Congruences between modular forms given by the divided /3
family in homotopy theory

MARK BEHRENS !

We characterize the 2-line of the p-local Adams-Novikov spectral sequence in
terms of modular forms satisfying a certain explicit congruence condition for
primes p > 5. We give a similar characterization of the 1-line, reinterpreting
some earlier work of A. Baker and G. Laures. These results are then used to
deduce that, for ¢ a prime which generates ZPX , the spectrum Q(¢) detects the «
and ( families in the stable stems.

55Q45; 55N34, 55Q51

1 Introduction

The Adams-Novikov spectral sequence
Extgp_pp(BP., BP.) = (1i_)()

is one of the main tools for organizing periodic phenomena in the p-local stable
homotopy groups of spheres. Assuming that p is an odd prime, the 1-line is generated
by elements _
a/; € Extgply, "' (BP,, BP,)
of order p/, for i > 1 and j satisfying
J=vp()+ 1.

The elements «;/; are all permanent cycles, and detect the generators of the image
of the J-homomorphism. The image of J admits a global description in terms of
denominators of Bernoulli numbers: there is a correspondence

Qi < By
between the generator «;/; and the ¢ Bernoulli number for ¢ = (p — 1)i. The order p/
of the element «;/; is equal to the p-factor of the denominator of the quotient
B,
t
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Thus the 1-line of the Adams-Novikov spectral sequence is governed by the p-adic
valuations of the denominators of the Bernoulli numbers. The purpose of this paper is
to provide a similar description for the 2-line of the Adams-Novikov spectral sequence,
in terms of certain congruences of modular forms.

Let
Mi(L'o(N))

denote the space of weight k£ modular forms for T'g(N) defined over Z. For a ring R,
let

(1.1) M (Lo(N)r = Mi(To(N)) ® R

be the corresponding space of modular forms defined over R. If N = 1, we shall
simplify the notation:

(Mg == M(Lo(1))g.

We shall sometimes work with modular forms which are simply meromorphic at oo,
which we shall denote

MiTo(N)g = MTo(N)rIA™']

where A € M, is the discriminant.
Remark 1.2 Implicit in our definition of the notation M;(I'o(N))r given by (1.1) is
a non-trivial base change theorem. One typically requires N to be invertible in R,
and then one regards the modular forms for a ring R as the sections of a certain line
bundle of the base-change of the moduli stack of elliptic curves to R. In most instances
considered in this paper, these two notions agree, see [Kat73, 1.7, 1.8].
The g-expansion gives rise to an embedding

M (T'o(N)) — Zllg]]

f=f@

and consequently embeddings

Mi(L'o(N)r — Rllqll,

M(To(N)g — R((9)).

Therefore, a modular form over R is determined by its weight and its g-expansion.

For any f € (My)r, and any prime ¢, the power series

(Vo)) := f(g")
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is the g-expansion of a modular form
Vif € Mi(To(O)r-
Suppose that p is a prime greater than 3. Miller, Ravenel, and Wilson showed that the
2-line of the Adams-Novikov spectral sequence is generated by elements
Bijjx € Extgp pp(BPy, BP.)
for i, j, and k satisfying certain elaborate conditions (see Theorem 11.2). Our main
theorem is stated below.
Theorem 1.3 For each additive generator
Bijjx € Extgp pp(BPy, BP.)
there is an associated modular form
fisik € M,
(where t = i(p? — 1)) satisfying:
(1) The g-expansion f; /j,k(Q) is not congruent to 0 mod p.
(2) We have ord, f;/; «(q) > tij(l’;l) or ord, fi/; x(q) = %

(3) There does not exist a form

g€ My, for ¢ < t,
satisfying
fijix@) = g(g) mod pt.
(4) For every prime £ # p, there exists a form
80 € My—jip—1)(T'o(£))
satisfying
£ij4(d") — fijja(q) = gelq)  mod p*.
The congruence conditions met by the forms f;/;; are sharp; we have the following
converse theorem.
Theorem 1.4 Suppose there exists a modular form
feM;

satisfying Conditions 1.3(1)-(4), where t = 0 mod (p — 1)p*~!. Then ¢t = i(p> — 1)
for some i, and if i is not a power of p, there is a corresponding generator

Bijjx € Extgp_pp(BPs, BP,).
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Finally, the congruence condition given in Theorem 1.3 exhibits a certain rigidity, as
explained in the following theorem.

Theorem 1.5 Suppose that £y is a prime which generates Z . Then, if f is a modular
form of weight f = 0 mod (p—1)p*~! satisfying Conditions 1.3(1)-(3), and Condition
1.3(4) for ¢ = £y, then f satisfies Condition 1.3(4) for all primes ¢ # p.

Remark 1.6 In [Lau99], G. Laures introduced the f-invariant, a higher analog of
the Adams e-invariant, which gives an injection of the groups Exté’;* gp(BPy,BP,)
into Katz’s ring of divided congruences, tensored with Q/Z. Laures’ f-invariant
therefore associates to an element (3;/; x, a non-congruence between modular forms. It
is natural to ask what relation this non-congruence has to the non-congruences given
by condition (3) of Theorem 1.3. Laures and the author have discovered that the
Jf-invariant of 3;/; ;. is precisely represented by the modular forms f;/;; [BLa]. Thus,
Theorem 1.4 gives a precise description of the image of the f-invariant. The image
of the elements [3; under the f-invariant has been calculated in a different way by
J. Hornbostel and N. Naumann [HNO7].

The proofs of Theorems 1.3-1.5 use the spectrum Q(¢) introduced by the author in
[BehO7a], [Beh06]. Analyzing the chromatic spectral sequence

E}' = mM,Q(0) = m_0(0),

we observe that a density result [BLO6] relates part of the 2-line of the chromatic
spectral sequence of Q(¢) to the 2-line of the chromatic spectral sequence for the
sphere. We also analyze the 0 and 1-lines of the chromatic spectral sequence of Q(¢),
and find:

(1) The 0-line w:MpQ(¥) is concentrated in t = 0, —1, —2 (Corollary 8.4).

(2) The 1-line m;M;Q(¥) is generated in degrees congruent to 0 mod 4 by the
images of the elements «;/; € m.M;S (Corollary 9.10).

In fact, the additive generators of 74 Q(¢) are given by the Eisenstein series Ey; €
(M21)g (9.8), and the orders of the groups m4,M1Q({) are directly linked to the p-adic
valuation of the denominators of the Bernoulli numbers %’ through the appearance of
the Bernoulli numbers in the g-expansions of the Eisenstein series. The relationship
was originally made precise by G. Laures [Lau96], and rederived by A. Baker in
[Bak99], where Hecke operations are used to conclude that Eisenstein series generate
the 1-line of the TMF-Adams Novikov spectral sequence. Our analysis is closely
related to these.
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As a consequence of our study of the chromatic spectral sequence for Q(¢) we are able
to prove the following theorem.

Theorem (Theorem 12.1) The images of the elements «;/; and the elements 3;/; x
under the homomorphism
TSEQ) — TQ)

are non-trivial.

This theorem shows that the homotopy of the spectrum Q(¢) is closely tied to Greek
letter phenomena. It also gives credibility to the author’s hope that the following
questions have affirmative answers.

(1) Are the homotopy Greek letter elements ﬁf/j ;. (see [Beh(07b]) detected by the
spectra Q(¢) at the primes 2 and 3?

(2) Do the spectra Qy(K? ) (constructed using Shimura varieties of type U(1,n—1)
in [BLb]) detect the v,-periodic Greek letter elements?

Organization of the paper.

In Section 2 we summarize the chromatic spectral sequence. We also recall Morava’s
change of rings theorem, which relates the terms of the chromatic spectral sequence to
the cohomology of the Morava stabilizer groups S,,.

In Section 3 we explain how to associate a p-complete TMF-spectrum to every compact
open subgroup of the adele group GL,(A?*°), following standard conventions used in
the theory of modular forms. Certain E,-operations between these spectra are given
by elements of GLy(AP°°).

In Section 4 we explain how to use the GL; action of Section 3 to define spectra Q(S)
for a set of primes S. These spectra agree with the spectra Q(¢) defined by the author
in [Beh07a], [Beh06] when S = {¢}. The approach of this paper, however, mimics
that of [BLb]. We explain how the results of [BehO7a], [BLO6] arise in this framework.
In particular, we identify the K(2)-localization of Q(S) as the homotopy fixed points
of a dense subgroup I's of the Morava stabilizer group S;.

In Section 5 we explain how the building resolution of Q(¢) given in [Beh(7a] can be
recovered using the methods of [BLb]. We use this resolution to define a finite cochain
complex C*(¢) of modular forms whose cohomology gives 7, Q(f).

In Section 6 we express the first differential in C*(¢) in terms of the Verschiebung of
modular forms.
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In Section 7 we describe the chromatic spectral sequence of Q(¢). In particular, we
show that its E-term consists of three lines: MyQ(¢), M Q(¢), and M,QO(f). We
explain how to modify the chain complex C*(¢) to compute these terms. We also relate
M>Q(¢) to the cohomology of the group I'y.

In Section 8 we show that m,MyQ(¥) is concentrated in t = 0, —1, —2. We also deduce
that the rest of m,Q(f) is p-torsion, and give bounds for the torsion.

In Section 9 we compute 74,M;Q(¢), and show that its generators can be expressed as
Eisenstein series. The orders of these groups are given by the p-adic valuation of the
Bernoulli numbers By, /4t.

In Section 10 we recall theorems of Serre and Swinnerton-Dyer, which relate congru-
ences amongst g-expansions of modular forms to multiplication by the Hasse invariant
E, 1.

P

In Section 11 we analyze m,.M>Q(¢), and prove Theorems 1.3 — 1.5.

In Section 12 we deduce Theorem 12.1 from our extensive knowledge of the chromatic
spectral sequence for Q(¢).

Acknowledgements This paper was prepared while the author visited Harvard Uni-
versity, and the author is grateful for their hospitality. The author is also grateful to
Niko Naumann for pointing out an error in an earlier draft concerning the integrality
of Eisenstein series.

2 The chromatic spectral sequence

Let X be a spectrum. The chromatic tower for X is the tower of Bousfield localizations
with respect to the Johnson-Wilson spectra E(n).

MyX M X MyX

XE©) XEq) XE@)
Here the fibers M, X are the nth monochromatic layers. They admit a presentation as
2.1) M,X = hocolim MI)° A Xg
where M(I)° = M(iy, . ..,i,_1)° is the generalized Moore spectrum with top cell in

dimension 0 and BP-homology,

BP.M(ig, . .. in_1) = S MI="BP, /(pio vir . v

’» n—1
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with

Il =" 20 = 1)
i

and / ranges over a suitable cofinal collection of multi-indices. (This colimit presen-
tation of the monochromatic layers was conjectured in [Rav84, 5.9]. The conjecture
was resolved by the Hopkins-Smith periodicity theorem [HS98], which implies the
existence of such a system of generalized Moore spectra.)

Applying homotopy to the chromatic tower yields the chromatic spectral sequence
k
Erll’ = mM,X = Wk_nX(p)
which is conditionally convergent if X is harmonic.

Morava’s change of rings theorem [Mor85] states that the Adams-Novikov spectral
sequence for M, X takes the form

2.2) HE (S, (M Ey) (X)) = 7, (M, X).

For p > n this spectral sequence is known to collapse. A simple instance of this (for
X = S) is given by the following lemma.

Lemma 2.3 For X = S and 2p — 2 > max{n?, 2n + 2}, the spectral sequence (2.2)
collapses: the groups
Hé(Sna 7TtlwnEn)Ga](]Fp)

are zero unless t =0 mod 2(p — 1).

Proof The action of an element a of the finite subgroup F;* C S, on
71'ZZIWnE = (WZZEn)/(pooa VC1>O7 cee 7‘)231)-

is given by multiplication by a’, where a is the image of a under the Teichmiiller
embedding F)* C Z; . Since F, is cyclic of order p — 1, it follows that [F,,_; acts
trivially if and only if # = 0 mod p — 1. Because the subgroup F; C S, is central
and Galois invariant, it follows that there is an induced action of F* on

Hg(Sn s 71?tlwnEn)Gal(Fp)

However, the induced action on cohomology must be trivial, because the action is
obtained by restriction from the action of S,,. Thus, the cohomology groups must
be trivial, except when t = 0 mod p — 1. The result follows from the fact that if
n < p — 1, the group S, has cohomological dimension n> [Mor85]. |
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The sparsity of the spectral sequence (2.2), together with the fact that E;” = 0 for
s < n? implies the following corollary

Corollary 2.4 For 2(p — 1) > max{n? 2(n + 1)}, we have
mM,S = Hg(Snv 7Tt+sMnEn)Gal(]Fp)

where t =2k(p — 1) —sand 0 < s < 2(p — 1).

3 Adelic formulation of TMF

Let A denote the rational adeles. For a set of finite places S of QQ, define
ZS = H Zg,
0¢s
AS® =753 Q.
Fix a rank 2 module:
Vp = Ap7oo D AP,OO’

and let I = 7P &) 7P be the canonical lattice contained in V7.

For an elliptic curve C over an algebraically closed field k of characteristic unequal to
2, let
Ty(C) = lim C(R)["]
k

denote the ¢-adic Tate module of C. The Tate module T,(C) is a free Z,-module of
rank 2 [Sil86]. If the characteristic of k is zero or p, the £-adic Tate modules assemble
to give the A”°°-module

VP(C) :=TP(C) ® Q,

where

TP(C) := H T,(C).
t#p

There is a canonical short exact sequence
TP(C) — VP(C) % Cltor’]

where C[tor”] is the subgroup of the group of k-points of C consisting of those points
which are torsion of order prime to p.
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A rational uniformization is an isomorphism
n: VP = VP(O).
The group GL,(AP*°) acts on the set of rational uniformizations by precomposition.

As explained in [BLb, Sec. 3.2], a rational uniformization n of V?(C) gives rise to a
prime-to-p quasi-isogeny

3.1) oy C— Cy
(up to isomorphism of C;)). If the uniformization has the property that
3.2) T°(C) € (L),

the quasi-isogeny is an isogeny. In this case, the (isomorphism class of the) isogeny
¢ is characterized by its kernel H,,, which is given by:

ker(¢) = H, := image(L” — V* > VP(C) > C[tor’]).

(The case of more general n, not satisfying (3.2), is easily generalized from this,
producing quasi-isogenies ¢, which need not be isogenies.)

For a subgroup
K? C GLy(AP™),

we let [n]xr denote the K”-orbit of rational uniformizations generated by n. The we
shall refer to the orbit []xr as an K? -level structure. If we define

KD = GLy(ZP) C GLy(AP™),
then, given a rational uniformization
n: VP = VP(C),
the isomorphism class of the quasi-isogeny ¢, depends only on the Kg level structure
[k -

If C is an elliptic scheme over a connected base S, we can pick a geometric point
s of S and talk about level structures of the fiber Cy, provided they are m(S,s)-
invariant. Given a (S, s)-invariant Kg -level structure [7] K? represented by a rational
uniformization

n: VP L VP(CY),

(satistying (3.2)) there is an associated subgroup

H, < Cs[tor’].
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The (S, s)-invariance of [7] K implies that H, ; extends to a local system over S,
giving a subgroup
H, <C,

and a corresponding isogeny
¢y C— C/H, =:Cy.

Extending this to 7 not satisfying (3.2) associates to a (S, s)-invariant K{-level
structure [7] K? of Cy an quasi-isogeny ¢, : C — C,, of elliptic schemes over §.

Associated to a compact open subgroup
K? C GLy(AP*®)

is a Deligne-Mumford stack M(K?) over Z,) of elliptic curves with K? -level structure
(see, for instance, [Hid04, 7.1.2], specialized to the group GL,). For a connected
scheme S over Z,) with a specified geometric point s, the S-points of M(K?) are the
groupoids whose objects are tuples

(C, [nlkr)
where:
C = elliptic scheme over S,
[7]kr = m1(S, s) invariant KP-level structure on Ci.
The morphisms of the groupoid of S-points of M(KP)
a: (C,[nlkr) — (C', [0 1ke)
are the prime-to-p quasi-isogenies
a:C—C
for which
[ce 0 ke = [ 1xo-
Remark 3.3
(1) If the compact open subgroup is given by
KD == GLy(ZP) C GLy(AP™)
then there is an isomorphism
M(KE) = Moy @ Z)
(C, [77]1(5’) = C??

where M,/ 7 is the usual (uncompactified) moduli stack of elliptic curves (see,
for instance, [Kud03]).
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(2) If the compact open subgroup is given by
K{(0) := GLy(ZP")Ko(l) C GLy(A”™),

where Ko(¢) C GLy(Zy) is the subgroup of matrices given by

m@:%mempAzB j]mM}
then there is an isomorphism [Kud03]
MKW => MTo() @711/ L),
(C, [77]1(8(4)) = (Cp, Np)

where M(I'g(¢)) is the moduli stack of elliptic curves with a I'y(¢)-structure,
and N, is the I'g(¢)-structure (subgroup of order /) of C associated to the image
of the composite

'z zy — v Lvre) O ey,

(3) If K} < K% is a pair of compact open subgroups, then there is an induced étale
cover of moduli stacks:

MK — MKD),
(C, Inlge) = (C, Inlge)-
If K7 is normal in K5, the cover is a torsor for K% /K7
(4) Ancelement g € GL,(AP*°) gives rise to an isomorphism of stacks
g M(gkPg™") — M(KP),
(C’ [n]gKPg_l) = (C7 [77 o g]Kl’)-
Clearly we have

(3.4 g = (gk)" forkeK"’.

The moduli of p-divisible groups corresponding to the moduli space M (KP?) satisfies
Lurie’s generalization of the Hopkins-Miller theorem [BLDb, Sec. 8.1], and hence the
p-completion M(K? );)\ carries a presheaf of p-complete E,-ring spectra Eg» on the
site (M(KP);?\)K, such that:

(1) The presheaf Ek» satisfies homotopy hyperdescent (i.e. it is Jardine fibrant).
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(2) For an affine étale open

Spf(R) (C,[nlgr)

M(KP))
the corresponding spectrum of sections
E = E(Sp(R))

is a weakly even periodic elliptic spectrum associated to the elliptic curve C (i.e.
mo(E) = R, and the formal group associated to E is isomorphic to the formal
group of C).

Define TMF(K?) to be the global sections
TMR(K?) := Exr(M(KP))).
In particular, we have
TMF(Kg) = TMF,,,
TMF(KS(E)) = TMFy({)p,.
By the functoriality of Lurie’s theorem [BLDb, 8.1.4], the action of GL,(A?>°*°) described
in Remark 3.3 gives rise to maps of E-ring spectra

(3.5) g+ : TMF(K”) — TMF(gKk?g™").

4 The spectra Q(S)

The collection of compact open subgroups K of GLy(AP>°°) under inclusion forms a
filtered category, and we may take the colimit

4.1) V.= colgm TMEF(K?).

The action of GL,(AP>°°) described above gives V the structure of a smooth GLy (AP**°)-
spectrum [BLb, 10.3]. We may recover each of the spectra TMF(K?) from V by taking
homotopy fixed points [BLb, 10.6.5]:

TMF(K?) ~ V'K

For a set of primes S not containing p, we have an open subgroup

(Kp®)1 1= GLy(A)K® C GLy(A™™)
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where Ag = H%e s Qp is the ring of S-adeles and

k= [ oLo.
e¢{p}us
We define a spectrum
0(S) = Vh(KS’SH‘

The K(2)-localization of the spectrum Q(S) is closely related to the K(2)-local sphere,

as we now explain. Let Cp be a fixed supersingular curve over [, (any two are
isogenous). Assume (for convenience) that Cy is defined over F, (such a curve exists
for every prime p [Wat69]). The quasi-endomorphism ring

D := End’(Cy)

is a quaternion algebra over Q ramified at p and oo. The subring of actual endomor-
phisms
Op := End(Cy) C D

is a maximal order. For our set of primes S, define a group
T's := (OplS~'D*.
The group I's is the group of quasi-isogenies of Cy whose degree lies in
ZIs~'1* c Q*.

The group I'y embeds in the (profinite) Morava stabilizer group through its action on
the height 2 formal group of Cy:

s < Aut(Co) = Sy.
Theorem 4.2 (Behrens-Lawson [BL06]) If p is odd, and S contains a generator of

Zy , then the subgroup
I — Sy

is dense.

The universal deformation Cy of the supersingular curve Cy, by Serre-Tate theory ,
gives Morava E-theory E; the structure of an elliptic spectrum, where

mEy = W)l 111w,

Since Cy is assumed to admit a definition over F),, there is an action of the Galois
group Gal(IF,) on the spectrum E;. Picking a fixed rational uniformization

(a3

no : VP — VP(Cyp)
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gives, for every K?, a canonical map of E, -ring spectra

TMF(K?) (Co,[n0lkr)

E>
classifying the pair (607 [n0lkr), thus a map

(4.3) Y (Cosmo)

E.
Using the Tate embedding
End”(Co) — End(V"(Co)),
the rational uniformization 7y induces an inclusion
v :Ts = (K§®)1 C GLy(AP™),
o — 170_ 1omo.
Lemma 4.4

(1) For « € I'y, the following diagram commutes

C
TMF(K?) (Co,m0) E,

Y(a)« i la*

TMF(y(a)KP~v(a) ™) Ep

(C,m0)

where ~y(«), is the morphism induced by the action of GL,(A”>*°) on TMF, and
a 1s the morphism induced by the action of the Morava stabilizer group on E»
through the inclusion I's C S,.

(2) The map
p (Como)
TME(K?) ——— E»

is invariant under the action of Gal(IF,) on E>.
Proof Let Def(Cy) denote the formal moduli of deformations of Cy. For a complete
local ring (R, m), the R-points of Def(Cy) is the category of tuples
(C, 1, B,
where

C = elliptic curve over R, with reduction C mod m,
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The element o € I'g acts on the R-points of Def(Cyp) by
o 1 (C,1, B) = (C,1, Boq).

By Serre-Tate theory, this space is equivalent to the formal moduli Def(a)) of defor-
mations of the associated height 2 formal group E‘o, and the action of I'g on Def(Cy)
is compatible with the action of S, on Def(ao). Part (1) of the lemma follows from
the commutativity of the following diagram, which is easily checked on R-points.

Cuniw univ ) *
MEP) <Gl Guidemd gy

V(Q)*T Ta*

P -1 Def
M(V(Q)K 7(0[) ) (Cuniw[(ﬁuniv)*n()]) ¢ (CO)

Part (2) is checked in a similar manner. O

Lemma 4.4 implies that the morphism (4.3) descends to give a morphism
hFr,
4.5) 0(8) = V™ (ET) " = E(Ty).

Here, if X is a spectrum with an action of the Frobenius Fr, € Gal(F,), the spectrum

X"F is defined to be the homotopy fiber
XhFrp _ X Frp —1 X‘

The following theorem is proved in [BehO7a] in the case where S consists of one
prime. The proof of the more general case is identical to the proof of Corollary 14.5.6
of [BLb].

Theorem 4.6 The map (4.5) induces an equivalence

0k — E[@y).

5 The building resolution

If S = {¢} is a set containing one prime, the spectrum Q(¢) defined in Section 4 is
equivalent to the spectrum constructed in [BehO7a]. In [BehO7a], the spectrum Q(¥)
was defined to be the totalization of a certain semi-cosimplicial E -ring spectrum.
This description is recovered as follows.
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The group GLy(Qy) acts on its building B = B(GL>(Qy)) with compact open sta-
bilizers. Explicitly, the building B is equivariantly homeomorphic to the geometric
realization of a semi-simplicial GL,(Qy)-set B. of the form

o GLy(Qp)/Ko(t)
5.1)  B.= | GLy(Q)/GLa(Zy) X — GLy(Qg)/Ko(0).

GLy(Qp)/GLy(Zy)

The action of GLy(Qy) on the building B extends to an action of (Kg’é)+, simply
by letting the local factors away from ¢ act trivially. Regarded as a semi-simplicial
(K}, ) -set, we have

) L &EHKEO
(52 Bo=| KO /K) x — (KpO)+ /K0
Ky /Ky

The canonical (K{)”E)Jr -equivariant morphism

(5.3) V S Map(B, V)™

(given by the inclusion of the constant functions) is an equivalence [BLb, Lem. 13.2.3].
Here, Map(—, —)"" is defined to be the colimit of the U-fixed point spectra, as U
ranges?er the open subgroups of GLy(AP**°). The argument in [BLb] relies on the
fact that the building B is not only contractible, but possesses a canonical contracting
homotopy with excellent equivariance properties.

The semi-simplicial decomposition of 3 induces an equivariant equivalence

Map(B, V)™ =~ Tot Map(BB., V)"
and therefore an equivalence on fixed point spectra:

0(0) = VK-

~ Tot (Map(B., V))& )+
Using Shapiro’s lemma in the context of smooth (K} ’Z)+ -spectra gives an equivalence
(Map((K} ") /K?, D)yHKE s o IR,
Since we have
VIS ~ TMF(K?) = TMF,
VIO ~ TMF(K? (£)) = TMFo(£),
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Thus there is an induced semi-cosimplicial decomposition

(5.4) Q) ~ Tot Q(0)*
where
TMFy(), —
(5.5) oW =|T™MF, —  x = TMFy©),
~ TMF, —

For p > 5, the homotopy groups of TMF, and TMF({), are concentrated in even
degrees, and there are isomorphisms

mox TMF,, & (My)y, ,
mox TMFo(0), = My(To(£))7, -
Applying homotopy to the semi-cosimplicial spectrum Q(¢)* (5.5) gives a semi-
cosimplicial abelian group
n Mk(Fo(E))%p —
(5.6) COy = | My, X — Mi(To(0)y,
(Mk)%p -
The Bousfield-Kan spectral sequence for Q(¢)* takes the form
(5.7) E}' = C(0) = m—,Q(0).
Proposition 5.8 For p > 5, the spectral sequence (5.7) collapses at E; to give an
isomorphism
Q) = H(C(0);) ® H'(C(0);4.1) © H(C(0); ).
Proof The rings of modular forms M, and M,.(I'g(f)) are concentrated in even
weights. This easily follows in the case of ['g(¢) from the fact that the inversion

[—1]: C — C gives an automorphism of any I'o(¢)-structure. Thus there is no room
for differentials, or hidden extensions, in the spectral sequence (5.7). |

In fact, since we have argued that H*(C(¢);) is non-zero unless t = 0 mod 4, we have

Corollary 5.9 For p > 5, there are isomorphisms

Q) = H (C(0)" )y
where t =4k — s and 0 < s < 4.
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6 Effect of coface maps on modular forms

Suppose that p > 5. In this section we will deduce the effect of the two initial
cosimplicial coface maps of C({)3, on the level of g-expansions. To aid in this, we
recall from [Beh(07a] that the semi-cosimplicial resolution of Q(¢) may be constructed
by applying the Goerss-Hopkins-Miller presheaf to a semi-simplicial object in the site

(Mell)et :

_ MTy0), —
(6.1) M. = (Mell)p - I — M(Fo(f))p
(Mell)p —

The coface maps d; : M; — M are given on R-points by
di : M)y — (Men)p
dp: C— C/Cl[]
d:C—C
di : (M(Lo(0))p — (Meu)p
dp:(C,H)— C/H
d:(C,H)— C

Proposition 6.2 Consider the morphisms
do, dy : (My)y, — Mp(To(0)3, x (My)y,

induced by the initial coface maps of the cosimplicial abelian group C(¢)3,. On the
level of g-expansions, the maps are given by

do(f(@)) := (*F(g"), t*f (9)),
di(f(q) := (f(@),f(@).

Proof It is clear from the description of the map d; that its effect on g-expansions is
as given. Choosing an embedding Z, — C, by the g-expansion principle, it suffices
to verify these identities hold when we base-change to C and consider the Tate curve:

C, :=C*/q".
The group of /th roots of unity py C C* induces a I'g(¢)-structure on the Tate curve
Cy:
e C (CX/qZ = Cy.
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This level structure is the kernel of the isogeny
G, 1 Cq = C*/q" — (Cx/qeZ = Cyt,
Vil Zg-
The invariant differential dz/z on C, transforms under this isogeny by
¢*(dz/2) = tdz/z.
It follows that dj on the Mk(Fo(E))OZp -component is given by
do - (Mg, — Mi(To(0))y, .
f@) = ¢5(g",

as desired. The /th power map

[f]1: C4 — Cy

2+ 7
transforms the invariant differential by
[01"(dz/z) = tdz/z.
If follows that the (Mk)%p component of dj is given by

do - (Mg, — (Mp)y,,
F(@) = (g

7 The chromatic spectral sequence for Q(/)

The following lemma implies that the chromatic resolution of Q(¢) is finite.

Lemma 7.1 The spectrum Q(¢) is E(2)-local.

Proof The spectra TMF, and TMF(¢), are E(2)-local. By (5.4), the spectrum Q(¥)
is E(2)-local. O
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We deduce that the chromatic resolution for Q(¢) takes the following form.

MoQ(0) M Q(0) M>Q(0)

L

QD)E0) < QW)E1) <—— Q1)
Applying homotopy, we get a three line spectral sequence

E111,k _ { M, Q(0), n <2

7.2
(7.2) 0, n>?2

} = Tk—nQ(0).

Assuming that p > 5, applying M,, to the cosimplicial resolution (5.4), we get spectral
sequences

(7.3) Ey' = H (CO'[p~ ') = m—sMoQ(¥)
(7.4) EY' = H(CW)" /p™®vi ') = m—sM1Q(8)
(7.5) Ey' = H(CWO)" /(0™ V7)) = T sM2Q(0)

Here, the E,-terms are the cohomology of the cosimplicial abelian group obtained
from applying the functor 7.(M,—) to (5.4). The values of the resulting cosimplicial
abelian group are given by the following lemma.

Lemma 7.6 Letp > 5 and (NV,p) = 1. Then
m2.Mo TMFo(N), = M.(To(N))g, ,

m2.M) TMFo(N), = M.(To(N))y, /p™[E, |1,
m2.My TMFo(N), = Mo (To(N)), /(0™ Ep2 ).

Proof This is a direct application of (2.1). Here, E, | is the (p — 1)st Eisenstein
series, which reduces to the Hasse invariant v; mod p [Kat73, Sec. 2.1]. O

In particular, since C(¢); is non-zero only when ¢+ = 0 mod 4, the same argument
proving Corollary 5.9 gives:

Corollary 7.7 For p > 5, there are isomorphisms
mMoQ(0) = H* (C(0)'[p™ Dis
M1 Q) = HY (CWO)" /Py Dits
T MrQ(0) = H (C(0)" /(0™ , v®))its
where t =4k — s and 0 < s < 4.
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We end this section by relating MQ(¢) to the subgroup I'y C S,. By Theorem 4.6
there are equivalences

Mr0(0) ~ My(Q(O)k2)) = Ma((ES ) F).
We recall the following result from [BehO7a].

Proposition 7.8 The group 'y acts on the building B for GL,(Qy) with finite stabi-
lizers, given by groups of automorphisms of supersingular curves.

We deduce the following.

Lemma 7.9 There is an equivalence

Mo (XY Tty o (Mo Ep)M ey P,

Proof Since the spectra M (I)° are finite, we have
M@ A (ES YTy = (M) A Ep)" ey P,

The result would follow from (2.1) if we could commute the homotopy colimit over
I with the homotopy fixed points with respect to I';. However, by Proposition 7.8,
the group I'y acts on the building B for GL,(Qy) with finite stabilizers. Since B is
contractible and finite dimensional, we conclude that the group I'y has finite virtual
cohomological dimension. a

We conclude that there is an equivalence
M>Q(0) = (MoEp)" )T
and a homotopy fixed point spectral sequence

(7.10) Ey' = H' Ty, ;M2 Ep) ) = 71, M O(0).

Lemma 7.11 For p > 5, we have:
(1) HTy, mM>E») ) =0 for s > 2.
(2) HTy, mM>E»)C% ) =0 for t #0 mod 4.
(3) There are isomorphisms
M Q) = HY(Tg, 4 Mo Eg) S

where t =4k —sand 0 < s < 4.
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Proof (1) follows from Proposition 7.8, together with the fact that the coefficients are
p-local and the building is contractible and 2-dimensional. (2) follows from the fact
that there is a central, Galois invariant element [—1] € I'y (given by inversion) which
acts on my;M>E, by (—1). (3) follows from (1) and (2), using the spectral sequence
(7.10). O

Combining Corollary 7.7 with Lemma 7.11, we get

Corollary 7.12 For p > 5, there are isomorphisms
H*(CW)* /(p™,vi®)) = H (g, mMoEp) ).
Remark 7.13 One could give a purely algebraic proof of Corollary 7.12 which makes

no reference to topology. In the context of the exposition of this paper it happens to be
quicker (but arguably less natural) to use topological constructions.

8 MoQ(0)

Let p > 5 and / be a topological generator of Z;. In this section we will concern
ourselves with locating the non-trivial homotopy of MyQ(¢).

Proposition 8.1 The groups
HY(C ()

consist entirely if p/-torsion if
t=0 mod (p— p~ !,
and are zeroif t 20 mod (p — 1).

Proof Consider the central element

(1= [f O] € GLy(Q).

0 /¢

Let V be the smooth GL,(A?°°)-spectrum of (4.1). We assume that V is fibrant as a
smooth GL,(AP*°)-spectrum, so that homotopy fixed points are equivalent to point-set
level fixed points

VU~ Y
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for U an open subgroup of GL,(A?*°) [BLb, Cor.10.5.5]. Because [/] is central, the
action of [/] on V is GL,(AP*°)-equivariant. Because [/] is contained in the subgroup
(K} Yy, it acts as the identity on

0(0) ~ VKT O+

However, the morphism ¢ of (5.3) is compatible with the action of [/], where we
let [¢] act on Map(B, V)" through its action on the target V. We deduce that the
endomorphismﬁ acts on the cosimplicial object Q(¢)*, where the action is given
level-wise on each factor by the endomorphism

[/] : TMF(K?) — TMF(K?)

(where KP” is either Kg or Kg(ﬁ)). The endomorphism [£] is the induced action of [£]
on the fixed point spectrum
TMF(K?) ~ V'K

The action of [£] on the homotopy groups of TMF(K?) is given by
[4] : ok TMEF(L'o(N)) — mox TMF(I'g(V)),
f— .
This is easily deduced from the fact that the induced quasi-isogeny (3.1)
Cy = Chope
is isomorphic to the £th power map of elliptic curves. It follows that
[4] - HY(C(D)3) — H(C(D)y)

acts by multiplication by ¢¥. However, since we have shown that [¢] acts by the identity
on 7,Q(¢), Proposition 5.8 implies that [¢] acts by the identity on H*(C({)3;). We
deduce that multiplication by ¢¢ — 1 is the zero homomorphism on H*(C(¢)3,). Since
¢ was assumed to be a topological generator of Z, , the proposition follows. a

We immediately deduce:

Corollary 8.2 We have
H(COlp D =0

for t #£ 0.

We can be more specific in the case of s = 0.
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Lemma 8.3 We have
H(C O Do = Q.

Proof We must analyze the kernel of the cosimplicial differential
do — di = (Mo)g, — Mo(To(£)g, & (Mo)p,-

We claim that is is given by the subspace generated by 1 € (Mo)g,. Indeed, suppose
that f € (MO)@OQp satisfies
do(f) — di(f) = 0.

By Proposition 6.2, it follows that
fla 1@ =0.
Writing f(¢) = Y anq", we find
o apje, n=0 mod ¢
"7 lo, n#0 mod ¢

It follows by induction that f(g) = ay. a

Applying this knowledge to the spectral sequence (7.3), we deduce:

Corollary 8.4 We have
T (MoQ(0)) = 0
ifr ¢ {0,—1,—-2}, and
mo(MoQ(0)) = Qp.

9 M,0(): Eisenstein series and the o -family

Let p > 5 and assume that £ is a topological generator of Z . In this section we will
compute
H(C*(0)/p™),

the Oth cohomology of the cochain complex associated to the cosimplicial abelian
group C°(¢) tensored with the group Z/p>°. These computations will allow us to
determine part of the 1-line of the chromatic spectral sequence for Q(¢).

We have

HO(C*(0)/p™) = lim H(C*(0) /p)),
J
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so it suffices to compute the latter. Our explicit determination of the first differential
in C*(¢) implies that

(9.1) Ay = HYC () /P

. O =Df(@=0 modp/,
9.2) = {f € M)y, - }

(i) £f(¢") —f(@) =0 mod p/
Lemma 9.3 A modular form f € M? represents an element of the group A, s if and
only if

(1) pf=0 modp/ fort = (p— )p'~'s,and (s,p) = 1,
(2) f(g@ =a modp foracZ/p.

Proof Since ¢ was assumed to be a topological generator of Z,,
vl — 1) =i
for t = (p — 1)p~'s, with (s, p) = 1. Condition (i) of (9.2) states that
(' —1)f =0 mod p.
This proves (1).

Because /'f(q) = f(g) mod p/, we deduce that condition (ii) of (9.2) may be rewritten
as

flg)=1(g) modp/.
But, writing
f@) = anq"
for a, € Z/p/, we see that

0, n=0 mod /¢,
a, =
apje, n#0 mod L.

Therefore, we inductively deduce that a, = 0 mod p/ unless n = 0. m|

Let E; € M} denote the weight k normalized Eisenstein series (for £ > 4 even), with
g-expansion

2k :
(9.4) Eug)=1- 5 > ow(idg' € Qllgll,
i=1
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where

o) == _d".
dli

The following lemma follows immediately from the Clausen-von Staudt Theorem on
denominators of Bernoulli numbers.

Lemma 9.5 If p — 1 divides k, the g-expansion of Ej is p-integral. For k = 0
mod (p — 1)p/~! we have
Exlg)=1 modp.

Lemma 9.6 For each even weight k > 4 there exists a modular form
ex € (Mk)%@
such that

(1) if k=0 mod p — 1, we have
ex = Ex,

(2) the g-expansion of e satisfies
ex(q) = 1 + higher terms,
(3) if ki =k, mod (p — 1)p/~!, then
er,(q) = ex,(q) mod pl.
Proof Observe that for any even k > 4, there exist modular forms e; satisfying
condition (2) (one can simply take e; = EZEJ() for appropriate i and j). Fix such

choices of e for even k satisfying 4 < k<p—1landk=p+1. Alsoset ¢g = 1.
For even k > p — 1 satisfying k # p + 1 set

ek = ex—(p—1yEp—1y
for ¢t chosed such that
0<k—(p@-Dt<p—1 or k—@p-Dr=p+1.

Then condition (1) is obviously satisfied, and condition (3) is satisfied by Lemma 9.5.
O

The following lemma provides a convenient basis for p-integral modular forms which
we shall make frequent use of.
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Lemma 9.7 The forms
{Ake,,lzk : k€ Z,t— 12k > 4 and even},

together with
AR if = 12k,

form an integral basis of M.

Proof Since
Ay =g+

we have
AN Qe =q + - .

This establishes linear independence. We may deduce that these forms span M? by the
explicit calculation

E3 — E?
M, = Z[E4, Eg, A™'1/(A = =2——9),
[E4, Es, 1/( 7733 )

Proposition 9.8 The groups A, /., = colim; A, ; are given by
-At/oo = Z/PI{Et/PI}
for t = (p — 1)p/~'s, where (s,p) = 1 and ¢ > 4, and
Aojoo = Z/p™.
(Here, the element E;/p/ is the image of the element E; € A, /i)

Proof This follows immediately from Lemmas 9.3 and 9.7, provided we can show
that E, lies in A, ;. This again follows from criterion (2) of Lemma 9.3: by Lemma 9.5

E(p)=1 modp.

We obtain the zero-line of spectral sequence (7.3) as a corollary.

Corollary 9.9 We have

Z/p), t=(p—Dp~lsand(s,p) =1,

H(C'(0) /p™ vy ' Dar =
( ( )/P [vl ])21‘ {0’ t;jé 0 mod (p - 1)
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Combining this with Corollary 7.7 and Proposition 8.1, we find:

Corollary 9.10 We have

Z/p, t=2p—1p 'sand(s,p) =1,

M,Q() =
M Q(f) {O, t#0,—1,—2 mod 2(p — 1).

10 Mod p/ congruences

Let p > 5. The congruence

E,_1(g) =1 modp
implies the congruence
(10.1) E (@)=1 mod p/.

i—1
It follows that multiplication by Eg_l induces an injection

i—1
ED |t MAToN))z/p = My 1ypi-1 (Co(N))z -

(Here we regard E, | as a modular form for I'o(N).) The image of this inclusion is
characterized by the following theorem of Serre [Kat73, Cor. 4.4.2].

Theorem 10.2 (Serre) Let f; be an elements of My,(I'o(N))z, for i = 1,2 and
ki < kp. Then

fi@) = fa@) € Z/p'llq]]
if and only if

(1) ki =k, mod (p — 1)p/~!, and

ky—k

@ f=E"f.

11 M,Q): The 3-family congruences

Let p > 5, and let £ be a topological generator of Z, . In this section we prove
Theorem 1.3 and Theorem 1.4. The key observation is the following.

Lemma 11.1 The inclusion I'y — S, induces an isomorphism

HO(Sy, 7MaEx) ) 2, Oy, 1M, Ep) S ED.
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Proof By Theorem 4.2, the group I’y is dense in S;. Since S; acts continuously on
w:M>E,, the invariants of S, are the same as the invariants of I';. O

Combined with Corollary 7.12, we have an isomorphism
HO(CW)" /(™ v$°)) = HY(Sy, My Ey) YD),

The right-hand side has been computed by Miller-Ravenel-Wilson [MRW77]:

Theorem 11.2 (Miller-Ravenel-Wilson) The groups H?(Sz, Mo E>) G0 E) gre gen-
erated by elements

F
Bijjx € H(S2, i —1)—jp—1yMaE2) P

which generate cyclic summands of order p*. Here, for i = sp" with (s,p) = 1, the
indices j and k are taken subject to

1 p,
(2) ] < pn—k-H _|_pn—k _ 1’

(3) either j > p" % 4 p" k=1 — 1 or p* Jj.

We now compute

H(C* () (™, v°))s
in terms of modular forms.

We have

H(C*(0)/(p™,v7))2r = lim  lim HO(C.(K)/(pkaVli))ZH—Zj(p—l)a
k- j=sp*=!
s>0

so it suffices to compute the latter. Proposition 6.2, Lemma 7.6, and Theorem 10.2
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k—1

imply that, for j =0 mod p*~ ", we have:

Byjx = HC (00", V) arsajo—1)

M?H(p*l)
0 FE
= ker Mrsip-n) do-d ' Eé’ ’
k g/
(p 7Ep—1) Migjp—1)(To(0)°
OB
(Mr-o—_j(p—l))oz/pk
0 M)
(Mt+j(pf 1))Z/pk do—dj z/pk
= ker YA S
( t)Z/p/" Mr+j(p—1>(Fo(€))%/pk
Mi(To(0)] 4
. (i) (@H=D —Df(g) = g1(9),
B Mijo—1)z)0 for g1 € (M)},
M)y, ) LN — flg) = gag),

for g, € MI(PO(E))Oz/pk

Here, we are regarding the space of mod p* modular forms of weight 7 as being
embedded in the space of mod p* modular forms of weight ¢ + j(p — 1) through the
inclusion induced by multiplication by Efkl using Theorem 10.2.

For a finitely generated abelian p-group A, we shall say that a € A is an additive
generator of order p* if a generates a cyclic subgroup of A of order pX.

Theorem 11.3 There is a one-to-one correspondence between the additive generators
of order p¥ in

H(CWO)" /P>, v
and the modular forms f € M?+j(p_1) for j =0 mod p*~! satisfying
(1) Wehave r =0 mod (p — l)pkfl.
(2) The g-expansion f(g) is not congruent to 0 mod p.
(3) We have ord, f(¢q) > {5 or ord, f(q) = %

(4) There does not exist a form f' € M? such that f'(q) = f(¢) mod p* for
! <t+jp-—1).
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(5); There exists a form
g € M(To(0))"

satisfying
f@") —f(@) = g(@) mod p-.

We will need to make use of the following lemma.

Lemma 11.4 There exist homomorphisms
T M?er — M?
such that, if j =0 mod p*~!, the short exact sequences
E (Myijp-1)y, Ik

0 M 0 Fp—1 Moo 0
= O S Mgl —

are split by the mod p* reduction of Tip—1) -

Proof Using the basis of Lemma 9.7 we define explicit splitting morphisms
Tm : Miyym — M,

whose effect on basis vectors is given by

A"e;_12n, t—12n=0, ort — 12n = 2ifori > 2,

0, otherwise.

rm(AneH-m—IZn) - {

We just need to verify that rj,_1) reduces to give the appropriate splittings. By
Condition (3) of Lemma 9.6, and (10.1), we have
el @E,_(q) = eq) = ersjp-n(g) mod p.
We therefore compute
Vj(p—l)(Anet—lanL,l) = rip— (A" jp—1)—12,) mod pF
= A", 12, mod p~.
O
The splittings of Lemma 11.4 induce splitting homomorphisms which give short exact

sequences

1y wr Migio-1)y,
(11.5) 0 «— (Mt)%/pk LS (Mt—l-j(p—l))OZ/pk il —O/P
(MI)Z/pk

These short exact sequences are compatible as k and j vary.
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Lemma 11.6 For ¢ even, the image of the homomorphism ¢;; is given by
t—2

t
{f e (M,+j(p_1))%/pk . ord, f(gq) > D or ord, f(q) = B

Proof A basis of (M,f)oZ Ik is given by

t t—2
{A"e;_12p 1 n < IEX n# BT
The image of this basis under ¢;; is spanned by

t t—2
{A"; 1ontjp—1y) : n < 70" + T}
Since
An€[_12n+j(p_1) = qn + .-

we deduce the result. O

Proof of Theorem 11.3 Suppose that b" € B, /; - is an additive generator of order pk.
Let /7 be the lift

f, = Lj,k’(b/) S (MtJrj(pfl))OZ/pk"

Since b’ is assumed to be an additive generator of order p* and Lk 18 injective,
we deduce that f’ is a modular form in (M4jp—1)); It of exact order p*. Hence
1= pk’fkf for some modular form f € (Mf+j(l’—1>)oz Ik It is simple to check that the
image
(Mt-l—j(P—l))%/pk
MDY
represents an element of B, ;.

It follows that the additive generators of order p* in

H(CW)" /(p™,¥°)); = colim colim B, ;
k' j:S[Jk,_I ’
s>1
exactly correspond to the additive generators of order p* in B, /j,k Which are not in the

image of the inclusion

k—1
Efj_l : Bt/.j—pkilzk - Bt/]vk
Suppose that b is such an additive generator. Let f be the lift

fi= Lij(b) S (Mt-i-j(p—l))%/p"'
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Then by Lemma 11.6 the lift f satisfies
t t—2

ord, f(q) > T or ord, f(q) = Iz

From the definition of 5, ;; we have
(i) (@D —Df(g) = g1(q),
for g1 € (MY,
(i) V1Y) — flg) = g2(9),

for g2 € My(To(4))}, Ik

k—1

Since j = 0 mod p*~" we deduce that

pHe=1 — gt
Let v = 1,(¢' — 1). Condition (i) above implies that

g1(q)
7 —1

But, if b” € B,; s, is the image of the mod p*~" reduction of b, then
f(@ = 4x—n(®")  mod p
and thus, by the exactness of (11.5), we have
Tik—v(f) = g1 =0.

k—v

fla) = mod p

Thus we actually have

(' — 1)f(9) =0 mod p*.
Since f(g) has order p*, we deduce that

=1 mod p~.

Since ¢ is a topological generator of Z X, we deduce that

t=0 mod (p— pt'.
Thus condition (ii) may be rewritten as

£(d") = f(@) = 2(q) for g2 € MTo(0)y, -

We have therefore verified conditions (1)—(5) of Theorem 11.3.

For the converse direction, suppose f € (M;4jp—1))z Ik satisfies conditions (1)—(5) of
Theorem 11.3. Then by Lemma 11.6, f is in the image of +; ;. Consider the image

(Mt—h/'(p—l))%/pk

(M0,

b=1[f] e
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of f in the quotient. Observe that by (2), the element b has order p*. We just need to
verify that it is an element of B, /; ., which amounts to seeing that f satisfies conditions
(i) and (ii) above. But condition (1) implies that

0= 0= =1 mod pk.
This immediately implies that f satisfies condition (i). Condition (ii) then follows from

condition (5). O

Observe that if S is a set of primes which contains ¢ and does not contain p, then we
have

I'yCTIysCS,.
Since I'y is dense in S,, the subgroup [’y is dense in S,. We therefore deduce the

following lemma.

Lemma 11.7 For a set of primes S not containing p and containing ¢, there is an
isomorphism
HO(Ts, mMoE9) ) = HO(Ty, mMaEy) D).
In particular, letting ¢’ be a prime in S, we have a zig-zag
HO(T g, mMaEn) ) = HOs, mMoEn) ) — HOT g, Mo En) S,
If ¢ also generates Zy , then the inclusion is an isomorphism. Corollary 7.12 allows
us to deduce:
Corollary 11.8 For any prime ¢’ # ¢ There is an inclusion
H(CO)" [ (p™ Vi) = HY(CW) /™, vi))r.
If f satisfies Conditions (1)-(4) and (5), of Theorem 11.3, then it satisfies condition
S -

We finish this section by observing that the results of this section combine to give

proofs of some of the theorems stated in Section 1

Proofs of Theorems 1.3, 1.4, 1.5 Corollary 11.8 implies Theorem 1.5. The element
B € H'(S2, Taiga—1) 21y M) 7

detects a corresponding Greek letter element

Bk € Extgp_pp(BP., BP.)
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in the chromatic spectral sequence if i > 0 and i # p" [MRW77] (if i = p", then
Jj must be greater than or equal to p”). Thus Theorems 1.3 and 1.4 follow from
Theorem 11.3. Note that the modular forms f = f;/; ; of Theorems 1.3 and 1.4 are
taken to be holomorphic at the cusps, whereas in Theorem 11.3, they are merely
assumed to be meromorphic at the cusps. This discrepancy is resolved by noting that
if i, ], k are chosen such that (; /i exists in Extgp, pp(BPy, BP,), then

t=ip* — 1) —jip—1) >0.

Therefore, condition (2) of Theorem 11.3 guarantees that the modular forms in question
are holomorphic at the cusps. |

12 Greek letter elements in the Hurewicz image of Q(¢)

Since the cosimplicial spectrum Q(¢)* is a cosimplicial object in the category of E.-
ring spectra, the equivalence Q(¢) ~ Tot Q(¢)* (5.4) allows us to regard Q(¢) as an
E . -ring spectrum. In particular, it possesses a unit map

S — QW)

which, by Lemma 7.1, localizes to give a map

Se@) — Q).

In this section we prove:

Theorem 12.1 The images of the elements «;/; and the elements (3;/;; under the
homomorphism

TSEQ) — T Q)

are non-trivial.
We first will need a lemma.

Lemma 12.2 The map
M S — m M Q(0)

is an isomorphism for t = 0 mod 4.
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Proof Let C be an ordinary elliptic curve over [, so that there is an isomorphism of
formal groups
C" = Gy

Let U be the formal neighborhood of the associated point of M(Kg ), which carries a
universal deformation C/U of C. Let

E = Eu(U)

be the sections of the sheaf £ over U. By Serre-Tate theory, and the deformation
theory of p-divisible groups [BLb, 7.1], we deduce that

U = Spf(W(F))[[x]])

and therefore that E is an even periodic ring spectrum with mo(E) = W(I_Fp)[[x]], with
associated formal group given by C”. The cofiber

ESE—E/x

is an even periodic ring spectrum [EKMM97]. The restriction CN,’can of the deformation
C to mo(E/x) = W(I_Fp) is the canonical deformation of C (the deformation whose

p-divisible group splits). The formal group Z‘ém is therefore a universal deformation

of G,,/FF,, and we conclude that there is an isomorphism
Chn = G
between the formal group for E/x and the multiplicative formal group. In particular,
this implies that there is an equivalence of ring spectra
K, @7, W(F,) = E/x,

where K, is the p-adic K-theory spectrum. Now, the unit map § — K, induces an
inclusion
7T2¢M1S — 71’2,M1Kp

(it gives the Adams e-invariant). Therefore the unit map for E/x induces an inclusion
M1 S — M (E/X).
However, the unit for E/x is homotopic to the composite
S — Q) ~ Tot Q)" — Q()° = TMF, — E — E/x

because all of the maps in the composite are maps of ring spectra. We deduce that the
maps
M S — M Q(0)
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are injective for t = 0 mod 2. By Corollary 9.10, these (finite) groups are abstractly
isomorphic for t = 0 mod 4 and ¢ # 0. The result for ¢ # 0 therefore is proven. The
cases of t = 0 follows immediately from the fact that the map 7S — moQ(¥) = Z, is
a map of rings. |

Proof of Theorem 12.1 Consider the map of chromatic spectral sequences:

TMySEQ) ——=> TK—nSEQ)

| |

My Q) == Tk —n Q(£)

The elements «; /i € mi(p—1)(M1S) are known to be permanent cycles for i > 0, and
therefore map to permanent cycles in the chromatic spectral sequence for Q(¢). By
Lemma 12.2, the images of «;/; in m,MS are nontrivial, and generate these groups for
t =0 mod 4. Since, by Corollary 8.4, m,MyQ(¢) is zero for ¢t # 0, —1, —2, there are
no non-trivial differentials

dy = mMoQ(l) — M Q(L)

for # > 0. We deduce that the images of the elements «;/; in the chromatic spectral
sequence for Q(¢) are non-trivial permanent cycles, and hence witness the non-triviality
of the images of the elements «; /i in m,Q(f). As a side-effect, we have also determined
that the groups m,MQ(¢) are generated by permanent cycles for 1 = 0 mod 4. That,
combined with the fact that m,MyQ(¥) is zero for ¢ positive, allows us to deduce that
there are no non-trivial differentials killing elements of m,M>Q(¢) for t = 0 mod 4.
To complete the proof of the theorem, it suffices to show that the images of the elements
Bisj are non-trivial under the homomorphism

(12.3) TMaS — TMrQ({)

where ¢ = 2i(p> — 1) — 2j(p — 1). But, for such ¢, the map (12.3) is given by the
composite of isomorphisms
mMaS 22 HY(S,, miMo Ey) )
~ HOTy, mMoE) )
= mMrQ(0)

given by Corollary 2.4, Lemma 11.1, and Lemma 7.11. |
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