Smith Normal Form and Combinatorics

Richard P. Stanley

Smith normal form

$\boldsymbol{A}: n \times n$ matrix over commutative ring \boldsymbol{R} (with 1)
Suppose there exist $\boldsymbol{P}, \boldsymbol{Q} \in \mathrm{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Smith normal form

$\boldsymbol{A}: n \times n$ matrix over commutative ring \boldsymbol{R} (with 1)
Suppose there exist $\boldsymbol{P}, \boldsymbol{Q} \in \mathrm{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Note. (1) Can extend to $m \times n$.

$$
\text { (2) unit } \cdot \operatorname{det}(A)=\operatorname{det}(B)=d_{1}^{n} d_{2}^{n-1} \cdots d_{n} \text {. }
$$

Thus SNF is a refinement of det.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
If R is a PIR then A has a unique SNF up to units.

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
If R is a PIR then A has a unique SNF up to units.
Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

Open: every matrix over a Bézout domain has an SNF.

Algebraic interpretation of SNF

\boldsymbol{R} : a PID

\boldsymbol{A} : an $n \times n$ matrix over R with rows $v_{1}, \ldots, v_{n} \in R^{n}$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

Algebraic interpretation of SNF

R: a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

Algebraic interpretation of SNF

R : a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

$R^{n} /\left(v_{1}, \ldots, v_{n}\right)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

\boldsymbol{R} : a PID

A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

An explicit formula for SNF

\boldsymbol{R} : a PID
\boldsymbol{A} : an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem. $e_{1} e_{2} \cdots e_{i}$ is the gcd of all $i \times i$ minors of A.
minor: determinant of a square submatrix.
Special case: e_{1} is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

What about SNF?

An example (continued)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

Reduced Laplacian matrix of \boldsymbol{K}_{n}

$$
\begin{aligned}
\boldsymbol{L}_{\mathbf{0}}\left(\boldsymbol{K}_{\boldsymbol{n}}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Reduced Laplacian matrix of K_{n}

$$
\begin{aligned}
\boldsymbol{L}_{0}\left(\boldsymbol{K}_{n}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Trick: 2×2 submatrices (up to row and column permutations):

$$
\left[\begin{array}{cc}
n-1 & -1 \\
-1 & n-1
\end{array}\right], \quad\left[\begin{array}{cc}
n-1 & -1 \\
-1 & -1
\end{array}\right], \quad\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right],
$$

with determinants $n(n-2),-n$, and 0 . Hence $e_{1} e_{2}=n$. Since $\prod e_{i}=n^{n-2}$ and $e_{i} \mid e_{i+1}$, we get the SNF $\operatorname{diag}(1, n, n, \ldots, n)$.

Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting
connections with sandpile models, chip firing, abelian avalanches, etc.

Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting
connections with sandpile models, chip firing, abelian avalanches, etc.
no time for further details

Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting
connections with sandpile models, chip firing, abelian avalanches, etc.
no time for further details

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Very little work on SNF of random matrices over a PID.

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n})$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M
Theorem. $\lim _{k \rightarrow \infty} p_{k}(n, d)=\frac{1}{d^{n^{2} \zeta\left(n^{2}\right)}}$

Specifying some e_{i}

with Yinghui Wang

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Two general results．

－Let $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{P}, \alpha_{i} \mid \alpha_{i+1}$ ．
$\mu_{k}(n)$ ：probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{i}=\alpha_{i}$ for
$1 \leq \alpha_{i} \leq n-1$ ．

$$
\boldsymbol{\mu}(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n) .
$$

Then $\mu(n)$ exists，and $0<\mu(n)<1$ ．

Second result

- Let $\alpha_{n} \in \mathbb{P}$.
$\boldsymbol{\nu}_{k}(\boldsymbol{n})$: probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{n}=\alpha_{n}$.

Then

$$
\lim _{k \rightarrow \infty} \nu_{k}(n)=0
$$

Sample result

$\mu_{k}(n)$: probability that the SNF of a random
$A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{1}=2, e_{2}=6$.

$$
\boldsymbol{\mu}(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n)
$$

Conclusion

$$
\mu(n)=2^{-n^{2}}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} 2^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} 2^{-i}\right)
$$

$$
\cdot \frac{3}{2} \cdot 3^{-(n-1)^{2}}\left(1-3^{(n-1)^{2}}\right)\left(1-3^{-n}\right)^{2}
$$

$$
\prod_{p>3}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} p^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} p^{-i}\right)
$$

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

$$
\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)
$$

Theorem. $\kappa(n)=$

$$
\zeta(2) \zeta(3) \cdots
$$

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

$$
\text { Theorem. } \kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Theorem. $\kappa(n)=\underline{\square}$
Corollary. $\lim _{n \rightarrow \infty} \kappa(n)=\frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)}$
$\approx 0.846936 \cdots$.

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\operatorname{Prob}(g \leq 2)=0.99462688 \cdots
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(3.46275 \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(\mathbf{3 . 4 6 2 7 5} \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

3.46275 ...

$$
3.46275 \cdots=\frac{1}{\prod_{j \geq 1}\left(1-\frac{1}{2^{j}}\right)}
$$

Example of SNF computation

$\boldsymbol{\lambda}$: a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$

Example of SNF computation

$\boldsymbol{\lambda}$: a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

Example of SNF computation

$\boldsymbol{\lambda}$: a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

$(3,1)^{*}=(4,4,2)$

Initialization

Insert 1 into each square of λ^{*} / λ.

$(3,1)^{*}=(4,4,2)$

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

M_{t}

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

M_{t}

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.

Why? Expand det M_{t} by the first row. The coefficient of n_{t} is 1 by induction.

$\lambda(t)$

If $t \in \lambda$, let $\boldsymbol{\lambda}(t)$ consist of all squares of λ to the southeast of t.

If $t \in \lambda$, let $\boldsymbol{\lambda}(t)$ consist of all squares of λ to the southeast of t.

$$
\lambda=(4,4,3)
$$

If $t \in \lambda$, let $\boldsymbol{\lambda}(t)$ consist of all squares of λ to the southeast of t.

$$
\begin{aligned}
\lambda & =(4,4,3) \\
\lambda(t) & =(3,2)
\end{aligned}
$$

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}=\#\{\mu: \mu \subseteq \lambda\}
$$

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

There is a determinantal formula for u_{λ}, due essentially to MacMahon and later Kreweras (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Theorem. $n_{t}=u_{\lambda(t)}$

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Theorem. $n_{t}=u_{\lambda(t)}$
Proofs. 1. Induction (row and column operations).
2. Nonintersecting lattice paths.

An example

An example

ϕ

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda / \mu|}$.

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda / \mu|}$.

$$
\lambda=64431, \quad \mu=42211, \quad q^{\lambda / \mu}=q^{8}
$$

$u_{\lambda}(q)$

$$
u_{\lambda}(\boldsymbol{q})=\sum_{\mu \subseteq \lambda} q^{|\lambda / \mu|}
$$

$$
u_{(2,1)}(q)=1+2 q+q^{2}+q^{3}:
$$

Diagonal hooks

$$
\boldsymbol{d}_{\boldsymbol{i}}(\lambda)=\lambda_{i}+\lambda_{i}^{\prime}-2 i+1
$$

$$
d_{1}=9, \quad d_{2}=4, d_{3}=1
$$

Main result (with C. Bessenrodt)

Theorem. M_{t} has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If M_{t} is a $(k+1) \times(k+1)$ matrix then M_{t} has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Main result (with C. Bessenrodt)

Theorem. M_{t} has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If M_{t} is a $(k+1) \times(k+1)$ matrix then M_{t} has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right) .
$$

Corollary. $\operatorname{det} M_{t}=q^{\sum i d_{i}}$.

Main result (with C. Bessenrodt)

Theorem. M_{t} has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If M_{t} is a $(k+1) \times(k+1)$ matrix then M_{t} has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Corollary. $\operatorname{det} M_{t}=q^{\sum i d_{i}}$.
Note. There is a multivariate generalization.

An example

$\lambda=6431, \quad d_{1}=9, \quad d_{2}=4, \quad d_{3}=1$

An example

$\lambda=6431, \quad d_{1}=9, \quad d_{2}=4, \quad d_{3}=1$

$$
\text { SNF of } M_{t}:\left(1, q, q^{5}, q^{14}\right)
$$

A special case

Let λ be the staircase $\boldsymbol{\delta}_{n}=(n-1, n-2, \ldots, 1)$.

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$.

A special case

Let λ be the staircase $\boldsymbol{\delta}_{n}=(n-1, n-2, \ldots, 1)$.

$u_{\delta_{n-1}}(q)$ counts Dyck paths of length $2 n$ by (scaled) area, and is thus the well-known q-analogue $\boldsymbol{C}_{n}(q)$ of the Catalan number C_{n}.

A q-Catalan example

$\square \square \square \square \square$

$$
C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

A q-Catalan example

$$
\| \square \square \quad C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

$$
\left.\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array} \right\rvert\, \stackrel{\text { SNF }}{\sim} \operatorname{diag}\left(1, q, q^{6}\right)
$$

since $d_{1}(3,2,1)=1, d_{2}(3,2,1)=5$.

A q-Catalan example

$$
\square \square \square \quad C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

$$
\left.\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array} \right\rvert\, \stackrel{\text { SNF }}{\sim} \operatorname{diag}\left(1, q, q^{6}\right)
$$

since $d_{1}(3,2,1)=1, d_{2}(3,2,1)=5$.

- q-Catalan determinant previously known
- SNF is new

Ramanujan

$\sum_{n \geq 0} C_{n}(q) x^{n}=$

Ramanujan

$\sum_{n \geq 0} C_{n}(q) x^{n}=$

THE END

