Chains and Antichains

finite partially ordered set (**poset**) P: a set P with a binary operation \leq satisfying

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $t \le t$ for all $t \in P$ (reflexivity)

finite partially ordered set (**poset**) P: a set P with a binary operation \leq satisfying

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- $t \le t$ for all $t \in P$ (reflexivity)
- $s \le t$, $t \le s \Rightarrow s = t$ (antisymmetry)

finite partially ordered set (**poset**) P: a set P with a binary operation \leq satisfying

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- $t \le t$ for all $t \in P$ (reflexivity)
- $s \le t$, $t \le s \Rightarrow s = t$ (antisymmetry)
- $s \le t$, $t \le u \Rightarrow s \le u$ (transitivity)

finite partially ordered set (**poset**) P: a set P with a binary operation \leq satisfying

- $t \le t$ for all $t \in P$ (reflexivity)
- $s \le t$, $t \le s \Rightarrow s = t$ (antisymmetry)
- $s \le t$, $t \le u \Rightarrow s \le u$ (transitivity)

Write $t \ge s$ for $s \le t$, s < t for $s \le t$, $s \ne t$, etc.

 $s \parallel t$: s and t are incomparable (neither $s \le t$ nor $t \le s$) chain of length n: $t_0 < t_1 < \cdots < t_n$ t covers s, s is covered by t: s < t, $\nexists u$: s < u < t. Denoted s < t or $t \ge s$.

More terminology

saturated chain: $t_0 \ll t_1 \ll \cdots \ll t_n$

maximal chain: a chain C such that $t \notin C$ implies $C \cup \{t\}$ is not a chain

More terminology

saturated chain: $t_0 \ll t_1 \ll \cdots \ll t_n$

maximal chain: a chain C such that $t \notin C$ implies $C \cup \{t\}$ is not a chain

Maximal chains in a finite poset are saturated, but not conversely.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Hasse diagram

Hasse diagram of *P*: elements of *P* are drawn in the plane. If s < t then *t* is above (larger *y*-coordinate than) *s*. An edge is drawn between all pairs s < t.

Hasse diagrams of isomorphic posets

Not a Hasse diagram

Suppose $P = C_1 \cup \cdots \cup C_k$, where C_i is a chain. Let A be any antichain. Since $\#(C_i \cap A) \leq 1$, we have $k \geq \#A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \ge m$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Suppose $P = C_1 \cup \cdots \cup C_k$, where C_i is a chain. Let A be any antichain. Since $\#(C_i \cap A) \leq 1$, we have $k \geq \#A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \ge m$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem (Robert Dilworth, 1950). k = m.

(forerunner of the duality theorem for linear programming)

Suppose $P = C_1 \cup \cdots \cup C_k$, where C_i is a chain. Let A be any antichain. Since $\#(C_i \cap A) \leq 1$, we have $k \geq \#A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \ge m$.

Theorem (Robert Dilworth, 1950). k = m.

(forerunner of the duality theorem for linear programming)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Suppose $P = C_1 \cup \cdots \cup C_k$, where C_i is a chain. Let A be any antichain. Since $\#(C_i \cap A) \leq 1$, we have $k \geq \#A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \ge m$.

Theorem (Robert Dilworth, 1950). k = m.

(forerunner of the duality theorem for linear programming)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Dilworth's theorem (Galvin, 1994)

Let *P* be a finite poset. Dilworth's theorem is trivial if *P* is empty, so assume $P \neq \emptyset$. Let *t* be a maximal element of *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of Dilworth's theorem (Galvin, 1994)

Let *P* be a finite poset. Dilworth's theorem is trivial if *P* is empty, so assume $P \neq \emptyset$. Let *t* be a maximal element of *P*.

Let $P' = P - \{t\}$. By induction, let P' have an antichain A_0 of size k and a covering by chains C_1, \ldots, C_k . Can assume $C_i \cap C_j = \emptyset$ for $i \neq j$. Now $A_0 \cap C_i \neq \emptyset$ for $1 \le i \le k$. For $1 \le i \le k$, let s_i be the maximal element of C_i that belongs to an antichain of size k in P', and set $A = \{s_1, \ldots, s_k\}$.

Claim. A is an antichain.

Proof. Let A_i be an antichain of size k that contains s_i . Fix $j \neq i$. Then $A_i \cap C_j \neq \emptyset$. Let $u \in A_i \cap C_j$. Then $u \leq s_j$ by definition of s_j . Now $s_i \neq u$ since $s_i \in C_i$ and $u \in C_j$. Also $s_i \neq u$ since A_i is an antichain. Hence $s_i \not\geq u$. Since $u \leq s_j$, we have $s_i \not\geq s_j$. By symmetry, also $s_j \not\geq s_i$. Thus $s_i \parallel s_j$, so A is an antichain.

An example of the antichain A

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An example of the antichain A

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

An example of the antichain A

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

Conclusion of proof

Return to P.

Case 1. $t \ge s_i$ for some $1 \le i \le k$.

 $\boldsymbol{\mathsf{K}}: \text{ the chain } \{t\} \cup \{u \in C_i : u \leq s_i\}$

By definition of s_i , P - K does not have an antichain of size k. Since $A - \{s_i\}$ is an antichain of size k - 1 in P - K, P - K is a union of k - 1 chains (by the induction hypothesis). Thus P is a union of k chains.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conclusion of proof

Return to P.

Case 1. $t \ge s_i$ for some $1 \le i \le k$.

K: the chain $\{t\} \cup \{u \in C_i : u \leq s_i\}$

By definition of s_i , P - K does not have an antichain of size k. Since $A - \{s_i\}$ is an antichain of size k - 1 in P - K, P - K is a union of k - 1 chains (by the induction hypothesis). Thus P is a union of k chains.

Case 2. Now $t \nleq s_i$ for all $1 \le i \le k$. Thus $A \cup \{t\}$ is an antichain of size k + 1 in P (since t is maximal in P, so $t \nleq s_i$). Then P is a union of the k + 1 chains $\{t\}, C_1, \ldots, C_k$. \Box

"Dual" of Dilworth's theorem

Suppose $P = A_1 \cup \cdots \cup A_k$, where A_i is an antichain. Let C be any chain. Since $\#(A_i \cap C) \leq 1$, we have $k \geq \#C$. Thus:

Proposition. Let k be the least integer such that P is a union of k antichains. Let m be the size of the largest chain of P. Then $k \ge m$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

"Dual" of Dilworth's theorem

Suppose $P = A_1 \cup \cdots \cup A_k$, where A_i is an antichain. Let C be any chain. Since $\#(A_i \cap C) \le 1$, we have $k \ge \#C$. Thus:

Proposition. Let k be the least integer such that P is a union of k antichains. Let m be the size of the largest chain of P. Then $k \ge m$.

Theorem. k = m

Proof. Let A_1 be the set of minimal elements of P, then A_2 the set of minimal elements of $P - A_1$, etc. This gives a decomposition of P into a union of m antichains. \Box

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

"Dual" of Dilworth's theorem

Suppose $P = A_1 \cup \cdots \cup A_k$, where A_i is an antichain. Let C be any chain. Since $\#(A_i \cap C) \leq 1$, we have $k \geq \#C$. Thus:

Proposition. Let k be the least integer such that P is a union of k antichains. Let m be the size of the largest chain of P. Then $k \ge m$.

Theorem. k = m

Proof. Let A_1 be the set of minimal elements of P, then A_2 the set of minimal elements of $P - A_1$, etc. This gives a decomposition of P into a union of m antichains. \Box

Note how trivial the proof is compared to Dilworth's theorem!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note. Largest antichain of P has four elements.

Largest union of *j* chains

Define $\lambda_1, \lambda_2, \ldots$ by:

The size of the largest union of j chains in P is $\lambda_1 + \lambda_2 + \dots + \lambda_j$.

Largest union of *j* chains

Define $\lambda_1, \lambda_2, \ldots$ by:

The size of the largest union of j chains in P is $\lambda_1 + \lambda_2 + \dots + \lambda_j$.

Clear (by Dilworth's theorem). Let #P = p. Then $\lambda_i \ge 0$, and if the largest antichain of P has m elements, then

$$\lambda_1 + \dots + \lambda_m = p$$
$$\lambda_{m+1} = \lambda_{m+2} = \dots = 0.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

$$\lambda_1 = 4$$

$$\lambda_1 = 4$$

$$\lambda_1 + \lambda_2 = 6 \implies \lambda_2 = 2$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Largest union of *j* antichains

Completely analogous definition for antichains: Define μ_1, μ_2, \dots by:

The size of the largest union of j antichains in P is $\mu_1 + \mu_2 + \dots + \mu_j$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$\mu_1 = 4$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\mu_1 = 4$$

$$\mu_1 + \mu_2 = 6 \Rightarrow \mu_2 = 2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●
Greene's theorem (1976)

P: *p*-element poset

Theorem. (a) $\lambda_1 \ge \lambda_2 \ge \cdots$ and $\mu_1 \ge \mu_2 \ge \cdots$. In other words, $\lambda(P) = (\lambda_1, \lambda_2, \dots)$ and $\mu(P) = (\mu_1, \mu_2, \dots)$ are partitions of p. (b) $\lambda(P)' = \mu$, where $\lambda(P)'$ is the conjugate partition to $\lambda(P)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Greene's theorem (1976)

P: p-element poset

Theorem. (a) $\lambda_1 \ge \lambda_2 \ge \cdots$ and $\mu_1 \ge \mu_2 \ge \cdots$. In other words, $\lambda(P) = (\lambda_1, \lambda_2, \dots)$ and $\mu(P) = (\mu_1, \mu_2, \dots)$ are partitions of p. (b) $\lambda(P)' = \mu$, where $\lambda(P)'$ is the conjugate partition to $\lambda(P)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dilworth's theorem redux

Theorem. (a)
$$\lambda_1 \ge \lambda_2 \ge \cdots$$
 and $\mu_1 \ge \mu_2 \ge \cdots$. In other words,
 $\lambda(P) = (\lambda_1, \lambda_2, \dots)$ and $\mu(P) = (\mu_1, \mu_2, \dots)$ are partitions of p .
(b) $\lambda(P)' = \mu$, where $\lambda(P)'$ is the conjugate partition to $\lambda(P)$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Dilworth's theorem redux

Theorem. (a)
$$\lambda_1 \ge \lambda_2 \ge \cdots$$
 and $\mu_1 \ge \mu_2 \ge \cdots$. In other words,
 $\lambda(P) = (\lambda_1, \lambda_2, \dots)$ and $\mu(P) = (\mu_1, \mu_2, \dots)$ are partitions of p .
(b) $\lambda(P)' = \mu$, where $\lambda(P)'$ is the conjugate partition to $\lambda(P)$.
Dilworth's theorem. $\mu_1 = \lambda'_1 (= \ell(\lambda)$, the length or number of parts of λ).

Dilworth's theorem redux

Theorem. (a)
$$\lambda_1 \ge \lambda_2 \ge \cdots$$
 and $\mu_1 \ge \mu_2 \ge \cdots$. In other words,
 $\lambda(P) = (\lambda_1, \lambda_2, \dots)$ and $\mu(P) = (\mu_1, \mu_2, \dots)$ are partitions of p .
(b) $\lambda(P)' = \mu$, where $\lambda(P)'$ is the conjugate partition to $\lambda(P)$.

Dilworth's theorem. $\mu_1 = \lambda'_1$ (= $\ell(\lambda)$, the **length** or number of parts of λ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Dual Dilworth's theorem. $\lambda_1 = \mu'_1$

Inversion poset

 $\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ (symmetric group on $1, 2, \dots, n$)

Inversion poset

 $\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ (symmetric group on $1, 2, \dots, n$)

inversion poset I_w : elements are 1, 2, ..., n, order relation \leq_w . Define $i <_w j$ in I_w if i precedes j in w and $i <_{\mathbb{Z}} j$. (Perhaps should be called **noninversion poset**.)

Inversion poset

 $\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ (symmetric group on $1, 2, \dots, n$)

inversion poset I_w : elements are 1, 2, ..., n, order relation \leq_w . Define $i <_w j$ in I_w if i precedes j in w and $i <_{\mathbb{Z}} j$. (Perhaps should be called **noninversion poset**.)

Increasing and decreasing subsequences

If $i_1 < i_2 < \cdots < i_k$ is a chain in I_w , then i_1, i_2, \ldots, i_k is an **increasing** subsequence of w.

If $i_1 <_{\mathbb{Z}} i_2 <_{\mathbb{Z}} \cdots <_{\mathbb{Z}} i_k$ is an antichain in I_w , then i_k, \ldots, i_2, i_1 is a **decreasing subsequence** of w.

Increasing and decreasing subsequences

If $i_1 < i_2 < \cdots < i_k$ is a chain in I_w , then i_1, i_2, \ldots, i_k is an **increasing** subsequence of w.

If $i_1 <_{\mathbb{Z}} i_2 <_{\mathbb{Z}} \cdots <_{\mathbb{Z}} i_k$ is an antichain in I_w , then i_k, \ldots, i_2, i_1 is a **decreasing subsequence** of w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5,6,7 is an increasing subsequence 8,6,4,3 is a decreasing subsequence

Corollary to Greene's theorem

Given $w \in \mathfrak{S}_n$, let $\lambda_1 + \lambda_2 + \cdots + \lambda_k$ be largest size of the union of k increasing subsequences of w, and let $\mu_1 + \mu_2 + \cdots + \mu_k$ be the largest size of the union of k decreasing subsequences of w.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Corollary (Greene, 1974). Both $\lambda = (\lambda_1, \lambda_2, ...)$ and $\mu = (\mu_1, \mu_2, ...)$ are partitions of *n*, and $\mu = \lambda'$.

Corollary to Greene's theorem

Given $w \in \mathfrak{S}_n$, let $\lambda_1 + \lambda_2 + \cdots + \lambda_k$ be largest size of the union of k increasing subsequences of w, and let $\mu_1 + \mu_2 + \cdots + \mu_k$ be the largest size of the union of k decreasing subsequences of w.

Corollary (Greene, 1974). Both $\lambda = (\lambda_1, \lambda_2, ...)$ and $\mu = (\mu_1, \mu_2, ...)$ are partitions of *n*, and $\mu = \lambda'$.

Note (Greene). If $w \stackrel{\text{rsk}}{\to} (P, Q)$, then $\text{shape}(P) = \text{shape}(Q) = \lambda$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Natural question

Natural question. Given a (finite) poset *P*, determine λ and μ .

Note. Even determining μ_1 (the size of the largest antichain) is interesting and subtle. For instance, if Π_n is the lattice of partitions of an *n*-set, then $\mu_1(\Pi_n)$ is not known.

Some definitions

P is graded of rank *n* if $P = P_0 \cup P_1 \cup \cdots \cup P_n$ (disjoint union) and every maximal chain has the form $t_0 < t_1 < \cdots < t_n$, where $t_i \in P_i$. The set P_i is the *i*th level or *i*th rank of *P*.

Let $p_i = \#P_i$. If *P* is graded of rank *n*, then *P* is rank-symmetric if $p_i = p_{n-i}$ for all *i*, and rank-unimodal if

$$p_0 \leq p_1 \leq \cdots \leq p_j \geq p_{j+1} \geq \cdots \geq p_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some *j*.

Some definitions

P is graded of rank *n* if $P = P_0 \cup P_1 \cup \cdots \cup P_n$ (disjoint union) and every maximal chain has the form $t_0 < t_1 < \cdots < t_n$, where $t_i \in P_i$. The set P_i is the *i*th level or *i*th rank of *P*.

Let $p_i = \#P_i$. If *P* is graded of rank *n*, then *P* is rank-symmetric if $p_i = p_{n-i}$ for all *i*, and rank-unimodal if

$$p_0 \leq p_1 \leq \cdots \leq p_j \geq p_{j+1} \geq \cdots \geq p_n$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for some *j*.

Note. Rank-symmetric and rank-unimodal implies $j = \lfloor n/2 \rfloor$.

The strong Sperner property

P graded of rank n, $p_i = \#P_i$

Definition. *P* is **strongly Sperner** (or has the **strong Sperner property**) if $\mu(P) = \text{sort}_{\geq}(p_0, p_1, \dots, p_n)$

Symmetric chain decompositions

P: finite, graded of rank *n*, rank-symmetric, rank-unimodal

symmetric chain decomposition: $P = C_1 \cup C_2 \cup \cdots \cup C_k$, where each C_i is a **saturated** chain symmetric about the middle level (*n* even) or middle two levels (*n* odd)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Symmetric chain decompositions

P: finite, graded of rank *n*, rank-symmetric, rank-unimodal

symmetric chain decomposition: $P = C_1 \cup C_2 \cup \cdots \cup C_k$, where each C_i is a **saturated** chain symmetric about the middle level (*n* even) or middle two levels (*n* odd)

Exercise. If P has a symmetric chain decomposition, then P is strongly Sperner.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

An example: the boolean algebra B_4

Boolean algebra B_4

An example: the boolean algebra B_4

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples of posets with SCD.

• *p*-element chains *p*

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples of posets with SCD.

- *p*-element chains *p*
- $P, Q \text{ SCD} \Rightarrow P \times Q \text{ SCD}$

Examples of posets with SCD.

- *p*-element chains *p*
- $P, Q \text{ SCD} \Rightarrow P \times Q \text{ SCD}$
- products $n_1 \times \cdots \times n_k$ of chains, including the boolean algebra $B_n = 2^n$

Examples of posets with SCD.

- *p*-element chains *p*
- $P, Q \text{ SCD} \Rightarrow P \times Q \text{ SCD}$
- products $n_1 \times \cdots \times n_k$ of chains, including the boolean algebra $B_n = 2^n$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• $B_n(q)$, the lattice of subspaces of the vector space \mathbb{F}_q^n

Examples of posets with SCD.

- *p*-element chains *p*
- $P, Q \text{ SCD} \Rightarrow P \times Q \text{ SCD}$
- products $n_1 \times \cdots \times n_k$ of chains, including the boolean algebra $B_n = 2^n$

- $B_n(q)$, the lattice of subspaces of the vector space \mathbb{F}_q^n
- the Bruhat order of a finite Coxeter group

Symmetric chain decomposition for B_n

B_n: subsets of $\{1, \ldots, n\}$, ordered by \subseteq

Example of one of the chains for n = 10. Put *n* spaces in a line:

<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

Symmetric chain decomposition for B_n

B_n: subsets of $\{1, \ldots, n\}$, ordered by \subseteq

Example of one of the chains for n = 10. Put *n* spaces in a line:

<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

Choose a set of well-formed left and right parentheses

$$\frac{1}{1} \quad \frac{(}{2} \quad \frac{(}{3} \quad \frac{)}{4} \quad \frac{)}{5} \quad \frac{}{6} \quad \frac{}{7} \quad \frac{}{8} \quad \frac{(}{9} \quad \frac{)}{10}$$

Symmetric chain decomposition for B_n

B_n: subsets of $\{1, \ldots, n\}$, ordered by \subseteq

Example of one of the chains for n = 10. Put *n* spaces in a line:

<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

Choose a set of well-formed left and right parentheses

$$\frac{1}{1} \quad \frac{(}{2} \quad \frac{(}{3} \quad \frac{)}{4} \quad \frac{)}{5} \quad \frac{}{6} \quad \frac{}{7} \quad \frac{}{8} \quad \frac{(}{9} \quad \frac{)}{10}$$

Start with positions of left parentheses (2,3,9). Adjoin blank positions one at a time from right-to-left:

239 ⊂ 2389 ⊂ 23789 ⊂ 236789 ⊂ 1236789

・ロト・日本・日本・日本・日本・日本

The poset B_n/G

The symmetric group \mathfrak{S}_n acts on B_n by

$$w \cdot \{a_1,\ldots,a_k\} = \{w \cdot a_1,\ldots,w \cdot a_k\}.$$

If G is a subgroup of \mathfrak{S}_n , define the **quotient poset** B_n/G to be the poset on the orbits of G (acting on B_n), with

$$\mathfrak{o} \leq \mathfrak{o}' \iff \exists S \in \mathfrak{o}, T \in \mathfrak{o}', S \subseteq T.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An example

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Easy: B_n/G is graded of rank *n* and rank-symmetric.

Easy: B_n/G is graded of rank *n* and rank-symmetric.

Theorem. B_n/G is rank-unimodal and strongly Sperner.

Easy: B_n/G is graded of rank *n* and rank-symmetric.

Theorem. B_n/G is rank-unimodal and strongly Sperner.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

No combinatorial proof known.

Easy: B_n/G is graded of rank *n* and rank-symmetric.

Theorem. B_n/G is rank-unimodal and strongly Sperner.

No combinatorial proof known.

Conjecture. B_n/G has a symmetric chain decomposition.

L(m,n)

L(m, n):

• Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion

L(m,n)

L(m, n):

• Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion

Sequences n ≥ a₁ ≥ a₂ ≥ a₃ ≥ ··· ≥ a_m ≥ 1, ordered coordinate-wise
L(m,n)

L(m, n):

• Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Sequences n ≥ a₁ ≥ a₂ ≥ a₃ ≥ ··· ≥ a_m ≥ 1, ordered coordinate-wise
- $J(\boldsymbol{m} \times \boldsymbol{n})$ (lattice of order ideals)

L(m,n)

L(m, n):

• Young diagrams that fit in an *m* × *n* rectangle, ordered by diagram inclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Sequences n ≥ a₁ ≥ a₂ ≥ a₃ ≥ ··· ≥ a_m ≥ 1, ordered coordinate-wise
- $J(\boldsymbol{m} \times \boldsymbol{n})$ (lattice of order ideals)
- B_{mn}/G for a certain G

L(m,n)

L(m, n):

• Young diagrams that fit in an *m* × *n* rectangle, ordered by diagram inclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Sequences n ≥ a₁ ≥ a₂ ≥ a₃ ≥ ··· ≥ a_m ≥ 1, ordered coordinate-wise
- $J(\boldsymbol{m} \times \boldsymbol{n})$ (lattice of order ideals)
- B_{mn}/G for a certain G

Note. L(m, n) is graded of rank mn.

L(1,4), L(2,2), L(2,3)

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

L(3,3)

Because $L(m, n) = B_{mn}/G$ and any B_k/H is strongly Sperner, we have that L(m, n) is strongly Sperner.

Because $L(m, n) = B_{mn}/G$ and any B_k/H is strongly Sperner, we have that L(m, n) is strongly Sperner.

No nonalgebraic proof known.

Because $L(m, n) = B_{mn}/G$ and any B_k/H is strongly Sperner, we have that L(m, n) is strongly Sperner.

No nonalgebraic proof known.

Conjecture. L(m, n) has a symmetric chain decomposiiton.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Because $L(m, n) = B_{mn}/G$ and any B_k/H is strongly Sperner, we have that L(m, n) is strongly Sperner.

No nonalgebraic proof known.

Conjecture. L(m, n) has a symmetric chain decomposition.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Note. $\sum_{i} p_{i} q^{i} = \begin{bmatrix} m+n \\ m \end{bmatrix}$ (*q*-binomial coefficient)

Because $L(m, n) = B_{mn}/G$ and any B_k/H is strongly Sperner, we have that L(m, n) is strongly Sperner.

No nonalgebraic proof known.

Conjecture. L(m, n) has a symmetric chain decomposition.

Note. $\sum_{i} p_{i} q^{i} = \begin{bmatrix} m+n \\ m \end{bmatrix}$ (*q*-binomial coefficient)

Reference. RS, Algebraic Combinatorics, Chapters 5-6.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Linear extensions

A linear extension of a *p*-element poset *P* is a bijection $\varphi: P \to \{1, \dots, p\}$ such that $s <_P t \Rightarrow \varphi(s) <_{\mathbb{Z}} \varphi(t)$.

Can identify φ with the permutation t_1, \ldots, t_p of the elements of P by $t_i = \varphi^{-1}(i)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

An example

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Removing an element from *P*

Proposition. Let $t \in P$. Then $\lambda(P)$ is obtained from $\lambda(P-t)$ by adding 1 to some part of $\lambda(P-t)$ or adding a new part equal to 1. Thus the diagram of $\lambda(P)$ is obtained from that of $\lambda(P-t)$ by adding a single box.

Removing an element from *P*

Proposition. Let $t \in P$. Then $\lambda(P)$ is obtained from $\lambda(P-t)$ by adding 1 to some part of $\lambda(P-t)$ or adding a new part equal to 1. Thus the diagram of $\lambda(P)$ is obtained from that of $\lambda(P-t)$ by adding a single box.

Proof. Let n_k be the largest size of the union of k chains of P, and similarly m_k for P - t. Clearly either $n_k = m_k$ or $n_k = m_k + 1$. From this the proof follows. \Box

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Removing an element from *P*

Proposition. Let $t \in P$. Then $\lambda(P)$ is obtained from $\lambda(P-t)$ by adding 1 to some part of $\lambda(P-t)$ or adding a new part equal to 1. Thus the diagram of $\lambda(P)$ is obtained from that of $\lambda(P-t)$ by adding a single box.

Proof. Let n_k be the largest size of the union of k chains of P, and similarly m_k for P - t. Clearly either $n_k = m_k$ or $n_k = m_k + 1$. From this the proof follows. \Box

Corollary. Let t_1, \ldots, t_p be any ordering of the elements of *P*. Let $P_i = \{t_1, \ldots, t_i\}$ (a subposet of *P*). Then the sequence

 $\emptyset, \lambda(P_1), \lambda(P_2), \ldots, \lambda(P_t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • •

defines a standard Young tableau (SYT) of shape $\lambda(P)$.

An example

$$\begin{split} \lambda(P_1) &= (1), \ \lambda(P_{12}) = (2), \ \lambda(P_{123}) = (2,1) \\ \lambda(P_{1234}) &= (3,1), \ \lambda(P_{12345}) = \lambda(P) = (3,2) \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

An example

$$\begin{split} \lambda(P_1) &= (1), \ \lambda(P_{12}) = (2), \ \lambda(P_{123}) = (2,1) \\ \lambda(P_{1234}) &= (3,1), \ \lambda(P_{12345}) = \lambda(P) = (3,2) \end{split}$$

1	2	4
3	5	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

map from B_p to **Young's lattice Y** (partitions of all $n \ge 0$ ordered component-wise), order preserving, rank preserving

map from B_p to **Young's lattice Y** (partitions of all $n \ge 0$ ordered component-wise), order preserving, rank preserving

Can anything be done with this?