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Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . , d1d2 · · · dn),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . , d1d2 · · · dn),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m× n.

(2) unit · det(A) = det(B) = dn1d
n−1
2 · · · dn.

Thus SNF is a refinement of det.
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Row and column operations

Can put a matrix into SNF by the following
operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R.
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Row and column operations

Can put a matrix into SNF by the following
operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form
(with all unit entries equal to 1).
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Existence of SNF

PIR: principal ideal ring, e.g., Z, K[x], Z/mZ.

If R is a PIR then A has a unique SNF up to units.
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Existence of SNF

PIR: principal ideal ring, e.g., Z, K[x], Z/mZ.

If R is a PIR then A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)

Open: every matrix over a Bézout domain has
an SNF.
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).

Rn/(v1, . . . , vn): (Kasteleyn) cokernel of A
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An explicit formula for SNF

R: a PID

A: an n× n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A
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An explicit formula for SNF

R: a PID

A: an n× n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A

Theorem. e1e2 · · · ei is the gcd of all i× i minors
of A.

minor: determinant of a square submatrix.

Special case: e1 is the gcd of all entries of A.

Smith Normal Form and Combinatorics – p. 7



An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3







Matrix-tree theorem =⇒ det(A) = 16, the
number of spanning trees of K4.
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3







Matrix-tree theorem =⇒ det(A) = 16, the
number of spanning trees of K4.

What about SNF?
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An example (continued)













3 −1 −1

−1 3 −1

−1 −1 3













→













0 0 −1

−4 4 −1

8 −4 3













→













0 0 −1

−4 4 0

8 −4 0













→







0 0 −1

0 4 0

4 −4 0






→







0 0 −1

0 4 0

4 0 0






→







1 0 0

0 4 0

0 0 4
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Reduced Laplacian matrix of Kn

L0(Kn) = nIn−1 − Jn−1

detL0(Kn) = nn−2
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Reduced Laplacian matrix of Kn

L0(Kn) = nIn−1 − Jn−1

detL0(Kn) = nn−2

Trick: 2× 2 submatrices (up to row and column
permutations):
[

n− 1 −1

−1 n− 1

]

,

[

n− 1 −1

−1 −1

]

,

[

−1 −1

−1 −1

]

,

with determinants n(n− 2), −n, and 0. Hence

e1e2 = n. Since
∏

ei = nn−2 and ei|ei+1, we get
the SNF diag(1, n, n, . . . , n).
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further details
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further details
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SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PID.
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Smith Normal Form and Combinatorics – p. 13



Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Recall: e1 = gcd of 1× 1 minors (entries) of M
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Recall: e1 = gcd of 1× 1 minors (entries) of M

Theorem. limk→∞ pk(n, d) =
1

dn2ζ(n2)
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Specifying some ei

with Yinghui Wang
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Specifying some ei

with Yinghui Wang ( )
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Specifying some ei

with Yinghui Wang ( )

Two general results.

Let α1, . . . , αn−1 ∈ P, αi|αi+1.

µk(n): probability that the SNF of a random
A ∈ Matk(n) satisfies ei = αi for
1 ≤ αi ≤ n− 1.

µ(n) = lim
k→∞

µk(n).

Then µ(n) exists, and 0 < µ(n) < 1.
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Second result

Let αn ∈ P.

νk(n): probability that the SNF of a random
A ∈ Matk(n) satisfies en = αn.

Then

lim
k→∞

νk(n) = 0.
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Sample result

µk(n): probability that the SNF of a random
A ∈ Matk(n) satisfies e1 = 2, e2 = 6.

µ(n) = lim
k→∞

µk(n).
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Conclusion

µ(n) = 2−n2



1−

n(n−1)
∑

i=(n−1)2

2−i +
n2−1
∑

i=n(n−1)+1

2−i





·
3

2
· 3−(n−1)2(1− 3(n−1)2)(1− 3−n)2

·
∏

p>3



1−

n(n−1)
∑

i=(n−1)2

p−i +
n2−1
∑

i=n(n−1)+1

p−i



 .
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1

Theorem. κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1

Theorem. κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·

Corollary. lim
n→∞

κ(n) =
1

ζ(6)
∏

j≥4 ζ(j)

≈ 0.846936 · · · .
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·

Theorem. Prob(g ≤ ℓ) =

1− (3.46275 · · · )2−(ℓ+1)2(1 +O(2−ℓ))
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·

Theorem. Prob(g ≤ ℓ) =

1− (3.46275 · · ·)2−(ℓ+1)2(1 +O(2−ℓ))
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3.46275 · · ·

3.46275 · · · =
1

∏

j≥1

(

1−
1

2j

)
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Example of SNF computation

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)
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Example of SNF computation

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)

λ∗: λ extended by a border strip along its entire
boundary
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Example of SNF computation

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)

λ∗: λ extended by a border strip along its entire
boundary

(3,1)* = (4,4,2)
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Initialization

Insert 1 into each square of λ∗/λ.

1

1 1

1 1

1

(3,1)* = (4,4,2)
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

t
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

t
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

2

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

2

3

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

3 2

25

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

3

5 29

2

1 1 1

1 1

1
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Uniqueness

Easy to see: the numbers nt are well-defined and
unique.

Smith Normal Form and Combinatorics – p. 25



Uniqueness

Easy to see: the numbers nt are well-defined and
unique.

Why? Expand detMt by the first row. The
coefficient of nt is 1 by induction.
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.

t
λ = (4,4,3)
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.

=

(  ) = (3,2)tλ

(4,4,3)λ  
t
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uλ

uλ = #{µ : µ ⊆ λ}
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uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ
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uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ

There is a determinantal formula for uλ, due
essentially to MacMahon and later Kreweras
(not needed here).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).

Theorem. nt = uλ(t)
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).

Theorem. nt = uλ(t)

Proofs. 1. Induction (row and column
operations).

2. Nonintersecting lattice paths.
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An example

37 2 1

1 1 12

1 1

Smith Normal Form and Combinatorics – p. 29



An example

37 2 1

1 1 12

1 1

φ
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A q-analogue

Weight each µ ⊆ λ by q|λ/µ|.
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A q-analogue

Weight each µ ⊆ λ by q|λ/µ|.

λ = 64431, µ = 42211, qλ/µ = q8
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uλ(q)

uλ(q) =
∑

µ⊆λ

q|λ/µ|

u(2,1)(q) = 1 + 2q + q2 + q3 :
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Diagonal hooks

di(λ) = λi + λ′
i − 2i+ 1

d1 = 9, d2 = 4, d3 = 1
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Main result (with C. Bessenrodt)

Theorem. Mt has an SNF over Z[q]. Write
di = di(λt). If Mt is a (k + 1)× (k + 1) matrix then
Mt has SNF

diag(1, qdk , qdk−1+dk, . . . , qd1+d2+···+dk).
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Main result (with C. Bessenrodt)

Theorem. Mt has an SNF over Z[q]. Write
di = di(λt). If Mt is a (k + 1)× (k + 1) matrix then
Mt has SNF

diag(1, qdk , qdk−1+dk, . . . , qd1+d2+···+dk).

Corollary. detMt = q
∑

idi.
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Main result (with C. Bessenrodt)

Theorem. Mt has an SNF over Z[q]. Write
di = di(λt). If Mt is a (k + 1)× (k + 1) matrix then
Mt has SNF

diag(1, qdk , qdk−1+dk, . . . , qd1+d2+···+dk).

Corollary. detMt = q
∑

idi.

Note. There is a multivariate generalization.
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An example

t

λ = 6431, d1 = 9, d2 = 4, d3 = 1
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An example

t

λ = 6431, d1 = 9, d2 = 4, d3 = 1

SNF of Mt : (1, q, q5, q14)
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A special case

Let λ be the staircase δn = (n− 1, n− 2, . . . , 1).
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A special case

Let λ be the staircase δn = (n− 1, n− 2, . . . , 1).
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A special case

Let λ be the staircase δn = (n− 1, n− 2, . . . , 1).

uδn−1
(q) counts Dyck paths of length 2n by

(scaled) area, and is thus the well-known
q-analogue Cn(q) of the Catalan number Cn.
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣

∣

∣

∣

∣

∣

∣

C4(q) C3(q) 1 + q

C3(q) 1 + q 1

1 + q 1 1

∣

∣

∣

∣

∣

∣

∣

SNF
∼ diag(1, q, q6)

since d1(3, 2, 1) = 1, d2(3, 2, 1) = 5.
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣

∣

∣

∣

∣

∣

∣

C4(q) C3(q) 1 + q

C3(q) 1 + q 1

1 + q 1 1

∣

∣

∣

∣

∣

∣

∣

SNF
∼ diag(1, q, q6)

since d1(3, 2, 1) = 1, d2(3, 2, 1) = 5.

q-Catalan determinant previously known

SNF is new

Smith Normal Form and Combinatorics – p. 36



Ramanujan

∑

n≥0Cn(q)x
n =

1

1−
x

1−
qx

1−
q2x

1− · · ·

.
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Ramanujan

∑

n≥0Cn(q)x
n =

1

1−
x

1−
qx

1−
q2x

1− · · ·

.

THE END
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