertex is either less than all its neighbors or greater than all its neighbors.

Alternating trees

An alternating tree on $[n]$ is a tree on the vertex set $[n]$ such that every vertex is either less than all its neighbors or greater than all its neighbors.

Alternating trees and \mathcal{L}_{n}

$\boldsymbol{f}(\boldsymbol{n})$: number of alternating trees on $[n]$
Theorem (Kuznetsov, Pak, Postnikov, 1994).

$$
f(n+1)=\frac{1}{2^{n}} \sum_{k=1}^{n}\binom{n}{k}(k+1)^{n-1}
$$

Alternating trees and \mathcal{L}_{n}

$\boldsymbol{f}(\boldsymbol{n})$: number of alternating trees on $[n]$
Theorem (Kuznetsov, Pak, Postnikov, 1994).

$$
f(n+1)=\frac{1}{2^{n}} \sum_{k=1}^{n}\binom{n}{k}(k+1)^{n-1}
$$

Corollary. $f(n+1)=r\left(\mathcal{L}_{n}\right)$

Alternating trees and \mathcal{L}_{n}

$\boldsymbol{f}(\boldsymbol{n})$: number of alternating trees on $[n]$
Theorem (Kuznetsov, Pak, Postnikov, 1994).

$$
f(n+1)=\frac{1}{2^{n}} \sum_{k=1}^{n}\binom{n}{k}(k+1)^{n-1}
$$

Corollary. $f(n+1)=r\left(\mathcal{L}_{n}\right)$
No combinatorial proof known!

The threshold arrangment

$$
\begin{gathered}
\mathcal{T}_{n}: x_{i}+x_{j}=0, \quad 1 \leq i<j \leq n \\
\operatorname{dim} \mathcal{T}_{n}=n, \quad \operatorname{rk} \mathcal{T}_{n}=n, \quad \# \mathcal{T}_{n}=\binom{n}{2}
\end{gathered}
$$

The threshold arrangment

$$
\begin{gathered}
\mathcal{T}_{n}: x_{i}+x_{j}=0, \quad 1 \leq i<j \leq n \\
\operatorname{dim} \mathcal{T}_{n}=n, \quad \operatorname{rk} \mathcal{T}_{n}=n, \quad \# \mathcal{T}_{n}=\binom{n}{2}
\end{gathered}
$$

threshold graph:

- \emptyset is a threshold graph
- G threshhold $\Rightarrow G \cup\{$ vertex $\}$ threshold
- G threshold $\Rightarrow \operatorname{join}(G, v)$ threshold

Char. poly. of threshold arrangemen

Theorem. $r\left(\mathcal{T}_{n}\right)=\#$ threshold graphs on $[n]$. Hence (by a known result on threshold graphs)

$$
\sum_{n \geq 0} r\left(\mathcal{I}_{n}\right) \frac{x^{n}}{n!}=\frac{e^{x}(1-x)}{2-e^{x}}
$$

Char. poly. of threshold arrangemen

Theorem. $r\left(\mathcal{T}_{n}\right)=\#$ threshold graphs on $[n]$. Hence (by a known result on threshold graphs)

$$
\sum_{n \geq 0} r\left(\mathcal{T}_{n}\right) \frac{x^{n}}{n!}=\frac{e^{x}(1-x)}{2-e^{x}}
$$

Theorem. $\sum_{n \geq 0} \chi_{\tau_{n}}(t) \frac{x^{n}}{n!}=(1+x)\left(2 e^{x}-1\right)^{(t-1) / 2}$

Small values of $\chi_{\mathcal{I}_{n}}(t)$

$$
\begin{aligned}
& \chi_{\tau_{3}}(t)=t^{3}-3 t^{2}+3 t-1 \\
& \chi_{\mathcal{T}_{4}}(t)=t^{4}-6 t^{3}+15 t^{2}-17 t+7 \\
& \chi_{\tau_{5}}(t)=t^{5}-10 t^{4}+45 t^{3}-105 t^{2}+120 t-51 .
\end{aligned}
$$

Coefficients of $\chi_{\mathcal{T}_{n}}(t)$

Let

$$
\chi_{\mathcal{I}_{n}}(t)=t^{n}-a_{n-1} t^{n-1}+\cdots+(-1)^{n} a_{0}
$$

Coefficients of $\chi_{\mathcal{I}_{n}}(t)$

Let

$$
\chi_{\mathcal{T}_{n}}(t)=t^{n}-a_{n-1} t^{n-1}+\cdots+(-1)^{n} a_{0} .
$$

Thus $\sum a_{i}=\#\{$ threshold graphs on $[n]\}$.

Coefficients of $\chi_{\mathcal{I}_{n}}(t)$

Let

$$
\chi_{\mathcal{I}_{n}}(t)=t^{n}-a_{n-1} t^{n-1}+\cdots+(-1)^{n} a_{0} .
$$

Thus $\sum a_{i}=\#\{$ threshold graphs on $[n]\}$.
Open: interpret a_{i} as the number of threshold graphs on $[n]$ with some property.

Minkowski space $\mathbb{R}^{1,3}$
$\mathbb{R}^{1,3}$: Minkowski spacetime with one time and three space dimensions

$$
\begin{aligned}
& \boldsymbol{p}=(t, \boldsymbol{x}) \in \mathbb{R}^{1,3}, \quad \boldsymbol{x}=(x, y, z) \in \mathbb{R}^{3} \\
& |\boldsymbol{p}|^{2}=t^{2}-|x|^{2}=t^{2}-\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

Ordering events in $\mathbb{R}^{1,3}$

Let $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{k} \in \mathbb{R}^{1,3}$. In different reference frames (at constant velocities with respect to each other) these events can occur in different orders (but never violating causality).

Ordering events in $\mathbb{R}^{1,3}$

Let $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{k} \in \mathbb{R}^{1,3}$. In different reference frames (at constant velocities with respect to each other) these events can occur in different orders (but never violating causality).

Main question: what is the maximum number of different orders in which these events can occur?

The hyperplane of simultaneity

$$
\text { Let } \boldsymbol{p}_{\mathbf{1}}=\left(t_{1}, \boldsymbol{x}_{1}\right), \boldsymbol{p}_{\boldsymbol{2}}=\left(t_{2}, \boldsymbol{x}_{\mathbf{2}}\right) \in \mathbb{R}^{1,3} .
$$

For a reference frame at velocity v, the Lorentz transformation $\Rightarrow p_{1}, p_{2}$ occur at the same time if and only if

$$
t_{1}-t_{2}=\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{\mathbf{2}}\right) \cdot \boldsymbol{v}
$$

The set of all such $v \in \mathbb{R}^{3}$ forms a hyperplane.

The Einstein arrangement

Thus the number of different orders in which the events can occur is the number of regions R of the Einstein arrangement

$$
\mathcal{E}=\mathcal{E}\left(p_{1}, \ldots, p_{k}\right)
$$

defined by

$$
t_{i}-t_{j}=\left(x_{1}-x_{2}\right) \cdot v, \quad 1 \leq i<j \leq k
$$

such that $|v|<1$ (the speed of light) for some $\boldsymbol{v} \in R$.

Intersection poset of \mathcal{E}

Can insure that $v \in R$ for all R by taking p_{1}, \ldots, p_{k} sufficiently "far apart".

Can maximize $r(\mathcal{E})$ for fixed k by choosing p_{1}, \ldots, p_{k} generic.

Intersection poset of \mathcal{E}

Can insure that $v \in R$ for all R by taking p_{1}, \ldots, p_{k} sufficiently "far apart".

Can maximize $r(\mathcal{E})$ for fixed k by choosing p_{1}, \ldots, p_{k} generic.

In this case, $L(\mathcal{E})$ is isomorphic to the rank 3 truncation of $L\left(\mathcal{B}_{k}\right) \cong \Pi_{k}$.

Coefficients of $\chi_{\mathcal{B}_{k}}(t)$

Recall

$$
\begin{aligned}
\chi_{\mathcal{B}_{k}}(t) & =t(t-1) \cdots(t-k+1) \\
& =c(k, k) t^{k}-c(k, k-1) t^{k-1}+\cdots,
\end{aligned}
$$

where $c(k, i)$ is the number of permutations of $1,2, \ldots, k$ with i cycles (signless Stirling number of the first kind).

Computation of $r(\mathcal{E})$

Corollary.

$$
\begin{aligned}
\chi_{\mathcal{E}}(t)= & c(k, k) t^{3}-c(k, k-1) t^{2}+c(k, k-2) t \\
& -c(k, k-3) \\
\Rightarrow r(\mathcal{E})= & c(k, k)+c(k, k-1)+c(k, k-2) \\
& +c(k, k-3) \\
= & \frac{1}{48}\left(k^{6}-7 k^{5}+23 k^{4}-37 k^{3}+48 k^{2}\right. \\
& \quad-28 k+48)
\end{aligned}
$$

Arrangements and Combinatorics - o. 12

