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Basic definitions

finite partially ordered set (poset) P: a set P with a binary
operation ≤ satisfying

t ≤ t for all t ∈ P (reflexivity)

s ≤ t, t ≤ s ⇒ s = t (antisymmetry)

s ≤ t, t ≤ u⇒ s ≤ u (transitivity)

Write t ≥ s for s ≤ t, s < t for s ≤ t, s ≠ t, etc.

s∥t: s and t are incomparable (neither s ≤ t nor t ≤ s)

chain of length n: t0 < t1 < ⋯ < tn

t covers s, s is covered by t: s < t, ∄u∶ s < u < t. Denoted s⋖t or
t⋗s.
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More terminology

saturated chain: t0 ⋖ t1 ⋖ ⋯ ⋖ tn

maximal chain: a chain C such that t /∈ C implies C ∪ {t} is not a
chain

Maximal chains in a finite poset are saturated, but not conversely.



Hasse diagram

Hasse diagram of P : elements of P are drawn in the plane. If
s < t then t is above (larger y -coordinate than) s. An edge is
drawn between all pairs s ⋖ t.

Hasse diagrams of

isomorphic posets

Not a Hasse

diagram



Unions of chains

Suppose P = C1 ∪⋯∪ Ck , where Ci is a chain. Let A be any
antichain. Since #(Ci ∩A) ≤ 1, we have k ≥#A. Thus:

Proposition. Let k be the least integer such that P is a union of
k chains. Let m be the size of the largest antichain of P. Then
k ≥ m.
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Proof of Dilworth’s theorem (Galvin, 1994)

Let P be a finite poset. Dilworth’s theorem is trivial if P is empty,
so assume P ≠ ∅. Let t be a maximal element of P .



Proof of Dilworth’s theorem (Galvin, 1994)

Let P be a finite poset. Dilworth’s theorem is trivial if P is empty,
so assume P ≠ ∅. Let t be a maximal element of P .

Let P ′ = P − {t}. By induction, let P ′ have an antichain A0 of size
k and a covering by chains C1, . . . ,Ck . Can assume Ci ∩Cj = ∅ for
i ≠ j . Now A0 ∩ Ci ≠ ∅ for 1 ≤ i ≤ k . For 1 ≤ i ≤ k , let si be the
maximal element of Ci that belongs to an antichain of size k in P ′,
and set A = {s1, . . . , sk}.

Claim. A is an antichain.

Proof. Let Ai be an antichain of size k that contains si . Fix j ≠ i .
Then Ai ∩Cj ≠ ∅. Let u ∈ Ai ∩ Cj . Then u ≤ sj by definition of sj .
Now si ≠ u since si ∈ Ci and u ∈ Cj . Also si /> u since Ai is an
antichain. Hence si /≥ u. Since u ≤ sj , we have si /≥ sj . By
symmetry, also sj /≥ si . Thus si ∥ sj , so A is an antichain.
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Conclusion of proof

Return to P .

Case 1. t ≥ si for some 1 ≤ i ≤ k .

K : the chain {t} ∪ {u ∈ Ci ∶ u ≤ si}

By definition of si , P −K does not have an antichain of size k .
Since A − {si} is an antichain of size k − 1 in P −K , P −K is a
union of k − 1 chains (by the induction hypothesis). Thus P is a
union of k chains.



Conclusion of proof

Return to P .

Case 1. t ≥ si for some 1 ≤ i ≤ k .

K : the chain {t} ∪ {u ∈ Ci ∶ u ≤ si}

By definition of si , P −K does not have an antichain of size k .
Since A − {si} is an antichain of size k − 1 in P −K , P −K is a
union of k − 1 chains (by the induction hypothesis). Thus P is a
union of k chains.

Case 2. Now t /≥ si for all 1 ≤ i ≤ k . Thus A ∪ {t} is an antichain
of size k + 1 in P (since t is maximal in P , so t /< si ). Then P is a
union of the k + 1 chains {t},C1, . . . ,Ck . ◻



“Dual” of Dilworth’s theorem

Suppose P = A1 ∪ ⋅ ⋅ ⋅ ∪Ak , where Ai is an antichain. Let C be any
chain. Since #(Ai ∩ C) ≤ 1, we have k ≥#C . Thus:

Proposition. Let k be the least integer such that P is a union of
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of P into a union of m antichains. ◻



“Dual” of Dilworth’s theorem

Suppose P = A1 ∪ ⋅ ⋅ ⋅ ∪Ak , where Ai is an antichain. Let C be any
chain. Since #(Ai ∩ C) ≤ 1, we have k ≥#C . Thus:

Proposition. Let k be the least integer such that P is a union of
k antichains. Let m be the size of the largest chain of P. Then
k ≥ m.

Theorem. k = m

Proof. Let A1 be the set of minimal elements of P , then A2 the
set of minimal elements of P −A1, etc. This gives a decomposition
of P into a union of m antichains. ◻

Note how trivial the proof is compared to Dilworth’s theorem!
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An example

Note. Largest antichain of P has four elements.



Largest union of j chains

Define λ1,λ2, . . . by:

The size of the largest union of j chains in P is λ1 + λ2 +⋯+ λj .



Largest union of j chains

Define λ1,λ2, . . . by:

The size of the largest union of j chains in P is λ1 + λ2 +⋯+ λj .

Clear (by Dilworth’s theorem). Let #P = p. Then λi ≥ 0, and if
the largest antichain of P has m elements, then

λ1 +⋯+ λm = p

λm+1 = λm+2 = ⋯ = 0.
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An example

λ1 = 4

λ1 + λ2 = 6 ⇒ λ2 = 2



Largest union of j antichains

Completely analogous definition for antichains:
Define µ1,µ2, . . . by:

The size of the largest union of j antichains in P is µ1 +µ2+⋯+µj .
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An example

µ1 = 4

µ1 + µ2 = 6⇒ µ2 = 2



Greene’s theorem (1976)

P: p-element poset

Theorem. (a) λ1 ≥ λ2 ≥ ⋯ and µ1 ≥ µ2 ≥ ⋯. In other words,
λ(P) = (λ1, λ2, . . . ) and µ(P) = (µ1, µ2, . . . ) are partitions of p.

(b) λ(P)′ = µ, where λ(P)′ is the conjugate partition to λ(P).
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P: p-element poset

Theorem. (a) λ1 ≥ λ2 ≥ ⋯ and µ1 ≥ µ2 ≥ ⋯. In other words,
λ(P) = (λ1, λ2, . . . ) and µ(P) = (µ1, µ2, . . . ) are partitions of p.

(b) λ(P)′ = µ, where λ(P)′ is the conjugate partition to λ(P).

λ = (4,2,2) λ' = (3,3,1,1)
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Dilworth’s theorem redux

Theorem. (a) λ1 ≥ λ2 ≥ ⋯ and µ1 ≥ µ2 ≥ ⋯. In other words,
λ(P) = (λ1, λ2, . . . ) and µ(P) = (µ1, µ2, . . . ) are partitions of p.

(b) λ(P)′ = µ, where λ(P)′ is the conjugate partition to λ(P).

Dilworth’s theorem. µ1 = λ′1 (= ℓ(λ), the length or number of
parts of λ).

Dual Dilworth’s theorem. λ1 = µ′1
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Inversion poset

w = a1a2⋯an ∈Sn (symmetric group on 1,2, . . . ,n)

inversion poset Iw : elements are 1,2, . . . ,n, order relation ≤w .
Define i <w j in Iw if i precedes j in w and i <Z j . (Perhaps should
be called noninversion poset.)

5 2 1

8 6 4 3

7

w = 52864713



Increasing and decreasing subsequences

If i1 < i2 < ⋯ < ik is a chain in Iw , then i1, i2, . . . , ik is an increasing
subsequence of w .

If i1 <Z i2 <Z ⋯ <Z ik is an antichain in Iw , then ik , . . . , i2, i1 is a
decreasing subsequence of w .



Increasing and decreasing subsequences

If i1 < i2 < ⋯ < ik is a chain in Iw , then i1, i2, . . . , ik is an increasing
subsequence of w .

If i1 <Z i2 <Z ⋯ <Z ik is an antichain in Iw , then ik , . . . , i2, i1 is a
decreasing subsequence of w .

5 2 1

8 6 4 3

7

w = 52864713

5,6,7 is an increasing subsequence

8,6,4,3 is a decreasing subsequence



Corollary to Greene’s theorem

Given w ∈ Sn, let λ1 + λ2 +⋯+ λk be largest size of the union of k
increasing subsequences of w , and let µ1 + µ2 +⋯+ µk be the
largest size of the union of k decreasing subsequences of w .

Corollary (Greene, 1974). Both λ = (λ1, λ2, . . . ) and
µ = (µ1, µ2, . . . ) are partitions of n, and µ = λ′.



Corollary to Greene’s theorem

Given w ∈ Sn, let λ1 + λ2 +⋯+ λk be largest size of the union of k
increasing subsequences of w , and let µ1 + µ2 +⋯+ µk be the
largest size of the union of k decreasing subsequences of w .

Corollary (Greene, 1974). Both λ = (λ1, λ2, . . . ) and
µ = (µ1, µ2, . . . ) are partitions of n, and µ = λ′.

Note (Greene). If w
rsk
→ (P ,Q), then shape(P) = shape(Q) = λ.



Natural question

Natural question. Given a (finite) poset P , determine λ and µ.

Note. Even determining µ1 (the size of the largest antichain) is
interesting and subtle. For instance, if Πn is the lattice of
partitions of an n-set, then µ1(Πn) is not known.



Some definitions

P is graded of rank n if P = P0
⋅∪P1
⋅∪⋯ ⋅∪Pn (disjoint union) and

every maximal chain has the form t0 < t1 < ⋯ < tn, where ti ∈ Pi .
The set Pi is the ith level or ith rank of P .

Let pi =#Pi . If P is graded of rank n, then P is rank-symmetric
if pi = pn−i for all i , and rank-unimodal if

p0 ≤ p1 ≤ ⋯ ≤ pj ≥ pj+1 ≥ ⋯ ≥ pn

for some j .



Some definitions

P is graded of rank n if P = P0
⋅∪P1
⋅∪⋯ ⋅∪Pn (disjoint union) and

every maximal chain has the form t0 < t1 < ⋯ < tn, where ti ∈ Pi .
The set Pi is the ith level or ith rank of P .

Let pi =#Pi . If P is graded of rank n, then P is rank-symmetric
if pi = pn−i for all i , and rank-unimodal if

p0 ≤ p1 ≤ ⋯ ≤ pj ≥ pj+1 ≥ ⋯ ≥ pn

for some j .

Note. Rank-symmetric and rank-unimodal implies j = ⌊n/2⌋.



The strong Sperner property

P graded of rank n, pi =#Pi

Definition. P is strongly Sperner (or has the strong Sperner
property) if µ(P) = sort≥(p0,p1, . . . ,pn)



Symmetric chain decompositions

P: finite, graded of rank n, rank-symmetric, rank-unimodal

symmetric chain decomposition: P = C1
⋅∪C2
⋅∪⋯ ⋅∪Ck , where each

Ci is a saturated chain symmetric about the middle level (n even)
or middle two levels (n odd)



Symmetric chain decompositions

P: finite, graded of rank n, rank-symmetric, rank-unimodal

symmetric chain decomposition: P = C1
⋅∪C2
⋅∪⋯ ⋅∪Ck , where each

Ci is a saturated chain symmetric about the middle level (n even)
or middle two levels (n odd)

Exercise. If P has a symmetric chain decomposition, then P is
strongly Sperner.
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An example: the boolean algebra B4

Boolean algebra B4

λ(P) = (5,3,3,3,1,1), µ(P) = (6,4,4,1,1)



Which posets have symmetric chain decompositions?

Examples of posets with SCD.

p-element chains p



Which posets have symmetric chain decompositions?

Examples of posets with SCD.

p-element chains p

P ,Q SCD ⇒ P ×Q SCD



Which posets have symmetric chain decompositions?

Examples of posets with SCD.

p-element chains p

P ,Q SCD ⇒ P ×Q SCD

products n1 ×⋯× nk of chains, including the boolean algebra
Bn = 2n



Which posets have symmetric chain decompositions?

Examples of posets with SCD.

p-element chains p

P ,Q SCD ⇒ P ×Q SCD

products n1 ×⋯× nk of chains, including the boolean algebra
Bn = 2n

Bn(q), the lattice of subspaces of the vector space F
n
q



Which posets have symmetric chain decompositions?

Examples of posets with SCD.

p-element chains p

P ,Q SCD ⇒ P ×Q SCD

products n1 ×⋯× nk of chains, including the boolean algebra
Bn = 2n

Bn(q), the lattice of subspaces of the vector space F
n
q

the Bruhat order of a finite Coxeter group



Symmetric chain decomposition for Bn

Bn: subsets of {1, . . . ,n}, ordered by ⊆

Example of one of the chains for n = 10. Put n spaces in a line:

1 2 3 4 5 6 7 8 9 10
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Symmetric chain decomposition for Bn

Bn: subsets of {1, . . . ,n}, ordered by ⊆

Example of one of the chains for n = 10. Put n spaces in a line:

1 2 3 4 5 6 7 8 9 10

Choose a set of well-formed left and right parentheses

1 2 3 4 5 6 7 8 9 10

( ( () ) )

Start with positions of left parentheses (2,3,9). Adjoin blank
positions one at a time from right-to-left:

239 ⊂ 2389 ⊂ 23789 ⊂ 236789 ⊂ 1236789



The poset Bn/G

The symmetric group Sn acts on Bn by

w ⋅ {a1, . . . ,ak} = {w ⋅ a1, . . . ,w ⋅ ak}.

If G is a subgroup of Sn, define the quotient poset Bn/G to be
the poset on the orbits of G (acting on Bn), with

o ≤ o′ ⇔ ∃S ∈ o,T ∈ o′, S ⊆ T .



An example

n = 3, G = {(1)(2)(3), (1, 2)(3)}

3

φ

1,2

12

123

13,23



Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.
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Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.

Theorem. Bn/G is rank-unimodal and strongly Sperner.

No combinatorial proof known.

Conjecture. Bn/G has a symmetric chain decomposition.
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L(m,n)

L(m,n):

Young diagrams that fit in an m × n rectangle, ordered by
diagram inclusion

Sequences n ≥ a1 ≥ a2 ≥ a3 ≥ ⋯ ≥ am ≥ 1, ordered
coordinate-wise

J(m × n) (lattice of order ideals)

Bmn/G for a certain G

Note. L(m,n) is graded of rank mn.



L(1,4), L(2,2), L(2,3)

φ

φ

1

2

3

4

φ

1

2

21

22

11

1

2

3

31

32

33

22

21

11



L(3,3)

11

φ

1

2

3

31

32

33

21

22

311

321

221

211

111

322 331

333

222

332



Greene invariants for L(m,n)

Because L(m,n) = Bmn/G and any Bk/H is strongly Sperner, we
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Greene invariants for L(m,n)

Because L(m,n) = Bmn/G and any Bk/H is strongly Sperner, we
have that L(m,n) is strongly Sperner.

No nonalgebraic proof known.

Conjecture. L(m,n) has a symmetric chain decomposiiton.

Note. ∑i piq
i = [m+n

m
] (q-binomial coefficient)

Reference. RS, Algebraic Combinatorics, Chapters 5–6.



Linear extensions

A linear extension of a p-element poset P is a bijection
ϕ∶P → {1, . . . ,p} such that s <P t ⇒ ϕ(s) <Z ϕ(t).

Can identify ϕ with the permutation t1, . . . , tp of the elements of
P by ti = ϕ−1(i).



An example

ba

c d

1

2

3

4

a b c d

b a c d

a b d c

b a d c

b d a c



Removing an element from P

Proposition. Let t ∈ P. Then λ(P) is obtained from λ(P − t) by
adding 1 to some part of λ(P − t) or adding a new part equal to 1.
Thus the diagram of λ(P) is obtained from that of λ(P − t) by
adding a single box.
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and similarly mk for P − t. Clearly either nk = mk or nk = mk + 1.
From this the proof follows. ◻



Removing an element from P

Proposition. Let t ∈ P. Then λ(P) is obtained from λ(P − t) by
adding 1 to some part of λ(P − t) or adding a new part equal to 1.
Thus the diagram of λ(P) is obtained from that of λ(P − t) by
adding a single box.

Proof. Let nk be the largest size of the union of k chains of P ,
and similarly mk for P − t. Clearly either nk = mk or nk = mk + 1.
From this the proof follows. ◻

Corollary. Let t1, . . . , tp be any ordering of the elements of P. Let
Pi = {t1, . . . , ti} (a subposet of P). Then the sequence

∅, λ(P1), λ(P2), . . . , λ(Pt)

defines a standard Young tableau (SYT) of shape λ(P).



An example

4

1

5

3

2

λ(P1) = (1), λ(P12) = (2), λ(P123) = (2,1)

λ(P1234) = (3,1), λ(P12345) = λ(P) = (3,2)



An example

4

1

5

3

2

λ(P1) = (1), λ(P12) = (2), λ(P123) = (2,1)

λ(P1234) = (3,1), λ(P12345) = λ(P) = (3,2)

1 2 4

3 5



A map from Bp to partitions
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a

b
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map from Bp to Young’s lattice Y (partitions of all n ≥ 0 ordered
component-wise), order preserving, rank preserving



A map from Bp to partitions

a b c

ab ac bc

abc

�

a

b

c 1 1 1

2 11 11

21

map from Bp to Young’s lattice Y (partitions of all n ≥ 0 ordered
component-wise), order preserving, rank preserving

Can anything be done with this?


