Catalan Numbers

Richard P. Stanley

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http: / / oeis.org. A database of over 270,000 sequences of integers.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http: / / oeis.org. A database of over 270,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=2, C_{2}=3, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http: / / oeis .org. A database of over 270,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=2, C_{2}=3, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.
Comments. ... This is probably the longest entry in OEIS, and rightly so.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of C_{n} and 68 additional problems.

History

Sharabiin Myangat，also known as Minggatu， Ming＇antu（明安图），and Jing An （c．1692－c．1763）：a Mongolian astronomer， mathematician，and topographic scientist who worked at the Qing court in China．

History

Sharabiin Myangat，also known as Minggatu， Ming＇antu（明安图），and Jing An （c．1692－c．1763）：a Mongolian astronomer， mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

History

Sharabiin Myangat，also known as Minggatu， Ming＇antu（明安图），and Jing An （c．1692－c．1763）：a Mongolian astronomer， mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

No combinatorics，no further work in China．

Manuscript of Ming Antu

Manuscript of Ming Antu

Manuscript of Ming Antu

Manuscript of Ming Antu

More history, via Igor Pak

- Euler (1751): conjectured formula for number C_{n} of triangulations of a convex $(n+2)$-gon (definition of Catalan numbers). In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

Completion of proof

- Goldbach and Segner (1758-1759): helped Euler complete the proof, in pieces.
- Lamé (1838): first self-contained, complete proof.

Catalan

- Eugène Charles Catalan (1838): wrote C_{n} in the form $\frac{(2 n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.

Catalan

- Eugène Charles Catalan (1838): wrote C_{n} in the form $\frac{(2 n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book Combinatorial Identities. Finally caught on.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book Combinatorial Identities. Finally caught on.
- Martin Gardner (1976): used the term in his Mathematical Games column in Scientific American. Real popularity began.

The primary recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

The primary recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $\boldsymbol{y}=\sum_{n \geq 0} C_{n} x^{n}$.
Multiply recurrence by x^{n} and sum on $n \geq 0$.

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $\boldsymbol{y}=\sum_{n \geq 0} C_{n} x^{n}$.
Multiply recurrence by x^{n} and sum on $n \geq 0$.

$$
\sum_{n \geq 0} C_{n+1} x^{n}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n}
$$

A quadratic equation

$$
\sum_{n \geq 0} C_{n+1} x^{n}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n}
$$

A quadratic equation

$$
\sum_{n \geq 0} C_{n+1} x^{n}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n}
$$

Now $x \sum_{n \geq 0} C_{n+1} x^{n}=\sum_{n \geq 1} C_{n} x^{n}=y-1$.
Moreover, $\sum_{k=0}^{n} C_{k} C_{n-k}$ is the coefficient of x^{n} in $\left(\sum_{n \geq 0} C_{n} x^{n}\right)^{2}=y^{2}$, since in general, $\sum_{k=0}^{n} a_{k} b_{n-k}$ is the coefficient of x^{n} in the product
$\left(\sum_{n \geq 0} a_{n} x^{n}\right)\left(\sum_{n \geq 0} b_{n} x^{n}\right)$.

A quadratic equation

$$
\sum_{n \geq 0} C_{n+1} x^{n}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n}
$$

Now $x \sum_{n \geq 0} C_{n+1} x^{n}=\sum_{n \geq 1} C_{n} x^{n}=y-1$.
Moreover, $\sum_{k=0}^{n} C_{k} C_{n-k}$ is the coefficient of x^{n} in $\left(\sum_{n \geq 0} C_{n} x^{n}\right)^{2}=y^{2}$, since in general, $\sum_{k=0}^{n} a_{k} b_{n-k}$ is the coefficient of x^{n} in the product
$\left(\sum_{n \geq 0} a_{n} x^{n}\right)\left(\sum_{n \geq 0} b_{n} x^{n}\right)$.

$$
\Rightarrow \frac{y-1}{x}=y^{2} \Rightarrow \boldsymbol{x} \boldsymbol{y}^{2}-\boldsymbol{y}+\mathbf{1}=\mathbf{0}
$$

Solving the quadratic equation

$$
x y^{2}-y+1=0 \Rightarrow y=\frac{1 \pm \sqrt{1-4 x}}{2 x}
$$

Which sign is correct?

Solving the quadratic equation

$$
x y^{2}-y+1=0 \Rightarrow y=\frac{1 \pm \sqrt{1-4 x}}{2 x}
$$

Which sign is correct?
Well, in general (Taylor series)

$$
(1+u)^{\alpha}=\sum_{n \geq 0}\binom{\alpha}{n} u^{n}=\sum_{n \geq 0} \alpha(\alpha-1) \cdots(\alpha-n+1) \frac{u^{n}}{n!}
$$

Solving the quadratic equation

$$
x y^{2}-y+1=0 \Rightarrow y=\frac{1 \pm \sqrt{1-4 x}}{2 x}
$$

Which sign is correct?
Well, in general (Taylor series)

$$
\begin{aligned}
& (1+u)^{\alpha}=\sum_{n \geq 0}\binom{\alpha}{n} u^{n}=\sum_{n \geq 0} \alpha(\alpha-1) \cdots(\alpha-n+1) \frac{u^{n}}{n!} . \\
& \text { Let } u=-4 x, \alpha=\frac{1}{2}, \text { to get } \\
& \quad \sqrt{1-4 x}=1-2 x-2 x^{2}+\cdots .
\end{aligned}
$$

Which sign?

Recall $y=\sum_{n \geq 0} C_{n} x^{n}=\frac{1 \pm \sqrt{1-4 x}}{2 x}$.

Which sign?

Recall $y=\sum_{n \geq 0} C_{n} x^{n}=\frac{1 \pm \sqrt{1-4 x}}{2 x}$.
The plus sign gives

$$
\frac{1+\left(1-2 x-2 x^{2}+\cdots\right)}{2 x}=\frac{1}{x}-1-x+\cdots,
$$

which makes no sense. The minus sign gives

$$
\frac{1-\left(1-2 x-2 x^{2}+\cdots\right)}{2 x}=1+x+\cdots
$$

which is correct.

A formula for C_{n}

We get

$$
\begin{aligned}
y & =\frac{1}{2 x}(1-\sqrt{1-4 x}) \\
& =\frac{1}{2 x}\left(1-\sum_{n \geq 0}\binom{1 / 2}{n}(-4 x)^{n}\right),
\end{aligned}
$$

where $\binom{1 / 2}{n}=\frac{\frac{1}{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{2 n-3}{2}\right)}}{n!}$.

A formula for C_{n}

We get

$$
\begin{aligned}
y & =\frac{1}{2 x}(1-\sqrt{1-4 x}) \\
& =\frac{1}{2 x}\left(1-\sum_{n \geq 0}\binom{1 / 2}{n}(-4 x)^{n}\right)
\end{aligned}
$$

where $\binom{1 / 2}{n}=\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{2 n-3}{2}\right)}{n!}$.
Simplifies to $y=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n} x^{n}$, so

$$
C_{n}=\frac{1}{\boldsymbol{n}+1}\binom{\mathbf{n}}{\boldsymbol{n}}=\frac{(2 n)!}{n!(n+1)!}
$$

Other combinatorial interpretations

$\mathcal{P}_{n}:=\{$ triangulations of convex $(n+2)$-gon $\}$
$\Rightarrow \# \mathcal{P}_{n}=C_{n}($ where $\boldsymbol{\#} \boldsymbol{S}=$ number of elements of $S)$
We want other combinatorial interpretations of C_{n}, i.e., other sets \mathcal{S}_{n} for which $C_{n}=\# \mathcal{S}_{n}$.

Other combinatorial interpretations

$\mathcal{P}_{n}:=\{$ triangulations of convex $(n+2)$-gon $\}$
$\Rightarrow \# \mathcal{P}_{n}=C_{n}($ where $\# S=$ number of elements of $S)$
We want other combinatorial interpretations of C_{n}, i.e., other sets \mathcal{S}_{n} for which $C_{n}=\# \mathcal{S}_{n}$.
bijective proof: show that $C_{n}=\# \mathcal{S}_{n}$ by giving a bijection

$$
\boldsymbol{\varphi}: \mathcal{T}_{n} \rightarrow \mathcal{S}_{n}
$$

(or $\mathcal{S}_{n} \rightarrow \mathcal{T}_{n}$), where we already know $\# \mathcal{T}_{n}=C_{n}$.

Bijection

Reminder: a bijection $\varphi: S \rightarrow T$ is a function that is one-to-one and onto, that is, for every $t \in T$ there is a unique $s \in S$ for which $\varphi(s)=t$.

Bijection

Reminder: a bijection $\varphi: S \rightarrow T$ is a function that is one-to-one and onto, that is, for every $t \in T$ there is a unique $s \in S$ for which $\varphi(s)=t$.

If S, T are finite and $\varphi: S \rightarrow T$ is a bijection, then $\# S=\# T$ (the "best" way to prove $\# S=\# T$).

Binary trees

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

Binary trees

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

Binary trees

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

Bijection with triangulations

Bijection with triangulations

Bijection with triangulations

Bijection with triangulations

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters

$$
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x
$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters
$(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x$

$$
((x(x x)) x)(x((x x)(x x)))
$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters

$$
\begin{gathered}
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x \\
((\boldsymbol{x}(\boldsymbol{x} \boldsymbol{x})) \boldsymbol{x})(\boldsymbol{x}((\boldsymbol{x} \boldsymbol{x})(\boldsymbol{x} \boldsymbol{x})))
\end{gathered}
$$

Bijection with binary trees

Plane trees

Plane tree: subtrees of a vertex are linearly ordered
6. Plane trees with $n+1$ vertices

Plane tree recurrence

Plane tree recurrence

Bijection with binary trees

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

Special case: there are two candidates A and B in an election. Each receives n votes. What is the probability that A will never trail B during the count of votes?

Example. $A A B A B B B A A B$ is bad, since after seven votes, A receives 3 while B receives 4 .

Definition of ballot sequence

Encode a vote for A by 1 , and a vote for B by -1 (abbreviated -). Clearly a sequence $a_{1} a_{2} \cdots a_{2 n}$ of n each of 1 and -1 is allowed if and only if $\sum_{i=1}^{k} a_{i} \geq 0$ for all $1 \leq k \leq 2 n$. Such a sequence is called a ballot sequence.

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's and $n-1$'s such that every partial sum is nonnegative (with -1 denoted simply as below)
$111---11-1--11--1-1-11--1-1-1-$

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's and $n-1$'s such that every partial sum is nonnegative (with -1 denoted simply as below)
$111---11-1--11--1-\quad 1-11--\quad 1-1-1-$
Note. Answer to original problem (probability that a sequence of n each of 1 's and -1 's is a ballot sequence) is therefore

$$
\frac{C_{n}}{\binom{2 n}{n}}=\frac{\frac{1}{n+1}\binom{2 n}{n}}{\binom{2 n}{n}}=\frac{1}{n+1}
$$

Bijection with plane trees

depth first order or preorder

Bijection with plane trees

down an edge: +1 , up an edge: -1
$111-1--1-11-11-1-$

Combinatorial proof

Let \boldsymbol{B}_{n} denote the number of ballot sequences $a_{1} a_{2} \cdots a_{2 n}$. We will give a direct combinatorial proof (no generating functions) that
$B_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

Binomial coefficients

Reminder: If $0 \leq k \leq n$, then $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}
$$

Example. $\binom{4}{2}=6$: six 2 -element subsets of $\{1,2,3,4\}$ are

$$
\begin{array}{llllll}
12 & 13 & 23 & 14 & 24 & 34 .
\end{array}
$$

Cyclic shifts

cyclic shift of a sequence b_{0}, \ldots, b_{m} : any sequence

$$
b_{i}, b_{i+1}, \ldots, b_{m}, b_{0}, b_{1}, \ldots, b_{i-1}, \quad 0 \leq i \leq m
$$

There are $m+1$ cyclic shifts of b_{0}, \ldots, b_{m}, but they need not be distinct.

The key lemma

Lemma. Let $a_{0}, a_{1}, \ldots, a_{2 n}$ be a sequence with $n+1$ terms equal to 1 and n terms equal to -1 . All $2 n+1$ cyclic shifts are distinct since $n+1$ and n are relatively prime. Exactly one of these cyclic shifts $a_{i}, a_{i+1}, \ldots, a_{i-1}$ has the property that $a_{i}=1$ and $a_{i+1}, a_{i+2}, \ldots, a_{i-1}$ is a ballot sequence.

Example of key lemma

Let $n=4$ and consider the sequence
$1-11-1--1$. Five cyclic shifts begin with 1 :

1	-	1	1	-	1	-	-	1	$:$	no
1	1	-	1	-	-	1	1	-	$:$	no
1	-	1	-	-	1	1	-	1	$:$	no
1	-	-	1	1	-	1	1	-	$:$	no
1	1	-	1	1	-	1	-	-	$:$	yes!

Example of key lemma

Let $n=4$ and consider the sequence
$1-11-1--1$. Five cyclic shifts begin with 1 :

1	-	1	1	-	1	-	-	1	$:$	no
1	1	-	1	-	-	1	1	-	$:$	no
1	-	1	-	-	1	1	-	1	$:$	no
1	-	-	1	1	-	1	1	-	$:$	no
1	1	-	1	1	-	1	-	-	$:$	yes!

Proof of key lemma: straightforward induction argument not given here.

Enumeration of ballot sequences

The number of sequences $1=a_{0}, a_{1}, \ldots, a_{2 n}$ with $n+1$ terms equal to 1 and n terms equal to -1 is $\binom{2 n}{n}$. (Choose n of the terms $a_{1}, \ldots, a_{2 n}$ to equal 1.)

Enumeration of ballot sequences

The number of sequences $1=a_{0}, a_{1}, \ldots, a_{2 n}$ with $n+1$ terms equal to 1 and n terms equal to -1 is $\binom{2 n}{n}$. (Choose n of the terms $a_{1}, \ldots, a_{2 n}$ to equal 1.)

There are $n+1$ cyclic shifts of this sequence that begin with 1. Exactly 1 of them gives a ballot sequence (of length $2 n$) when you remove the first term.

Enumeration of ballot sequences

The number of sequences $1=a_{0}, a_{1}, \ldots, a_{2 n}$ with $n+1$ terms equal to 1 and n terms equal to -1 is $\binom{2 n}{n}$. (Choose n of the terms $a_{1}, \ldots, a_{2 n}$ to equal 1.)

There are $n+1$ cyclic shifts of this sequence that begin with 1. Exactly 1 of them gives a ballot sequence (of length $2 n$) when you remove the first term.

Therefore the number of ballot sequences of length $2 n$ is $\frac{1}{n+1}\binom{2 n}{n}=C_{n}$.

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Walther von Dyck (1856-1934)

Bijection with ballot sequences

For each upstep, record 1. For each downstep, record -1 .

Noncrossing chords

59. n nonintersecting chords joining $2 n$ points on the circumference of a circle

Bijection with ballot sequences

Bijection with ballot sequences

$11-1--11--1-$

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

34251768

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

3425768

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

3425768
part of the subject of pattern avoidance

Bijection with binary trees

$T(34251768)$

The tree for 34251768

The tree for 34251768

Note. If we read the vertices in preorder, we obtain 12345678.

Exercise. This gives a bijection between 312-avoiding permutations and binary trees.

321-avoiding permutations

Another example of pattern avoidance:
115. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k$, $\left.a_{i}>a_{j}>a_{k}\right)$, called 321-avoiding permutations

$$
\begin{array}{lllll}
123 & 213 & 132 & 312 & 231
\end{array}
$$

321-avoiding permutations

Another example of pattern avoidance:
115. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k$, $\left.a_{i}>a_{j}>a_{k}\right)$, called 321-avoiding permutations

$$
\begin{array}{lllll}
123 & 213 & 132 & 312 & 231
\end{array}
$$

more subtle: no obvious decomposition into two pieces

Bijection with Dyck paths

$$
w=412573968
$$

Bijection with Dyck paths

$$
w=412573968
$$

Bijection with Dyck paths

$$
w=412573968
$$

An unexpected interpretation

92. n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of integers $a_{i} \geq 2$ such that in the sequence $1 a_{1} a_{2} \cdots a_{n} 1$, each a_{i} divides the sum of its two neighbors

$$
\begin{array}{lllll}
14321 & 13521 & 13231 & 12531 & 12341
\end{array}
$$

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

$$
125341
$$

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

$$
1 \left\lvert\, \begin{array}{lllll}
2 & 5 & 3 & 4 & 1
\end{array}\right.
$$

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

$$
1|25| 341
$$

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

$$
1||25| 341
$$

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

$$
|1| \left\lvert\, 2 \begin{array}{llll}
\mid & 5 \mid & 4 & 1
\end{array}\right.
$$

Bijection with ballot sequences

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1 , except last two

$$
\begin{array}{llllll}
|1| \mid & 2 & 5 & 3 & 4 & 1 \\
|1| \mid 2 & 5 \mid 3 & 4 & 1 \\
\rightarrow & 1 & -11 & - & -1-
\end{array}
$$

Analysis

A65.(b)

$$
\sum_{n \geq 0} \frac{1}{C_{n}}=? ?
$$

Analysis

A65.(b)

$$
\sum_{n \geq 0} \frac{1}{C_{n}}=? ?
$$

$$
1+1+\frac{1}{2}+\frac{1}{5}=2.7
$$

Analysis

A65.(b)

$$
\sum_{n \geq 0} \frac{1}{C_{n}}=2+\frac{4 \sqrt{3} \pi}{27}=2.806 \cdots
$$

$$
1+1+\frac{1}{2}+\frac{1}{5}=2.7
$$

Why?

A65.(a)

$$
\sum_{n \geq 0} \frac{x^{n}}{C_{n}}=\frac{2(x+8)}{(4-x)^{2}}+\frac{24 \sqrt{x} \sin ^{-1}\left(\frac{1}{2} \sqrt{x}\right)}{(4-x)^{5 / 2}}
$$

Why?

A65.(a)

$$
\sum_{n \geq 0} \frac{x^{n}}{C_{n}}=\frac{2(x+8)}{(4-x)^{2}}+\frac{24 \sqrt{x} \sin ^{-1}\left(\frac{1}{2} \sqrt{x}\right)}{(4-x)^{5 / 2}}
$$

Sketch of solution. Calculus exercise: let

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}
$$

Then $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$.

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{n}\left(\sum_{n}^{n}\right)}$. .

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{n}\left(n_{n}^{n}\right)}$. Note that:

$$
\frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n-1}}{n\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{n}\left(2_{n}^{2 n}\right)}$. Note that:

$$
x \frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n}}{n\binom{2_{n}^{n}}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{n}\left(n_{n}^{n}\right)}$. Note that:

$$
\frac{d}{d x} x \frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n-1}}{\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{n}\left(n_{n}^{n}\right)}$. Note that:

$$
x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{x^{n+1}}{\binom{\left({ }_{n}^{n}\right)}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\left(2_{n}^{n}\right)}$. Note that:

$$
\frac{d}{d x} x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{(n+1) x^{n}}{\binom{2 n}{n}}
$$

Completion of proof

Recall $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$. Note that:

$$
\begin{gathered}
\frac{d}{d x} x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{(n+1) x^{n}}{\binom{2 n}{n}} \\
=-1+\sum_{n \geq 0} \frac{x^{n}}{C_{n}}
\end{gathered}
$$

etc.

The last slide

The last slide

