A Chromatic Symmetric Function Conjecture

Richard P. Stanley

> M.I.T.

Basic notation

G : simple graph with d vertices
\boldsymbol{V} : vertex set of G
\boldsymbol{E} : edge set of G
Coloring of G :

$$
\text { any } \boldsymbol{\kappa}: V \rightarrow \mathbb{P}=\{1,2, \ldots\}
$$

Proper coloring:

$$
u v \in E \Rightarrow \kappa(u) \neq \kappa(v)
$$

The chromatic symmetric function

$$
\boldsymbol{X}_{\boldsymbol{G}}=\boldsymbol{X}_{\boldsymbol{G}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots\right)=\sum_{\text {proper } \kappa: V \rightarrow \mathbb{P}} x^{\kappa}
$$

the chromatic symmetric function of G, where

$$
x^{\kappa}=\prod_{v \in V} x_{\kappa(v)}=x_{1}^{\# \kappa^{-1}(1)} x_{2}^{\# \kappa^{-1}(2)} \cdots .
$$

The chromatic symmetric function

$$
\boldsymbol{X}_{\boldsymbol{G}}=\boldsymbol{X}_{G}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots\right)=\sum_{\text {proper } \kappa: V \rightarrow \mathbb{P}} x^{\kappa}
$$

the chromatic symmetric function of G, where

$$
\begin{aligned}
& x^{\kappa}=\prod_{v \in V} x_{\kappa(v)}=x_{1}^{\# \kappa^{-1}(1)} x_{2}^{\# \kappa^{-1}(2)} \cdots . \\
& X_{G}\left(1^{n}\right):=X_{G}(\underbrace{1,1, \ldots, 1}_{n 1^{\prime} \mathrm{s}})=\chi_{G}(n),
\end{aligned}
$$

the chromatic polynomial of G.

Example of a monomial

Simple examples

$$
X_{\text {point }}=x_{1}+x_{2}+x_{3}+\cdots=e_{1}
$$

More generally, let

$$
\boldsymbol{e}_{\boldsymbol{k}}=\sum_{1 \leq i_{1}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}},
$$

the k th elementary symmetric function. Then

$$
\begin{aligned}
X_{K_{n}} & =n!e_{n} \\
X_{G+H} & =X_{G} \cdot X_{H} .
\end{aligned}
$$

Acyclic orientations

Acyclic orientation: an orientation o of the edges of G that contains no directed cycle.

Acyclic orientations

Acyclic orientation: an orientation \mathfrak{o} of the edges of G that contains no directed cycle.

Theorem (RS, 1973). Let $\boldsymbol{a}(\boldsymbol{G})$ denote the number of acyclic orientations of G. Then

$$
a(G)=(-1)^{d} \chi_{G}(-1) .
$$

Easy to prove by induction, by deletioncontraction, bijectively, geometrically, etc.

Fund. thm. of symmetric functions

Write $\boldsymbol{\lambda} \vdash \boldsymbol{d}$ if λ is a partition of d, i.e.,
$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \quad \sum \lambda_{i}=d
$$

Let

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

Fundamental theorem of symmetric functions. Every symmetric function can be uniquely written as a polynomial in the e_{i} 's, or equivalently as a linear combination of e_{λ} 's.

A refinement of $a(G)$

Note that if $\lambda \vdash d$, then $e_{\lambda}\left(1^{n}\right)=\prod\binom{n}{\lambda_{i}}$, so

$$
\left.e_{\lambda}\left(1^{n}\right)\right|_{n=-1}=\prod\binom{-1}{\lambda_{i}}=(-1)^{d} .
$$

Hence if $X_{G}=\sum_{\lambda \vdash d} \boldsymbol{c}_{\boldsymbol{\lambda}} e_{\lambda}$, then

$$
a(G)=\sum_{\lambda \vdash d} c_{\lambda}
$$

Sinks

Sink of an acylic orientation (or digraph): vertex for which no edges point out (including an isolated vertex).
$a_{k}(G)$: number of acyclic orientations of G with k sinks
$\ell(\boldsymbol{\lambda})$: length (number of parts) of λ

The sink theorem

Theorem. Let $X_{G}=\sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then

$$
\sum_{\substack{\lambda \vdash d \\ \ell(\lambda)=k}} c_{\lambda}=a_{k}(G)
$$

The sink theorem

Theorem. Let $X_{G}=\sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then

$$
\sum_{\substack{\lambda \vdash-d \\ \ell(\lambda)=k}} c_{\lambda}=a_{k}(G)
$$

Proof based on quasisymmetric functions.

The sink theorem

Theorem. Let $X_{G}=\sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then

$$
\sum_{\substack{\lambda \vdash-d \\ \ell(\lambda)=k}} c_{\lambda}=a_{k}(G)
$$

Proof based on quasisymmetric functions.
Open: Is there a simpler proof?

The claw

Example. Let G be the claw K_{13}.

Then

$$
X_{G}=4 e_{4}+5 e_{31}-2 e_{22}+e_{211}
$$

Thus $a_{1}(G)=1, a_{2}(G)=5-2=3, a_{3}(G)=1$, $a(G)=5$.

The claw

Example. Let G be the claw K_{13}.

Then

$$
X_{G}=4 e_{4}+5 e_{31}-2 e_{22}+e_{211}
$$

Thus $a_{1}(G)=1, a_{2}(G)=5-2=3, a_{3}(G)=1$, $a(G)=5$.

When is $X_{G} \boldsymbol{e}$-positive (i.e., each $c_{\lambda} \geq 0$)?
$3+1$

Let P be a finite poset. Let $3+1$ denote the disjoint union of a 3-element chain and 1-element chain:

$(3+1)$-free posets
P is (3+1)-free if it contains no induced $3+1$.

(3+1)-free
not

The main conjecture

$\operatorname{inc}(\boldsymbol{P})$: incomparability graph of P (vertices are elements of P; $u v$ is an edge if neither $u \leq v$ nor $v \leq u)$

The main conjecture

$\operatorname{inc}(\boldsymbol{P})$: incomparability graph of P (vertices are elements of P; $u v$ is an edge if neither $u \leq v$ nor $v \leq u)$

Conjecture. If P is $(\mathbf{3}+\mathbf{1})$-free, then $X_{\operatorname{inc}(P)}$ is e-positive.

Two comments

- Suggests that for incomparability graphs of $(3+1)$-free posets, c_{λ} counts acyclic orientations of G with $\ell(\lambda)$ sinks and some further property depending on λ.

Open: What is this property?

Two comments

- Suggests that for incomparability graphs of $(3+1)$-free posets, c_{λ} counts acyclic orientations of G with $\ell(\lambda)$ sinks and some further property depending on λ.

Open: What is this property?

- True if P is $\mathbf{3}$ - free, i.e., X_{G} is e-positive if G is the complement of a bipartite graph. More generally, X_{G} is e-positive if G is the complement of a triangle-free (or $\boldsymbol{K}_{\mathbf{3}}$ - free) graph.

A simple special case

Fix $\boldsymbol{k} \geq 2$. Define

$$
\boldsymbol{P}_{\boldsymbol{d}}=\sum_{i_{1}, \ldots, i_{d}} x_{i_{1}} \cdots x_{i_{d}}
$$

where i_{1}, \ldots, i_{d} ranges over all sequences of d positive integers such that any k consecutive terms are distinct.

A simple special case

Fix $\boldsymbol{k} \geq 2$. Define

$$
\boldsymbol{P}_{\boldsymbol{d}}=\sum_{i_{1}, \ldots, i_{d}} x_{i_{1}} \cdots x_{i_{d}}
$$

where i_{1}, \ldots, i_{d} ranges over all sequences of d positive integers such that any k consecutive terms are distinct.

Conjecture. P_{d} is e-positive.

The case $k=2$

$$
P_{d}=\sum_{i_{1}, \ldots, i_{d}} x_{i_{1}} \cdots x_{i_{d}}
$$

where $i_{j} \geq 1, i_{j} \neq i_{j+1}$.
Theorem (Carlitz).

$$
\sum P_{d} \cdot t^{d}=\frac{\sum_{i \geq 0} e_{i} t^{i}}{1-\sum_{i \geq 1}(i-1) e_{i} t^{i}}
$$

The case $k=2$

$$
P_{d}=\sum_{i_{1}, \ldots, i_{d}} x_{i_{1}} \cdots x_{i_{d}}
$$

where $i_{j} \geq 1, i_{j} \neq i_{j+1}$.
Theorem (Carlitz).

$$
\sum P_{d} \cdot t^{d}=\frac{\sum_{i \geq 0} e_{i} t^{i}}{1-\sum_{i \geq 1}(i-1) e_{i} t^{i}} .
$$

Corollary. P_{d} is e-positive for $k=2$.

The case $k=3$

Ben Joseph (2001) probably had a complicated Inclusion-Exclusion proof.

The case $k=3$

Ben Joseph (2001) probably had a complicated Inclusion-Exclusion proof.
$\sum P_{d} \cdot t^{d}=$
numerator

$$
\overline{1-\left(2 e_{3} t^{3}+6 e_{4} t^{4}+24 e_{5} t^{5}+\left(64 e_{6}+6 e_{51}-e_{33}\right) t^{6}+\cdots\right) .}
$$

Schur functions

- Schur functions $\left\{s_{\lambda}\right\}$ forms a linear basis for symmetric functions.
- e_{λ} is s-positive.
- (Gasharov) X_{G} is s-positive if G is the incomparability graph of a $(3+1)$-free poset.
- Conjecture (Gasharov). If G is claw-free, then X_{G} is s-positive. (Need not be e-positive).

A final word

When G is a unit interval graph (special case of incomparability graphs of $(3+1)$-free posets), then Haiman found a close connection with Verma modules and Kazhdan-Lustzig polynomials.

