

Smith Normal Form and Combinatorics

Richard P. Stanley

Smith Normal Form and Combinatorics - p. 1

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that

 $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$

where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that

 $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$

- where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.
- **NOTE.** (1) Can extend to $m \times n$.

(2) unit $\cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n.$

Thus SNF is a refinement of \det .

Row and column operations

- Can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.

Row and column operations

- Can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.
- Over a field, SNF is **row reduced echelon form** (with all unit entries equal to 1).

PIR: principal ideal ring, e.g., \mathbb{Z} , K[x], $\mathbb{Z}/m\mathbb{Z}$.

If *R* is a PIR then *A* has a unique SNF up to units.

- **PIR**: principal ideal ring, e.g., \mathbb{Z} , K[x], $\mathbb{Z}/m\mathbb{Z}$.
- If *R* is a PIR then *A* has a unique SNF up to units.
- Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

- Not known in general for which rings R does every matrix over R have an SNF.
- Necessary condition: *R* is a **Bézout ring**, i.e., every finitely generated ideal is principal.
- **Example.** ring of entire functions and ring of all algebraic integers (not PIR's)

- Not known in general for which rings R does every matrix over R have an SNF.
- Necessary condition: *R* is a **Bézout ring**, i.e., every finitely generated ideal is principal.
- **Example.** ring of entire functions and ring of all algebraic integers (not PIR's)
- **Open:** every matrix over a Bézout domain has an SNF.

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

 $R^n/(v_1, \dots, v_n) \cong (R/e_1R) \oplus \dots \oplus (R/e_nR).$ $R^n/(v_1, \dots, v_n)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

R: a PID

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

An explicit formula for SNF

R: a PID

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- diag (e_1, e_2, \ldots, e_n) : SNF of A
- **Theorem.** $e_1e_2 \cdots e_i$ is the gcd of all $i \times i$ minors of A.
- minor: determinant of a square submatrix.
- **Special case:** e_1 is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

What about SNF?

An example (continued)

Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$
$$\det L_0(K_n) = n^{n-2}$$

Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$
$$\det L_0(K_n) = n^{n-2}$$

Trick: 2×2 submatrices (up to row and column permutations):

$$\begin{bmatrix} n-1 & -1 \\ -1 & n-1 \end{bmatrix}, \begin{bmatrix} n-1 & -1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix},$$

with determinants n(n-2), -n, and 0. Hence $e_1e_2 = n$. Since $\prod e_i = n^{n-2}$ and $e_i|e_{i+1}$, we get the SNF diag $(1, n, n, \dots, n)$.

Laplacian matrices of general graphs

- SNF of the Laplacian matrix of a graph: very interesting
- connections with sandpile models, chip firing, abelian avalanches, etc.

Laplacian matrices of general graphs

- SNF of the Laplacian matrix of a graph: very interesting
- connections with sandpile models, chip firing, abelian avalanches, etc.
- no time for further details

Laplacian matrices of general graphs

- SNF of the Laplacian matrix of a graph: very interesting
- connections with sandpile models, chip firing, abelian avalanches, etc.

no time for further details

SNF of random matrices

- Huge literature on random matrices, mostly connected with eigenvalues.
- Very little work on SNF of random matrices over a PID.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \gcd \text{ of } 1 \times 1 \text{ minors (entries) of } M$

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \text{gcd of } 1 \times 1 \text{ minors (entries) of } M$

Theorem.
$$\lim_{k\to\infty} p_k(n,d) = rac{1}{d^{n^2}\zeta(n^2)}$$

Specifying some *e*_i

with Yinghui Wang

Smith Normal Form and Combinatorics – p. 14

Specifying some *e*_i

with Yinghui Wang (王颖慧)

Specifying some e_i

with Yinghui Wang (王颖慧)

- Two general results.
 - Let $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{P}$, $\alpha_i | \alpha_{i+1}$.

 $\mu_k(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_k(n)$ satisfies $e_i = \alpha_i$ for $1 \le \alpha_i \le n - 1$.

$$\boldsymbol{\mu(n)} = \lim_{k \to \infty} \mu_k(n).$$

Then $\mu(n)$ exists, and $0 < \mu(n) < 1$.

Second result

• Let $\alpha_n \in \mathbb{P}$.

$\nu_k(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_k(n)$ satisfies $e_n = \alpha_n$.

Then

$$\lim_{k \to \infty} \nu_k(n) = 0.$$

 $\mu_k(n)$: probability that the SNF of a random $A \in Mat_k(n)$ satisfies $e_1 = 2, e_2 = 6$.

$$\boldsymbol{\mu(n)} = \lim_{k \to \infty} \mu_k(n).$$

Conclusion

$$\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right)$$
$$\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} (1 - 3^{(n-1)^2}) (1 - 3^{-n})^2$$
$$\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right)$$

Smith Normal Form and Combinatorics – p. 17

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \dots, e_n) with $e_1 = e_2 = \dots = e_{n-1} = 1$

$$\mathbf{Theorem.}\ \kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$
$\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \dots, e_n) with $e_1 = e_2 = \dots = e_{n-1} = 1$

Theorem.
$$\kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

Corollary. $\lim_{n \to \infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j \ge 4} \zeta(j)}$

 $\approx 0.846936\cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

Theorem. Prob $(g \le \ell) =$ 1 - (3.46275...)2^{-(\ell+1)²}(1 + O(2^{-\ell}))

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

Theorem. Prob $(g \le \ell) =$ 1 - (3.46275···)2^{-(\ell+1)²}(1 + O(2^{-l}))

$3.46275\dots = \frac{1}{\prod_{j\geq 1} \left(1 - \frac{1}{2^j}\right)}$

Example of SNF computation

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

Example of SNF computation

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

λ^* : λ extended by a border strip along its entire boundary

Example of SNF computation

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

 λ^* : λ extended by a border strip along its entire boundary

$$(3,1)^* = (4,4,2)$$

Initialization

Insert 1 into each square of λ^*/λ .

$$(3,1)^* = (4,4,2)$$

Smith Normal Form and Combinatorics - p. 22

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

t		
		•

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

t		
		•

Determinantal algorithm

Determinantal algorithm

Determinantal algorithm

Easy to see: the numbers n_t are well-defined and unique.

Easy to see: the numbers n_t are well-defined and unique.

Why? Expand det M_t by the first row. The coefficient of n_t is 1 by induction.

t)

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$\lambda = (4, 4, 3)$$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

 $\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$

$$u_{\lambda}$$

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:

$$u_{\lambda}$$

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:

There is a determinantal formula for u_{λ} , due essentially to **MacMahon** and later **Kreweras** (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = u_{\lambda(t)}$

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = u_{\lambda(t)}$

Proofs. 1. Induction (row and column operations).

2. Nonintersecting lattice paths.

An example

An example

Smith Normal Form and Combinatorics – p. 29

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda/\mu|}$.

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda/\mu|}$.

$$\lambda = 64431, \quad \mu = 42211, \quad q^{\lambda/\mu} = q^8$$

Smith Normal Form and Combinatorics - p. 30
$u_\lambda(q)$

$$oldsymbol{u}_{\lambda}(oldsymbol{q}) = \sum_{\mu \subseteq \lambda} q^{|\lambda/\mu|}$$

 $u_{(2,1)}(q) = 1 + 2q + q^2 + q^3:$

Diagonal hooks

 $\boldsymbol{d_i}(\lambda) = \lambda_i + \lambda'_i - 2i + 1$

 $d_1 = 9, \quad d_2 = 4, \ d_3 = 1$

Main result (with C. Bessenrodt)

Theorem. M_t has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If M_t is a $(k + 1) \times (k + 1)$ matrix then M_t has SNF

diag
$$(1, q^{d_k}, q^{d_{k-1}+d_k}, \dots, q^{d_1+d_2+\dots+d_k}).$$

Main result (with C. Bessenrodt)

Theorem. M_t has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If M_t is a $(k + 1) \times (k + 1)$ matrix then M_t has SNF

diag
$$(1, q^{d_k}, q^{d_{k-1}+d_k}, \dots, q^{d_1+d_2+\dots+d_k}).$$

Corollary. det $M_t = q^{\sum i d_i}$.

Main result (with C. Bessenrodt)

Theorem. M_t has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If M_t is a $(k + 1) \times (k + 1)$ matrix then M_t has SNF

diag
$$(1, q^{d_k}, q^{d_{k-1}+d_k}, \dots, q^{d_1+d_2+\dots+d_k}).$$

Corollary. det $M_t = q^{\sum i d_i}$.

Note. There is a multivariate generalization.

An example

 $\lambda = 6431, \quad d_1 = 9, \quad d_2 = 4, \quad d_3 = 1$

Smith Normal Form and Combinatorics - p. 34

An example

$$\lambda = 6431, \quad d_1 = 9, \quad d_2 = 4, \quad d_3 = 1$$

SNF of M_t : $(1, q, q^5, q^{14})$

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, \dots, 1)$.

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, \dots, 1)$.

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, \dots, 1)$.

 $u_{\delta_{n-1}}(q)$ counts Dyck paths of length 2n by (scaled) area, and is thus the well-known q-analogue $C_n(q)$ of the Catalan number C_n .

A q-Catalan example

 $C_3(q) = q^3 + q^2 + 2q + 1$

A q-Catalan example

 $C_3(q) = q^3 + q^2 + 2q + 1$

$$\begin{vmatrix} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{vmatrix} \stackrel{\text{SNF}}{\sim} \text{diag}(1,q,q^6)$$

since $d_1(3,2,1) = 1, d_2(3,2,1) = 5.$

Smith Normal Form and Combinatorics – p. 36

A q-Catalan example

$$C_3(q) = q^3 + q^2 + 2q + 1$$

$$\begin{array}{c|cccc} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{array} & \stackrel{\text{SNF}}{\sim} \text{diag}(1,q,q^6)$$

since $d_1(3, 2, 1) = 1$, $d_2(3, 2, 1) = 5$.

q-Catalan determinant previously known
SNF is new

Ramanujan

 $\sum_{n\geq 0} C_n(q) x^n =$

Smith Normal Form and Combinatorics – p. 37

Ramanujan

 $\sum_{n\geq 0} C_n(q) x^n =$

THE END

Smith Normal Form and Combinatorics – p. 37