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Basic notation

G: simple graph with d vertices

V : vertex set of G

E: edge set of G

Coloring of G:

any κ : V → P = {1, 2, . . . }

Proper coloring:

uv ∈ E ⇒ κ(u) 6= κ(v)
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The chromatic symmetric function

XG = XG(x1, x2, . . . ) =
∑

proper κ : V →P

xκ,

the chromatic symmetric function of G, where

xκ =
∏

v∈V

xκ(v) = x
#κ−1(1)
1 x

#κ−1(2)
2 · · · .
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The chromatic symmetric function

XG = XG(x1, x2, . . . ) =
∑

proper κ : V →P

xκ,

the chromatic symmetric function of G, where

xκ =
∏

v∈V

xκ(v) = x
#κ−1(1)
1 x

#κ−1(2)
2 · · · .

XG(1n) := XG(1, 1, . . . , 1
︸ ︷︷ ︸

n 1′s

) = χG(n),

the chromatic polynomial of G.
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Example of a monomial

1 2

13

5

3

xκ = x2
1 x2 x2

3 x5
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Simple examples

Xpoint = x1 + x2 + x3 + · · · = e1.

More generally, let

ek =
∑

1≤i1<···<ik

xi1 · · ·xik,

the kth elementary symmetric function. Then

XKn
= n! en

XG+H = XG · XH .

A Chromatic Symmetric Function Conjecture – p.



Acyclic orientations

Acyclic orientation: an orientation o of the
edges of G that contains no directed cycle.
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Acyclic orientations

Acyclic orientation: an orientation o of the
edges of G that contains no directed cycle.

Theorem (RS, 1973). Let a(G) denote the
number of acyclic orientations of G. Then

a(G) = (−1)dχG(−1).

Easy to prove by induction, by deletion-
contraction, bijectively, geometrically, etc.
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Fund. thm. of symmetric functions

Write λ ⊢ d if λ is a partition of d, i.e.,
λ = (λ1, λ2, . . . ) where

λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = d.

Let
eλ = eλ1

eλ2
· · · .

Fundamental theorem of symmetric
functions. Every symmetric function can be
uniquely written as a polynomial in the ei’s, or
equivalently as a linear combination of eλ’s.
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A refinement of a(G)

Note that if λ ⊢ d, then eλ(1
n) =

∏ (
n
λi

)
, so

eλ(1
n)|n=−1 =

∏
(
−1

λi

)

= (−1)d.

Hence if XG =
∑

λ⊢d cλeλ, then

a(G) =
∑

λ⊢d

cλ.
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Sinks

Sink of an acylic orientation (or digraph): vertex
for which no edges point out (including an
isolated vertex).

ak(G): number of acyclic orientations of G with k

sinks

ℓ(λ): length (number of parts) of λ
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The sink theorem

Theorem. Let XG =
∑

λ⊢d cλeλ. Then
∑

λ⊢d

ℓ(λ)=k

cλ = ak(G).
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The sink theorem

Theorem. Let XG =
∑

λ⊢d cλeλ. Then
∑

λ⊢d

ℓ(λ)=k

cλ = ak(G).

Proof based on quasisymmetric functions.
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The sink theorem

Theorem. Let XG =
∑

λ⊢d cλeλ. Then
∑

λ⊢d

ℓ(λ)=k

cλ = ak(G).

Proof based on quasisymmetric functions.

Open: Is there a simpler proof?
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The claw

Example. Let G be the claw K13.

Then
XG = 4e4 + 5e31 − 2e22 + e211.

Thus a1(G) = 1, a2(G) = 5 − 2 = 3, a3(G) = 1,
a(G) = 5.
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The claw

Example. Let G be the claw K13.

Then
XG = 4e4 + 5e31 − 2e22 + e211.

Thus a1(G) = 1, a2(G) = 5 − 2 = 3, a3(G) = 1,
a(G) = 5.

When is XG e-positive (i.e., each cλ ≥ 0)?
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3 + 1

Let P be a finite poset. Let 3 + 1 denote the
disjoint union of a 3-element chain and
1-element chain:
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(3 + 1)-free posets

P is (3+1)-free if it contains no induced 3 + 1.

not(3+1)−free
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The main conjecture

inc(P ): incomparability graph of P (vertices are
elements of P ; uv is an edge if neither u ≤ v nor
v ≤ u)
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The main conjecture

inc(P ): incomparability graph of P (vertices are
elements of P ; uv is an edge if neither u ≤ v nor
v ≤ u)

Conjecture. If P is (3 + 1)-free, then Xinc(P ) is
e-positive.
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Two comments

Suggests that for incomparability graphs of
(3 + 1)-free posets, cλ counts acyclic
orientations of G with ℓ(λ) sinks and some
further property depending on λ.

Open: What is this property?
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Two comments

Suggests that for incomparability graphs of
(3 + 1)-free posets, cλ counts acyclic
orientations of G with ℓ(λ) sinks and some
further property depending on λ.

Open: What is this property?

True if P is 3 − free, i.e., XG is e-positive if G

is the complement of a bipartite graph. More
generally, XG is e-positive if G is the
complement of a triangle-free (or K3 − free)
graph.
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A simple special case

Fix k ≥ 2. Define

Pd =
∑

i1,...,id

xi1 · · ·xid,

where i1, . . . , id ranges over all sequences of d

positive integers such that any k consecutive
terms are distinct.
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A simple special case

Fix k ≥ 2. Define

Pd =
∑

i1,...,id

xi1 · · ·xid,

where i1, . . . , id ranges over all sequences of d

positive integers such that any k consecutive
terms are distinct.

Conjecture. Pd is e-positive.
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The casek = 2

Pd =
∑

i1,...,id

xi1 · · ·xid,

where ij ≥ 1, ij 6= ij+1.

Theorem (Carlitz).

∑

Pd · t
d =

∑

i≥0 eit
i

1 −
∑

i≥1(i − 1)eiti
.
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The casek = 2

Pd =
∑

i1,...,id

xi1 · · ·xid,

where ij ≥ 1, ij 6= ij+1.

Theorem (Carlitz).

∑

Pd · t
d =

∑

i≥0 eit
i

1 −
∑

i≥1(i − 1)eiti
.

Corollary. Pd is e-positive for k = 2.
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The casek = 3

Ben Joseph (2001) probably had a complicated
Inclusion-Exclusion proof.

A Chromatic Symmetric Function Conjecture – p. 18



The casek = 3

Ben Joseph (2001) probably had a complicated
Inclusion-Exclusion proof.

∑

Pd · t
d =

numerator

1 − (2e3t3 + 6e4t4 + 24e5t5 + (64e6 + 6e51 − e33)t6 + · · · )
.
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Schur functions

Schur functions {sλ} forms a linear basis for
symmetric functions.

eλ is s-positive.

(Gasharov) XG is s-positive if G is the
incomparability graph of a (3 + 1)-free poset.

Conjecture (Gasharov). If G is claw-free,
then XG is s-positive. (Need not be
e-positive).
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A final word

When G is a unit interval graph (special case of
incomparability graphs of (3 + 1)-free posets),
then Haiman found a close connection with
Verma modules and Kazhdan-Lustzig
polynomials.

A Chromatic Symmetric Function Conjecture – p. 20



A Chromatic Symmetric Function Conjecture – p. 21


	�ma {Basic notation}
	�ma {The chromatic symmetric function}
	�ma {The chromatic symmetric function}

	�ma {Example of a monomial}
	�ma {Simple examples}
	�ma {Acyclic orientations}
	�ma {Acyclic orientations}

	�ma {Fund. thm. of symmetric functions}
	�ma {A refinement of $�m {a(G)}$}
	�ma {Sinks}
	�ma {The sink theorem}
	�ma {The sink theorem}
	�ma {The sink theorem}

	�ma {The claw}
	�ma {The claw}

	�ma {$�m {3+1}$}
	�ma {$�m {(3+1)}$-free posets}
	�ma {The main conjecture}
	�ma {The main conjecture}

	�ma {Two comments}
	�ma {Two comments}

	�ma {A simple special case}
	�ma {A simple special case}

	�ma {The case $�m {k=2}$}
	�ma {The case $�m {k=2}$}

	�ma {The case $�m {k=3}$}
	�ma {The case $�m {k=3}$}

	�ma {Schur functions}
	�ma {A final word}

