Chains and Antichains

Basic definitions

finite partially ordered set (poset) P : a set P with a binary operation \leq satisfying

- $t \leq t$ for all $t \in P$ (reflexivity)

Basic definitions

finite partially ordered set (poset) P : a set P with a binary operation \leq satisfying

- $t \leq t$ for all $t \in P$ (reflexivity)
- $s \leq t, t \leq s \Rightarrow s=t$ (antisymmetry)

Basic definitions

finite partially ordered set (poset) P : a set P with a binary operation \leq satisfying

- $t \leq t$ for all $t \in P$ (reflexivity)
- $s \leq t, t \leq s \Rightarrow s=t$ (antisymmetry)
- $s \leq t, t \leq u \Rightarrow s \leq u$ (transitivity)

Basic definitions

finite partially ordered set (poset) P : a set P with a binary operation \leq satisfying

- $t \leq t$ for all $t \in P$ (reflexivity)
- $s \leq t, t \leq s \Rightarrow s=t$ (antisymmetry)
- $s \leq t, t \leq u \Rightarrow s \leq u$ (transitivity)

Write $t \geq s$ for $s \leq t, s<t$ for $s \leq t, s \neq t$, etc.
$s \| t$: s and t are incomparable (neither $s \leq t$ nor $t \leq s$)
chain of length n : $t_{0}<t_{1}<\cdots<t_{n}$
t covers s, s is covered by $t: s<t$, $\exists u: s<u<t$. Denoted $s \lessdot t$ or $t \geqslant s$.

More terminology

saturated chain: $t_{0} \lessdot t_{1} \lessdot \cdots \lessdot t_{n}$
maximal chain: a chain C such that $t \notin C$ implies $C \cup\{t\}$ is not a chain

More terminology

saturated chain: $t_{0} \lessdot t_{1} \lessdot \cdots \lessdot t_{n}$
maximal chain: a chain C such that $t \notin C$ implies $C \cup\{t\}$ is not a chain

Maximal chains in a finite poset are saturated, but not conversely.

Hasse diagram

Hasse diagram of P : elements of P are drawn in the plane. If $s<t$ then t is above (larger y-coordinate than) s. An edge is drawn between all pairs $s \lessdot t$.

Hasse diagrams of isomorphic posets

Not a Hasse diagram

Unions of chains

Suppose $P=C_{1} \cup \cdots \cup C_{k}$, where C_{i} is a chain. Let A be any antichain. Since $\#\left(C_{i} \cap A\right) \leq 1$, we have $k \geq \# A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \geq m$.

Unions of chains

Suppose $P=C_{1} \cup \cdots \cup C_{k}$, where C_{i} is a chain. Let A be any antichain. Since $\#\left(C_{i} \cap A\right) \leq 1$, we have $k \geq \# A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \geq m$.

Theorem (Robert Dilworth, 1950). $k=m$.
(forerunner of the duality theorem for linear programming)

Unions of chains

Suppose $P=C_{1} \cup \cdots \cup C_{k}$, where C_{i} is a chain. Let A be any antichain. Since $\#\left(C_{i} \cap A\right) \leq 1$, we have $k \geq \# A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \geq m$.

Theorem (Robert Dilworth, 1950). $k=m$.
(forerunner of the duality theorem for linear programming)

Unions of chains

Suppose $P=C_{1} \cup \cdots \cup C_{k}$, where C_{i} is a chain. Let A be any antichain. Since $\#\left(C_{i} \cap A\right) \leq 1$, we have $k \geq \# A$. Thus:

Proposition. Let k be the least integer such that P is a union of k chains. Let m be the size of the largest antichain of P. Then $k \geq m$.

Theorem (Robert Dilworth, 1950). $k=m$.
(forerunner of the duality theorem for linear programming)

Proof of Dilworth's theorem (Galvin, 1994)

Let P be a finite poset. Dilworth's theorem is trivial if P is empty, so assume $P \neq \varnothing$. Let t be a maximal element of P.

Proof of Dilworth's theorem (Galvin, 1994)

Let P be a finite poset. Dilworth's theorem is trivial if P is empty, so assume $P \neq \varnothing$. Let t be a maximal element of P.

Let $P^{\prime}=P-\{t\}$. By induction, let P^{\prime} have an antichain A_{0} of size k and a covering by chains C_{1}, \ldots, C_{k}. Can assume $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$. Now $A_{0} \cap C_{i} \neq \varnothing$ for $1 \leq i \leq k$. For $1 \leq i \leq k$, let s_{i} be the maximal element of C_{i} that belongs to an antichain of size k in P^{\prime}, and set $\boldsymbol{A}=\left\{s_{1}, \ldots, s_{k}\right\}$.

Claim. A is an antichain.
Proof. Let A_{i} be an antichain of size k that contains s_{i}. Fix $j \neq i$. Then $A_{i} \cap C_{j} \neq \varnothing$. Let $u \in A_{i} \cap C_{j}$. Then $u \leq s_{j}$ by definition of s_{j}. Now $s_{i} \neq u$ since $s_{i} \in C_{i}$ and $u \in C_{j}$. Also $s_{i} \ngtr u$ since A_{i} is an antichain. Hence $s_{i} \nsupseteq u$. Since $u \leq s_{j}$, we have $s_{i} \nsupseteq s_{j}$. By symmetry, also $s_{j} \nsupseteq s_{i}$. Thus $s_{i} \| s_{j}$, so A is an antichain.

An example of the antichain A

An example of the antichain A

An example of the antichain A

Conclusion of proof

Return to P.

Case 1. $t \geq s_{i}$ for some $1 \leq i \leq k$.
K : the chain $\{t\} \cup\left\{u \in C_{i}: u \leq s_{i}\right\}$
By definition of $s_{i}, P-K$ does not have an antichain of size k. Since $A-\left\{s_{i}\right\}$ is an antichain of size $k-1$ in $P-K, P-K$ is a union of $k-1$ chains (by the induction hypothesis). Thus P is a union of k chains.

Conclusion of proof

Return to P.
Case 1. $t \geq s_{i}$ for some $1 \leq i \leq k$.
K : the chain $\{t\} \cup\left\{u \in C_{i}: u \leq s_{i}\right\}$
By definition of $s_{i}, P-K$ does not have an antichain of size k. Since $A-\left\{s_{i}\right\}$ is an antichain of size $k-1$ in $P-K, P-K$ is a union of $k-1$ chains (by the induction hypothesis). Thus P is a union of k chains.

Case 2. Now $t \nsupseteq s_{i}$ for all $1 \leq i \leq k$. Thus $A \cup\{t\}$ is an antichain of size $k+1$ in P (since t is maximal in P, so $t \nless s_{i}$). Then P is a union of the $k+1$ chains $\{t\}, C_{1}, \ldots, C_{k}$.

"Dual" of Dilworth's theorem

Suppose $P=A_{1} \cup \cdots \cup A_{k}$, where A_{i} is an antichain. Let C be any chain. Since $\#\left(A_{i} \cap C\right) \leq 1$, we have $k \geq \# C$. Thus:

Proposition. Let k be the least integer such that P is a union of k antichains. Let m be the size of the largest chain of P. Then $k \geq m$.

"Dual" of Dilworth's theorem

Suppose $P=A_{1} \cup \cdots \cup A_{k}$, where A_{i} is an antichain. Let C be any chain. Since $\#\left(A_{i} \cap C\right) \leq 1$, we have $k \geq \# C$. Thus:

Proposition. Let k be the least integer such that P is a union of k antichains. Let m be the size of the largest chain of P. Then $k \geq m$.

Theorem. $k=m$
Proof. Let A_{1} be the set of minimal elements of P, then A_{2} the set of minimal elements of $P-A_{1}$, etc. This gives a decomposition of P into a union of m antichains.

"Dual" of Dilworth's theorem

Suppose $P=A_{1} \cup \cdots \cup A_{k}$, where A_{i} is an antichain. Let C be any chain. Since $\#\left(A_{i} \cap C\right) \leq 1$, we have $k \geq \# C$. Thus:

Proposition. Let k be the least integer such that P is a union of k antichains. Let m be the size of the largest chain of P. Then $k \geq m$.

Theorem. $k=m$
Proof. Let A_{1} be the set of minimal elements of P, then A_{2} the set of minimal elements of $P-A_{1}$, etc. This gives a decomposition of P into a union of m antichains.

Note how trivial the proof is compared to Dilworth's theorem!

An example

An example

An example

An example

An example

Note. Largest antichain of P has four elements.

Largest union of \boldsymbol{j} chains

Define $\lambda_{1}, \lambda_{2}, \ldots$ by:
The size of the largest union of j chains in P is $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j}$.

Largest union of \boldsymbol{j} chains

Define $\lambda_{1}, \lambda_{2}, \ldots$ by:
The size of the largest union of j chains in P is $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j}$.
Clear (by Dilworth's theorem). Let $\# P=p$. Then $\lambda_{i} \geq 0$, and if the largest antichain of P has m elements, then

$$
\begin{aligned}
\lambda_{1}+\cdots+\lambda_{m} & =p \\
\lambda_{m+1}=\lambda_{m+2}=\cdots & =0 .
\end{aligned}
$$

An example

An example

$$
\lambda_{1}=4
$$

An example

$$
\begin{aligned}
\lambda_{1} & =4 \\
\lambda_{1}+\lambda_{2} & =6 \Rightarrow \lambda_{2}=2
\end{aligned}
$$

Largest union of j antichains

Completely analogous definition for antichains:
Define μ_{1}, μ_{2}, \ldots by:
The size of the largest union of j antichains in P is $\mu_{1}+\mu_{2}+\cdots+\mu_{j}$.

An example

An example

$$
\mu_{1}=4
$$

An example

$$
\begin{aligned}
\mu_{1} & =4 \\
\mu_{1}+\mu_{2} & =6 \Rightarrow \mu_{2}=2
\end{aligned}
$$

Greene's theorem (1976)

P : p-element poset
Theorem. (a) $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and $\mu_{1} \geq \mu_{2} \geq \cdots$. In other words, $\lambda(P)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu(P)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of p.
(b) $\lambda(P)^{\prime}=\mu$, where $\lambda(P)^{\prime}$ is the conjugate partition to $\lambda(P)$.

Greene's theorem (1976)

P : p-element poset
Theorem. (a) $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and $\mu_{1} \geq \mu_{2} \geq \cdots$. In other words, $\lambda(P)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu(P)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of p.
(b) $\lambda(P)^{\prime}=\mu$, where $\lambda(P)^{\prime}$ is the conjugate partition to $\lambda(P)$.

$$
\lambda=(4,2,2) \quad \lambda^{\prime}=(3,3,1,1)
$$

Dilworth's theorem redux

Theorem. (a) $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and $\mu_{1} \geq \mu_{2} \geq \cdots$. In other words, $\lambda(P)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu(P)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of p.
(b) $\lambda(P)^{\prime}=\mu$, where $\lambda(P)^{\prime}$ is the conjugate partition to $\lambda(P)$.

Dilworth's theorem redux

Theorem. (a) $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and $\mu_{1} \geq \mu_{2} \geq \cdots$. In other words, $\lambda(P)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu(P)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of p.
(b) $\lambda(P)^{\prime}=\mu$, where $\lambda(P)^{\prime}$ is the conjugate partition to $\lambda(P)$.

Dilworth's theorem. $\mu_{1}=\lambda_{1}^{\prime}(=\ell(\lambda)$, the length or number of parts of λ).

Dilworth's theorem redux

Theorem. (a) $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and $\mu_{1} \geq \mu_{2} \geq \cdots$. In other words, $\lambda(P)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu(P)=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of p.
(b) $\lambda(P)^{\prime}=\mu$, where $\lambda(P)^{\prime}$ is the conjugate partition to $\lambda(P)$.

Dilworth's theorem. $\mu_{1}=\lambda_{1}^{\prime}(=\ell(\lambda)$, the length or number of parts of λ).

Dual Dilworth's theorem. $\lambda_{1}=\mu_{1}^{\prime}$

Inversion poset

$$
w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}(\text { symmetric group on } 1,2, \ldots, n)
$$

Inversion poset

$w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ (symmetric group on $1,2, \ldots, n$)
inversion poset I_{w} : elements are $1,2, \ldots, n$, order relation \leq_{w}. Define $i<_{w} j$ in I_{w} if i precedes j in w and $i<_{\mathbb{Z}} j$. (Perhaps should be called noninversion poset.)

Inversion poset

$w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ (symmetric group on $1,2, \ldots, n$)
inversion poset I_{w} : elements are $1,2, \ldots, n$, order relation \leq_{w}. Define $i<_{w} j$ in I_{w} if i precedes j in w and $i<_{\mathbb{Z}} j$. (Perhaps should be called noninversion poset.)

Increasing and decreasing subsequences

If $i_{1}<i_{2}<\cdots<i_{k}$ is a chain in I_{w}, then $i_{1}, i_{2}, \ldots, i_{k}$ is an increasing subsequence of w.

If $i_{1}<_{\mathbb{Z}} i_{2}<_{\mathbb{Z}} \cdots<_{\mathbb{Z}} i_{k}$ is an antichain in I_{w}, then $i_{k}, \ldots, i_{2}, i_{1}$ is a decreasing subsequence of w.

Increasing and decreasing subsequences

If $i_{1}<i_{2}<\cdots<i_{k}$ is a chain in I_{w}, then $i_{1}, i_{2}, \ldots, i_{k}$ is an increasing subsequence of w.

If $i_{1}<_{\mathbb{Z}} i_{2}<_{\mathbb{Z}} \cdots<_{\mathbb{Z}} i_{k}$ is an antichain in I_{w}, then $i_{k}, \ldots, i_{2}, i_{1}$ is a decreasing subsequence of w.

$5,6,7$ is an increasing subsequence
$8,6,4,3$ is a decreasing subsequence

Corollary to Greene's theorem

Given $w \in \mathfrak{S}_{n}$, let $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$ be largest size of the union of k increasing subsequences of w, and let $\mu_{1}+\mu_{2}+\cdots+\mu_{k}$ be the largest size of the union of k decreasing subsequences of w.

Corollary (Greene, 1974). Both $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of n, and $\mu=\lambda^{\prime}$.

Corollary to Greene's theorem

Given $w \in \mathfrak{S}_{n}$, let $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$ be largest size of the union of k increasing subsequences of w, and let $\mu_{1}+\mu_{2}+\cdots+\mu_{k}$ be the largest size of the union of k decreasing subsequences of w.

Corollary (Greene, 1974). Both $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are partitions of n, and $\mu=\lambda^{\prime}$.

Note (Greene). If $w \xrightarrow{\text { rsk }}(P, Q)$, then $\operatorname{shape}(P)=\operatorname{shape}(Q)=\lambda$.

Natural question

Natural question. Given a (finite) poset P, determine λ and μ.
Note. Even determining μ_{1} (the size of the largest antichain) is interesting and subtle. For instance, if Π_{n} is the lattice of partitions of an n-set, then $\mu_{1}\left(\Pi_{n}\right)$ is not known.

Some definitions

P is graded of rank n if $P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$ (disjoint union) and every maximal chain has the form $t_{0}<t_{1}<\cdots<t_{n}$, where $t_{i} \in P_{i}$. The set P_{i} is the i th level or i th rank of P.

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$. If P is graded of rank n, then P is rank-symmetric if $p_{i}=p_{n-i}$ for all i, and rank-unimodal if

$$
p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \geq \cdots \geq p_{n}
$$

for some j.

Some definitions

P is graded of rank n if $P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$ (disjoint union) and every maximal chain has the form $t_{0}<t_{1}<\cdots<t_{n}$, where $t_{i} \in P_{i}$. The set P_{i} is the i th level or i th rank of P.

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$. If P is graded of rank n, then P is rank-symmetric if $p_{i}=p_{n-i}$ for all i, and rank-unimodal if

$$
p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \geq \cdots \geq p_{n}
$$

for some j.
Note. Rank-symmetric and rank-unimodal implies $j=\lfloor n / 2\rfloor$.

The strong Sperner property

P graded of rank $n, \boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$
Definition. P is strongly Sperner (or has the strong Sperner property) if $\mu(P)=\operatorname{sort}_{\geq}\left(p_{0}, p_{1}, \ldots, p_{n}\right)$

Symmetric chain decompositions

P : finite, graded of rank n, rank-symmetric, rank-unimodal
symmetric chain decomposition: $P=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$, where each C_{i} is a saturated chain symmetric about the middle level (n even) or middle two levels (n odd)

Symmetric chain decompositions

P : finite, graded of rank n, rank-symmetric, rank-unimodal
symmetric chain decomposition: $P=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$, where each C_{i} is a saturated chain symmetric about the middle level (n even) or middle two levels (n odd)

Exercise. If P has a symmetric chain decomposition, then P is strongly Sperner.

An example: the boolean algebra B_{4}

An example: the boolean algebra B_{4}

$$
\lambda(P)=(5,3,3,3,1,1), \quad \mu(P)=(6,4,4,1,1)
$$

Which posets have symmetric chain decompositions?

Examples of posets with SCD.

- p-element chains \boldsymbol{p}

Which posets have symmetric chain decompositions?

Examples of posets with SCD.

- p-element chains \boldsymbol{p}
- P, Q SCD $\Rightarrow P \times Q$ SCD

Which posets have symmetric chain decompositions?

Examples of posets with SCD.

- p-element chains \boldsymbol{p}
- P, Q SCD $\Rightarrow P \times Q$ SCD
- products $\boldsymbol{n}_{1} \times \cdots \times \boldsymbol{n}_{\boldsymbol{k}}$ of chains, including the boolean algebra $B_{n}=2^{n}$

Which posets have symmetric chain decompositions?

Examples of posets with SCD.

- p-element chains \boldsymbol{p}
- P, Q SCD $\Rightarrow P \times Q$ SCD
- products $\boldsymbol{n}_{1} \times \cdots \times \boldsymbol{n}_{\boldsymbol{k}}$ of chains, including the boolean algebra $B_{n}=2^{n}$
- $B_{n}(q)$, the lattice of subspaces of the vector space \mathbb{F}_{q}^{n}

Which posets have symmetric chain decompositions?

Examples of posets with SCD.

- p-element chains \boldsymbol{p}
- P, Q SCD $\Rightarrow P \times Q$ SCD
- products $\boldsymbol{n}_{1} \times \cdots \times \boldsymbol{n}_{\boldsymbol{k}}$ of chains, including the boolean algebra $B_{n}=2^{n}$
- $B_{n}(q)$, the lattice of subspaces of the vector space \mathbb{F}_{q}^{n}
- the Bruhat order of a finite Coxeter group

Symmetric chain decomposition for B_{n}

B_{n} : subsets of $\{1, \ldots, n\}$, ordered by \subseteq
Example of one of the chains for $n=10$. Put n spaces in a line:

$$
\begin{array}{lllllllll}
\overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5} & \overline{6} & \overline{7} & \overline{8} & \overline{9}
\end{array} \overline{10}
$$

Symmetric chain decomposition for $B_{\boldsymbol{n}}$

B_{n} : subsets of $\{1, \ldots, n\}$, ordered by \subseteq
Example of one of the chains for $n=10$. Put n spaces in a line:

$$
\overline{1} \quad \overline{2} \quad \overline{3} \quad \overline{4} \quad \overline{5} \quad \overline{6} \quad \overline{7} \quad \overline{8} \quad \overline{9} \quad \overline{10}
$$

Choose a set of well-formed left and right parentheses

$$
\frac{1}{1} \frac{(}{2} \frac{)}{4} \frac{)}{5} \quad \overline{6} \quad \overline{7} \quad-\frac{1}{8} \frac{)}{10}
$$

Symmetric chain decomposition for $B_{\boldsymbol{n}}$

B_{n} : subsets of $\{1, \ldots, n\}$, ordered by \subseteq
Example of one of the chains for $n=10$. Put n spaces in a line:

$$
\overline{1} \quad \overline{2} \quad \overline{3} \quad \overline{4} \quad \overline{5} \quad \overline{6} \quad \overline{7} \quad \overline{8} \quad \overline{9} \quad \overline{10}
$$

Choose a set of well-formed left and right parentheses

$$
\overline{1} \frac{(}{2} \quad \frac{1}{3} \quad \frac{)}{4} \quad \frac{)}{5} \quad \overline{6} \quad \overline{7} \quad \overline{8} \quad \frac{1}{9} \quad \frac{)}{10}
$$

Start with positions of left parentheses (2,3,9). Adjoin blank positions one at a time from right-to-left:

$$
239 \subset 2389 \subset 23789 \subset 236789 \subset 1236789
$$

The poset B_{n} / G

The symmetric group \mathfrak{S}_{n} acts on B_{n} by

$$
w \cdot\left\{a_{1}, \ldots, a_{k}\right\}=\left\{w \cdot a_{1}, \ldots, w \cdot a_{k}\right\} .
$$

If G is a subgroup of \mathfrak{S}_{n}, define the quotient poset B_{n} / G to be the poset on the orbits of G (acting on B_{n}), with

$$
\mathfrak{o} \leq \mathfrak{o}^{\prime} \Leftrightarrow \exists S \in \mathfrak{o}, T \in \mathfrak{o}^{\prime}, \quad S \subseteq T .
$$

An example

$$
n=3, \quad G=\{(1)(2)(3),(1,2)(3)\}
$$

Spernicity of B_{n} / G

Easy: B_{n} / G is graded of rank n and rank-symmetric.

Spernicity of B_{n} / G

Easy: B_{n} / G is graded of rank n and rank-symmetric.
Theorem. B_{n} / G is rank-unimodal and strongly Sperner.

Spernicity of B_{n} / G

Easy: B_{n} / G is graded of rank n and rank-symmetric.
Theorem. B_{n} / G is rank-unimodal and strongly Sperner.
No combinatorial proof known.

Spernicity of B_{n} / G

Easy: B_{n} / G is graded of rank n and rank-symmetric.
Theorem. B_{n} / G is rank-unimodal and strongly Sperner.
No combinatorial proof known.
Conjecture. B_{n} / G has a symmetric chain decomposition.
$L(m, n)$

$$
L(m, n):
$$

- Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion
$L(m, n)$
$L(m, n)$:
- Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion
- Sequences $n \geq a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{m} \geq 1$, ordered coordinate-wise

$L(m, n)$

$L(m, n)$:

- Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion
- Sequences $n \geq a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{m} \geq 1$, ordered coordinate-wise
- $J(\boldsymbol{m} \times \boldsymbol{n})$ (lattice of order ideals)

$L(m, n)$

$L(m, n)$:

- Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion
- Sequences $n \geq a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{m} \geq 1$, ordered coordinate-wise
- $J(\boldsymbol{m} \times \boldsymbol{n})$ (lattice of order ideals)
- $B_{m n} / G$ for a certain G

$L(m, n)$

$L(m, n)$:

- Young diagrams that fit in an $m \times n$ rectangle, ordered by diagram inclusion
- Sequences $n \geq a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{m} \geq 1$, ordered coordinate-wise
- $J(\boldsymbol{m} \times \boldsymbol{n})$ (lattice of order ideals)
- $B_{m n} / G$ for a certain G

Note. $L(m, n)$ is graded of rank $m n$.

$L(1,4), L(2,2), L(2,3)$

$L(3,3)$

Greene invariants for $L(m, n)$

Because $L(m, n)=B_{m n} / G$ and any B_{k} / H is strongly Sperner, we have that $L(m, n)$ is strongly Sperner.

Greene invariants for $L(m, n)$

Because $L(m, n)=B_{m n} / G$ and any B_{k} / H is strongly Sperner, we have that $L(m, n)$ is strongly Sperner.

No nonalgebraic proof known.

Greene invariants for $L(m, n)$

Because $L(m, n)=B_{m n} / G$ and any B_{k} / H is strongly Sperner, we have that $L(m, n)$ is strongly Sperner.

No nonalgebraic proof known.
Conjecture. $L(m, n)$ has a symmetric chain decomposiiton.

Greene invariants for $L(m, n)$

Because $L(m, n)=B_{m n} / G$ and any B_{k} / H is strongly Sperner, we have that $L(m, n)$ is strongly Sperner.

No nonalgebraic proof known.
Conjecture. $L(m, n)$ has a symmetric chain decomposiiton.
Note. $\sum_{i} p_{i} q^{i}=\left[\begin{array}{c}m+n \\ m\end{array}\right](q$-binomial coefficient)

Greene invariants for $L(m, n)$

Because $L(m, n)=B_{m n} / G$ and any B_{k} / H is strongly Sperner, we have that $L(m, n)$ is strongly Sperner.

No nonalgebraic proof known.
Conjecture. $L(m, n)$ has a symmetric chain decomposiiton.
Note. $\sum_{i} p_{i} q^{i}=\left[\begin{array}{c}m+n \\ m\end{array}\right](q$-binomial coefficient)
Reference. RS, Algebraic Combinatorics, Chapters 5-6.

Linear extensions

A linear extension of a p-element poset P is a bijection $\varphi: P \rightarrow\{1, \ldots, p\}$ such that $s<p t \Rightarrow \varphi(s)<\mathbb{Z} \varphi(t)$.

Can identify φ with the permutation t_{1}, \ldots, t_{p} of the elements of P by $t_{i}=\varphi^{-1}(i)$.

An example

Removing an element from P

Proposition. Let $t \in P$. Then $\lambda(P)$ is obtained from $\lambda(P-t)$ by adding 1 to some part of $\lambda(P-t)$ or adding a new part equal to 1 . Thus the diagram of $\lambda(P)$ is obtained from that of $\lambda(P-t)$ by adding a single box.

Removing an element from P

Proposition. Let $t \in P$. Then $\lambda(P)$ is obtained from $\lambda(P-t)$ by adding 1 to some part of $\lambda(P-t)$ or adding a new part equal to 1 . Thus the diagram of $\lambda(P)$ is obtained from that of $\lambda(P-t)$ by adding a single box.

Proof. Let n_{k} be the largest size of the union of k chains of P, and similarly m_{k} for $P-t$. Clearly either $n_{k}=m_{k}$ or $n_{k}=m_{k}+1$. From this the proof follows.

Removing an element from P

Proposition. Let $t \in P$. Then $\lambda(P)$ is obtained from $\lambda(P-t)$ by adding 1 to some part of $\lambda(P-t)$ or adding a new part equal to 1 . Thus the diagram of $\lambda(P)$ is obtained from that of $\lambda(P-t)$ by adding a single box.

Proof. Let n_{k} be the largest size of the union of k chains of P, and similarly m_{k} for $P-t$. Clearly either $n_{k}=m_{k}$ or $n_{k}=m_{k}+1$. From this the proof follows.

Corollary. Let t_{1}, \ldots, t_{p} be any ordering of the elements of P. Let $P_{i}=\left\{t_{1}, \ldots, t_{i}\right\}$ (a subposet of P). Then the sequence

$$
\varnothing, \lambda\left(P_{1}\right), \lambda\left(P_{2}\right), \ldots, \lambda\left(P_{t}\right)
$$

defines a standard Young tableau (SYT) of shape $\lambda(P)$.

An example

$$
\begin{aligned}
& \lambda\left(P_{1}\right)=(1), \lambda\left(P_{12}\right)=(2), \lambda\left(P_{123}\right)=(2,1) \\
& \lambda\left(P_{1234}\right)=(3,1), \lambda\left(P_{12345}\right)=\lambda(P)=(3,2)
\end{aligned}
$$

An example

$$
\begin{gathered}
\begin{array}{l}
\lambda\left(P_{1}\right)=(1), \lambda\left(P_{12}\right)=(2), \lambda\left(P_{123}\right)=(2,1) \\
\lambda\left(P_{1234}\right)=(3,1), \lambda\left(P_{12345}\right)=\lambda(P)=(3,2)
\end{array} \\
\begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 &
\end{array}
\end{gathered}
$$

A map from B_{p} to partitions

A map from B_{p} to partitions

A map from B_{p} to partitions

map from B_{p} to Young's lattice Y (partitions of all $n \geq 0$ ordered component-wise), order preserving, rank preserving

A map from B_{p} to partitions

map from B_{p} to Young's lattice Y (partitions of all $n \geq 0$ ordered component-wise), order preserving, rank preserving

Can anything be done with this?

