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Basic definitions

finite partially ordered set (poset) P: a set P with a binary
operation < satisfying

o t <t forall t eP (reflexivity)
@ s<t, t<s=s=t (antisymmetry)

@ s<t, t<u=s<u (transitivity)

Write t >s for s<t, s<tfors<t,s+t, etc.

s||t: s and t are incomparable (neither s <t nor t <s)
chain of length n: tg<t; <--- <ty

t covers s, s is covered by t: s<t, Au:s <u<t. Denoted s<t or
t>s.
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maximal chain: a chain C such that t ¢ C implies Cu {t} is not a
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More terminology

saturated chain: ty<t; <. < ¢,

maximal chain: a chain C such that t ¢ C implies Cu {t} is not a
chain

Maximal chains in a finite poset are saturated, but not conversely.



Hasse diagram

Hasse diagram of P: elements of P are drawn in the plane. If
s < t then t is above (larger y-coordinate than) s. An edge is
drawn between all pairs s < t.

Hasse diagrams of Not a Hasse
isomorphic posets diagram



Unions of chains

Suppose P = Gy U---uU C, where C; is a chain. Let A be any
antichain. Since #(C;nA) <1, we have k > #A. Thus:

Let k be the least integer such that P is a union of
k chains. Let m be the size of the largest antichain of P. Then
k>m.
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Proof of Dilworth’s theorem (Galvin, 1994)

Let P be a finite poset. Dilworth’s theorem is trivial if P is empty,
so assume P # &. Let t be a maximal element of P.



Proof of Dilworth’s theorem (Galvin, 1994)

Let P be a finite poset. Dilworth’s theorem is trivial if P is empty,
so assume P # &. Let t be a maximal element of P.

Let P" = P - {t}. By induction, let P’ have an antichain Ag of size
k and a covering by chains Ci,..., Cx. Can assume C;n C; = & for
i+j. Now Agn C;+@for 1<i<k. For 1<i<k, lets; be the
maximal element of C; that belongs to an antichain of size k in P/,
and set A= {sy,...,S}.

Claim. A is an antichain.

Let A; be an antichain of size k that contains s;. Fix j # /.
Then A;inC; +#@. Let ue A;n C;. Then u <s; by definition of s;.
Now s; # u since s; € G and u € C;. Also s; ¥ u since A; is an
antichain. Hence s; # u. Since u <'sj, we have s; # s;. By
symmetry, also s; # s;. Thus s; || s;, so A is an antichain.
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Conclusion of proof

Return to P.
t>s; for some 1<i<k.
K: the chain {t} u{ue G : u<s;}
By definition of s;, P — K does not have an antichain of size k.
Since A—{s;} is an antichain of size k—1in P-K, P-K is a

union of k —1 chains (by the induction hypothesis). Thus P is a
union of k chains.



Conclusion of proof

Return to P.
t>s; for some 1<i<k.
K: the chain {t} u{ue G : u<s;}

By definition of s;, P — K does not have an antichain of size k.

Since A—{s;} is an antichain of size k—1in P-K, P-K is a

union of k —1 chains (by the induction hypothesis). Thus P is a
union of k chains.

Now t # s; for all 1 <i< k. Thus Au{t} is an antichain
of size k+1 in P (since t is maximal in P, so t £s;). Then P is a
union of the k +1 chains {t},Cy,...,Cx. O



“Dual” of Dilworth’s theorem

Suppose P = Aj uU---U Ay, where A; is an antichain. Let C be any
chain. Since #(Ain C) <1, we have k > #C. Thus:

Proposition. Let k be the least integer such that P is a union of
k antichains. Let m be the size of the largest chain of P. Then
k>m.
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“Dual” of Dilworth’s theorem

Suppose P = Aj uU---U Ay, where A; is an antichain. Let C be any
chain. Since #(A;in C) <1, we have k > #C. Thus:

Let k be the least integer such that P is a union of
k antichains. Let m be the size of the largest chain of P. Then
k>m.

. k=m

Proof. Let A; be the set of minimal elements of P, then A, the
set of minimal elements of P — Ay, etc. This gives a decomposition
of P into a union of m antichains. O

Note how trivial the proof is compared to Dilworth’s theorem!
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An example

Note. Largest antichain of P has four elements.
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Largest union of j chains

Define A1, A, ... by:
The size of the largest union of j chains in Pis Ay + Ao + -+ A

Clear (by Dilworth's theorem). Let #P = p. Then \; >0, and if
the largest antichain of P has m elements, then

M+ +An = p

I
©

)\m+1 = )\m+2 =
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N
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A




An example

)\1+/\2 6=>)\2=2



Largest union of j antichains

Completely analogous definition for antichains:
Define pu1, pto, ... by:

The size of the largest union of j antichains in P is pig + pio + -+ pu;.
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An example

prtpe = 6=>pup=2



Greene’s theorem (1976)

P: p-element poset

Theorem. (a) Ay > Ao >+ and pq > o > ---. In other words,
A(P)=(M1,A2,...) and pu(P) = (p1, pa, - .. ) are partitions of p.

(b) A(P)" = p, where X(P)’ is the conjugate partition to A\(P).



Greene’s theorem (1976)

P: p-element poset

Theorem. (a) Ay > Ao >+ and pq > o > ---. In other words,
A(P)=(M1,A2,...) and pu(P) = (p1, pa, - .. ) are partitions of p.

(b) A(P)" = p, where X(P)’ is the conjugate partition to A\(P).

A=(422)  AN=(3311)
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Dilworth’s theorem redux

Theorem. (a) Ay > Ao >+ and pq > pup > -+, In other words,
A(P)=(M\1,A2,...) and pu(P) = (p1, pa, - .. ) are partitions of p.

(b) A(P)" = p, where X(P)’ is the conjugate partition to A\(P).

Dilworth’s theorem. pg = A\] (= £()), the length or number of
parts of \).

Dual Dilworth’s theorem. A; = p}
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Inversion poset

W = 21323, € S, (symmetric group on 1,2,...,n)

inversion poset /,,: elements are 1,2,...,n, order relation <,,.
Define i <, j in I, if i precedes j in w and i <z j. (Perhaps should
be called noninversion poset.)

5 2 1
w = 52864713



Increasing and decreasing subsequences

If i <ip<--<igisachainin I, then i1, f,..., iy is an increasing
subsequence of w.

If i1 <z I» <z -+ <z i) is an antichain in [, then ix,..., b, /1 is a
decreasing subsequence of w.



Increasing and decreasing subsequences

If i <ip<--<igisachainin I, then i1, f,..., iy is an increasing
subsequence of w.

If i1 <z I» <z -+ <z i) is an antichain in [, then ix,..., b, /1 is a
decreasing subsequence of w.
7
8 6 4 3
5 2 1
w = 52864713

5,6,7 is an increasing subsequence

8,6,4,3 is a decreasing subsequence



Corollary to Greene's theorem

Given w € &, let A1 + Ao + -+ + Ak be largest size of the union of k
increasing subsequences of w, and let uy + pp + -+ + g be the
largest size of the union of k decreasing subsequences of w.

Corollary (Greene, 1974). Both A = (A1, z,...) and
w=(p1, 2, ... ) are partitions of n, and p = \'.



Corollary to Greene's theorem

Given w € &, let A1 + Ao + -+ + Ak be largest size of the union of k
increasing subsequences of w, and let uy + pp + -+ + g be the
largest size of the union of k decreasing subsequences of w.

(Greene, 1974). Both A = (A1, A2,...) and
w=(p1, 2, ... ) are partitions of n, and p = \'.

(Greene). If w = (P, Q), then shape(P) = shape(Q) = \.



Natural question

Given a (finite) poset P, determine X\ and .

Even determining 11 (the size of the largest antichain) is
interesting and subtle. For instance, if 1, is the lattice of
partitions of an n-set, then p1(I,) is not known.



Some definitions

P is graded of rank n if P = PyuPyU---UP, (disjoint union) and
every maximal chain has the form tg < t; <--- < t,,, where tj € P;.
The set P; is the ith level or ith rank of P.

Let p; = #P;. If P is graded of rank n, then P is rank-symmetric
if pj = pp_; for all i, and rank-unimodal if

Po<pL< <P pja1 > pa

for some j.



Some definitions

P is graded of rank n if P = PyuPyU---UP, (disjoint union) and
every maximal chain has the form tg < t; <--- < t,,, where tj € P;.
The set P; is the ith level or ith rank of P.

Let p; = #P;. If P is graded of rank n, then P is rank-symmetric
if pj = pp_; for all i, and rank-unimodal if

PoSpL<SPj2Ppjr122Pn
for some j.

Rank-symmetric and rank-unimodal implies j = |n/2].



The strong Sperner property

P graded of rank n, p; = #P;

Definition. P is strongly Sperner (or has the strong Sperner
property) if u(P) = sort(po,p1,-- -, Pn)



Symmetric chain decompositions

P: finite, graded of rank n, rank-symmetric, rank-unimodal

symmetric chain decomposition: P = GGUGU---uCy, where each
C; is a saturated chain symmetric about the middle level (n even)
or middle two levels (n odd)



Symmetric chain decompositions

P: finite, graded of rank n, rank-symmetric, rank-unimodal

symmetric chain decomposition: P = GGUGU---uCy, where each
C; is a saturated chain symmetric about the middle level (n even)
or middle two levels (n odd)

Exercise. If P has a symmetric chain decomposition, then P is
strongly Sperner.
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Boolean algebra B,



An example: the boolean algebra B,

Boolean algebra B,

A(P)=(5,3,3,3,1,1), u(P)=1(6,4,4,1,1)
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Which posets have symmetric chain decompositions?

Examples of posets with SCD.
@ p-element chains p
e P,QSCD = P xQ SCD
@ products ny x --- x ng of chains, including the boolean algebra
B,=2"
e B,(q), the lattice of subspaces of the vector space Fg
@ the Bruhat order of a finite Coxeter group
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Example of one of the chains for n=10. Put n spaces in a line:
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Example of one of the chains for n=10. Put n spaces in a line:

Choose a set of well-formed left and right parentheses

ccl)2 ) )

1 2 3 4 5 6 7 8 9 10



Symmetric chain decomposition for B,
B,,: subsets of {1,...,n}, ordered by ¢

of one of the chains for n =10. Put n spaces in a line:

Choose a set of well-formed left and right parentheses

ccl)2 ) )

1 2 3 4 5 6 7 8 9 10

Start with positions of left parentheses (2,3,9). Adjoin blank
positions one at a time from right-to-left:

239 c 2389 c 23789 c 236789 c 1236789



The poset B,/G

The symmetric group &, acts on B, by

w-{a1,...,ak} ={w-ar,...,w-ag}.

If G is a subgroup of &, define the quotient poset B,/G to be
the poset on the orbits of G (acting on B,), with

/

0<o’ < 3Se€o0,Teo, ScT.



An example

123

13,23 12
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Spernicity of B, /G

B,/G is graded of rank n and rank-symmetric.
Theorem. B,/G is rank-unimodal and strongly Sperner.
No combinatorial proof known.

Conjecture. B,/G has a symmetric chain decomposition.
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L(m, n)

L(m,n):

@ Young diagrams that fit in an m x n rectangle, ordered by
diagram inclusion

@ Sequences n>a; >ap>az>-->am > 1, ordered
coordinate-wise

e J(m x n) (lattice of order ideals)
e B,,/G for a certain G

L(m, n) is graded of rank mn.



L(1,4), L(2,2), L(2,3)

4 22
3 21
2 1

1 1

0 (0

22

11

21

33

32

31



L(3,3)




Greene invariants for L(m, n)

Because L(m,n) = B,/ G and any By/H is strongly Sperner, we
have that L(m, n) is strongly Sperner.
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Greene invariants for L(m, n)

Because L(m,n) = B,/ G and any By/H is strongly Sperner, we
have that L(m, n) is strongly Sperner.

No nonalgebraic proof known.
Conjecture. L(m,n) has a symmetric chain decomposiiton.

Note. ¥, piq" = [™"] (g-binomial coefficient)

m



Greene invariants for L(m, n)

Because L(m,n) = B,/ G and any By/H is strongly Sperner, we
have that L(m, n) is strongly Sperner.

No nonalgebraic proof known.
L(m,n) has a symmetric chain decomposiiton.
Y. pig' = [m,:"] (g-binomial coefficient)

RS, Algebraic Combinatorics, Chapters 5-6.



Linear extensions

A linear extension of a p-element poset P is a bijection
©:P —{1,...,p} such that s <p t = ¢(s) <z ©(t).

Can identify ¢ with the permutation ti,...,t, of the elements of
P by t; = go_l(i).



An example

abcd
bacd
abdc
badc
bdac



Removing an element from P

Proposition. Let t € P. Then A(P) is obtained from A\(P —t) by
adding 1 to some part of \(P —t) or adding a new part equal to 1.
Thus the diagram of A(P) is obtained from that of A\(P —t) by
adding a single box.
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and similarly my for P —t. Clearly either nx = my or ng = my + 1.
From this the proof follows. O



Removing an element from P

Let t € P. Then A(P) is obtained from \(P - t) by
adding 1 to some part of \(P —t) or adding a new part equal to 1.
Thus the diagram of \(P) is obtained from that of \(P - t) by
adding a single box.

Proof. Let ny be the largest size of the union of k chains of P,
and similarly my for P —t. Clearly either nx = my or ng = my + 1.
From this the proof follows. O

Let t1,...,t, be any ordering of the elements of P. Let
P; ={t1,...,t;} (a subposet of P). Then the sequence

B, A(P1),A(P2), ..., \(Pt)

defines a standard Young tableau (SYT) of shape A(P).



An example

4
1 3
5 2

A(P1) = (1), A(P12) =(2), AM(P123) = (2,1)
A(P1234) = (3,1), A(P123s5) = AM(P) =(3,2)



An example

4
1 3
5 2

A(P1) = (1), A(P12) =(2), AM(P123) = (2,1)
A(P1234) = (3,1), A(P123s5) = AM(P) =(3,2)

1(2|4
3|5




A map from B, to partitions

abc

<

ce a

ab

o

\J]



A map from B, to partitions

abc 9 21

b ab 11

K0S

cCe a 1

Q



A map from B, to partitions

abc 9 21

b ab 11

K0S

cCe a 1

a
%)

map from B, to Young’s lattice Y (partitions of all n >0 ordered
component-wise), order preserving, rank preserving



A map from B, to partitions

abc ¢ 21

b ab 11

9

ce a 1

N
ZA\

Q

@

map from B, to Young’s lattice Y (partitions of all n >0 ordered
component-wise), order preserving, rank preserving

Can anything be done with this?



