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An OEIS entry

OEIS: Online Encylopedia of Integer Sequences
(Neil Sloane). See http://oeis.org. A
database of over 270,000 sequences of integers.
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An OEIS entry

OEIS: Online Encylopedia of Integer Sequences
(Neil Sloane). See http://oeis.org. A
database of over 270,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

C0 = 1, C1 = 2, C2 = 3, C3 = 5, C4 = 14, . . .

Cn is a Catalan number.
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An OEIS entry

OEIS: Online Encylopedia of Integer Sequences
(Neil Sloane). See http://oeis.org. A
database of over 270,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

C0 = 1, C1 = 2, C2 = 3, C3 = 5, C4 = 14, . . .

Cn is a Catalan number.

COMMENTS. . . . This is probably the longest
entry in OEIS, and rightly so.
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Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015.
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Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015.

Includes 214 combinatorial interpretations of Cn

and 68 additional problems.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu ( ), and Jing An
(c. 1692–c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu ( ), and Jing An
(c. 1692–c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu ( ), and Jing An
(c. 1692–c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α

No combinatorics, no further work in China.
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Manuscript of Ming Antu
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Manuscript of Ming Antu
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Manuscript of Ming Antu
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Manuscript of Ming Antu
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More history, via Igor Pak

Euler (1751): conjectured formula for number
Cn of triangulations of a convex (n+ 2)-gon
(definition of Catalan numbers). In other
words, draw n− 1 noncrossing diagonals of a
convex polygon with n+ 2 sides.
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Completion of proof

Goldbach and Segner (1758–1759): helped
Euler complete the proof, in pieces.

Lamé (1838): first self-contained, complete
proof.
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Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form
(2n)!

n! (n+1)! and showed it counted

(nonassociative) bracketings (or
parenthesizations) of a string of n+1 letters.
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Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form
(2n)!

n! (n+1)! and showed it counted

(nonassociative) bracketings (or
parenthesizations) of a string of n+1 letters.

Born in 1814 in Bruges (now in Belgium, then
under Dutch rule). Studied in France and worked
in France and Liège, Belgium. Died in Liège in
1894.
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Why “Catalan numbers”?

John Riordan (1948): introduced the term
“Catalan number” in Math Reviews.
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Why “Catalan numbers”?

John Riordan (1948): introduced the term
“Catalan number” in Math Reviews.

Riordan (1964): used the term again in Math.
Reviews.
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Why “Catalan numbers”?

John Riordan (1948): introduced the term
“Catalan number” in Math Reviews.

Riordan (1964): used the term again in Math.
Reviews.

Riordan (1968): used the term in his book
Combinatorial Identities. Finally caught on.
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Why “Catalan numbers”?

John Riordan (1948): introduced the term
“Catalan number” in Math Reviews.

Riordan (1964): used the term again in Math.
Reviews.

Riordan (1968): used the term in his book
Combinatorial Identities. Finally caught on.

Martin Gardner (1976): used the term in his
Mathematical Games column in Scientific
American. Real popularity began.
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The primary recurrence

Cn+1 =
n
∑

k=0

CkCn−k, C0 = 1
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The primary recurrence

Cn+1 =
n
∑

k=0

CkCn−k, C0 = 1

e
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Solving the recurrence

Cn+1 =
n
∑

k=0

CkCn−k, C0 = 1

Let y =
∑

n≥0Cnx
n.

Multiply recurrence by xn and sum on n ≥ 0.
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Solving the recurrence

Cn+1 =
n
∑

k=0

CkCn−k, C0 = 1

Let y =
∑

n≥0Cnx
n.

Multiply recurrence by xn and sum on n ≥ 0.

∑

n≥0

Cn+1x
n =

∑

n≥0

(

n
∑

k=0

CkCn−k

)

xn
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A quadratic equation

∑

n≥0

Cn+1x
n =

∑

n≥0

(

n
∑

k=0

CkCn−k

)

xn
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A quadratic equation

∑

n≥0

Cn+1x
n =

∑

n≥0

(

n
∑

k=0

CkCn−k

)

xn

Now x
∑

n≥0Cn+1x
n =

∑

n≥1Cnx
n = y − 1.

Moreover,
∑n

k=0CkCn−k is the coefficient of xn in
(
∑

n≥0Cnx
n
)2

= y2, since in general,
∑n

k=0 akbn−k

is the coefficient of xn in the product
(
∑

n≥0 anx
n
) (
∑

n≥0 bnx
n
)

.
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A quadratic equation

∑

n≥0

Cn+1x
n =

∑

n≥0

(

n
∑

k=0

CkCn−k

)

xn

Now x
∑

n≥0Cn+1x
n =

∑

n≥1Cnx
n = y − 1.

Moreover,
∑n

k=0CkCn−k is the coefficient of xn in
(
∑

n≥0Cnx
n
)2

= y2, since in general,
∑n

k=0 akbn−k

is the coefficient of xn in the product
(
∑

n≥0 anx
n
) (
∑

n≥0 bnx
n
)

.

⇒ y − 1

x
= y2 ⇒ xy2 − y + 1 = 0
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Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =
1±

√
1− 4x

2x

Which sign is correct?

Catalan Numbers – p. 13



Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =
1±

√
1− 4x

2x

Which sign is correct?

Well, in general (Taylor series)

(1+u)α =
∑

n≥0

(

α

n

)

un =
∑

n≥0

α(α−1) · · · (α−n+1)
un

n!
.
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Solving the quadratic equation

xy2 − y + 1 = 0 ⇒ y =
1±

√
1− 4x

2x

Which sign is correct?

Well, in general (Taylor series)

(1+u)α =
∑

n≥0

(

α

n

)

un =
∑

n≥0

α(α−1) · · · (α−n+1)
un

n!
.

Let u = −4x, α = 1
2 , to get

√
1− 4x = 1− 2x− 2x2 + · · · .
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Which sign?

Recall y =
∑

n≥0Cnx
n = 1±

√
1−4x
2x .
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Which sign?

Recall y =
∑

n≥0Cnx
n = 1±

√
1−4x
2x .

The plus sign gives

1 + (1− 2x− 2x2 + · · · )
2x

=
1

x
− 1− x+ · · · ,

which makes no sense. The minus sign gives

1− (1− 2x− 2x2 + · · · )
2x

= 1 + x+ · · · ,

which is correct.
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A formula for Cn

We get

y =
1

2x
(1−

√
1− 4x)

=
1

2x

(

1−
∑

n≥0

(

1/2

n

)

(−4x)n

)

,

where
(

1/2
n

)

=
1

2
(− 1

2
)(− 3

2
)···(− 2n−3

2
)

n! .
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A formula for Cn

We get

y =
1

2x
(1−

√
1− 4x)

=
1

2x

(

1−
∑

n≥0

(

1/2

n

)

(−4x)n

)

,

where
(

1/2
n

)

=
1

2
(− 1

2
)(− 3

2
)···(− 2n−3

2
)

n! .

Simplifies to y =
∑

n≥0
1

n+1

(

2n
n

)

xn, so

Cn =
1

n + 1

(

2n

n

)

=
(2n)!

n! (n + 1)!
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Other combinatorial interpretations

Pn := {triangulations of convex (n+ 2)-gon}
⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations of
Cn, i.e., other sets Sn for which Cn = #Sn.
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Other combinatorial interpretations

Pn := {triangulations of convex (n+ 2)-gon}
⇒ #Pn = Cn (where #S = number of elements of S)

We want other combinatorial interpretations of
Cn, i.e., other sets Sn for which Cn = #Sn.

bijective proof: show that Cn = #Sn by giving a
bijection

ϕ : Tn → Sn

(or Sn → Tn), where we already know #Tn = Cn.
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Bijection

Reminder: a bijection ϕ : S → T is a function
that is one-to-one and onto, that is, for every
t ∈ T there is a unique s ∈ S for which ϕ(s) = t.
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Bijection

Reminder: a bijection ϕ : S → T is a function
that is one-to-one and onto, that is, for every
t ∈ T there is a unique s ∈ S for which ϕ(s) = t.

If S, T are finite and ϕ : S → T is a bijection, then
#S = #T (the “best” way to prove #S = #T ).
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Binary trees

4. Binary trees with n vertices (each vertex has
a left subtree and a right subtree, which may be
empty)
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Binary trees

4. Binary trees with n vertices (each vertex has
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Binary trees

4. Binary trees with n vertices (each vertex has
a left subtree and a right subtree, which may be
empty)
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Bijection with triangulations
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Bijection with triangulations
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Bijection with triangulations
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Bijection with triangulations
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Binary parenthesizations

3. Binary parenthesizations or bracketings of
a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx
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Binary parenthesizations

3. Binary parenthesizations or bracketings of
a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x((xx)(xx)))
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Binary parenthesizations

3. Binary parenthesizations or bracketings of
a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x((xx)(xx)))
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Bijection with binary trees

x

xx

x x x x x

xxxx
x

x(xx)
x x

(xx)(xx)

x((xx)(xx))(x(xx))x

((x(xx))x)(x((xx)(xx)))
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Plane trees

Plane tree: subtrees of a vertex are linearly
ordered

6. Plane trees with n+ 1 vertices

Catalan Numbers – p. 22



Plane tree recurrence
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Plane tree recurrence
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Bijection with binary trees

a

d

h

i

j g

f

b

e
c

h i j

d

a
b c

f

e g

a b c

f

h i j

d
e g
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The ballot problem

Bertrand’s ballot problem: first published by W.
A. Whitworth in 1878 but named after Joseph
Louis François Bertrand who rediscovered it in
1887 (one of the first results in probability
theory).
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The ballot problem

Bertrand’s ballot problem: first published by W.
A. Whitworth in 1878 but named after Joseph
Louis François Bertrand who rediscovered it in
1887 (one of the first results in probability
theory).

Special case: there are two candidates A and B
in an election. Each receives n votes. What is
the probability that A will never trail B during the
count of votes?

Example. AABABBBAAB is bad, since after
seven votes, A receives 3 while B receives 4.
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Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by −1
(abbreviated −). Clearly a sequence a1a2 · · · a2n
of n each of 1 and −1 is allowed if and only if
∑k

i=1 ai ≥ 0 for all 1 ≤ k ≤ 2n. Such a sequence
is called a ballot sequence.
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Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’s
and n −1’s such that every partial sum is
nonnegative (with −1 denoted simply as −
below)

111−−− 11−1−− 11−−1− 1−11−− 1−1−1−
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Ballot sequences

77. Ballot sequences, i.e., sequences of n 1’s
and n −1’s such that every partial sum is
nonnegative (with −1 denoted simply as −
below)

111−−− 11−1−− 11−−1− 1−11−− 1−1−1−

Note. Answer to original problem (probability that
a sequence of n each of 1’s and −1’s is a ballot
sequence) is therefore

Cn
(

2n
n

) =
1

n+1

(

2n
n

)

(

2n
n

) =
1

n+ 1
.

Catalan Numbers – p. 27



Bijection with plane trees

8

2

3

4 105 11

9

7
6

1

depth first order or preorder
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Bijection with plane trees

1

1

1

1

1
1

1
1

1
1

−

−

−

−

−

−

−

−
−

−

8

2

3

4 105 11

9

7
6

1

down an edge: +1, up an edge: −1

1 1 1 − 1 − − − 1 − 1 1 − 1 1 − 1 − −−
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Combinatorial proof

Let Bn denote the number of ballot sequences
a1a2 · · · a2n. We will give a direct combinatorial
proof (no generating functions) that

Bn = 1
n+1

(

2n
n

)

.
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Binomial coefficients

Reminder. If 0 ≤ k ≤ n, then
(

n

k

)

is the number

of k-element subsets of an n-element set.
(

n

k

)

=
n(n− 1) · · · (n− k + 1)

k!
=

n!

k!(n− k)!

Example.
(

4
2

)

= 6: six 2-element subsets of

{1, 2, 3, 4} are

12 13 23 14 24 34.
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Cyclic shifts

cyclic shift of a sequence b0, . . . , bm: any
sequence

bi, bi+1, . . . , bm, b0, b1, . . . , bi−1, 0 ≤ i ≤ m.

There are m+ 1 cyclic shifts of b0, . . . , bm, but
they need not be distinct.
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The key lemma

Lemma. Let a0, a1, . . . , a2n be a sequence with
n+ 1 terms equal to 1 and n terms equal to −1.
All 2n+ 1 cyclic shifts are distinct since n+ 1 and
n are relatively prime. Exactly one of these cyclic
shifts ai, ai+1, . . . , ai−1 has the property that ai = 1
and ai+1, ai+2, . . . , ai−1 is a ballot sequence.
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Example of key lemma

Let n = 4 and consider the sequence
1 − 1 1 − 1 − − 1. Five cyclic shifts begin with 1:

1 − 1 1 − 1 − − 1 : no

1 1 − 1 − − 1 1 − : no

1 − 1 − − 1 1 − 1 : no

1 − − 1 1 − 1 1 − : no

1 1 − 1 1 − 1 − − : yes!
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Example of key lemma

Let n = 4 and consider the sequence
1 − 1 1 − 1 − − 1. Five cyclic shifts begin with 1:

1 − 1 1 − 1 − − 1 : no

1 1 − 1 − − 1 1 − : no

1 − 1 − − 1 1 − 1 : no

1 − − 1 1 − 1 1 − : no

1 1 − 1 1 − 1 − − : yes!

Proof of key lemma: straightforward induction
argument not given here.
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Enumeration of ballot sequences

The number of sequences 1 = a0, a1, . . . , a2n with
n+ 1 terms equal to 1 and n terms equal to −1 is
(

2n
n

)

. (Choose n of the terms a1, . . . , a2n to equal

1.)
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Enumeration of ballot sequences

The number of sequences 1 = a0, a1, . . . , a2n with
n+ 1 terms equal to 1 and n terms equal to −1 is
(

2n
n

)

. (Choose n of the terms a1, . . . , a2n to equal

1.)

There are n+ 1 cyclic shifts of this sequence that
begin with 1. Exactly 1 of them gives a ballot
sequence (of length 2n) when you remove the
first term.
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Enumeration of ballot sequences

The number of sequences 1 = a0, a1, . . . , a2n with
n+ 1 terms equal to 1 and n terms equal to −1 is
(

2n
n

)

. (Choose n of the terms a1, . . . , a2n to equal

1.)

There are n+ 1 cyclic shifts of this sequence that
begin with 1. Exactly 1 of them gives a ballot
sequence (of length 2n) when you remove the
first term.

Therefore the number of ballot sequences of

length 2n is 1
n+1

(

2n
n

)

= Cn.
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Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),
never falling below the x-axis
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Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),
never falling below the x-axis

Catalan Numbers – p. 35



Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),
never falling below the x-axis

Walther von Dyck (1856–1934)
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Bijection with ballot sequences

11 1 11 1 1 1 1− − − − − − − − −

For each upstep, record 1.
For each downstep, record −1.
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Noncrossing chords

59. n nonintersecting chords joining 2n points on
the circumference of a circle
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Bijection with ballot sequences
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Bijection with ballot sequences

root

1

1

−1

1

−1

−1
1

1

−1

−1

1

−1

1 1 − 1 − − 1 1 − − 1−
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

34251768
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

3425 768
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

part of the subject of pattern avoidance
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Bijection with binary trees

(3425)T

(34251768)T

1

(768)T
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The tree for 34251768

2

8

6

3
5 7

4

1
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The tree for 34251768

2

8

6

3
5 7

4

1

Note. If we read the vertices in preorder, we
obtain 12345678.

Exercise. This gives a bijection between
312-avoiding permutations and binary trees.
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321-avoiding permutations

Another example of pattern avoidance:

115. Permutations a1a2 · · · an of 1, 2, . . . , n with
longest decreasing subsequence of length at
most two (i.e., there does not exist i < j < k,
ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231
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321-avoiding permutations

Another example of pattern avoidance:

115. Permutations a1a2 · · · an of 1, 2, . . . , n with
longest decreasing subsequence of length at
most two (i.e., there does not exist i < j < k,
ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231

more subtle: no obvious decomposition into two
pieces
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Bijection with Dyck paths

w = 412573968
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Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8
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Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8
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An unexpected interpretation

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2
such that in the sequence 1a1a2 · · · an1, each ai
divides the sum of its two neighbors

14321 13521 13231 12531 12341
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Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
−1, except last two
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Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
−1, except last two

1 2 5 3 4 1

Catalan Numbers – p. 45
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remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
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Bijection with ballot sequences

remove largest, insert bar before the element to
its left, then replace bar with 1 and a number with
−1, except last two

|1||2 5 |3 4 1

|1||2 5 |3 4 1

→ 1− 11−−1−
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Analysis

A65.(b)
∑

n≥0

1

Cn
= ??

Catalan Numbers – p. 46



Analysis

A65.(b)

∑

n≥0

1

Cn
= ??

1 + 1 +
1

2
+

1

5
= 2.7
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Analysis

A65.(b)

∑

n≥0

1

Cn
= 2 +

4
√
3π

27
= 2.806 · · ·

1 + 1 +
1

2
+

1

5
= 2.7
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Why?

A65.(a)

∑

n≥0

xn

Cn
=

2(x+ 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.
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Why?

A65.(a)

∑

n≥0

xn

Cn
=

2(x+ 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.

Sketch of solution. Calculus exercise: let

y = 2

(

sin−1 1

2

√
x

)2

.

Then y =
∑

n≥1

xn

n2
(

2n
n

).
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:

d

dx
y =

∑

n≥1

xn−1

n
(

2n
n

)
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:

x
d

dx
y =

∑

n≥1

xn

n
(

2n
n

)
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:

d

dx
x
d

dx
y =

∑

n≥1

xn−1

(

2n
n

)

Catalan Numbers – p. 48



Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:

x2
d

dx
x
dx

x
y =

∑

n≥1

xn+1

(

2n
n

)
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:

d

dx
x2

d

dx
x
dx

x
y =

∑

n≥1

(n+ 1)xn
(

2n
n

)
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Completion of proof

Recall y =
∑

n≥1
xn

n2(2n
n
)
. Note that:

d

dx
x2

d

dx
x
dx

x
y =

∑

n≥1

(n+ 1)xn
(

2n
n

)

= −1 +
∑

n≥0

xn

Cn
,

etc.
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The last slide
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The last slide
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