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An OEIS entry

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .
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An OEIS entry

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

COMMENTS. . . . This is probably the longest
entry in OEIS, and rightly so.
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An OEIS entry

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

COMMENTS. . . . This is probably the longest
entry in OEIS, and rightly so.

Cn = 1
n+1

(

2n
n

)

, n ≥ 0 (Catalan number)
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Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015, to appear.
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Catalan monograph

R. Stanley, Catalan Numbers, Cambridge
University Press, 2015, to appear.

Includes 214 combinatorial interpretations of Cn

and 68 additional problems.
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An early version (1970’s)
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An early version (1970’s)
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How to sample?

Compare D. E. Knuth, 3:16 Bible Texts
Illuminated.

Sample from Bible by choosing verse 3:16 from
each chapter.
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How to sample?

Compare D. E. Knuth, 3:16 Bible Texts
Illuminated.

Sample from Bible by choosing verse 3:16 from
each chapter.

I will be less random.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu ( ), and Jing An
(c. 1692–c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu ( ), and Jing An
(c. 1692–c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α
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History

Sharabiin Myangat, also known as Minggatu,
Ming’antu ( ), and Jing An
(c. 1692–c. 1763): a Mongolian astronomer,
mathematician, and topographic scientist who
worked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −
∞
∑

n=1

Cn−1

4n−1
sin2n+1 α

No combinatorics, no further work in China.
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More history, via Igor Pak

Euler (1751): conjectured formula for number
Cn of triangulations of a convex (n+ 2)-gon
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Completion of proof

Goldbach and Segner (1758–1759): helped
Euler complete the proof, in pieces.

Lamé (1838): first self-contained, complete
proof.
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Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form
(2n)!

n! (n+1)! and showed they counted

(nonassociative) bracketings (or
parenthesizations) of a string of n+1 letters.
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Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form
(2n)!

n! (n+1)! and showed they counted

(nonassociative) bracketings (or
parenthesizations) of a string of n+1 letters.

Born in 1814 in Bruges (now in Belgium, then
under Dutch rule). Studied in France and worked
in France and Liège, Belgium. Died in Liège in
1894.
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Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalan
number” in Math Reviews.
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Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalan
number” in Math Reviews.

Riordan (1964): used the term again in Math.
Reviews.
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Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalan
number” in Math Reviews.

Riordan (1964): used the term again in Math.
Reviews.

Riordan (1968): used the term in his book
Combinatorial Identities. Finally caught on.
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Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalan
number” in Math Reviews.

Riordan (1964): used the term again in Math.
Reviews.

Riordan (1968): used the term in his book
Combinatorial Identities. Finally caught on.

Gardner (1976): used the term in his
Mathematical Games column in Scientific
American. Real popularity began.

Some Catalan Musings – p. 11



The primary recurrence

Cn+1 =
n

∑

k=0

CkCn−k, C0 = 1
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The primary recurrence

Cn+1 =
n

∑

k=0

CkCn−k, C0 = 1

e
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“Transparent” interpretations

3. Binary parenthesizations or bracketings of
a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx
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“Transparent” interpretations

3. Binary parenthesizations or bracketings of
a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x(xx)(xx))
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“Transparent” interpretations

3. Binary parenthesizations or bracketings of
a string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x(xx)(xx))
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Binary trees

4. Binary trees with n vertices
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Binary trees

4. Binary trees with n vertices
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Binary trees

4. Binary trees with n vertices
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Plane trees

Plane tree: subtrees of a vertex are linearly
ordered

6. Plane trees with n+ 1 vertices
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Plane tree recurrence
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Plane tree recurrence
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The “natural bijection”

a

d

h

i

j g

f

b

e
c

h i j

d

a
b c

f

e g

a b c

f

h i j

d
e g
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Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),
never falling below the x-axis
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Dyck paths

25. Dyck paths of length 2n, i.e., lattice paths
from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),
never falling below the x-axis
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

34251768
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312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n for
which there does not exist i < j < k and
aj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

Some Catalan Musings – p. 19



Less transparent interpretations

159. Noncrossing partitions of 1, 2, . . . , n, i.e.,
partitions π = {B1, . . . , Bk} ∈ Πn such that if
a < b < c < d and a, c ∈ Bi and b, d ∈ Bj, then
i = j

123 12−3 13−2 23−1 1−2−3
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Bijection with plane trees

12
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Bijection with plane trees

1

2

3 4

6
5

8

9

10 11 12

7
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Bijection with plane trees

1

2

3 4

6
5

8

9

10 11 12

7

Children of nonleaf vertices:

{1, 5, 6}, {2}, {3, 4}, {7, 9}, {8}, {10, 11, 12}
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Noncrossing partition recurrence

1

7 6

5

4

3

2

12

11

10

9

8
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Noncrossing partition recurrence

7 6

5

4

3

2

12

11

10

9

8
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321-avoiding permutations

115. Permutations a1a2 · · · an of 1, 2, . . . , n with
longest decreasing subsequence of length at
most two (i.e., there does not exist i < j < k,
ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231
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Bijection with Dyck paths

w = 412573968
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Bijection with Dyck paths

w = 412573968

1

4
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5

7

9

3

6

8
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Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8
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Semiorders

(finite) semiorder or unit interval order: a finite
subset P of R with the partial order:

x <P y ⇐⇒ x <R y − 1

Equivalently, no induced (3+ 1) or (2+ 2)
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Semiorders (cont.)

180. Nonisomorphic n-element posets with no
induced subposet isomorphic to 2+ 2 or 3+ 1
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Semiorders and Dyck paths

1

3 2

5

6

4
3 6

41
2

5
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Semiorders and Dyck paths

1

3 2

5

6

4
3 6

41
2

5

1

3

1 2 3 4 5 6

2

4

5

6

x x x

x x

x x

x

x

x
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Semiorders and Dyck paths
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Noncrossing matchings

61. Noncrossing (complete) matchings on 2n
vertices, i.e., ways of connecting 2n points in the
plane lying on a horizontal line by n
nonintersecting arcs, each arc connecting two of
the points and lying above the points
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Bijection to ballot sequences
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Bijection to ballot sequences

1 1 1 1 1

left endpoint: 1

right endpoint: −1
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Inverse bijection

1 1 1 1 1
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Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connect
each 1 with leftmost available −1.
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Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connect
each 1 with leftmost available −1.
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Nonnesting matchings

64. Nonnesting matchings on [2n], i.e., ways of
connecting 2n points in the plane lying on a
horizontal line by n arcs, each arc connecting
two of the points and lying above the points, such
that no arc is contained entirely below another
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Bijection to ballot sequences
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Bijection to ballot sequences

1 1 1 1 1

left endpoint: 1

right endpoint: −1
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Bijection to ballot sequences

1 1 1 1 1

left endpoint: 1

right endpoint: −1

Same rule as for noncrossing matchings!
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Inverse bijection

1 1 1 1 1
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Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connect
each 1 with rightmost available −1.
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Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connect
each 1 with rightmost available −1.
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Many interpretations

By changing the connection rule from the 1’s to
−1’s, we get infinitely many combinatorial
interpretations of Catalan numbers in terms of
complete matchings. All have the same bijection
rule from the matchings to the ballot sequences!
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Many interpretations

By changing the connection rule from the 1’s to
−1’s, we get infinitely many combinatorial
interpretations of Catalan numbers in terms of
complete matchings. All have the same bijection
rule from the matchings to the ballot sequences!
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Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2
such that in the sequence 1a1a2 · · · an1, each ai
divides the sum of its two neighbors

14321 13521 13231 12531 12341
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Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2
such that in the sequence 1a1a2 · · · an1, each ai
divides the sum of its two neighbors

14321 13521 13231 12531 12341

1 2 5 3 4 1
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Unexpected interpretations
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Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2
such that in the sequence 1a1a2 · · · an1, each ai
divides the sum of its two neighbors
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Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2
such that in the sequence 1a1a2 · · · an1, each ai
divides the sum of its two neighbors

14321 13521 13231 12531 12341

|1||2 5 |3 4 1
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Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2
such that in the sequence 1a1a2 · · · an1, each ai
divides the sum of its two neighbors

14321 13521 13231 12531 12341

|1||2 5 |3 4 1

|1||2 5 |3 4 1

→ UDUUDDUD

Some Catalan Musings – p. 35



Cores

hook lengths of a partition λ

15

6 2

8 5 4 1

2

1

2

3

p-core: a partition with no hook lengths equal to
(equivalently, divisible by) p

(p, q)-core: a partition that is simultaneously a
p-core and q-core
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(n, n + 1)-cores

112. Integer partitions that are both n-cores and
(n+ 1)-cores

∅ 1 2 11 311
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Constructing (5, 6)-cores

−5

−6
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Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9
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Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9
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Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9

1 2 3 4 7 9
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Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9

1 2 3 4 7 9

− 0 1 2 3 4 5

1 1 1 1 3 4
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(4, 3, 1, 1, 1, 1) is a (5, 6)-core

4

1

1

2

3

4

7

9

2

3 1
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Inversions of permutations

inversion of a1a2 · · · an ∈ Sn: (ai, aj) such that
i < j, ai > aj
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Inversions of permutations

inversion of a1a2 · · · an ∈ Sn: (ai, aj) such that
i < j, ai > aj

186. Sets S of n non-identity permutations in
Sn+1 such that every pair (i, j) with 1 ≤ i < j ≤ n
is an inversion of exactly one permutation in S

{1243, 2134, 3412}, {1324, 2314, 4123}, {2134, 3124, 4123}

{1324, 1423, 2341}, {1243, 1342, 2341}

Some Catalan Musings – p. 40



Inversions of permutations

inversion of a1a2 · · · an ∈ Sn: (ai, aj) such that
i < j, ai > aj

186. Sets S of n non-identity permutations in
Sn+1 such that every pair (i, j) with 1 ≤ i < j ≤ n
is an inversion of exactly one permutation in S

{1243, 2134, 3412}, {1324, 2314, 4123}, {2134, 3124, 4123}

{1324, 1423, 2341}, {1243, 1342, 2341}

due to R. Dewji, I. Dimitrov, A. McCabe, M.
Roth, D. Wehlau, J. Wilson
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A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of
all (n− 1)× (n− 1) upper triangular matrices
over a field
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A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of
all (n− 1)× (n− 1) upper triangular matrices
over a field

* * *
* * * *

* * *
* * * *

* *
* *

*

* *

0
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Quasisymmetric functions

Quasisymmetric function: a polynomial
f ∈ Q[x1, . . . , xn] such that if i1 < · · · < in then

[xa1i1 · · ·x
an
in
]f = [xa11 · · · xann ]f.
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Quasisymmetric functions

Quasisymmetric function: a polynomial
f ∈ Q[x1, . . . , xn] such that if i1 < · · · < in then

[xa1i1 · · ·x
an
in
]f = [xa11 · · · xann ]f.

(k) Dimension (as a Q-vector space) of the ring
Q[x1, . . . , xn]/Qn, where Qn denotes the ideal of
Q[x1, . . . , xn] generated by all quasisymmetric
functions in the variables x1, . . . , xn with 0
constant term
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Quasisymmetric functions

Quasisymmetric function: a polynomial
f ∈ Q[x1, . . . , xn] such that if i1 < · · · < in then

[xa1i1 · · ·x
an
in
]f = [xa11 · · · xann ]f.

(k) Dimension (as a Q-vector space) of the ring
Q[x1, . . . , xn]/Qn, where Qn denotes the ideal of
Q[x1, . . . , xn] generated by all quasisymmetric
functions in the variables x1, . . . , xn with 0
constant term

Difficult proof by J.-C. Aval, F. Bergeron and N.
Bergeron, 2004.
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Diagonal harmonics

(i) Let the symmetric group Sn act on the
polynomial ring A = C[x1, . . . , xn, y1, . . . , yn] by
w · f(x1, . . . , xn, y1, . . . , yn) =
f(xw(1), . . . , xw(n), yw(1), . . . , yw(n)) for all w ∈ Sn.

Let I be the ideal generated by all invariants of
positive degree, i.e.,

I = 〈f ∈ A : w·f = f for all w ∈ Sn, and f(0) = 0〉.
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Diagonal harmonics (cont.)

Then Cn is the dimension of the subspace of A/I
affording the sign representation, i.e.,

Cn = dim{f ∈ A/I : w·f = (sgnw)f for all w ∈ Sn}.
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Diagonal harmonics (cont.)

Then Cn is the dimension of the subspace of A/I
affording the sign representation, i.e.,

Cn = dim{f ∈ A/I : w·f = (sgnw)f for all w ∈ Sn}.
Very deep proof by M. Haiman, 1994.
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Generalizations & refinements

A12. k-triangulation of n-gon: maximal
collections of diagonals such that no k + 1 of
them pairwise intersect in their interiors

k = 1: an ordinary triangulation

superfluous edge: an edge between vertices at
most k steps apart (along the boundary of the
n-gon). They appear in all k-triangulations and
are irrelevant.
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An example

Example. 2-triangulations of a hexagon
(superfluous edges omitted):
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Some theorems

Theorem (Nakamigawa,
Dress-Koolen-Moulton). All k-triangulations of
an n-gon have k(n− 2k − 1) nonsuperfluous
edges.
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Some theorems

Theorem (Nakamigawa,
Dress-Koolen-Moulton). All k-triangulations of
an n-gon have k(n− 2k − 1) nonsuperfluous
edges.

Theorem (Jonsson, Serrano-Stump). The
number Tk(n) of k-triangulations of an n-gon is
given by

Tk(n) = det [Cn−i−j]
k
i,j=1

=
∏

1≤i<j≤n−2k

2k + i+ j − 1

i+ j − 1
.
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Representation theory?

Note. The number Tk(n) is the dimension of an
irreducible representation of the symplectic
group Sp(2n− 4).
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Representation theory?

Note. The number Tk(n) is the dimension of an
irreducible representation of the symplectic
group Sp(2n− 4).

Is there a direct connection?
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Number theory

A61. Let b(n) denote the number of 1’s in the
binary expansion of n. Using Kummer’s theorem
on binomial coefficients modulo a prime power,
show that the exponent of the largest power of 2
dividing Cn is equal to b(n+ 1)− 1.
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Sums of three squares

Let f(n) denote the number of integers
1 ≤ k ≤ n such that k is the sum of three squares
(of nonnegative integers). Well-known:

lim
n→∞

f(n)

n
=

5

6
.
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Sums of three squares

Let f(n) denote the number of integers
1 ≤ k ≤ n such that k is the sum of three squares
(of nonnegative integers). Well-known:

lim
n→∞

f(n)

n
=

5

6
.

Let g(n) denote the number of integers
1 ≤ k ≤ n such that Ck is the sum of three
squares. Then

lim
n→∞

g(n)

n
=??.
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Sums of three squares

Let f(n) denote the number of integers
1 ≤ k ≤ n such that k is the sum of three squares
(of nonnegative integers). Well-known:

lim
n→∞

f(n)

n
=

5

6
.

A63. Let g(n) denote the number of integers
1 ≤ k ≤ n such that Ck is the sum of three
squares. Then

lim
n→∞

g(n)

n
=

7

8
.
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Analysis

A65.(b)
∑

n≥0

1

Cn
= ??
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Analysis

A65.(b)
∑

n≥0

1

Cn
= 2 +

4
√
3π

27
.
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Why?

A65.(a)

∑

n≥0

xn

Cn
=

2(x+ 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.
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Why?

A65.(a)

∑

n≥0

xn

Cn
=

2(x+ 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.

Consequence of

2
(

sin−1 x

2

)2

=
∑

n≥1

x2n

n2
(

2n
n

) .
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Why?

A65.(a)

∑

n≥0

xn

Cn
=

2(x+ 8)

(4− x)2
+

24
√
x sin−1

(

1
2

√
x
)

(4− x)5/2
.

Consequence of

2
(

sin−1 x

2

)2

=
∑

n≥1

x2n

n2
(

2n
n

) .

∑

n≥0

4− 3n

Cn
= 2.
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An outlier

Euler (1737):

e = 1 +
2

1 +
1

6 +
1

10 +
1

14 +
1

18 +
1

22 + · · ·

.

Convergents: 1, 3, 197 ,
193
71 , . . . .
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A curious generating function

an: numerator of the nth convergent

a1 = 1, a2 = 3, a3 = 19, a4 = 193
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A curious generating function

an: numerator of the nth convergent

a1 = 1, a2 = 3, a3 = 19, a4 = 193

1 +
∑

n≥1

an
xn

n!
= exp

∑

m≥0

Cmx
m+1
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