

Catalan Numbers

Richard P. Stanley

Catalan Numbers - p. 1

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

- **OEIS**: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.
- **A000108**: 1, 1, 2, 5, 14, 42, 132, 429, ...
- $C_0 = 1, C_1 = 2, C_2 = 3, C_3 = 5, C_4 = 14, \dots$
- C_n is a Catalan number.

- **OEIS**: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.
- **A000108**: 1, 1, 2, 5, 14, 42, 132, 429, ...
- $C_0 = 1, C_1 = 2, C_2 = 3, C_3 = 5, C_4 = 14, \dots$
- C_n is a Catalan number.
- **COMMENTS.** ... This is probably the longest entry in OEIS, and rightly so.

Catalan monograph

R. Stanley, *Catalan Numbers*, Cambridge University Press, 2015.

- R. Stanley, *Catalan Numbers*, Cambridge University Press, 2015.
- Includes 214 combinatorial interpretations of C_n and 68 additional problems.

History

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

History

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1} \alpha$$

History

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1} \alpha$$

No combinatorics, no further work in China.

ŧ 「二年」 支車車車 二本二 四本マ 東東 第 -== === === .H. to .H. ヨニーヨ 8015 巫 與公 12

ŧ 「六年」 支車車車 二本二 四本マ 草草 第 -================================ ヨニーヨ 20.08 巫 與公 12

湾十 四本で 二本山 題 第 - 4 24 2 1 Ø E-3 == + -15 - HE-05 , H HOAS -HOS ロスーニモ 別な 12

少

More history, via Igor Pak

• Euler (1751): conjectured formula for number C_n of triangulations of a convex (n + 2)-gon (definition of Catalan numbers). In other words, draw n - 1 noncrossing diagonals of a convex polygon with n + 2 sides.

Completion of proof

- Goldbach and Segner (1758–1759): helped Euler complete the proof, in pieces.
- Lamé (1838): first self-contained, complete proof.

• Eugène Charles Catalan (1838): wrote C_n in the form $\frac{(2n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of n + 1 letters.

Catalan

• Eugène Charles Catalan (1838): wrote C_n in the form $\frac{(2n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of n + 1 letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.

John Riordan (1948): introduced the term "Catalan number" in *Math Reviews*.

- John Riordan (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.

- John Riordan (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book
 Combinatorial Identities. Finally caught on.

- John Riordan (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book
 Combinatorial Identities. Finally caught on.
- Martin Gardner (1976): used the term in his Mathematical Games column in *Scientific American*. Real popularity began.

The primary recurrence

n $C_{n+1} = \sum C_k C_{n-k}, \quad C_0 = 1$ k=0

The primary recurrence

Solving the recurrence

- Let $\boldsymbol{y} = \sum_{n\geq 0} C_n x^n$.
- Multiply recurrence by x^n and sum on $n \ge 0$.

Solving the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

Let $y = \sum_{n \ge 0} C_n x^n$.

Multiply recurrence by x^n and sum on $n \ge 0$.

$$\sum_{n\geq 0} C_{n+1}x^n = \sum_{n\geq 0} \left(\sum_{k=0}^n C_k C_{n-k}\right) x^n$$

Catalan Numbers - p. 11

A quadratic equation

$$\sum_{n\geq 0} C_{n+1}x^n = \sum_{n\geq 0} \left(\sum_{k=0}^n C_k C_{n-k}\right) x^n$$

A quadratic equation

$$\sum_{n \ge 0} C_{n+1} x^n = \sum_{n \ge 0} \left(\sum_{k=0}^n C_k C_{n-k} \right) x^n$$

Now $x \sum_{n \ge 0} C_{n+1} x^n = \sum_{n \ge 1} C_n x^n = y - 1.$

Moreover, $\sum_{k=0}^{n} C_k C_{n-k}$ is the coefficient of x^n in $\left(\sum_{n\geq 0} C_n x^n\right)^2 = y^2$, since in general, $\sum_{k=0}^{n} a_k b_{n-k}$ is the coefficient of x^n in the product $\left(\sum_{n\geq 0} a_n x^n\right) \left(\sum_{n\geq 0} b_n x^n\right)$.

A quadratic equation

$$\sum_{n \ge 0} C_{n+1} x^n = \sum_{n \ge 0} \left(\sum_{k=0}^n C_k C_{n-k} \right) x^n$$

Now $x \sum_{n \ge 0} C_{n+1} x^n = \sum_{n \ge 1} C_n x^n = y - 1.$

Moreover, $\sum_{k=0}^{n} C_k C_{n-k}$ is the coefficient of x^n in $\left(\sum_{n\geq 0} C_n x^n\right)^2 = y^2$, since in general, $\sum_{k=0}^{n} a_k b_{n-k}$ is the coefficient of x^n in the product $\left(\sum_{n\geq 0} a_n x^n\right) \left(\sum_{n\geq 0} b_n x^n\right)$.

$$\Rightarrow \frac{y-1}{x} = y^2 \Rightarrow xy^2 - y + 1 = 0$$

Solving the quadratic equation

$$xy^2 - y + 1 = 0 \Rightarrow y = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

Which sign is correct?

Solving the quadratic equation

$$xy^2 - y + 1 = 0 \Rightarrow y = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

Which sign is correct?

Well, in general (Taylor series)

$$(1+u)^{\alpha} = \sum_{n\geq 0} {\binom{\alpha}{n}} u^n = \sum_{n\geq 0} \alpha(\alpha-1)\cdots(\alpha-n+1)\frac{u^n}{n!}.$$

Solving the quadratic equation

$$xy^2 - y + 1 = 0 \Rightarrow y = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

Which sign is correct?

Well, in general (Taylor series)

$$(1+u)^{\alpha} = \sum_{n\geq 0} {\binom{\alpha}{n}} u^n = \sum_{n\geq 0} \alpha(\alpha-1)\cdots(\alpha-n+1)\frac{u^n}{n!}.$$

Let u = -4x, $\alpha = \frac{1}{2}$, to get

 $\sqrt{1-4x} = 1 - 2x - 2x^2 + \cdots$

Which sign?

Recall $y = \sum_{n \ge 0} C_n x^n = \frac{1 \pm \sqrt{1 - 4x}}{2x}$.

Recall
$$y = \sum_{n \ge 0} C_n x^n = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$
.

The plus sign gives

$$\frac{1 + (1 - 2x - 2x^2 + \cdots)}{2x} = \frac{1}{x} - 1 - x + \cdots,$$

which makes no sense. The minus sign gives

$$\frac{1 - (1 - 2x - 2x^2 + \cdots)}{2x} = 1 + x + \cdots,$$

which is correct.

A formula for C_n

We get

$$y = \frac{1}{2x}(1 - \sqrt{1 - 4x})$$

= $\frac{1}{2x}\left(1 - \sum_{n \ge 0} {\binom{1/2}{n}}(-4x)^n\right),$

where
$$\binom{1/2}{n} = \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})\cdots(-\frac{2n-3}{2})}{n!}$$
.

A formula for C_n

We get

$$y = \frac{1}{2x}(1 - \sqrt{1 - 4x})$$

= $\frac{1}{2x}\left(1 - \sum_{n \ge 0} {\binom{1/2}{n}}(-4x)^n\right),$

where $\binom{1/2}{n} = \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})\cdots(-\frac{2n-3}{2})}{n!}$. Simplifies to $y = \sum_{n \ge 0} \frac{1}{n+1} \binom{2n}{n} x^n$, so

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n! (n+1)!}$$

Other combinatorial interpretations

 $\mathcal{P}_n := \{ \text{triangulations of convex } (n+2) \text{-gon} \}$ $\Rightarrow \# \mathcal{P}_n = C_n \text{ (where } \# S = \text{number of elements of } S \text{)}$

We want other combinatorial interpretations of C_n , i.e., other sets S_n for which $C_n = \#S_n$.

 $\mathcal{P}_n := \{ \text{triangulations of convex } (n+2) \text{-gon} \}$ $\Rightarrow \# \mathcal{P}_n = C_n \text{ (where } \# S = \text{number of elements of } S \text{)}$

We want other combinatorial interpretations of C_n , i.e., other sets S_n for which $C_n = \#S_n$.

bijective proof: show that $C_n = \#S_n$ by giving a bijection

$$\boldsymbol{\varphi} \colon \mathcal{T}_n o \mathcal{S}_n$$

(or $S_n \to T_n$), where we already know $\#T_n = C_n$.

Bijection

Reminder: a bijection $\varphi \colon S \to T$ is a function that is one-to-one and onto, that is, for every $t \in T$ there is a unique $s \in S$ for which $\varphi(s) = t$.

Bijection

Reminder: a bijection $\varphi \colon S \to T$ is a function that is one-to-one and onto, that is, for every $t \in T$ there is a unique $s \in S$ for which $\varphi(s) = t$.

If S, T are finite and $\varphi \colon S \to T$ is a bijection, then #S = #T (the "best" way to prove #S = #T).

Binary trees

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

 $(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

 $(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$

((x(xx))x)(x((xx)(xx)))

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

 $(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$

((x(xx))x)(x((xx)(xx)))

Bijection with binary trees

Plane tree: subtrees of a vertex are linearly ordered

6. Plane trees with n + 1 vertices

Plane tree recurrence

Plane tree recurrence

Bijection with binary trees

g

Bertrand's ballot problem: first published by **W**. **A. Whitworth** in 1878 but named after **Joseph Louis François Bertrand** who rediscovered it in 1887 (one of the first results in probability theory).

- **Bertrand's ballot problem**: first published by **W**. **A. Whitworth** in 1878 but named after **Joseph Louis François Bertrand** who rediscovered it in 1887 (one of the first results in probability theory).
- Special case: there are two candidates *A* and *B* in an election. Each receives *n* votes. What is the probability that *A* will never trail *B* during the count of votes?
- **Example.** *AABABBBAAB* is bad, since after seven votes, *A* receives 3 while *B* receives 4.

Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by -1(abbreviated -). Clearly a sequence $a_1a_2 \cdots a_{2n}$ of n each of 1 and -1 is allowed if and only if $\sum_{i=1}^{k} a_i \ge 0$ for all $1 \le k \le 2n$. Such a sequence is called a ballot sequence. **77.** Ballot sequences, i.e., sequences of n 1's and n -1's such that every partial sum is nonnegative (with -1 denoted simply as - below)

111--- 11-1-- 11--1- 1-11-- 1-1-1-

77. Ballot sequences, i.e., sequences of n 1's and n - 1's such that every partial sum is nonnegative (with -1 denoted simply as - below)

111--- 11-1-- 11--1- 1-11-- 1-1-1-

Note. Answer to original problem (probability that a sequence of n each of 1's and -1's is a ballot sequence) is therefore

$$\frac{C_n}{\binom{2n}{n}} = \frac{\frac{1}{n+1}\binom{2n}{n}}{\binom{2n}{n}} = \frac{1}{n+1}.$$

Bijection with plane trees

depth first order or preorder

Catalan Numbers - p. 28

Bijection with plane trees

Combinatorial proof

Let B_n denote the number of ballot sequences $a_1a_2 \cdots a_{2n}$. We will give a direct **combinatorial proof** (no generating functions) that $B_n = \frac{1}{n+1} {2n \choose n}$.

Reminder. If $0 \le k \le n$, then $\binom{n}{k}$ is the number of *k*-element subsets of an *n*-element set.

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

Example. $\binom{4}{2} = 6$: six 2-element subsets of $\{1, 2, 3, 4\}$ are

 $12 \ 13 \ 23 \ 14 \ 24 \ 34.$

Cyclic shifts

cyclic shift of a sequence b_0, \ldots, b_m : any sequence

$$b_i, b_{i+1}, \ldots, b_m, b_0, b_1, \ldots, b_{i-1}, 0 \le i \le m.$$

There are m + 1 cyclic shifts of b_0, \ldots, b_m , but they need not be distinct.

Lemma. Let a_0, a_1, \ldots, a_{2n} be a sequence with n + 1 terms equal to 1 and n terms equal to -1. All 2n + 1 cyclic shifts are distinct since n + 1 and n are relatively prime. Exactly one of these cyclic shifts $a_i, a_{i+1}, \ldots, a_{i-1}$ has the property that $a_i = 1$ and $a_{i+1}, a_{i+2}, \ldots, a_{i-1}$ is a ballot sequence.

Example of key lemma

Let n = 4 and consider the sequence 1 - 11 - 1 - 1. Five cyclic shifts begin with 1:

Example of key lemma

Let n = 4 and consider the sequence 1 - 11 - 1 - 1. Five cyclic shifts begin with 1:

- 1 1 - 1 1 1 : no
- 1 - 1 1 1 1 : no
- $1 \ 1 \ \ 1 \ 1 \ \ 1 \ \ : yes!$

Proof of key lemma: straightforward induction argument not given here.

Enumeration of ballot sequences

The number of sequences $1 = a_0, a_1, \ldots, a_{2n}$ with n + 1 terms equal to 1 and n terms equal to -1 is $\binom{2n}{n}$. (Choose n of the terms a_1, \ldots, a_{2n} to equal 1.)

Enumeration of ballot sequences

The number of sequences $1 = a_0, a_1, \ldots, a_{2n}$ with n + 1 terms equal to 1 and n terms equal to -1 is $\binom{2n}{n}$. (Choose n of the terms a_1, \ldots, a_{2n} to equal 1.)

There are n + 1 cyclic shifts of this sequence that begin with 1. Exactly 1 of them gives a ballot sequence (of length 2n) when you remove the first term.

Enumeration of ballot sequences

The number of sequences $1 = a_0, a_1, \ldots, a_{2n}$ with n + 1 terms equal to 1 and n terms equal to -1 is $\binom{2n}{n}$. (Choose n of the terms a_1, \ldots, a_{2n} to equal 1.)

There are n + 1 cyclic shifts of this sequence that begin with 1. Exactly 1 of them gives a ballot sequence (of length 2n) when you remove the first term.

Therefore the number of ballot sequences of length 2n is $\frac{1}{n+1}\binom{2n}{n} = C_n$.

Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the *x*-axis

Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the *x*-axis

Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the *x*-axis

Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the *x*-axis

For each upstep, record 1. For each downstep, record -1.

Noncrossing chords

59. n nonintersecting chords joining 2n points on the circumference of a circle

116. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

 $123 \quad 132 \quad 213 \quad 231 \quad 321$

116. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

$123 \quad 132 \quad 213 \quad 231 \quad 321$

34251768

116. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

$123 \quad 132 \quad 213 \quad 231 \quad 321$

3425 768

116. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

$123 \quad 132 \quad 213 \quad 231 \quad 321$

3425 768

part of the subject of pattern avoidance

Bijection with binary trees

The tree for 34251768

The tree for 34251768

Note. If we read the vertices in preorder, we obtain 12345678.

Exercise. This gives a bijection between 312-avoiding permutations and binary trees.

Another example of pattern avoidance:

115. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called **321-avoiding** permutations

 $123 \quad 213 \quad 132 \quad 312 \quad 231$

Another example of pattern avoidance:

115. Permutations $a_1a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called **321-avoiding** permutations

$123 \quad 213 \quad 132 \quad 312 \quad 231$

more subtle: no obvious decomposition into two pieces

Bijection with Dyck paths

w = 412573968

Bijection with Dyck paths

w = 412573968

Bijection with Dyck paths

w = 412573968

An unexpected interpretation

92. *n*-tuples (a_1, a_2, \ldots, a_n) of integers $a_i \ge 2$ such that in the sequence $1a_1a_2 \cdots a_n 1$, each a_i divides the sum of its two neighbors

 $14321 \quad 13521 \quad 13231 \quad 12531 \quad 12341$

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

 $1 \ 2 \ 5 \ 3 \ 4 \ 1$

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

1 | 2 5 3 4 1

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

1 | 2 5 | 3 4 1

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

1||2 **5** |**3 4** 1

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

|1||2 5 |3 4 1

remove largest, insert bar before the element to its left, then replace bar with 1 and a number with -1, except last two

 $|1||2 \ 5 |3 \ 4 \ 1$ $|1||2 \ 5 |3 \ 4 \ 1$ $\rightarrow 1 - 11 - -1 -$

A65.(b) $\sum_{n \ge 0} \frac{1}{C_n} = ??$

A65.(b)

$$\sum_{n\geq 0} \frac{1}{C_n} = ??$$

$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

A65.(b)

$$\sum_{n \ge 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27} = 2.806 \cdots$$

$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

Why?

A65.(a)

$$\sum_{n\geq 0} \frac{x^n}{C_n} = \frac{2(x+8)}{(4-x)^2} + \frac{24\sqrt{x}\sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4-x)^{5/2}}.$$

Vhy?

A65.(a)

$$\sum_{n\geq 0} \frac{x^n}{C_n} = \frac{2(x+8)}{(4-x)^2} + \frac{24\sqrt{x}\sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4-x)^{5/2}}.$$

Sketch of solution. Calculus exercise: let

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2.$$

Then
$$y=\sum_{n\geq 1}rac{x^n}{n^2\binom{2n}{n}}.$$

Recall
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Note that:

Recall
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Note that:

$$\frac{d}{dx}y = \sum_{n\geq 1} \frac{x^{n-1}}{n\binom{2n}{n}}$$

$$x\frac{d}{dx}y = \sum_{n>1} \frac{d}{n\binom{2n}{n}}$$

Recall
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Note that:
 $d \quad d \quad rac{x^{n-1}}{2n}$

$$\frac{dx}{dx}x\frac{dx}{dx}y = \sum_{n\geq 1} \frac{dx}{\binom{2n}{n}}$$

Recall
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Note that:

$$x^{2}\frac{d}{dx}x\frac{dx}{x}y = \sum_{n\geq 1}\frac{x^{n+1}}{\binom{2n}{n}}$$

Recall
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Note that:
$$\frac{d}{dx} x^2 \frac{d}{dx} x \frac{dx}{x} y = \sum_{n \ge 1} \frac{(n+1)x^n}{\binom{2n}{n}}$$

Recall
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Note that:

$$\frac{d}{dx} x^2 \frac{d}{dx} x \frac{dx}{x} y = \sum_{n \ge 1} \frac{(n+1)x^n}{\binom{2n}{n}}$$

$$= -1 + \sum_{n \ge 0} \frac{x^n}{C_n},$$

etc.

The last slide

The last slide

