
CHAPTER 1

Tempered distributions and the Fourier transform

Microlocal analysis is a geometric theory of distributions, or a theory of geomet-
ric distributions. Rather than study general distributions – which are like general
continuous functions but worse – we consider more specific types of distributions
which actually arise in the study of differential and integral equations. Distri-
butions are usually defined by duality, starting from very “good” test functions;
correspondingly a general distribution is everywhere “bad”. The conormal dis-
tributions we shall study implicitly for a long time, and eventually explicitly, are
usually good, but like (other) people have a few interesting faults, i.e. singulari-
ties. These singularities are our principal target of study. Nevertheless we need the
general framework of distribution theory to work in, so I will start with a brief in-
troduction. This is designed either to remind you of what you already know or else
to send you off to work it out. (As noted above, I suggest Friedlander’s little book
[4] - there is also a newer edition with Joshi as coauthor) as a good introduction to
distributions.) Volume 1 of Hörmander’s treatise [8] has all that you would need;
it is a good general reference. Proofs of some of the main theorems are outlined in
the problems at the end of the chapter.

1.1. Schwartz test functions

To fix matters at the beginning we shall work in the space of tempered distribu-
tions. These are defined by duality from the space of Schwartz functions, also called
the space of test functions of rapid decrease. We can think of analysis as starting
off from algebra, which gives us the polynomials. Thus in Rn we have the coordi-
nate functions, x1, . . . , xn and the constant functions and then the polynomials are
obtained by taking (finite) sums and products:

(1.1) φ(x) =
∑
|α|≤k

pαx
α, pα ∈ C, α ∈ Nn0 , α = (α1, . . . , αn),

where xα = xα1
1 . . . xαnn =

n∏
j=1

x
αj
j and N0 = {0, 1, 2, . . . }.

A general function φ : Rn −→ C is differentiable at x̄ if there is a linear function

`x̄(x) = c+
n∑
j=1

(xj − x̄j)dj such that for every ε > 0 there exists δ > 0 such that

(1.2) |φ(x)− `x̄(x)| ≤ ε|x− x̄| ∀ |x− x̄| < δ̄.

The coefficients dj are the partial derivative of φ at the point x̄. Then, φ is said
to be differentiable on Rn if it is differentiable at each point x̄ ∈ Rn; the partial
derivatives are then also functions on Rn and φ is twice differentiable if the partial
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14 1. TEMPERED DISTRIBUTIONS AND THE FOURIER TRANSFORM

derivatives are differentiable. In general it is k times differentiable if its partial
derivatives are k − 1 times differentiable.

If φ is k times differentiable then, for each x̄ ∈ Rn, there is a polynomial of
degree k,

pk(x; x̄) =
∑
|α|≤k

aαi
|α|(x− x̄)α/α!, |α| = α1 + · · ·+ αn,

such that for each ε > 0 there exists δ > 0 such that

(1.3) |φ(x)− pk(x, x̄)| ≤ ε|x− x̄|k if |x− x̄| < δ.

Then we set

(1.4) Dαφ(x̄) = aα.

If φ is infinitely differentiable all the Dαφ are infinitely differentiable (hence con-
tinuous!) functions.

Definition 1.1. The space of Schwartz test functions of rapid decrease consists
of those φ : Rn −→ C such that for every α, β ∈ Nn0
(1.5) sup

x∈Rn
|xβDαφ(x)| <∞;

it is denoted S(Rn).

From (1.5) we construct norms on S(Rn) :

(1.6) ‖φ‖k = max
|α|+|β|≤k

sup
x∈Rn

|xαDβφ(x)|.

It is straightforward to check the conditions for a norm:
(1) ‖φ‖k ≥ 0, ‖φ‖k = 0⇐⇒ φ ≡ 0
(2) ‖tφ‖k = |t|‖φ‖k, t ∈ C
(3) ‖φ+ ψ‖k ≤ ‖φ‖k + ‖ψ‖k ∀ φ, ψ ∈ S(Rn).

The topology on S(Rn) is given by the metric

(1.7) d(φ, ψ) =
∑
k

2−k
‖φ− ψ‖k

1 + ‖φ− ψ‖k
.

See Problem 1.4.

Proposition 1.1. With the distance function (1.7), S(Rn) becomes a complete
metric space (in fact it is a Fréchet space).

Of course one needs to check that S(Rn) is non-trivial; however one can easily
see that

(1.8) exp(−|x|2) ∈ S(Rn).

In fact there are lots of smooth functions of compact support and

(1.9) C∞c (Rn) = {u ∈ S(Rn);u = 0 in |x| > R = R(u)} ⊂ S(Rn) is dense.

The two elementary operations of differentiation and coordinate multiplication
give continuous linear operators:

(1.10)
xj : S(Rn) −→ S(Rn)

Dj : S(Rn) −→ S(Rn).
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Other important operations we shall encounter include the exterior product,

(1.11)
S(Rn)× S(Rm) 3 (φ, ψ) 7→ φ� ψ ∈ S(Rn+m)

φ� ψ(x, y) = φ(x)ψ(y).

and pull-back or restriction. If Rk ⊂ Rn is identified as the subspace xj = 0, j > k,
then the restriction map

(1.12) π∗k : S(Rn) −→ S(Rk), π∗kf(y) = f(y1, . . . , yk, 0, . . . , 0)

is continuous (and surjective).

1.2. Linear transformations

A linear transformation acts on Rn as a matrix (This is the standard action,
but it is potentially confusing since it means that for the basis elements ej ∈ Rn,

Lej =
n∑
k=1

Lkjek.)

(1.13) L : Rn −→ Rn, (Lx)j =
n∑
k=1

Ljkxk.

The Lie group of invertible linear transformations, GL(n,R) is fixed by several
equivalent conditions

L ∈ GL(n,R)⇐⇒ det(L) 6= 0

⇐⇒ ∃ L−1 s.t. (L−1)Lx = x ∀ x ∈ Rn

⇐⇒ ∃ c > 0 s.t. c|x| ≤ |Lx| ≤ c−1|x| ∀ x ∈ Rn.
(1.14)

Pull-back of functions is defined by

L∗φ(x) = φ(Lx) = (φ ◦ L)(x).

The chain rule for differentiation shows that if φ is diffferentiable then (So Dj

transforms as a basis of Rn as it should, despite the factors of i.)

(1.15) DjL
∗φ(x) = Djφ(Lx) =

n∑
k=1

Lkj(Dkφ)(Lx) = L∗((L∗Dj)φ)(x),

L∗Dj =
n∑
k=1

LkjDk.

From this it follows that

(1.16) L∗ : S(Rn) −→ S(Rn) is an isomorphism for L ∈ GL(n,R).

To characterize the action of L ∈ GL(n,R) on S ′(Rn) consider, as usual, the
distribution associated to L∗φ :

(1.17) TL∗φ(ψ) =
∫

Rn
φ(Lx)ψ(x)dx

=
∫

Rn
φ(y)ψ(L−1y)|detL|−1dy = Tφ(|detL|−1(L−1)∗ψ).
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Since the operator |detL|−1(L−1)∗ is an ismorphism of S(Rn) it follows that if we
take the definition by duality

(1.18) L∗u(ψ) = u(|detL|−1(L−1)∗ψ), u ∈ S ′(Rn), ψ ∈ S(Rn), L ∈ GL(n,R)

=⇒ L∗ : S ′(Rn) −→ S ′(Rn)

is an isomorphism which extends (1.16) and satisfies
(1.19)

DjL
∗u = L∗((L∗Dj)u), L∗(xju) = (L∗xj)(L∗u), u ∈ S ′(Rn), L ∈ GL(n,R),

as in (1.15).

1.3. Tempered distributions

As well as exterior multiplication (1.11) there is the even more obvious multi-
plication operation

(1.20)
S(Rn)× S(Rn) −→ S(Rn)

(φ, ψ) 7→ φ(x)ψ(x)

which turns S(Rn) into a commutative algebra without identity. There is also
integration

(1.21)
∫

: S(Rn) −→ C.

Combining these gives a pairing, a bilinear map

(1.22) S(Rn)× S(Rn) 3 (φ, ψ) 7−→
∫

Rn

φ(x)ψ(x)dx.

If we fix φ ∈ S(Rn) this defines a continuous linear map:

(1.23) Tφ : S(Rn) 3 ψ 7−→
∫
φ(x)ψ(x)dx.

Continuity becomes the condition:

(1.24) ∃ k,Ck s.t. |Tφ(ψ)| ≤ Ck‖ψ‖k ∀ ψ ∈ S(Rn).

We generalize this by denoting by S ′(Rn) the dual space, i.e. the space of all con-
tinuous linear functionals

u ∈ S ′(Rn)⇐⇒ u : S(Rn) −→ C
∃ k,Ck such that |u(ψ)| ≤ Ck‖ψ‖k ∀ ψ ∈ S(Rn).

Lemma 1.1. The map

(1.25) S(Rn) 3 φ 7−→ Tφ ∈ S ′(Rn)

is an injection.

Proof. For any φ ∈ S(Rn), Tφ(φ) =
∫
|φ(x)|2dx, so Tφ = 0 implies φ ≡ 0. �

If we wish to consider a topology on S ′(Rn) it will normally be the weak topol-
ogy, that is the weakest topology with respect to which all the linear maps

(1.26) S ′(Rn) 3 u 7−→ u(φ) ∈ C, φ ∈ S(Rn)

are continuous. This just means that it is given by the seminorms

(1.27) S(Rn) 3 u 7−→ |u(φ)| ∈ R
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where φ ∈ S(Rn) is fixed but arbitrary. The sets

(1.28) {u ∈ S ′(Rn); |u(φj)| < εj , φj ∈ Φ}

form a basis of the neighbourhoods of 0 as Φ ⊂ S(Rn) runs over finite sets and the
εj are positive numbers.

Proposition 1.2. The continuous injection S(Rn) ↪→ S ′(Rn), given by (1.25),
has dense range in the weak topology.

See Problem 1.8 for the outline of a proof.
The maps xi, Dj extend by continuity (and hence uniquely) to operators

(1.29) xj , Dj : S ′(Rn) −→ S ′(Rn).

This is easily seen by defining them by duality. Thus if φ ∈ S(Rn) set DjTφ = TDjφ,
then

(1.30) TDjφ(ψ) =
∫
Djφψ = −

∫
φDjψ,

the integration by parts formula. The definitions

(1.31) Dju(ψ) = u(−Djψ), xju(ψ) = u(xjψ), u ∈ S ′(Rn), ψ ∈ S(Rn)

satisfy all requirements, in that they give continuous maps (1.29) which extend the
standard definitions on S(Rn).

1.4. Two big theorems

The association, by (1.25), of a distribution to a function can be extended
considerably. For example if u : Rn −→ C is a bounded and continuous function
then

(1.32) Tu(ψ) =
∫
u(x)ψ(x)dx

still defines a distribution which vanishes if and only if u vanishes identically. Using
the operations (1.29) we conclude that for any α, β ∈ Nn0
(1.33) xβDα

xu ∈ S ′(Rn) if u : Rn −→ C is bounded and continuous.

Conversely we have the Schwartz representation Theorem:

Theorem 1.1. For any u ∈ S ′(Rn) there is a finite collection uαβ : Rn −→ C
of bounded continuous functions, |α|+ |β| ≤ k, such that

(1.34) u =
∑

|α|+|β|≤k

xβDα
xuαβ .

Thus tempered distributions are just products of polynomials and derivatives of
bounded continuous functions. This is important because it says that distributions
are “not too bad”.

The second important result (long considered very difficult to prove, but there
is a relatively straightforward proof using the Fourier transform) is the Schwartz
kernel theorem. To show this we need to use the exterior product (1.11). If K ∈
S ′(Rn+m) this allows us to define a linear map

(1.35) OK : S(Rm) −→ S ′(Rn)
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by

(1.36) OK(ψ)(φ) =
∫
K · φ� ψ dxdy.

Theorem 1.2. There is a 1-1 correspondence between continuous linear oper-
ators

(1.37) A : S(Rm) −→ S ′(Rn)

and S ′(Rn+m) given by A = OK .

Brief outlines of the proofs of these two results can be found in Problems 1.15
and 1.16.

1.5. Examples

Amongst tempered distributions we think of S(Rn) as being the ‘trivial’ exam-
ples, since they are the test functions. One can say that the study of the singularities
of tempered distributions amounts to the study of the quotient

(1.38) S ′(Rn)/S(Rn)

which could, reasonably, be called the space of tempered microfunctions.
The sort of distributions we are interested in are those like the Dirac delta

“function”

(1.39) δ(x) ∈ S ′(Rn), δ(φ) = φ(0).

The definition here shows that δ is just the Schwartz kernel of the operator

(1.40) S(Rn) 3 φ 7−→ φ(0) ∈ C = S(R0).

This is precisely one reason it is interesting. More generally we can consider the
maps

(1.41) S(Rn) 3 φ 7−→ Dαφ(0), α ∈ Nn0 .

These have Schwartz kernels (−D)αδ since

(1.42) (−D)αδ(φ) = δ(Dαφ) = Dαφ(0).

If we write the relationship A = OK ←→ K as

(1.43) (Aψ)(φ) =
∫
K(x, y)φ(x)ψ(y)dxdy

then (1.42) becomes

(1.44) Dαφ(0) =
∫

(−D)αδ(x)φ(x)dx.

More generally, if K(x, y) is the kernel of an operator A then the kernel of A ·Dα

is (−D)αyK(x, y) whereas the kernel of Dα ◦A is Dα
xK(x, y).
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1.6. Two little lemmas

Above, some of the basic properties of tempered distributions have been out-
lined. The main “raison d’être” for S ′(Rn) is the Fourier transform which we
proceed to discuss. We shall use the Fourier transform as an almost indispensable
tool in the treatment of pseudodifferential operators. The description of differential
operators, via their Schwartz kernels, using the Fourier transform is an essential
motivation for the extension to pseudodifferential operators.

Partly as simple exercises in the theory of distributions, and more significantly
as preparation for the proof of the inversion formula for the Fourier transform we
consider two lemmas.

First recall that if u ∈ S ′(Rn) then we have defined Dju ∈ S ′(Rn) by

(1.45) Dju(φ) = u(−Djφ) ∀ φ ∈ S(Rn).

In this sense it is a “weak derivative”. Let us consider the simple question of the
form of the solutions to

(1.46) Dju = 0, u ∈ S ′(Rn).

Let Ij be the integration operator:

(1.47)
Ij : S(Rn) −→ S(Rn−1)

Ij(φ)(y1, . . . , yn−1) =
∫
φ(y1, . . . yj−1, x, yj , . . . yn−1)dx.

Then if πj : Rn −→ Rn−1 is the map πj(x) = (x1, . . . , xj−1, xj+1 . . . , xn), we define,
for v ∈ S ′(Rn−1),

(1.48) π∗j v(φ) = v(Ijφ) ∀ φ ∈ S(Rn).

It is clear from (1.47) that Ij : S(Rn) −→ S(Rn−1) is continuous and hence π∗j v ∈
S ′(Rn) is well-defined for each v ∈ S ′(Rn−1).

Lemma 1.2. The equation (1.46) holds if and only if u = π∗j v for some v ∈
S ′(Rn−1).

Proof. If φ ∈ S(Rn) and φ = Djψ with ψ ∈ S(Rn) then Ijφ = Ij(Djψ) = 0.
Thus if u = π∗j v then

(1.49) u(−Djφ) = π∗j v(−Djφ) = v(Ij(−Djφ)) = 0.

Thus u = π∗j v does always satisfy (1.46).
Conversely suppose (1.46) holds. Choose ρ ∈ S(R) with the property

(1.50)
∫
ρ(x)dx = 1.

Then each φ ∈ S(Rn) can be decomposed as

(1.51) φ(x) = ρ(xj)Ijφ(x1, . . . , xj−1, xj+1, . . . xn) +Djψ, ψ ∈ S(Rn).
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Indeed this is just the statement

ζ ∈ S(Rn), Ijζ = 0 =⇒ ψ(x) ∈ S(Rn) where

ψ(x) =

xj∫
−∞

ζ(x1, . . . , xj−1, t, xj+1, . . . , xn)dt

=

xj∫
∞

ζ(x1, . . . , xj−1, t, xj+1, . . . , xn)dt.

Using (1.51) and (1.46) we have

(1.52) u(φ) = u (ρ(xj)Ijφ(x1, . . . , xj−1, xj+1, . . . xn)) .

Thus if

(1.53) v(ψ) = u (ρ(xj)ψ(x1, . . . , xj−1, xj+1, . . . xn)) ∀ ψ ∈ S(Rn−1)

then v ∈ S ′(Rn−1) and u = π∗j v. This proves the lemma. �

Of course the notation u = π∗j v is much too heavy-handed. We just write
u(x) = v(x1, . . . , xj−1, xj+1, . . . , xn) and regard ‘v as a distribution in one addi-
tional variable’.

The second, related, lemma is just a special case of a general result of Schwartz
concerning the support of a distribution. The particular result is:

Lemma 1.3. Suppose u ∈ S ′(Rn) and xju = 0, j = 1, . . . n then u = cδ(x) for
some constant c.

Proof. Again we use the definition of multiplication and a dual result for
test functions. Namely, choose ρ ∈ S(Rn) with ρ(x) = 1 in |x| < 1

2 , ρ(x) = 0 in
|x| ≥ 3/4. Then any φ ∈ S(Rn) can be written

(1.54) φ = φ(0) · ρ(x) +
n∑
j=1

xjψj(x), ψj ∈ S(Rn).

This in turn can be proved using Taylor’s formula as I proceed to show. Thus

(1.55) φ(x) = φ(0) +
n∑
j=1

xjζj(x) in |x| ≤ 1, with ζj ∈ C∞.

Then,

(1.56) ρ(x)φ(x) = φ(0)ρ(x) +
n∑
j=1

xjρζj(x)

and ρζj ∈ S(Rn). Thus it suffices to check (1.54) for (1 − ρ)φ, which vanishes
identically near 0. Then ζ = |x|−2(1− ρ)φ ∈ S(Rn) and so

(1.57) (1− ρ)φ = |x|2ζ =
n∑
j=1

xj(xjζ)
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finally gives (1.54) with ψj(x) = ρ(x)ζj(x) + xjζ(x). Having proved the existence
of such a decomposition we see that if xju = 0 for all j then

(1.58) u(φ) = u(φ(0)ρ(x)) +
n∑
j=1

u(xjψj) = cφ(0), c = u(ρ(x)),

i.e. u = cδ(x). �

1.7. Fourier transform

Our normalization of the Fourier transform will be

(1.59) Fφ(ξ) =
∫
e−iξ·xφ(x)dx.

As you all know the inverse Fourier transform is given by

(1.60) Gψ(x) = (2π)−n
∫
eix·ξψ(ξ) dξ.

Since it is so important here I will give a proof of this invertibility. First however,
let us note some of the basic properties.

Both F and G give continuous linear maps

(1.61) F ,G : S(Rn) −→ S(Rn).

To see this observe first that the integrals in (1.59) and (1.60) are absolutely con-
vergent:

(1.62) |Fφ(ξ)| ≤
∫
|φ(x)|dx ≤

∫
(1 + |x|2)−n dx× sup

x∈Rn
(1 + |x|2)n|φ(x)|,

where we use the definition of S(Rn). In fact this shows that sup |Fφ| < ∞ if φ ∈
S(Rn). Formal differentiation under the integral sign gives an absolutely convergent
integral:

DjFφ(ξ) =
∫
Dξje

−ixξφ(x)dx =
∫
e−ix·ξ(−xjφ)dx

since sup
x

(1 + |x|2)n|xjφ| <∞. Then it follows that DjFφ is also bounded, i.e. Fφ

is differentiable, and (1.7) holds. This argument can be extended to show that Fφ
is C∞,

(1.63) DαFφ(ξ) = F
(
(−x)αφ

)
.

Similarly, starting from (1.59), we can use integration by parts to show that

ξjFφ(ξ) =
∫
e−ixξξjφ(x)dx =

∫
e−ix·ξ(Djφ)(x)dx

i.e. ξjFφ = F(Djφ). Combining this with (1.63) gives

(1.64) ξαDβ
ξFφ = F

(
Dα · [(−x)βφ]

)
.

Since Dα
x ((−x)βφ) ∈ S(Rn) we conclude

(1.65) sup |ξαDβ
ζFφ| <∞ =⇒ Fφ ∈ S(Rn).

This map is continuous since

sup |ξαDβ
ξFφ| ≤ C · sup

x
|(1 + |x|2)nDα

x [(−x)βφ]

=⇒ ‖Fφ‖k ≤ Ck‖φ‖k+2n, ∀ k.
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The identity (1.64), written in the form

(1.66)
F(Djφ) = ξjFφ
F(xjφ) = −DξjFφ

is already the key to the proof of invertibility:

Theorem 1.3. The Fourier transform gives an isomorphism F : S(Rn) ←→
S(Rn) with inverse G.

Proof. We shall use the idea of the Schwartz kernel theorem. It is important
not to use this theorem itself, since the Fourier transform is a key tool in the
(simplest) proof of the kernel theorem. Thus we consider the composite map

(1.67) G ◦ F : S(Rn) −→ S(Rn)

and write down its kernel. Namely

(1.68)
K(φ) = (2π)−n

∫∫∫
eiy·ξ−ix·ξφ(y, x)dxdξdy

∀ φ ∈ S(Rny × Rnx) =⇒ K ∈ S ′(R2n).

The integrals in (1.68) are iterated, i.e. should be performed in the order indicated.
Notice that if ψ, ζ ∈ S(Rn) then indeed

(1.69) (G · F(ψ))(ζ) =
∫
ζ(y)(2π)−n

(∫
eiy·ξ

∫
e−ix·ξψ(x)dx dξ

)
dy dξ dy

= K(ζ � ψ)

so K is the Schwartz kernel of G · F .
The two identities (1.66) translate (with essentially the same proofs) to the

conditions on K :

(1.70)

{
(Dxj +Dyj )K(x, y) = 0
(xj − yj)K(x, y) = 0

j = 1, . . . , n.

Next we use the freedom to make linear changes of variables, setting

(1.71)
KL(x, z) = K(x, x− z), KL ∈ S ′(R2n)

i.e. KL(φ) = K(ψ), ψ(x, y) = φ(x, x− y)

where the notation will be explained later. Then (1.70) becomes

(1.72) DxjKL(x, z) = 0 and zjKL(x, z) = 0 for j = 1, . . . n

This puts us in a position to apply the two little lemmas. The first says KL(x, z) =
f(z) for some f ∈ S ′(Rn) and then the second says f(z) = cδ(z). Thus

(1.73) K(x, y) = cδ(x− y) =⇒ G · F = c Id .

It remains only to show that c = 1. That c 6= 0 is obvious (since F(δ) = 1).
The easiest way to compute the constant is to use the integral identity

(1.74)

∞∫
−∞

e−x
2
dx = π

1
2

to show that1

1See Problem 1.9.
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(1.75)

F(e−|x|
2
) = π

n
2 e−|ξ|

2/4

=⇒ G(e−|ξ|
2/4) = π−

n
2 e−|x|

2

=⇒ G · F = Id .

�

Now (2π)nG is actually the adjoint of F :

(1.76)
∫
φ(ζ)Fψ(ζ)dζ = (2π)n

∫
(Gφ) · ψdx ∀ φ, ψ ∈ S(Rn).

It follows that we can extend F to a map on tempered distributions

(1.77)
F : S ′(Rn) −→ S ′(Rn)

Fu(φ) = u((2π)nGφ) ∀ φ ∈ S(Rn)

Then we conclude

Corollary 1.1. The Fourier transform extends by continuity to an isomor-
phism

(1.78) F : S ′(Rn)←→ S ′(Rn)

with inverse G, satisfying the identities (1.66).

Although I have not discussed Lebesgue integrability I assume familiarity with
the basic Hilbert space

L2(Rn) ={
u : Rn −→ C; f is measurable and

∫
Rn
|f(x)|2dx <∞

}
/ ∼,

f ∼ g ⇐⇒ f = g almost everywhere.

This also injects by the same integration map (1.102) with S(Rn) as a dense subset

S(Rn) ↪→ L2(Rp) ↪→ S(Rn).

Proposition 1.3. The Fourier transform extends by continuity from the dense
subspace S(Rn) ⊂ L2(Rn), to an isomorphism

F : L2(Rn)←→ L2(Rn)

satisfying ‖Fu‖L2 = (2π)
1
2n‖u‖L2 .

Proof. Given the density of S(Rn) in L2(Rn), this is also a consequence of
(1.76), since setting φ = Fu, for u ∈ S(Rn), gives Parseval’s formula∫

Fu(ζ)Fv(ζ) = (2π)n
∫
u(x)v(x)dx.

Setting v = u gives norm equality (which is Plancherel’s formula).
An outline of the proof of the density statement is given in the problems below.

�
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1.8. Differential operators

The simplest examples of the Fourier transform of distributions are immediate
consequences of the definition and (1.66). Thus

(1.79) F(δ) = 1

as already noted and hence, from (1.66),

(1.80) F(Dαδ(x)) = ξα ∀ α ∈ Nn0 .

Now, recall that the space of distributions with support the point 0 is just:

(1.81)
{
u ∈ S ′(Rn); sup(u) ⊂ {0}

}
=
{
u =

∑
finite

cαD
αδ
}
.

Thus we conclude that the Fourier transform gives an isomorphism

(1.82) F :
{
u ∈ S ′(Rn); supp(u) ⊂ {0}

}
←→ C[ξ] = {polynomials in ξ}.

Another way of looking at this same isomorphism is to consider partial differ-
ential operators with constant coefficients:

(1.83)
P (D) : S(Rn) −→ S(Rn)

P (D) =
∑

cαD
α.

The identity becomes

(1.84) F(P (D)φ)(ξ) = P (ξ)F(φ)(ξ) ∀ φ ∈ S(Rn)

and indeed the same formula holds for all φ ∈ S ′(Rn). Using the simpler notation
û(ξ) = Fu(ξ) this can be written

(1.85) ̂P (D)u(ξ) = P (ξ)û(ξ), P (ξ) =
∑

cαξ
α.

The polynomial P is called the (full) characteristic polynomial of P (D); of course
it determines P (D) uniquely.

It is important for us to extend this formula to differential operators with
variable coefficients. Using (1.59) and the inverse Fourier transform we get

(1.86) P (D)u(x) = (2π)−n
∫∫

ei(x−y)·ξP (ξ)u(y)dydξ

where again this is an iterated integral. In particular the inversion formula is just
the case P (ξ) = 1. Consider the space

(1.87) C∞∞(Rn) =
{
u : Rn −→ C; sup

x
|Dαu(x)| <∞ ∀ α

}
the space of C∞ function with all derivatives bounded on Rn. Of course

(1.88) S(Rn) ⊂ C∞∞(Rn)

but C∞∞(Rn) is much bigger, in particular 1 ∈ C∞∞(Rn). Now by Leibniz’ formula

(1.89) Dα(uv) =
∑
β≤α

(
α

β

)
Dβu ·Dα−βv

it follows that S(Rn) is a module over C∞∞(Rn). That is,

(1.90) u ∈ C∞∞(Rn), φ ∈ S(Rn) =⇒ uφ ∈ S(Rn).
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From this it follows that if

(1.91) P (x,D) =
∑
|α|≤m

pα(x)Dα, pα ∈ C∞∞(Rn)

then P (x,D) : S(Rn) −→ S(Rn). The formula (1.86) extends to

(1.92) P (x,D)φ = (2π)−n
∫
ei(x−y)·ξP (x, ξ)φ(y)dydξ

where again this is an iterated integral. Here

(1.93) P (x, ξ) =
∑
|α|≤m

pα(x)ξα

is the (full) characteristic polynomial of P.

1.9. Radial compactification

For later purposes, and general propaganda, consider the quadratic radial com-
pactification of Rn. The smooth map

(1.94) QRC : Rn 3 x 7−→ x

(1 + |x|2)
1
2
∈ Rn

is 1-1 and maps onto the interior of the unit ball, Bn = {|x| ≤ 1}. Consider the
subspace

(1.95) Ċ∞(Bn) = {u ∈ S(Rn); supp(u) ⊂ Bn}.

This is just the set of smooth functions on Rn which vanish outside the unit ball.
Then the composite (‘pull-back’) map

(1.96) QRC∗ : Ċ∞(Bn) 3 u 7−→ u ◦QRC ∈ S(Rn)

is a topological isomorphism. A proof is indicated in the problems below.
The dual space of Ċ∞(Bn) is generally called the space of ‘extendible distri-

butions’ on Bn – because they are all given by restricting elements of S ′(Rn) to
Ċ∞(Bn). Thus QRC also identifies the tempered distributions on Rn with the ex-
tendible distributions on Bn. We shall see below that various spaces of functions on
Rn take interesting forms when pulled back to Bn. I often find it useful to ‘bring
infinity in’ in this way.

Why is this the ‘quadratic’ radial compactification, and not just the radial com-
pactification? There is a good reason which is discussed in the problems below. The
actual radial compactification is a closely related map which identifies Euclidean
space, Rn, with the interior of the upper half of the n-sphere in Rn+1 :

(1.97) RC : Rn 3 x 7−→
(

1
(1 + |x|2)

1
2
,

x

(1 + |x|2)
1
2

)
∈ Sn,1 = {X = (X0, X

′) ∈ Rn+1;X0 ≥ 0, X2
0 + |X ′|2 = 1}

Since the half-sphere is diffeomorphic to the ball (as compact manifolds with bound-
ary) these two maps can be compared – they are not the same. However it is true
that RC also identifies S(Rn) with Ċ∞(Sn,1).
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1.10. Problems

Problem 1.1. Suppose φ : Rn −→ C is a function such that for each point
x̄ ∈ Rn and each k ∈ N0 there exists a constant εk > 0 and a polynomial pk(x; x̄)
(in x) for which

(1.98) |φ(x)− pk(x; x̄)| ≤ 1
εk
|x− x̄|k+1 ∀ |x− x̄| ≤ εk.

Does it follow that φ is infinitely differentiable – either prove this or give a counter-
example.

Problem 1.2. Show that the function u(x) = exp(x) cos[ex] ‘is’ a tempered
distribution. Part of the question is making a precise statement as to what this
means!

Problem 1.3. Write out a careful (but not necessarily long) proof of the ‘easy’
direction of the Schwartz kernel theorem, that any K ∈ S ′(Rn+m) defines a con-
tinuous linear operator

(1.99) OK : S(Rm) −→ S ′(Rn)

[with respect to the weak topology on S ′(Rn) and the metric topology on S(Rm)]
by

(1.100) OKφ(ψ) = K(ψ � φ).

[Hint: Work out what the continuity estimate on the kernel, K, means when it is
paired with an exterior product ψ � φ.]

Problem 1.4. Show that d in (1.6) is a metric on S(Rn). [Hint: If ‖ · ‖ is a
norm on a vector space show that

‖u+ v‖
1 + ‖u+ v‖

≤ ‖u‖
1 + ‖u‖

+
‖v‖

1 + ‖v‖
.]

Problem 1.5. Show that a sequence φn in S(Rn) is Cauchy, resp. converges
to φ, with respect to the metric d in Problem 1.4 if and only if φn is Cauchy, resp.
converges to φ, with respect to each of the norms ‖ · ‖k.

Problem 1.6. Show that a linear map F : S(Rn) −→ S(Rp) is continuous
with respect to the metric topology given in Problem 1.4 if and only if for each k
there exists N(k) ∈ N a constant Ck such that

‖Fφ‖k ≤ Ck‖φ‖N(k) ∀ φ ∈ S(Rn).

Give similar equivalent conditions for continuity of a linear map f : S(Rn) −→ C
and for a bilinear map S(Rn)× S(Rp) −→ C.

Problem 1.7. Check the continuity of (1.12).

Problem 1.8. Prove Proposition 1.2. [Hint: It is only necessary to show that
if u ∈ S ′(Rn) is fixed then for any of the open sets in (1.1), B, (with all the εj > 0)
there is an element φ ∈ S(Rn) such that u− Tφ ∈ B. First show that if φ′1, . . . φ

′
p is

a basis for Φ then the set

(1.101) B′ = {v ∈ S ′(Rn); |〈v, φ′j〉| < δj

is contained in B if the δj > 0 are chosen small enough. Taking the basis to be
orthonormal, show that u− ψ ∈ B′ can be arranged for some ψ ∈ Φ.]



1.10. PROBLEMS 27

Problem 1.9. Compute the Fourier transform of exp(−|x|2) ∈ S(Rn). [Hint:
The Fourier integral is a product of 1-dimensional integrals so it suffices to assume
x ∈ R. Then ∫

e−iξxe−x
2
dx = e−ξ

2/4

∫
e−(x+ i

2 ξ)
2
dx.

Interpret the integral as a contour integral and shift to the new contour where
x+ i

2ξ is real.]

Problem 1.10. Show that (1.23) makes sense for φ ∈ L2(Rn) (the space of
(equivalence classes of) Lebesgue square-integrable functions and that the resulting
map L2(Rn) −→ S ′(Rn) is an injection.

Problem 1.11. Suppose u ∈ L2(Rn) and that

D1D2 · · ·Dnu ∈ (1 + |x|)−n−1L2(Rn),

where the derivatives are defined using Problem 1.10. Using repeated integration,
show that u is necessarily a bounded continuous function. Conclude further that
for u ∈ S ′(Rn)

(1.102)
Dαu ∈ (1 + |x|)−n−1L2(Rn) ∀ |α| ≤ k + n

=⇒ Dαu is bounded and continuous for |α| ≤ k.

[This is a weak form of the Sobolev embedding theorem.]

Problem 1.12. The support of a (tempered) distribution can be defined in
terms of the support of a test function. For φ ∈ S(Rn) the support, supp(φ), is the
closure of the set of points at which it takes a non-zero value. For u ∈ S ′(Rn) we
define

(1.103) supp(u) = O{, O =
⋃
{O′ ⊂ Rn open; supp(φ) ⊂ O′ =⇒ u(φ) = 0} .

Show that the definitions for S(Rn) and S ′(Rn) are consistent with the inclusion
S(Rn) ⊂ S ′(Rn). Prove that supp(δ) = {0}.

Problem 1.13. For simplicity in R, i.e. with n = 1, prove Schwartz theorem
concerning distributions with support the origin. Show that with respect to the
norm ‖ · ‖k the space

(1.104) {φ ∈ S(R);φ(x) = 0 in |x| < ε, ε = ε(φ) > 0}
is dense in

(1.105)
{
φ ∈ S(R);φ(x) = xk+1ψ(x), ψ ∈ S(R)

}
.

Use this to show that

(1.106) u ∈ S ′(R), supp(u) ⊂ {0} =⇒ u =
∑

`, finite

c`D
`
xδ(x).

Problem 1.14. Show that if P is a differential operator with coefficients in
C∞∞(Rn) then P is local in the sense that

(1.107) supp(Pu) ⊂ supp(u) ∀ u ∈ S ′(Rn).

The converse of this, for an operator P : S(Rn) −→ S(Rn) where (for simplicity)
we assume

(1.108) supp(Pu) ⊂ K ⊂ Rn
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for a fixed compact set K, is Peetre’s theorem. How would you try to prove this?
(No full proof required.)

Problem 1.15. (Schwartz representation theorem) Show that, for any p ∈ R
the map

(1.109) Rp : S(Rn) 3 φ 7−→ (1 + |x|2)−p/2F−1[(1 + |ξ|2)−p/2Fφ] ∈ S(Rn)

is an isomorphism and, using Problem 1.11 or otherwise,

(1.110) p ≥ n+ 1 + k =⇒ ‖Rpφ‖k ≤ Ck‖φ‖L2 , ∀ φ ∈ S(Rn).

Let Rtp : S ′(Rn) −→ S ′(Rn) be the dual map (defined by T tpu(φ) = u(Rpφ)). Show
that Rtp is an isomorphism and that if u ∈ S ′(Rn) satisfies

(1.111) |u(φ)| ≤ C‖φ‖k, ∀ φ ∈ S(Rn)

then Rtpu ∈ L2(Rn), if p ≥ n+ 1 + k, in the sense that it is in the image of the map
in Problem 1.10. Using Problem 1.11 show that Rn+1(Rtn+1+ku) is bounded and
continuous and hence that

(1.112) u =
∑

|α|+|β|≤2n+2+k

xβDαuα,β

for some bounded continuous functions uα,β .

Problem 1.16. (Schwartz kernel theorem.) Show that any continuous linear
operator

T : S(Rmy ) −→ S ′(Rnx)
extends to a continuous linear operator

T : (1 + |y|2)−k/2Hk(Rmy ) −→ (1 + |x|2)−q/2Hq(Rnx)

for some k and q. Deduce that the operator

T̃ = (1 + |Dx|2)(−n−1−q)/2(1 + |x|2)q/2 ◦ T ◦ (1 + |y|2)k/2(1 + |D|2)−k/2 :

L2(Rm) −→ C∞(Rn)

is continuous with values in the bounded continuous functions on Rn. Deduce that
T̃ has Schwartz kernel in C∞(Rn;L2(Rm)) ⊂ S ′(Rn+m) and hence that T itself has
a tempered Schwartz kernel.

Problem 1.17. Radial compactification and symbols.

Problem 1.18. Series of problems discussing double polyhomogeneous sym-
bols.


