CHAPTER 10

K-theory

This is a brief treatment of K-theory, enough to discuss, and maybe even prove,
the Atiyah-Singer index theorem. I am starting from the smoothing algebra dis-
cussed earlier in Chapter 4 in order to give a ‘smooth’ treatment of K-theory (this
approach is in fact closely related to the currently-in-vogue subject of ‘smooth K-
theory’).

10.1. What do I need for the index theorem?

Here is a summary of the parts of this chapter which are used in the proof of
the index theorem to be found in Chapter 12

(1) Odd K-theory (K!(X)) defined as stable homotopy classes of maps in
GL(N,C).

(2) Even K-theory (K.(X)) defined as stable isomorphism classes of Zy-graded
bundles

(3) The gluing identification of K!(X) and K.(R x X).

(4) The isotropic index map K!(R x X) — K.(X) using the eigenprojections
of the harmonic oscillator to stabilize the index.

(5) Bott periodicity — proof that this map is an isomorphism and hence that
Ko(X) = K (R? x X).

(6) Thom isomorphism K (V) — K.(X) for a complex (or symplectic) vector
bundle over X. In particular the identification of the ‘Bott element’ b €
K. (V) which generates K.(V') as a module over K(X).

With this in hand you should be able to proceed to the proof of the index
theorem in K-theory in Chapter 12. If you want the ‘index formula’ which is a
special case of the index theorem in cohomology you need a bit more, namely the
discussion of the Chern character and Todd class below.

10.2. Odd K-theory
First recall the group
(10.1) G X(R") ={Ae€ U _X([R"); 3 Be€ ¥ XR"), Id+B = (Id+A)"'}.

Note that the notation is potentially confusing here. Namely I am thinking of
G .>°(R™) as the subset consisting of those A € ¥_°°(R"™) such that Id+A is

iso iso

invertible. The group product is then not the usual product on ¥;_>°(R™) since
(Id +A1)(Id +A2) =Id+A; + Ay + A As.

Just think of the operator as ‘really’ being Id +A but the identity is always there
so it is dropped from the notation.
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238 10. K-THEORY

One consequence of the fact that Id 4+ A is invertible if and only if det(Id +A) #
0 is that!

(10.2) G (R™) € U_2(R") = S(R?") = C*(R2") is open.

In view of this there is no problem in understanding what a smooth (of if you prefer
just continuous) map into G;.>°(R™) is. Namely, it is a map into ¥;_J°(R™) which
has range in G .>°(R™) and the following statment can be taken as a definition of
smoothness, but it is just equivalent to the standard notion of a smooth map with
values in a topological vector space. Namely if X is a manifold then

(10.3)

Cx(X;G™>) =
{a €C®(X xR™M);a=0at X x S™ 7!, a(z) € G.°(R") V 2 € X},
C®(X;G°) ={a € C®(X xR™M);a =0 at X x S~ 1,

a(z) e GLP(RMVee X, 3K e X st alz) =0Vaxe X\ K}.

1S0

The two spaces in (10.3) (they are the same if X is compact) are groups.
They are in fact examples of gauge groups (with an infinite-dimensional target
group), where the composite of a and b is the map a(z)b(x) given by composition
in G_J°(R™). Two elements ag, a1 € C°(X;G.°) are said to be homotopic (in
fact smoothly homotopic, but that is all we will use) if there exists a € C3°(X x
[0,1]4; Gio5°) such that ap = a’t:o and a1 = a|t:1. Clearly if by and b; are also
homotopic in this sense then agbg is homotopic to aiby, with the homotopy just
being the product of homotopies. This gives the group property in the following

definition:-
DEFINITION 10.1. For any manifold
(10.4) KL(X) = C(X; G/ ~

c

s the group of equivalence classes of elements under homotopy.

Now, we need to check that this is a reasonable definition, and in particular see
how is it related to K-theory in the usual sense. To misquote Atiyah, K-theory is
the topology of linear algebra. So, the basic idea is that G;_J°(R™) is just a version
of GL(N, C) where N = co. To make this concrete, recall that finite rank elements
are actually dense in ¥_>°(R"). Using the discussion of the harmonic oscillator
in Chapter 4 we can make this even more concrete. Let mn) be the projection
onto the span of the first N eigenvalues of the harmonic oscillator (so if n > 1 it is
projecting onto space of dimension a good deal larger than N, but no matter). Thus
vy € ¥io?(R™) is an operator of finite rank, exactly the sum of the dimensions
of these eigenspaces. Then, from the discussion in Chapter 4

JF€SR") = mn)f — fin S(R") as N — oo,
A eV F(R") = mnArny — Ain U °(R") as N — oco.

1S0 180

(10.5)

The range of () is just a finite dimensional vector space, so isomorphic to cM
(where M = M(N,n) and M = N if n = 1 to keep things simple), we are choosing
a fixed linear isomorphism to C* by choosing a particular basis of eigenfunctions of
the harmonic oscillator. If a € Wi J°(R") then 7(y)am(n) becomes a linear operator
on CM, so an element of the matrix algebra.

1See Problem 10.6 if you want a proof not using the Fredholm determinant.
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PROPOSITION 10.1. The ‘finite rank elements’ in C°(X; G °(R™)), those for

which m(xyA = Ay = A for some N, are dense in C2°(X; G~ (R")).

These elements are not finite rank of course, they are of the form Id +F with F' of
finite rank. The sloppy statement is in keeping with the principal that the ‘identity
is always there’.

PROOF. This just requires a uniform version of the argument above, which in
fact follows from the pointwise version, to show that

(10.6) AeCr(X;U ) = mnArvy — Ain C°(X; ¥ 7 (R™)).

180 150

From this it follows that if A € C°(X; G ;°(R™)) (meaning if you look back,

that Id +A is invertible) then Id +m(ny)A is invertible for N large enough (since it
vanishes outside a compact set). ]

COROLLARY 10.1. The groups KL(X) are independent of n, the dimension of
the space on which the group acts (as is already indicated by the notation).

In fact this shows that m(nxyamy and a are homotopic in C2°(X; G °(R™))
provided N is large enough. Thus each element of K!(X) is represented by a finite
rank family in this sense (where the order N may depend on the element). Any two
elements can then be represented by finite approximations for the same N. Thus
there is a natural isomophism between the groups corresponding to different n’s by
finite order approximation. In fact this approximation argument has another very

important consequence.

PROPOSITION 10.2. For any manifold KL(X) is an Abelian group, i.e. the group
product is commutative.

PROOF. I can now write the proof for n = 1 so assuming that N and the rank
of 7(x) are the same. As shown above, given two elements [a], [b] € K{(X) we can
choose representatives a, b € C°(X; G ;°(R™)) such that mnyya = am(n) = a and
m(nyb = br(nyy = b. Thus they are represented by elements of C2°(X;GL(N,C))
for some large N. Now, the range of myy) contains two N dimensional spaces,
the ranges of m(y) and mn) — 7(n). Since we are picking bases in each, we can
identify these two N dimensional spaces and then represent an element of the 2/N-
dimensional space as a 2-vector of N-vectors. This decomposes 2N x 2N matrices
as 2 X 2 matrices with N x N matrix elements. In fact this tensor product of the
2 x 2 and N x N matrix algebras gives the same product as 2N x 2N matrices
(as follows easily from the definitions). Now, consider a rotation in 2 dimensions,
represented by the rotation matrix

(10.7) (cos9 —sin9> .

sinf  cos6

This rotates the standard basis e1, e3 to ez, —ep as 6 varies from 0 to 7/2. If we
interpret it as having entries which are multiples of the identity as an N x N matrix,
and then conjugate by it, we get a curve

(2,0) = cos sinf\ fa O cosf) —sind
ULV = _ging cosd) \0 Idy ) \sin@ cosé
acos?f +sin’*0  (Id —a)sinf cos f
(Id —a)sinfcosf cos?d + asin6 ) -

(10.8)
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This is therefore an homotopy between a represented as an N x N matrix and the
same element acting on the second N dimensional subspace, i.e. it becomes

(10.9) (IdON 2) .

This commutes with the second element which acts only in the first N dimensional
space, so the product in K!(X) is commutative. O

So now we see that K!(X) is an Abelian group associated quite naturally to the
space X. I should say that the notation is not quite standard. Namely the standard
notation would be K!(X), without any indication of the ‘compact supports’ that
are involved in the definition. I prefer to put this in explicitly. Of course if X is
compact it is not necessary.

Now, what about the other ‘even’ group. We can define this using the following
computation.

PRrROPOSITION 10.3. For any manifold the natural inclusions
CR(X;GL) — CP(X x S;GLE),

150 180

{aeC(X xS$;G.);a(x, 1) =1d Vo e X} — CX(X x S;G.2°)

1S0 150

(10.10)

where the first inclusion is as pullback under the projection X xS — X, define
complementary subgroups of KL(X) which therefore splits as

(10.11) KLX xS) = KL(X) @ KY(X),
defining the second group which can also be naturally identified as
(10.12) K%X)=K!R x X).

PROOF. The first inclusion is a left inverse to the restriction map

(10.13) CP(X xS;GL°) 3 (2,0) — alx, 1) € CX(X;GLE).

180 180

This restriction clearly gives a short exact sequence of groups

(10.14) {a€CX(X x S;G %) a(z,1)=1d Vo e X} —
CP(X X S;GL°) — C(X;GLY)

180 150

which therefore splits. Under homotopy this becomes the direct sum decomposition
(10.11).

So the definition of K2(X) reduces to equivalence classes of elements a €
C°(S x X;G.5°) such that a(1,z) = Id and the same is required for homotopies.
Since all supports are compact it is easy to see that any such element is homotopic
to one which satisfies a(0,z) = Id for |§ — 1] < ¢, i.e. is equal to the identity in a
neighbourhood of {1} x X — and hence the same can be arranged for homotopies.

If we identify S\ {1} with R this reduces precisely to (10.12). O

So, now we have the two Abelian groups K!(X) and K2(X) associated to the
manifold X. The direct sum, here just K!(S x X) is often just denoted K (X) (in
fact usually without the ¢ suffix) so
(10.15) K, (X) = KX(S x X).

If you know a little topology, you will see that the discussion here starts from
the premise that G.°°(R") is a classifying space for odd K-theory. So this is true

1S0
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by fiat. The corresponding classifying space for even K-theory is then the pointed
loop group, the set of maps

(10.16) G = {a € C=($; G

180,s8 150

(R™);a(1) =1d}.

If you look at Proposition 10.3 you will see that it amounts to defining K(X) as the
homotopy classes of maps in C°(Xiso s ). This is somewhat backwards compared to
the usual definition and in fact this group is really more naturally denoted K?(X).
Fortunately it is naturally isomorphic to the ‘true’ K¢(X).

10.3. Computations

Let us pause for a moment to compute some simple cases. Namely

LEMMmA 10.1.
(10.17) K'({pt}) = {0}, K¢(R) =2, K'(S) = Z.
PROOF. These two statements follow directly from the next two results. O

LEMMA 10.2. The group G,>°(R™) is connected.

1s0

ProoF. If a € G ;°(R"), the curve [0,1] 5 t — (1 — t)aa + tm(yyam(yy lies

180

in G_°°(R™) for N sufficiently large. Thus it suffices to show that GL(n,C) is

180
connected for large N; of course?

(10.18) GL(N,C) is connected for all N > 1.

O

PROPOSITION 10.4. A closed loop in v : S — G >°(R™) is contractible (ho-

180
motopic through loops to a constant loop) if and only if the composite map

(10.19) 4 =detoy:S — C*

is contractible, so

(10.20) m(GE(R") = Z

with the identification given by the winding number of the Fredholm determinant.

PRrROOF. Again, as in the previous proof but now a loop can be deformed into
GL(N, C) so it is certainly enough to observe that?

(10.21) m1 (GL(N,C)) =Z for all N > 1.

2See Problem 10.8
3Proof in Problem 10.9
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10.4. Vector bundles

The notion of a complex vector bundle was briefly discussed earlier in Sec-
tion 6.2. Recall from there the notion of a bundle isomorphism and that a bundle
is said to be trivial (over some set) if there is a bundle isomorphism to X x C*
(over this set). The direct sum of vector bundles and the tensor product are also
briefly discussed there (I hope).

To see that there is some relationship between K-theory as discussed above and
vector bundles consider K!(X) for a compact manifold, X. First note that if V is
a complex vector bundle over X and e : V — V is a bundle isomorphism, then
e defines an element of K*(X). To see this we first observe we can always find a
complement to V.

ProroSITION 10.5. Any wvector bundle V' which is trivial outside a compact
subset of X can be complemented to a trivial bundle, i.e. there exists a wvector
bundle E and a bundle isomorphism

(10.22) VaE — X xCV.

PRrROOF. This follows from the local triviality of V. Choose a finite open cover
U; of X with M elements in which one set is Uy = X \ K for K compact and such
that V is trivial over each U;. Then choose a partition of unity subordinate to U;
— so only the ¢y € C*°(X) with support in Uy does not have compact support. If
fi:V v, CN x Uj; is a trivialization over U; (so the one over Uy is given by the
assumed triviality outside a compact set) consider

M
(10.23) F:V— X xC"M y(z)r— @fl(@(u(x))

This embeds V as a subbundle of a trivial bundle of dimension N M since the map
F' is smooth, linear on the fibres and injective. Then we can take E to be the
orthocomplement of the range of F' which is identified with V. O

Thus, a bundle isomorphism e of V' can be extended to a bundle isomorphism
e®Idg of the trivial bundle. This amounts to a map X — GL(M N, C) which can
then be extended to an element of C*°(X; G, .5°(R™)) and hence gives an element
of K}(X) as anticipated. It is straightforward to check that the element defined in
K!(X) does not depend on choices made in its construction, only on e (and through
it of course on V.)

This is one connection between bundles and K_ . There is another, similar, con-
nection which is more important. Namely from a class in K}(X) we can construct
a bundle over S x X. One way to do this is to observe that Proposition 10.5 asso-
ciates to a bundle V' a smooth family of projections 7y € C°(X; M(N,C)) which
is trivial outside a compact set, in the sense that it reduces to a fixed projection
there. Namely, 7y is just (orthogonal) projection onto the range of V. We will need
to think about equivalence relations later, but certainly such a projection defines a
bundle as well, namely its range.

For the following construction choose a smooth function ® : R — (0, 27)
which is non-decreasing, constant with the value 0 on some (—oo, —T] and with
the value 27 on [T, 00) and strictly increasing otherwise. We also assume that O is
‘odd’ in the sense that

(10.24) O(—t) = 21 — O(t).
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This is just a function which we can used to progressively ‘rotate’ through angle
27 but staying constant initially and near the end. In fact if a € C*°(X;CY) then

(10.25) R x X 3 (t,x) — Ry(t, )

[ cos(O(t)Idy  —sin(O(t))a(z)
= (sin(@(t))a(x)_l cos(O(t)) 1dy ) € GHEN.C)

has inverse R,(—t,z) and is equal to the identity in |[t| > T. The idea is that it

‘rotates once’ between the identity and a. Now consider the family of projections

,(t, ) = Rya ()1, (t, x) Riq (—1)

(10.26) IT, (t, ) = Ra(—t, x) <I§ 8) Ra(t,x)
_ ( cos?(O(t)) Idyx —cos(O(1)) sin(@(t))a(x))
—sin(O(t)) cos(O(t))a~t(z) sin?(O(t)) '
Note, for later reference that
(10.27) I1,(t, ) has entries linear in a and a ™.

LEMMA 10.3. An element a € C°(X; GL(N,C)) defines a smooth family of
matrices with values in the projections, I, € C*°(R x X; M (2n,C)), which is con-
stant outside a compact subset and so defines a vector bundle over R x X which is
trivial outside a compact set.

Proor. That II, is a projection (sometimes people say idempotent when it
may not be self-adjoint as in this case) follows from the definition in (10.26), since
12 = TI,. Moreover, where a = Id, which is the case outside a compact subset
of X, Ry(t,x)Ria(—t,z) = Id so II, is the constant projection corresponding to
projection on the first N coefficients. The same is true in [t| > T so indeed II, is
constant outside a compact subset of R x X. [

So, by now it should not be so surprising that the K-groups introduced above
are closely related to the ‘Grothendieck group’ constructed from vector bundles.
The main issue is the equivalence relation.

DEFINITION 10.2. For a manifold X, K.(X) is defined as the set of equivalence
classes of pairs of complex vector bundles (V,W), both trivial outside a compact
set and with given trivializations a, b there, under the relation (Vi,Wi;a1,b1) ~
(Va, Wasag, bo) if and only if there is a bundle S and a bundle isomorphism

(10.28) T:VieW,dS — VoW ®S
which is equal to (az @ ba) (a1 ® be) ® Idg outside some compact set.

Note that if X is compact then the part about the trivializations is completely void,
then we just have pairs of vector bundles (V, W) and the equivalence relation is the
existence of a stabilizing bundle S and a bundle isomorphism (10.28).

This is again an Abelian group with the group structure given at the level of
pairs of bundles (V;, W;), i = 1, 2 by*

(10.29) [(Vi, W)l + [Va, W) = [(Vi © Vo, Wi © Wa)]

4See Problem 10.7 for the details.
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with the trivializations (a1 ® az), (b1 ® b2). In particular [(V, V)] is the zero element
for any bundle V' (trivial outside a compact set).

The equivalence relation being (stable) bundle isomorphism rather than some
sort of homotopy may seen strange, but it actually more general.

LEMMA 10.4. If V is a vector bundle over [0,1]; x X which is trivial outside a
compact set then Vy = V‘t:O and Vi, = V‘t:l are bundle isomorphic over X with
an isomorphism which is trivial outside a compact set.

PROOF. The proof is ‘use a connection and integrate’. We can do this explicitly
as follows. First we can complement V to a trivial bundle so that it is identified with
a constant projection outside a compact set, using Proposition 10.5. Let the family
of projections be my (¢, ) in M x M matrices. We want to differentiate sections of
the bundle with respect to t. Since they are M-vectors we can do this, but we may
well not get sections this way. However defining the (partial) connection by

(10.30) Viu(t) =0'(t) — myv(t) = (Id =7y ) Vo (t) = ((Id =7y )v(t)) =0

if myv = v, i.e. if v is a section. Now this is just a system of ordinary differential
equations, so V,v(t) = 0 has a unique solution with v(0) = vy € Vp fixed. Then
define F : Vo — V; by Fug = v(1). This is a bundle isomorphism. O

PROPOSITION 10.6. For any manifold X the construction in Lemma 10.8 gives
an isomorphism

(10.31) Ki(X) 3 [a] — [T, TI%)] = K(R x X)
where IIS° is the constant projection to which I, restricts outside a compact set.

PrOOF. The vector bundle fixed by II, in Lemma 10.3 fixes an element of
K.(R x X) but we need to see that it is independent of the choice of a representing
[a] € KL(X). A homotopy of a gives a bundle over [0,1] x X and then Lemma 10.4
shows that the resulting bundles are isomorphic. Stabilizing a, i.e. enlarging it by
an identity matrix adds a trivial bundle to IT, and the same trivial projection to
I1°. Thus the map in (10.31) is well defined. So we need to show that it is an
isomorphism. First we should show that it is additive — see Problem 10.1.

If V is a bundle over R x X which is trivial outside a compact set, we can embed
it as in Proposition 10.5 so it is given by a family of projections 7y (this of course
involves a bundle isomorphism). Now, using the connection as in (10.30) we can
define an isomorphism of the trivial bundle 7{®. Namely, integrating from ¢ = =T
to t = T defines an isomorphism a. The claim is that (II,, II3°) = (V, V>°). I leave
the details to you, there is some help in Problem 10.2. Conversely, this construction
recovers a from II, so shows that (10.31) is injective and surjective. g

PrROBLEM 10.1. Additivity of the map (10.31).

PROBLEM 10.2. Details that (10.31) is an isomorphism.

10.5. Isotropic index map

Now, (10.31) is part of Bott periodicity. The remaining part is that, for any
manifold X there is a natural isomorphism

(10.32) KR x X) — K (X).
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If we regard this as an identification (and one has to be careful about orientations
here) then it means that we have identified

(10.33) KY(X) = KR x X) = K. (X) = K. (R? x X)

as is discussed more below. For the moment what we will work on is the definition
of the map in (10.32). This is the ‘isotropic’ (or ‘Toeplitz’®) index map.

PrOBLEM 10.3. Toeplitz instead of isotropic.

Finally we get to the start of the connection of this stuff with index theory. An
element of K!(R x X) is represented by a map from R x X to GL(N, C), for some
N, and with triviality outside a compact set. In particular this map reduces to the
identity near 0o in R so we can join the ends and get a map

a € C®(S x X;GL(N,C)), a=1d near {1} x X and outside a compact set.

This indeed is close to the original definition of K?(X) above. Now, we can interpret
@ as the principal symbol of an elliptic family in ¥9_(R;C") depending smoothly
on z € X (and reducing to the identity outside a compact set). Let’s start with

the case X = {pt} so there are no parameters.

PROPOSITION 10.7. If A € WY (R;CY) is elliptic with principal symbol a =
00(A) € C*(S; GL(N,C)) then the index of A is given by the winding number of
the determinant of the symbol

1 d
(10.34) Ind,(4) = — wn(det(a)) = — 53— Str(afldfg

and if a = 1d near {1} € S then Ind,(A) = 0 if and only if [a] = 0 € KL(S).

)do

PrOOF. This follows from Proposition 10.4. First, recall what the winding
number is. Then check that it defines the identification (10.20). Observe that the
index is stable under homotopy and stabilization and that the index of a product
is the sum of the indices. Then check one example with index 1, namely for the
annihilation operator will suffices. For general A with winding number m, compose
with m factors of the creation operator — the adjoint of the annihilation operator.
This gives an operator with symbol for which the winding number is trivial. By
Proposition 10.4 it can be deformed to the identity after stabilization, so its index
vanishes and (10.34) follows. O

Now for the analytic step that allows us to define the full (isotropic) index map.

PRrROPOSITION 10.8. Ifa € C°(R x X; GL(N,C)) (so it reduces to the identity
outside a compact set) then there exists A € C®(X; ¥ (R)) with 0g(A) = a, A

constant in X \ K for some compact K and such that null(A) is a (constant) vector
bundle over X.

PROOF. We can choose a B € C®(X; VY (R)) with o(B) = a by the surjec-
tivity of the symbol map. Moreover, taking a function ¢ € C°°(X) which is equal
to 1 outside a compact set in X but which vanishes where a # 1d, (1 —¢)B + ¢ 1d
has the same principal symbol and reduces to Id outside a compact set.

The problem with this initial choice is that the dimension of the null space

may change from point to point. However, we certainly have a parametrix Gg €

5See Problem 10.3 for this alternative approach.
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C=(X; VY (R)) which we can take to be equal to the identity outside a compact

180
set, by the same method, and which then satisfies

(1035) GpB =1d+R,, BGp =1d+R3, R; € C(?O(X,\I/_OO(R)

So, recall the finite rank projection () onto the span of the first N eigenspaces.
We know that Rim(yy — Rp in Wi J°(R) and this is true uniformly on X since the
support in X is compact. So, if N is large enough sup,¢ x [|[R1(z)(Id —7mn))|| < 3.
Composing the first equation in (10.35) on the right with Id —7(yy we find that

(1036) GBB(Id —7T(N)) = (Id +R1(Id —W(N)))(Id —W(N))

where the fact that Id —m(y) is a projection is also used. Now (Id +R; (Id —W(N)))*l =
Id+S; where S; € C(X;V¥,°(R)) by the openness of G .;°(R). So if we set

A= B(ld —myy) and G = (Id +51)Gp we see that
(1037) GA=1d _7T(N)-

In particular the null space of A(x) for each x is exactly the span of 7(y) — it cer-
tainly annihilates this set but can annihilate no more in view of (10.37). Moreover
A has the same principal symbol as B and is constant outside a compact set in
X. |

Now, once we have chosen A as in Proposition 10.8 it follows from the constancy
of the index that family A(x)* also has null spaces of constant finite dimension, and
indeed these define a smooth bundle over X which, if X is not compact, reduces to
7wy near infinity — since A = Id —m(y) there. Thus we arrive at the index map.

PROPOSITION 10.9. If A is as in Proposition 10.8 the the null spaces of A*(x)
form a smooth vector bundle R over X defining a class [(m(n), R)] € K (X) which
depends only on [a] € KL(R x X) and so defines an additive map

(10.38) Ind, : KL(R x X) — K (X).

PROOF. In the earlier discussion of isotropic operators it was shown that an
elliptic operator has a generalized inverse. So near any particular point z € X we
can add an element E(z) € U, _>°(R; CV) to G(Z) so that H(Z) = G(Z) + E(z) is a
generalized inverse, H(Z)A(Z) = Id —7(n), A(Zu(Z) = Id —7'(Z) where 7'(Z) is a
finite rank projection onto a subspace of S(R). Then H(z) = G(x) + E(Z) is still a
parametrix nearby and

(10.39) H(x)A(x) = 1d —7(ny, A(z)H(x) =1d —p(z) near z

where p(z) must have constant rank. Indeed, it follows that p(z)7’(Z) is a smooth
bundle isomorphism, near Z, from the range of 7'(Z) to the null space of A*. This
shows that the null spaces of the A*(x) form a bundle, which certainly reduces to
m(n) outside a compact set. Thus

(10.40) (v, null(A%))] € Ko (X).

Next note the independence of this element of the choice of N. It suffices to
show that increasing N does not change the class. In fact increasing N to N + 1
replaces A by A(Id —7m(y41)) which has null bundle increased by the trivial line
bundle (Id(n 1) —7(n)). The range of A then decreases by the removal of the trivial
bundle A(x)(Id(n1) —7(n)) and null(A*) increases correspondingly. So the class
in (10.40) does not change.



10.6. BOTT PERIODICITY 247

To see that the class is independent of the choice of A, for fixed a, consider two
such choices. Initially the choice was of an operator with a as principal symbol,
two choices are smoothly homotopic, since tA + (1 —¢)A’ is a smooth family with
constant symbol. The same construction as above now gives a pair of bundles over
[0,1] x X, trivialized outside a compact set, and it follows from Lemma 10.4 that
the class is constant. A similar discussion shows that homotopy of a is just a family
over [0, 1] x X so the discussion above applies to it and shows that the bundles can
be chosen smoothly, again from Lemma 10.4 the class is constant. (]

It is important to understand what the index tell us.

ProOPOSITION 10.10. If a € C*(R x X; GL(N,C)) then Indy(a) = 0 if and
only if there is a family A € C®(X; W) (R;CN)) with 0o(A) = a which is constant
outside a compact set in X and everywhere invertible.

PROOF. The definition of the index class above shows that a may be quan-
tized to an operator with smooth null bundle and range bundle such with Ind,(a)
represented by (m(yy),p’) where p’ is the null bundle of the adjoint. If A can be
chosen invertible this class is certainly zero. Conversely, if the class vanishes then
after stabilizing with a trivial bundle 7y and p’ become bundle isomorphic. This
just means that they are isomorphic for sufficiently large N with the isomorphism
being the trivial one near infinity. However this isomorphism is itself an element of
C%°(X; U, .>°(R; C"V)) which is trivial near infinity. Adding it to A gives an invertible

realization of the symbol, proving the Proposition. O

10.6. Bott periodicity

Now to the proof of Bott periodicity. Choose a ‘Bott’ element, which in this
case is a smooth function
) B:R— C*, B(t)=1for |t| > T,
(10.41)  B(t) = ®W — , , () i
arg ((t) increasing over (0,27) for t € (=T,T)

where © satisfies (10.24) and the preceeding conditions. Thus 4 has winding number
one but is constant near infinity.
We first show

PROPOSITION 10.11. The map (10.38) is surjective with explicit left inverse
generated by mapping a smooth projection (constant near infinity)
(10.42) (my, 75°) — B() try + (Id —7y) € C2°(R x X; GL(N, C)).

PRrROOF. The surjectivity follows from the existence of a left inverse, so we need
to investigate (10.42). Observe that 3(t)~!, when moved to the circle, is a symbol
with winding number 1. By Proposition 10.7 we may choose an elliptic operator
b € ¥) (R) which has a one-dimensional null space and has symbol in the same
class in K}(R) as 371. In fact we could take the annihilation operator, normalized
to have order 0. Then we construct an elliptic family By € U9 _(R;CV) by setting

(10.43) By =y ()b + (Id =7y (x)), x € X.

The null space of this family is clearly 7 X N, where N is the fixed one-dimensional
vector space null(b). Thus indeed

(10.44) Ind,(By) = [(7v, 730)] € Ke(X).
This proves the surjectivity of Ind, in this isotropic setting. [
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With some danger of repeating myself, if X is compact the ‘normalizing term’ at
infinity 7y® is dropped. You shall now see why we have been dragging this non-
compact case along, it is rather handy even if interest is in the compact case.

This followign proof that Ind, is injective is a variant of the ‘clever’ argument
of Atiyah (maybe it is very clever — look at the original proof by Bott or the much
more computational, but actually rather enlightening, argument in [1]).

PROPOSITION 10.12. For any manifold X, the isotropic index map in (10.32),
(10.38) is an isomorphism

(10.45) KL(R x X) ~ K. (X).

PrOOF. Following Proposition 10.11 only the injectivity of the map remains
to be shown. Rather than try to do this directly we use another carefully chosen
homotopy.

So, we need to show that if a € C°(R x X; GL(N,C)) has Ind,(a) = 0 then
0= [a] € K(Rs x X). As a first step we use the construction of Proposition 10.6
and Lemma 10.3 to construct the image of [a] in K.(R? x X). It is represented by
the projection-valued matrix

(10.46) M, (t,s,2) € C°(R?* x X; M(2N,C))

which is constant near infinity. Then we use the surjectivity of the index map in
the case

(10.47) Ind, : Ko(R x (R? x X)) — K (R? x X)

and the explicit lift (10.43) to construct
(10.48)
e € C°(R* x X;GL(2N,Q)), e(r,t,s,2) = B(r)Ia(t, s,2) + (Id ~TLa(t, 5, 7)),

Ind,(e) = [T, TI2°] € Ko (R? x X).

Here the ‘r’ variable is the one which is interpreted as the variable in the circle at
infinity on R? to turn e into a symbol and hence a family of elliptic operators with
the given index. However we can rotate between the variables r and s, which is an
homotopy replacing e(r,t,s,x) by e(—s,t,r, ). Since the index map is homotopy
invariant, this symbol must give the same index class. Now, the third variable here
is the argument of a, the original symbol. So the quantization map just turns a
and a~! which appears in the formula for I, — see (10.27) — into any operator
with these symbols. By Proposition 10.10 a (mabye after a little homotopy) is the
symbol of an invertible family. Inserting this in place of a and its inverse for a=!
gives an invertible family of operators with symbol e(—s, ¢, 7, z)®. Thus Ind,(e) = 0,
but this means that

(10.49) 0 = [(TL,,T1°)] € K (R?* x X) = 0 = [a] € K}(R x X).

This shows the injectivity of the isotropic index map and so proves Bott periodicity.
O

PrROBLEM 10.4.

6See Problem 10.4 for some more details
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What does this tell us? Well, as it turns out, lots of things! For one thing the
normalization conditions extend to all Euclidean space:-

{0} k& even KO(RF) = {Z k even

10.50 KHRF) =
( ) (R {Z kodd, ¢ {0} k odd.

This in turn means that we understand a good deal more about G .;°(R"™).

THEOREM 10.1 (Bott periodicity). The homotopy groups G .>°(R™) are

150

{0} k even

(10.51) i (Gio” (R™)) = {Z k odd.

Indeed Bott proved this rather directly using Morse theory.

10.7. Semiclassical quantization

Odd to odd.

10.8. Symplectic bundles
10.9. Thom isomorphism
10.10. Chern-Weil theory and the Chern character

I would not take this section seriously yet, I am going to change it.

Let’s just think about the finite-dimensional groups GL(N, C) for a little while.
Really these can be replaced by G.°(R™), as I will do below, but it may be a strain
to do differential analysis and differential topology on such an infinite dimensional
manifold, so I will hold off for a while.

Recall that for a Lie group G the tangent space at the identity (thought of as
given by an equivalence to second order on curves through Id), g, has the structure
of a Lie algebra. In the case of most interest here, GL(n,C) C M (N, C) is an open
subset of the algebra of N x IV matrices, namely the complement of the hypersurface
where det = 0. Thus the tangent space at Id is just M(N,C) and the Lie algebra
structure is given by the commutator

(10.52) [a,b] = ab — ba, a,b € gl(N,C) = M(N,C).

At any other point, g, of the group the tangent space may be naturally identified
with g by observing that if ¢(t) is a curve through g then g~'¢(t) is a curve through
Id with the equivalence relation carrying over. This linear map from 7,G to g is
herlpfully denoted

(10.53) g %dg:T,G — g.

In this notation ‘dg’ is the differential of the identity map of G at g. This ‘Maurier-
Cartan’ form as a well-defined 1-form on G with values in } — which is a fixed vector
space.

The fundamental property of this form is that

_ 1. _
(10.54) d(g~"dg) = =3[9~ dg, g~ "dg].

In the case of GL(V, C) this can be checked directly, and written slightly differently.
Namely in this case as a ‘function’ ‘g’ is the identity on G but thought of as the
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canonical embedding GL(N,C) € M(N,C). Thus it takes values in M(N,C), a
vector space, and we may differentiate directly to find that

(10.55) d(g'dg) = —dgg~'dg A dg
where the product is that in the matrix algebra. Here we are just using the fact
that dg~' = —¢g 'dgg~' which comes from differentiating the defining identity

g 1g = Id. Of course the right side of (10.55) is antisymmetric as a function on
the tangent space TyG x T,G and so does reduce to (10.54) when the product is
repalced by the Lie product, i.e. the commutator.

Since we are dealing with matrix, or infinite matrix, groups throughout, I will
use the ‘non-intrinsic’ form (10.55) in which the product is the matrix product,
rather than the truly intrinsic (and general) form (10.54).

PrROPOSITION 10.13 (Chern forms). If tr is the trace functional on N x N
matrices then on GL(N,C),

tr((g 'dg)**) =0V k €N,
Bop_1 = tr((g_ldg)%_l) 18 closed V k € N.

ProOF. This is the effect of the antisymmetry. The trace idenitity, tr(ab) =
tr(ba) means precisely that tr vanishes on commutators. In the case of an even
number of factors, for clarity evaluation on 2k copies of Ty GL(N,C), given for
a; € M(N,C),i=1,...,2k, by the sum over
(10.57)

tr((g~"dg)**) (a1, az, ..., a) = ngn(e) tr(g ™ ae(yg ey -9 ae(on)) =

(10.56)

- ngn(e) tr(g_l%(zk)g_laeu) e 9_1%(21971)) = —tr((g~'dg)*) (a1, az, ..., az).

In the case of an odd number of factors the same manipulation products a
trivial identity. However, notice that
(10.58) g gyt = —d(g™)

is closed, as is dg. So in differentiating the odd number of wedge products each pair
g tdgg~'dg is closed, so (tr being a fixed functional)

(10.59) dBop—1 = tr(dg= 1) (g~ dgg~dg)**~2) = —tr((¢~dg)**) = 0

by the previous discussion. O
Now, time to do this in the infinite dimensional case. First we have to make

sure we know that we are talking about.

DEFINITION 10.3 (Fréchet differentiability). A function on an open set of a
Fréchet space, O C F, f : O — V, where V is a locally convex topological space
(here it will also be Fréchet, and might be Banach) differentiable at a point u € O
if there exists a continuous linear map D : F — V such that for each continuous

seminorm || - |la on V there is a continuous norm || - ||; on F such that for each
€ > 0 there exists § > 0 for which
(10.60) olli < 8 = If(u+0) — £() — Tola < eloll.

This is a rather strong definition of differentiability, stronger than the Gateaux
definition — which would actually be enough for most of what we want, but why
not use the stronger condition when it holds?
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PropPOSITION 10.14. The composition of smoothing operators defines a bilinear
smooth map

(1061)  W(RT) x U (R") — U2 (R™), [abllk < Crllallis o Bl

iso iso iso

(where the kth norm on u is for instance the C* norm on (z)*u and inversion is a
smooth map

(10.62) G (R™) — G°(R™).

iso iso

PRrROOF. I did not define smoothness above, but it is iterated differentiability,
as usual. In fact linear maps are always differentiable, as follows immediately from
the definition. The same is true of jointly continuous bilinear maps, so the norm
estimates in (10.61) actually prove the regularity statement. The point is that the
derivative of a bilinear map P at (a,b) is the linear map

(10.63) Qg p(ab) = P(a,b)+P(a,b), P(a+a,b+b)—P(a,b) —Q, 3(a,b) = P(a,b).

The bilinear estimates themselves follow directly by differentiating and estimating
the integral composition formula

(10.64) aob(z,2') = /a(z,z”)b(z”,z’)dz”.

The shift in norm on the right compared to the left is to get a negative factor of
(") to ensure integrability.

Smoothness of the inverse map is a little more delicate. Of course we do know
what the derivative at the point g, evaluated on the tangent vector a is, namely

g tag™'. So to get differentiability we need to estimate

(10.65)  (g+a) ' —g ' +glag =g a | Y (-1 g7 (ag™)" | ag™.
k>0

This is the Neumann series for the inverse. If a is close to 0 in ¥ _J°(R™) then

we know that ||al|2 is small, i.e. it is bounded by some norm on ¥, >°(R™). Thus
the series on the right converges in bounded operators on L?(R"). However the
smoothing terms on both sides render the whole of the right side smoothing and
with all norms small in ¥ >°(R™) when a is small.

This proves differentiability, but in fact infinite differentiability follows, since
the differentiability of ¢! and the smoothness of composition, discussed above,

shows that g 'ag™! is differentiable, and allows one to proceed on inductively. [

o

We also know that the trace functional extends to ¥ °(R™) as a trace func-

tional, i.e. vanishing on commutators. This means that the construction above of
Chern classes on GL(N, C) extends to G_>°(R"™).

PROPOSITION 10.15. (Unigversal Chern forms) The statements (10.56) extend

to the infinite-dimensional group G .5°(R™) to define deRham classes [Bak—1] in
each odd dimension.

In fact these classes generate (not span, you need to take cup products as well) the
cohomology, over R, of G_>°(R").

180

PrROOF. We have now done enough to justify the earlier computations in this
setting. O
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PROPOSITION 10.16. If X is a manifold and a € C°(X; G .5°(R™) then the
forms a*fBar—1 define deRham classes in HC%H(X;R) which are independent of
the homotopy class and so are determined by [a] € KL(X). Combining them gives

the (odd) Chern character
(10.66) Cho([a]) = ZCQk_la*ﬁgk_l.
k

the particular constants chosen in (10.66) corresponding to multiplicativity under
tensor products, which will be discussed below.

PRrROOF. The independence of the (smooth) homotopy class follows from the
computation above. Namely if a; € C2°(X %[0, 1]; Gi.5° (Rbn) then Bog—1 = a} fop—1

is a closed (2k — 1)-form on X x [0, 1]. If we split it into the two terms
(10.67) Bak—1 = bak—1(t) + yar—1(t) A dt

where bog_1(t) and o1 (t) are respectively a t-dependent 2k — 1 and 2k — 2 form,
then

(10.68)
8 1
dBoj—1 =0 & Eb%q(t) = dx72r—2(t) and hence b(1)2x—1—b(0)2x—1 = dpogr—2, pok—2 = / dtyar—2(t)
0
shows that b(1)ax—1 and b(0)2r—_1, the Chern forms of a; and ag are cohomologous.

O

The even case is very similar. Note above that we have defined even K-classes
on X as equivalence classes under homotopy of elements a € C2°(X; G 0% (R™).
The latter group consists of smooth loops in Gi5°(R"™) starting and ending at Id.
This means there is a natural (smooth) map
(10.69) T:GL0(R") xS — GL2°(R™), (a,0) — a(6).

180,8 180

This map may be used to pull back the Chern forms discussed above to the product
and integrate over S to get forms in even dimensions:-

2
(10.70) Bk :/ tr(g~'dg)** 1, k=0,1,....
0

PROPOSITION 10.17. The group Gi >~ (R™) has an infinite number of compo-

nents, labelled by the ‘index’ By in (10.70), the other Chern forms define cohomology
classes such that for any map

(10.71) Ch([a]) = cara* Bax
k=0

defines a map K9(X) — HeV?(X).

The range of this map spans the even cohomology, this is a form of a theorem of
Atiyah-Hurzebruch.

If f: X — Y is a smooth map then it induces a pull-back operation on vector
bundles (see Problem 10.5) and this in turn induces an operation

PrOBLEM 10.5.
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(10.72) £ K(Y) — K(X).

Now we can interpret Proposition ?? in a more K-theoretic form.

10.11. Todd class
10.12. Stabilization

In which operators with values in W¥;_>° are discussed.

10.13. Delooping sequence

The standard connection between even and odd classifying groups.

10.14. Looping sequence

The quantized connection between classifying groups.

10.15. C* algebras
10.16. K-theory of an algeba
10.17. The norm closure of ¥°(X)
10.18. The index map
10.19. Problems
PROBLEM 10.6. Remind yourself of the proof that Gi,;°(R"™) C ¥, >°(R") is

180
open. Since G >°(R™) is a group, it suffices to show that a neighbourhood of
0 € U, .>°(R") is a neighbourhood of the identity. Show that the set || A2y < 3,
given by the operator norm, fixes an open neighbourhood of 0 € ¥;_>°(R™) (this is

the L? continuity estimate). The inverse of Id +A for A in this set is given by the
Neumann series and the identity (which follows from the Neumann series)

(10.73) (Id+A)"' =1d+B =1d—-A+ A? — ABA

in which a prioiri B € B(L?) shows that B € ¥_>°(R") by the ‘corner’ property

of smoothing operators (meaning ABA’ € ¥._°(R") if A, A" € ¥_°(R") and
B € B(L?).

PROBLEM 10.7. Check that (10.29) is well-defined, meaning that if (Vy, W) is
replaced by an equivalent pair then the result is the same. Similarly check that the
operation is commutative and that it make K(X) into a group.

PrOBLEM 10.8. Check that you do know how to prove (10.18). One way is
to use induction over N, since it is certainly true for N = 1, GL(1,C) = C*.
Proceeding by induction, note that an element a € GL(N, C) is fixed by its effect
on the standard basis, e;. Choose N — 1 elements ae; which form a basis together
with e;. The inductive hypothesis allows these elements to be deformed, keeping
their e; components fixed, to eg, k > 1. Now it is easy to see how to deform the
resulting basis back to the standard one.
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PROBLEM 10.9. Prove (10.21). Hint:- The result is very standard for N = 1.
So proceed by induction over N. Given a smooth curve in GL(N, C), by truncating
its Fourier series at high frequencies one gets, by the openness of GL(N,C), a
homotopic curve which is real-analytic, denote it a(f). Now there can only be a
finite number of points at which e; - a(f)e; = 0. Moreover, by deforming into
the complex near these points they can be avoided, since the zeros of an analytic
function are isolated. Thus after homotopy we can assume that g(6) = e;-a(f)e)l #
0. Composing with a loop in which e; is roatated in the complex by 1/¢g(6), and
es in the opposite direction, one reduces to the case that e; - a(f)e)l = 0 and then
easily to the case a(f)e; = ej, then induction takes over (with the determinant
condition still holding). Thus it is enough to do the two-dimensional case, which is
pretty easy, namely e; rotated in one direction and ey by the inverse factor.



