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1. Introduction

Fix a prime p and a height h. Let K denote the Morava K-theory K(h), and
(−)K denotes localization with respect to K. Let E denote the Morava E-theory
spectrum Eh associated to the Lubin-Tate universal deformation G of the Honda
height h formal group G0/Fph . We shall always take E∗(−) to denotes completed
E-homology

E∗Y = π∗(E ∧ Y )K .
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Bousfield and Kuhn (see, for example, [Kuh08]) constructed a functor Φ = Φh from
pointed spaces to spectra with the properties that

Φ(Ω∞Y ) ' YK ,
π∗Φ(X) ∼= v−1

h π∗X.

In this paper we construct a natural transformation between functors from pointed
spaces to K-local spectra

cSK : Φ(X)→ TAQSK
(S

X+

K )

(the “comparison map”) which relates Φ(X) with the topological André-Quillen

cohomology of the augmented SK-algebra S
X+

K . Our main theorem (Theorem 8.1)
states that this map is an equivalence when X = Sq for q odd. This likely implies
that there is some “good” class of spaces for which the comparison map is an
equivalence, though we do not pursue this here. The case of h = 0 is essentially a
special case of Quillen’s theory [Qui69]. The case of h = 1 is closely related to the
thesis of Jennifer French [Fre10].

We apply our main theorem to understand the vh-periodic Goodwillie tower of the
identity evaluated on odd spheres. This constitutes a step in the program begun
by Arone and Mahowald [AM99] to generalize the Mahowald-Thompson approach
to unstable v1-periodic homotopy groups of spheres [Mah82], [Tho90]. Work of
Arone-Mahowald [AM99] and Arone-Dwyer [AD01] shows that applying Φ to the
Goodwillie tower of the identity evaluated on Sq (q odd) gives a (finite) resolution

(1.1) Φ(Sq)→ (L(0)q)K → (L(1)q)K → (L(2)q)K → · · · → (L(h)q)K .

Here L(k)q denotes the Steinberg summand of the Thom spectrum of q copies of
the reduced regular representation of (Z/p)k, as described in §5.

We show (Theorem 9.1) that the E-homology of the resolution (1.1) is isomorphic
to the dual of the Koszul resolution of the (degree q) Dyer-Lashof algebra ∆q for
Morava E-theory. This results in a spectral sequence having the form

(1.2) Exts∆q (Ẽq(Sq), Ēt)⇒ Eq+t−sΦ(Sq).

This is related to unstable vh-periodic homotopy groups of spheres by the homotopy
fixed point spectral sequence [DH04]

Hs
c (Sn;EtΦ(Sq))Gal ⇒ v−1

h πt−s(S
q).

In [Reza], the second author defined the modular isogeny complex, a cochain com-
plex geometrically defined in terms of finite subgroups of the formal group G, mim-
icking the structure of the building for GLh(Fp). We show that the cohomology
of the modular isogeny complex is the dual of the Koszul resolution for ∆q. This
gives a modular interpretation of the E2-term of the spectral sequence (1.2).

Organization of the paper. In Section 2 we summarize the results about the
Morava E-theory Dyer-Lashof algebra ∆q we will need for the rest of the paper. In
Section 3 we introduce a form of André-Quillen homology for unstable algebras over
∆q, as well as a Grothendeick-type spectral sequence which relates this homology
to Tor∆q

∗ . In Section 4 we introduce a bar construction model for Kuhn’s filtration
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on topological André-Quillen homology. The layers of this filtration, as well as the
layers of the Goodwillie tower of the identity, are equivalent to the spectra L(k)q.
In Section 5 we show the E-homology of the spectrum L(k)q is dual to the k-th
term of the Koszul resolution for ∆q. In Section 6, we define the comparison map,
and investigate its behavior on infinite loop spaces. This requires a technical result
on H∞-structures and the norm map, which is relegated to to Appendix A. In
Section 7, we discuss a K-local analog of Weiss’s orthogonal calculus. In Section 8,
we prove that the comparison map is an equivalence on odd spheres, by using K-
local Weiss calculus to play the Goodwillie tower off of the Kuhn filtration. In
Section 9 we use the identification of the Goodwillie tower with the Kuhn filtration
to compute the E-homology of the k-invariants of the Goodwillie tower. From
these results we establish the spectral sequence (1.2). In Section 10, we give our
modular description of the Koszul resolution for ∆q, by showing that it is given by
the cohomology of the modular isogeny complex.

Conventions. Here and throughout this paper, (−)∨ denotes the E0-linear dual
when applied to an E0-module, and the Spanier-Whitehead dual when applied
to a spectrum, We shall let Sp denote the category of symmetric spectra with
the positive stable model structure [MMSS01], and shall simply refer to these as
“spectra”. If R is a commutative S-algebra, A is a commutative augmented R-
algebra, and M is an R-module, we will let TAQR(A;M) denote topological André-
Quillen homology of A (relative to R) with coefficients in M . Similarly we let
TAQR(A;M) denote the corresponding topological André-Quillen cohomology. If
M = R, we shall omit it from the TAQ-notation.

Acknowledgments. The first author learned many of the techniques employed
in this paper through conversations with his Ph.D. student Jennifer French, and
also benefited from many conversations with Jacob Lurie. Mike Hopkins suggested
a version of the comparison map. In some sense much of this paper completes
a project initially suggested and pursued by Matthew Ando, Paul Goerss, Mike
Hopkins, and Neil Strickland, relating ∆q to the Tits building for GLh(Fp). Johann
Sigurdsson and Neil Strickland have also studied the Morava E-homology of L(k),
but from a slightly different perspective than taken in this paper.

2. Recollections on the Dyer-Lashof algebra for Morava E-theory

Morava E-theory of symmetric groups. Strickland studied the Hopf ring

E0(qnBΣn),

where the two products · and ∗ are given respectively by the cup product and
transfers associated to the inclusions

(2.1) Σn × Σm → Σn+m

and the coproduct is given by the restrictions associated to the above inclusions.
Note that there are actually inclusions (2.1) for every partition of the set {1, . . . , n}
into two pieces. We shall refer to the stabilizers of such partitions as partition
subgroups.
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Strickland [Str98] proved that E0(qnBΣn) is a formal power series ring with inde-
composables ∏

k≥0

E0(BΣpk)/Tr(proper partition subgroups).

Let

Subpk(G) = Spf(Spk)

be the (affine) formal scheme of subgroups of G of order pk. For a noetherian
complete local E0-algebra R, the R-points of Subpk(G) are given by

Subpk(G)(R) = {H < G×Spf(E0) Spf(R) : |H| = pk}.
Strickland also shows that there is a canonical isomorphism:

(2.2) E0(BΣpk)/Tr(proper partition subgroups) ∼= Spk .
This E0-module is free of finite rank.

Let

s : E0 → Spk
be the map which gives Spk its (aforementioned) E0-algebra-structure, induced
topologically from the map

BΣpk → ∗.
We regard Spk as a left module over E0 by the module structure induced by s. Give
the ring Spk the structure of a right E0-module via the ring map

(2.3) t : E0 → Spk
which associates to an R-point H < G×Spf(E0) Spf(R) the deformation

(G×Spf(E0) Spf(R))/H.

The map t arises topologically from the total power operation

E0(∗)→ E0(BΣpk)

coming from the E∞ structure of E.

Morava E-theory of extended powers. For an E-module Y , define

PE(Y ) :=
∨
i≥0

Y ∧Ei
hΣi

.

In [Rez09, §4], the second author defined a monad

T : ModE∗ → ModE∗

and a natural transformation

Tπ∗Y → π∗(PEY )K

which induces an isomorphism

(2.4) [Tπ∗(Y )]∧m
∼=−→ π∗(PEY )K

if π∗Y is flat as an E∗-module [Rez09, Prop. 4.9]. Here, m denotes the maximal
ideal of E0. There is a decomposition

T =
⊕
i≥0

T〈i〉
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so that if π∗Y is finite and flat, we have

(2.5) π∗[Y
∧Ei
hΣi

]K ∼= T〈i〉π∗YK .

The monad T comes equipped [Rez09, Prop. 4.7] with natural isomorphisms

(2.6) T(M)⊗E∗ T(N)
∼=−→ T(M ⊕N).

In particular, if A is a T-algebra, then A is a graded-commutative E∗-algebra in
the following strong sense: not only do element of odd degree anticommute, but
also elements of odd degree square to 0. (See [Rez09, Prop. 3.4] for an explanation
of this phenomenon.)

A convenient summary of the most important properties of the T construction is
given in Section 3.2 of [Rezb]. In particular, we note that if R is a K(n)-local
commutative E-algebra, then π∗R canonically admits the structure of a T-algebra.

Lemma 2.7. If M is a free E∗-module, then TM is a free graded commutative
E∗-algebra in the above sense.

Proof. The rank 1 cases M = E∗ and M = ΣE∗ are discussed in the proof of
Proposition 7.2 of [Rez09]. The general case then follows from 2.6. �

Specializing to the case where Y = ΣqE (for q ∈ Z), and i = pk, we have

[T〈pk〉E∗(Sq)]q = [E∗S
qpk

hΣ
pk

]q = E0(BΣpk)qρ̄k

where ρ̄k denotes the reduced standard real representation of Σpk , and (BΣpk)qρ̄k

denotes the associated Thom spectrum.

Consider the sub- and quotient modules

Primq[k] ↪→ E0(BΣpk)qρ̄k � Indq[k]

where Primq[k] denotes the intersection of the kernels of transfers to proper par-
tition subgroups, and Indq[k] denotes quotient by the sum of the images of the
restrictions from proper partition subgroups. Both Primq[k] and Indq[k] are finite
free E0-modules, and (2.2) implies that there is a canonical isomorphism

Prim0[k] ∼= S∨pk .

Let ιq denote the composite

ιq : Primq[k]→ Indq[k].

The suspension σ is shown in [Rez09] to fit these modules together to give a diagram
(2.8)

Prim2m−1[k]

∼= ι2m−1

��

Prim2m[k]� _

ι2m

��

Prim2m+1[k]

∼= ι2m+1

��

· · ·

· · ·

σ
∼=

::uuuuuuuuuuuuuu
Ind2m−1[k]

σ
∼=

88qqqqqqqqqqqqqq
Ind2m[k]

σ
∼=

88qqqqqqqqqqqqqq
Ind2m+1[k]

σ
∼=

::uuuuuuuuuuuuuu

where ιq is an isomorphism for q odd, and an inclusion with torsion cokernel for q
even.
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The Dyer-Lashof algebra for Morava E-theory. The algebra of additive
power operations acting on cohomological degree q is given by

Γq =
⊕
k

Prim−q[k].

This is contained (via the map ι−q) in the larger algebra of indecomposable power
operations

∆q =
⊕
k

Ind−q[k].

In both rings, the ring E0 is not central, and thus Γq and ∆q have distinct left
and right E0-module structures. In the case of Γ0, these left and right module
structures are induced respectively from the left and right module structures of E0

on Spk under the isomorphism

(2.9) Γ0[k] ∼= S∨pk .

The algebra Γq is the algebra of natural endomorphisms of the functor

Uq : AlgT → ModE0 ,

A∗ 7→ A−q;

see [Rezb, §3.8]. It follows that the underlying E∗-module of a T-algebra carries
the structure of a graded Γ∗-module. The morphism (2.6) gives this Γ∗-module the
structure of a graded-commutative Γ∗-algebra. The functors Uq thus assemble to
give a functor

U∗ : AlgT → AlgΓ∗ .

The algebra ∆q is the algebra of natural endomorphisms of the functor

V q : AlgT ↓ E∗ → ModE0
,

A∗ 7→ [I(A)/I(A)2]−q.;

see [Rezb, §3.10].

The non-canonical natural isomorphisms Uq ∼= Uq+2 and V q ∼= V q+2 given by
multiplication by a unit in E−2 induce non-canonical isomorphisms of algebras

Γq ∼= Γq+2,(2.10)

∆q ∼= ∆q+2.(2.11)

The suspension induces canonical isomorphisms of algebras

(2.12) σ : ∆q ∼=−→ Γq−1.

In particular, all of the E0-algebras Γq and ∆q, for all q, are non-canonically iso-
morphic to each other.
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The Koszul resolution. Observe that the augmentation

ε : ∆q =
⊕
k≥0

∆q[k]→ ∆q[0] = E0

endows E0 with the structure of a ∆q bi-module: we shall use the notation E0 to
denote this ∆q-bimodule. Let ∆̃q denote the kernel of the augmentation ε; it is
likewise a ∆q-bimodule.

Consider the normalized bar complex B∗(Ē0, ∆̃
q, Ē0) with

Bs(Ē0, ∆̃
q, Ē0) = Ē0 ⊗E0

(∆̃q)⊗E0
s ⊗E0

Ē0
∼= (∆̃q)⊗E0

s.

Endow the complex B∗(Ē0, ∆̃
q, Ē0) with a grading by setting

Bs(Ē0, ∆̃
q, Ē0)[k] :=

⊕
k=k1+···+ks

ki>0

∆q[k1]⊗E0
· · · ⊗E0

∆q[ks].

Observe that since ∆q[k] acts trivially on Ē0 for k > 0, the differential in the bar
complex preserves this grading. Thus there is a decomposition of chain complexes

B∗(Ē0, ∆̃
q, Ē0) =

⊕
k≥0

B∗(Ē0, ∆̃
q, Ē0)[k].

In [Rezb], the second author proved that the algebras ∆q are Koszul, as summarized
in the following theorem.

Theorem 2.13 ([Rezb], Prop. 4.6). For each k, the kth graded part of the chain
complex has homology concentrated in top degree:

Hs(B∗(Ē0, ∆̃
q, Ē0)[k]) =

{
C[k]−q, s = k,

0, s 6= k,

where each C[k]−q is finitely generated and free as a right E0-module; furthermore,
C[k]−q = 0 if k < h.

Thus we have

Tork∆q (Ē0, Ē0) ∼= C[k]−q,

Extk∆q (Ē0, Ē0) ∼= C[k]∨−q.

Remark 2.14. Actually, in [Rezb], it is proven that ∆0 is Koszul, but using the
isomorphisms (2.11) and (2.12), there are non-canonical isomorphisms ∆0 ∼= ∆q.
Therefore ∆q is also Koszul.

If M is a ∆q-module, then the Koszul complex C∆q

∗ (M) associated to M is the
chain complex

C∆q

∗ (M) =
(
C[0]−q ⊗E0

M
δ0←− C[1]−q ⊗E0

M
δ1←− · · ·

)
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with differentials δk induced from the following diagram.

(2.15) Bk+1(Ē0,∆
q,M)[k + 1]

dk+1 // Bk(Ē0,∆
q,M)[k]

∆q[1]⊗(k+1) ⊗E0
M ∆q[1]⊗k ⊗E0 M

C[k + 1]−q ⊗Ē0
M

δk

//
?�

OO

C[k]−q ⊗Ē0
M

?�

OO

Here, the map dk+1 is the last face map in the bar complex B•(Ē0,∆
q,M). We

have

Hs(C
∆q

∗ (M)) ∼= Tor∆q

s (Ē0,M).

Recall that the E0-modules C[k]−q are projective. It follows that if M is projective
as an E0-module, the dual cochain complex computes Ext:

Hs(C∆q

∗ (M)∨) ∼= Exts∆q (M, Ē0).

3. Barr-Beck homology

Augmented T-algebras. Consider the adjunction

T : ModE∗ � AlgT : U∗.

A free T-algebra TM is augmented over E∗ by the map

TM → T〈0〉M = E∗.

Thus the above adjunction restricts to an adjunction for augmented T-algebras

T : ModE∗ � AlgT ↓ E∗ : I(−)

where I(−) is the kernel of the augmentation. The monad T contains a “non-unital”
summand

T̄ :=
⊕
i>0

T〈i〉.

Note that there is a natural isomorphism

I(TM) ∼= T̄M.

In particular, if A is an augmented T-algebra, then I(A) is a T̄-algebra.

Trivial T-algebras. The monad T̄ is augmented over the identity functor via the
projection

T̄→ T〈1〉 = Id.

If M is an E∗-module, then via the augmentation we can give M the trivial T̄-
algebra structure. We shall denote the resulting T̄-algebra by M .

If X is an E-module spectrum, write X for this spectrum endowed with the struc-
ture of a non-unital E-algebra spectrum with trivial multiplication. We have the
following.
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Proposition 3.1. If X is a K-local E-module spectrum, the evident identification
π∗X ≈ π∗X is an isomorphism of T̄-algebras.

Cotriple homology. Suppose that we are given a functor F : AlgT ↓ E∗ → A
for A an abelian category. Barr and Beck [BB69] define a “cotriple homology”
associated to F relative to the comonad TI(−) on AlgT ↓ E∗, which we shall simply
denote L∗F , as it could be viewed as a kind of left derived functor. Explicitly it
may be computed in terms of the monadic bar construction as

LsF (A) ∼= Hs(F (B∗(T, T̄, I(A)))).

Derived functors of T-indecomposables. Consider the functor

ΩqT/E∗ : AlgT ↓ E∗ → ModE0
,

A 7→ Ē0 ⊗∆q V q(A).

Combining (2.6), Lemma 2.7, and the definition of ∆∗, we have the following lemma.

Lemma 3.2. Suppose that M is a free E∗-module. Then there is a natural iso-
morphism

V q(TM) ≈ ∆q ⊗E0
M−q,

and hence a natural isomorphism

ΩqT/E∗TM
∼= M−q.

Corollary 3.3. If A ∈ AlgT ↓ E∗ is free as an E∗-module, then there is an iso-
morphism

LsΩqT/E∗A
∼= Hs(B∗(Id, T̄, I(A))−q).

A Grothendeick spectral sequence.

Proposition 3.4. Suppose that A is an augmented T-algebra which is free as an
E∗-module. Then there is a Grothendieck-type spectral sequence

E2
s,t = Tor∆q

s (Ē0,LtV q(A))⇒ Ls+tΩqT/E∗A.

Proof. Consider the double complex

Cs,t := Bs(Ē
0,∆q, V q(Bt(T, T̄, I(A)))).

Computing the spectral sequence for the double complex by running s-homology,
then t-homology, we have

HtHsCs,t ⇒ Hs+t TotCs,t.

Using (2.6), Lemma 2.7, and the definition of ∆q, we have

HtHsCs,t = HtHsBs(Ē
0,∆q, V q(Bt(T, T̄, I(A))))

∼= Ht Tor∆q

s (Ē0, V
q(Bt(T, T̄, I(A))))

∼= Ht Tor∆q

s (Ē0,∆
q ⊗E0

T̄◦tI(A))

∼=

{
HtBt(Id, T̄, I(A)), s = 0,

0, s 6= 0.
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The isomorphism of the second line uses the fact that V q(Bt(T, T̄, I(A))) is a free
E0-module when A is one, using Lemma 2.7. The isomorphism of the third line
uses Lemma 3.2.

The spectral sequence therefore collapses to give an isomorphism

Hi TotC∗,∗ ∼= LiΩqT/E∗A.

Running t-homology followed by s-homology therefore gives a spectral sequence

HsHtCs,t ⇒ Ls+tΩqT/E∗A.

Using the fact that ∆q is free over E0, we compute

HsHtCs,t = HsHtBs(Ē
0,∆q, V q(Bt(T, T̄, I(A))))

∼= HsBs(Ē
0,∆q, HtV

q(Bt(T, T̄, I(A))))

∼= HsBs(Ē
0,∆q,LtV qA)

∼= Tor∆q

s (Ē0,LtV qA).

�

The homology groups LtV qA appearing in the E2-term of the Grothendieck spectral
sequence are demystified by the following lemma. We write “L∗Ω(−)/E∗” for the
Andreé-Quillen homology of augmented graded commutative E∗-algebras, where as
in §2 graded commutativity implies that odd degree elements square to 0.

Lemma 3.5. Suppose that A ∈ AlgT ↓ E∗ is free as an E∗-module. Then there are
isomorphisms

LiV qA ∼= [LiΩA∗/E∗ ]−q.

Proof. By Lemma 2.7, the bar resolution

B•(T, T̄, I(A))→ A

is a simplicial resolution of A by free graded commutative algebras. Since V ∗(−) =
I(−)/I(−)2, the result follows. �

Corollary 3.6. Suppose that A ∈ AlgT ↓ E∗ is free as an augmented graded com-
mutative E∗-algebra. Then the Grothendieck spectral sequence collapses to give an
isomorphism

LsΩqT/E∗A
∼= Tor∆q

s (Ē0, V
q(A)).

Linearization. The definition of ∆∗ gives rise to natural transformations

∆∗ ⊗E∗ M → V ∗(TM) = T̄(M)/(T̄(M))2 ← T̄(M)

of functors. We have noted (Lemma 3.2) that if M is a free E∗-module, then
∆∗ ⊗E∗ M → V ∗(TM) is an isomorphism. Hence, on the full subcategory of free
E∗-modules we obtain a natural transformation of monads

L : T̄M → ∆∗ ⊗E∗ M
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on ModE∗ . (In [Rezb], this transformation is observed to be linearization for pro-
jective M , hence the notation L.) For A ∈ AlgT ↓ E∗, the natural transformation
L induces a map of chain complexes

(3.7) L : B(Id, T̄, I(A))−q → B∗(Ē0,∆
q, V q(A))

and therefore a map

L : LsΩqT/E∗A→ Tor∆q

s (Ē0, V
q(A)).

Lemma 3.8. If A is free as a graded commutative E∗-algebra, the map (3.7) is a
quasi-isomorphism.

Proof. This essentially follows Corollary 3.6 from an identification of the map (3.7)
with the edge homomorphism of the Grothendieck spectral sequence. Specifically,
consider the following commutative diagram of maps of chain complexes.
(3.9)⊕

s+t=n
Bs(Ē0,∆

q, V qBt(T, T̄, I(A)))
'

augt //

'augs

��
L ++VVVVVVVVVVVVVVVVVVV

Bn(Ē0,∆
q, V qA)

Ē0 ⊗∆q V q(Bn(T, T̄, I(A)))
⊕

s+t=n
Bs(Ē0,∆

q, Bt(∆
q,∆q, V qA))

' augs

��

' augt

OO

Bn(Id, T̄, I(A))−q L
// Bn(Ē0,∆

q, V qA)

Here the maps labeled augs and augt are the augmentations of the corresponding
bar complexes, and L are the maps induced by linearization. All of the augmen-
tation maps are edge homomorphisms of appropriate spectral sequences of double
complexes, with E2-terms:

IE2
s,t = HtHsBs(Ē0,∆

q, V qBt(T, T̄, I(A))),

IIE2
s,t = HsHtBs(Ē0,∆

q, V qBt(T, T̄, I(A))),

IIIE2
s,t = HtHsBs(Ē0,∆

q, Bt(∆
q,∆q, V qA)),

IVE2
s,t = HsHtBs(Ē0,∆

q, Bt(∆
q,∆q, V qA)).

Each of these spectral sequences collapses: the case of {IErs,t} is discussed in the

proof of Proposition 3.4, the case of {IIErs,t}, the Grothendieck spectral sequence, is

handled by Corollary 3.6, and the spectral sequences {IIIE2
s,t} and {IVE2

s,t} collapse
for trivial reasons. It follows that each of the augmentation maps in Diagram (3.9)
are quasi-isomorphisms, as indicated. It follows that the bottom arrow in (3.9) is
a quasi-isomorphism, as desired. �

4. Topological André-Quillen homology

Definitions. Suppose that R is a commutative S-algebra, and that A is an aug-
mented commutative R-algebra. Topological André-Quillen homology of A (relative
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to R) was defined by Basterra [Bas99] as a suitably derived version of the cofiber
of the multiplication map on the augmentation ideal:

TAQR(A) = I(A)/I(A)∧2.

If M is an R-module, then Topological André-Quillen homology and cohomology
of A with coefficients in M are defined respectively as

TAQR(A;M) = TAQR(A) ∧RM,

TAQR(A;M) = FR(TAQR(A),M).

As with TAQR, we let TAQR(A) = TAQR(A;R).

The augmentation ideal functor gives an equivalence

I(−) : AlgR ↓ R
'−→ AlgnuR

between the category of augmented commutative R-algebras and the category of
non-unital commutative R-algebras. These categories are tensored over pointed
spaces. Basterra-McCarthy [BM02] show that TAQR(−) is the stabilization: there
is an equivalence

TAQR(A) ' hocolim
n

Ωn(Sn ⊗ IA).

The Kuhn filtration. Kuhn [Kuh04a] endows the topological André-Quillen ho-

mology TAQS(A) of an augmented commutative S-algebra A with an increasing
filtration

(4.1) F1 TAQS(A)→ F2 TAQS(A)→ · · · .

We shall use the simplicial presentation of TAQS to give a point set level definition
of a filtration which has identical properties to Kuhn’s filtration.

Remark 4.2. While there is compelling evidence that the filtration we define in
this section agrees with the filtration defined by Kuhn in [Kuh04a], the authors do
not actually know a proof of this. We will nevertheless refer to the filtration defined
in this section as the “Kuhn filtration” for the rest of the paper.

Let P denote the free E∞-ring monad on Sp

P(Y ) :=
∨
n≥0

Y ∧nhΣn
,

and let P̃ denotes the “non-unital” version

P̃(Y ) :=
∨
n≥1

Y ∧nhΣn
.

Note that the monad P̃ is augmented over the identity. Basterra [Bas99, §5] shows
that TAQ admits a simplicial presentation using the monadic bar construction:

(4.3) TAQS(A) '
∣∣∣B•(Id, P̃, I(A))

∣∣∣ .
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For a non-unital operad O in Sp, let FO denote the free O-algebra monad in Sp:

FOY :=
∨
n≥1

On ∧Σn
Y ∧n.

Let Comm denote the (non-unital) commutative operad in spectra, with

Commn = S.

Viewed as an endofunctor of spectra, we have (using [MMSS01, Lem. 15.5])

LFComm ' P̃.

We therefore have, for A positive cofibrant:

TAQS(A) ' |B•(Id,FComm, I(A))| .

Observe for fixed s there is a splitting

Bs(Id,FComm, I(A)) = FsCommI(A)

∼= F[Comm◦s]I(A)

=
∨
i≥1

[Comm◦s]i ∧Σi
I(A)∧i.

=:
∨
i≥1

Bs(Id,FComm, I(A))〈i〉.

(4.4)

Here, ◦ denotes the composition product of symmetric sequences. Consider the
filtration

FnBs(Id,FComm, I(A)) =
∨

1≤i≤n

Bs(Id,FComm, I(A))〈i〉.

This filtration is compatible with the simplicial structure, and recovers the Kuhn
filtration on TAQS for cofibrant R:

Fn TAQS(A) ' |FnB•(Id,FComm, I(A))| .

The layers of the Kuhn filtration. We now recall Kuhn’s description of the
layers of his filtration in this language. The (pointed) partition poset complex
P(n)• is defined to be the pointed simplicial Σn-set whose set of s-simplices is the
set λ0 ≤ λ1 ≤ · · · ≤ λs :

λi is a partition of n,
λ0 = {1, . . . , n},
λs = {1} · · · {n}

q {∗}.
The face and degeneracy maps send the disjoint basepoint ∗ to the disjoint base-
point, and are given on the other elements by the formulas

di(λ0 ≤ · · · ≤ λs) =

{
λ0 ≤ · · · ≤ λ̂i ≤ · · · ≤ λs, i 6∈ {0, s},
∗, i ∈ {0, s},

si(λ0 ≤ · · · ≤ λs) = λ0 ≤ · · · ≤ λi ≤ λi ≤ · · · ≤ λs.

Note that we have

P(n)0 =

{
{{1}, ∗}, n = 1,

{∗}, n > 1.
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Proposition 4.5 (Kuhn [Kuh04a]). We have

(4.6) Fn TAQS(A)/Fn−1 TAQS(A) ' |P(n)•| ∧hΣn
I(A)∧n.

Proof. Let I(A) denote the spectrum I(A) endowed with the trivial FComm-algebra
structure. We have

Fn TAQS(A)/Fn−1 TAQS(A) ' B(Id,FComm, I(A))〈n〉
∼= |[Comm◦•]n ∧Σn

I(A)∧n|
∼= |B•(1,Comm, 1)n| ∧Σn

I(A)∧n.

Here, 1 denotes the unit symmetric sequence. The lemma now follows from the
isomorphism of simplicial Σn-spectra

B•(1,Comm, 1)n ∼= P(n)•

(see [Chi05]). �

5. The Morava E-theory of L(k)

L(k)-spectra. The spectrum L(k)q is defined as

(5.1) L(k)q := εst(BFkp)qρ̄k .

Here, ρ̄k represents the reduced regular real representation of the elementary abelian
p-group Fkp, and (BFkp)qρ̄k denotes the Thom spectrum of the q-fold direct sum of
ρ̄k. We write εst for the Steinberg idempotent, acting on this spectrum, so that
L(k)q is the Steinberg summand.

We shall let L(k) denote the spectrum L(k)1. Mitchell and Priddy show that there
are equivalences

Spp
k

(S)/Spp
k−1

(S) ' ΣkL(k)

where Spp
k

(S) is the (pk)th symmetric product of the sphere spectrum.

The Goodwillie derivatives of the identity functor

Id : Top∗ → Top∗

are given by (see [AM99])

(5.2) ∂n(Id) ' (Σ∞ |P(n)•|)∨ .

Arone and Dwyer [AD01, Cor. 9.6] establish mod p equivalences (for q odd)

L(k)q 'p Σk−q[∂pk(Id) ∧ Sqp
k

]hΣ
pk

= Σk−qDpk(Id)(Sq).(5.3)

Here Dpk(Id) is the infinite delooping of the (pk)th layer of the Goodwillie tower of
the identity functor on Top∗.

Remark 5.4. For the purposes of the rest of the paper, one could take (5.3) as
the definition of the p-adic homotopy type of L(k)q, instead of (5.1). All of the
computations and properties of the spectra L(k)q in what follows are really aspects
of the partition poset model of Dpk(Id)(Sq).
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The E-homology calculation. We now turn our attention to computing the E-
homology of the spectra L(k)q using (5.3). We do this with a sequence of lemmas.

Recall from §3 that for an E∗-module M , we write M for the T̄-algebra obtained
by endowing M with the trivial action.

Lemma 5.5. If Y is a spectrum with E∗Y finite and flat as an E∗-module, then
there is an isomorphism of simplicial E∗-modules

E∗(P(n)• ∧hΣn Y
∧n) ∼= B•(Id, T̄, E∗Y )〈n〉.

Proof. Replacing Y with a cofibrant replacement in the positive model structure
for symmetric spectra, this follows immediately from applying (2.5) to the isomor-
phisms

P(n)• ∧hΣn
Y ∧n ∼= B•(1,Comm, 1)n ∧Σn

Y ∧n

∼= B•(Id,FComm, Y )〈n〉.
�

Lemma 5.6. For q odd, there is a canonical isomorphism

E0(Σ−k−q
∣∣P(pk)•

∣∣ ∧hΣ
pk
Sqp

k

) ∼= C[k]q.

Proof. Consider the Bousfield-Kan spectral sequence:

(5.7) E1
s,t = Et(P(pk)s ∧hΣ

pk
Sqp

k

)⇒ Et+s(
∣∣P(pk)•

∣∣ ∧hΣ
pk
Sqp

k

).

We compute, using Lemma 5.5 and Lemma 3.8

Eq+∗(P(pk)s ∧hΣ
pk
Sqp

k

) ∼= E∗ ⊗E0 B•(Id, T̄, E∗Sq)〈pk〉q
L−→
'
E∗ ⊗E0 B•(Ē0,∆

−q, Ē0)[k].

By Theorem 2.13, the spectral sequence (5.7) collapses to give the desired result. �

Theorem 5.8. For q odd, there are canonical isomorphisms of E∗-modules

E0L(k)q ∼= C[k]∨−q

and

E0L(k)q ∼= C[k]−q.

Proof. By (5.3) and (5.2) there are equivalences

L(k)q ' Σk−q∂pk(Id) ∧hΣ
pk
Sqp

k

' Σk−q
∣∣P(pk)•

∣∣∨ ∧hΣ
pk
Sqp

k

.

Since P(pk)• is a finite complex, the results of [Kuh04b] imply that there areK-local
equivalences

[Σk−q
∣∣P(pk)•

∣∣∨ ∧ Sqpk ]hΣ
pk

'−−−→
norm

[Σk−q
∣∣P(pk)•

∣∣∨ ∧ Sqpk ]hΣ
pk

' [(Σ−k+q
∣∣P(pk)•

∣∣ ∧ S−qpk)∨]hΣ
pk

' [(Σ−k+q
∣∣P(pk)•

∣∣ ∧ S−qpk)hΣ
pk

]∨.
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Now apply the universal coefficient theorem, using the fact that C[k]−q is free as a
module over E0, to deduce the result from Lemma 5.6. �

Remark 5.9. Arone and Dwyer actually give another identification of the spectrum
L(k)q, dual to (5.3); they also prove that there is an equivalence

L(k)q ' Σ−k−q[
∣∣P(pk)•

∣∣ ∧ Sqpk ]hΣ
pk
.

Thus Lemma 5.6 gives the following alternative to Theorem 5.8: for q odd we have

E0L(k)q ∼= C[k]q.

This description of the E-homology of L(k)q is less well suited to the perspective
of the present paper.

6. The Bousfield-Kuhn functor and the comparison map

The Bousfield-Kuhn functor. Let T denote any vh-telescope on a type h finite

complex. The Bousfield-Kuhn functor Φf = Φfh factors localization with respect to
T . We are mainly interested in the composition Φ of Φ′ with K-localization. Thus
we have a diagram of functors commuting up to natural weak equivalence.

Sp

Ω∞

��

(−)T //

(−)K
  

Sp
(−)K // Sp

Top∗

Φf

<<zzzzzzzz Φ

66mmmmmmmmmmmmmmm

The unstable vn-periodic homotopy groups of X are the homotopy groups of Φf (X):

v−1
n π∗(X) ∼= π∗Φ

f (X).

When the telescope conjecture holds for all heights ≤ h (e.g., if h = 1), then
Φf ≈ Φ.

See [Kuh08] for a detailed summary of the construction and properties of these
functors. The main additional property we will need is that Φ commutes with finite
homotopy limits, and thus in particular ΦΩ→ ΩΦ is a natural weak equivalence.

Applying Φ to the unit of the adjunction

X → Ω∞Σ∞X

we get a natural transformation

ηX : Φ(X)→ (Σ∞X)K .

The comparison map. Let R be a commutative S-algebra, and consider the
functor

R(−)+ : Topop∗ → AlgR ↓ R.
Here, the R-algebra structure on RX+ comes from the diagonal on X, with unit
given by the map X → ∗, and augmentation coming from the basepoint on X.
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The augmentation ideal I(RX+) is identified with RX , the R-module of maps from
Σ∞X toR. As the functor Topop∗ → AlgnuR given byX 7→ RX is a pointed homotopy
functor, there is are natural transformations

Sn ⊗RX → RΩnX .

Assume that R is K-local. We define a natural transformation

cR : TAQR(RX+)→ RΦ(X)

of functors Topop∗ → ModR as folows.

cR : TAQR(RX+) ' hocolim
n

Ωn(Sn ⊗RX)

→ hocolim
n

ΩnRΩnX

' hocolim
n

ΩnR(Σ∞ΩnX)K

η∗ΩnX−−−→ hocolim
n

ΩnRΦ(ΩnX)

' hocolim
n

ΩnRΣ−nΦ(X)

' RΦ(X).

Taking R-linear duals of cR and composing with the evident map R ∧ Φ(X) →
HomR(RΦ(X), R) gives rise to a map

cR : (R ∧ Φ(X))K → TAQR(RX+).

We shall refer to cR and cR as the comparison maps.

The comparison map on infinite loop spaces. Let Y be a spectrum. The
counit of the adjunction

ε : Σ∞Ω∞ → Id

induces a natural transformation

ε∗ : SYK → SΩ∞Y
K .

Regarding SΩ∞Y
K as a non-unital commutative SK-algebra, this induces a map of

augmented commutative SK-algebras

ε̃∗ : PSK
SYK → S

Ω∞Y+

K .

The following property of cSK
: TAQSK (S

Ω∞Y+

K ) → S
Φ(Ω∞Y )
K will be all that we

need to know about it.

Lemma 6.1. The composite

SYK ' TAQSK (PSK
SYK)

TAQSK (ε̃∗)−−−−−−−−→ TAQSK (S
Ω∞Y+

K )
cSK−−−→ S

Φ(Ω∞Y )
K ' SYK

is the identity.
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Proof. The lemma is proved by the commutativity of the following diagram

SYGF

@A

ε∗

//

� _

��

' // TAQSK (PSK
SYK)

ε̃∗ // TAQSK (S
Ω∞Y+

K ) ED

BC

cSK

oo

PSK
SYK

//

''PPPPPPPPPPPP

ε̃∗

��5
55

55
55

55
55

55
55

55
55

55
55

55
55

5
lim−→Ωn(Sn ⊗ P̃SK

SYK)
ε̃∗
//

��

lim−→Ωn(Sn ⊗ SΩ∞Y
K )

��
lim−→Ωn(P̃SK

SΣ−nY
K )

ε̃∗
// lim−→Ωn(SΩ∞Σ−nY

K )

η∗
Ω∞Σ−nY

��
lim−→Ωn(SΣ−nY

K )

SΩ∞Y
K

;;vvvvvvvvvvvvvvvvvvvvvvvv

η∗Ω∞Y

// SYK

'

OO

together with the fact that η∗Ω∞Y ◦ ε∗ ' Id [Kuh08, Sec. 7]. �

The comparison map on QX. The previous lemma allows us to deduce the
following.

Proposition 6.2. Suppose that X ∈ Top∗ is connected and has finite free E-
homology. Then the comparison map for QX:

cSK
: TAQSK (S

QX+

K )→ SΦQX
K ' SXK

is an equivalence.

Proof. We will argue that TAQSK (S
QX+

K ) has finite K-homology, of rank equal to
the rank of the K-homology of SXK . The proposition then follows from Lemma 6.1.
Observe that the Kahn splitting and our finiteness hypotheses gives rise to a se-
quence of equivalences

S
QX+

K ' SP(Σ∞X)
K '

∏
i

[(SXK )∧SK
i]hΣi .

The K-local norm equivalences give equivalences∏
i

[(SXK )∧SK
i]hΣi '

∏
[(SXK )

∧SK
i

hΣi
]K =: P̂SK

(SXK ).

In fact, the equivalence

S
QX+

K ' P̂SK
(SXK )

is an equivalence of H∞-ring spectra, where we give P̂SK
(SXK ) the H∞-ring structure

arising from the inverse limit of the localized truncated free algebras:

P̂SK
(SXK ) ' holim

n

∨
i≤n

[(SXK )∧ihΣi
]K .

As the argument is somewhat technical, we defer the proof to Appendix A.
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Associated to the simplicial presentation

TAQSK (S
QX+

K ) '
∣∣∣B•(Id, P̃SK

, SQXK )
∣∣∣

is a Bousfield-Kan spectral sequence which takes the form

(6.3) E1
s,t = EtBs(Id, P̃SK

, SQXK )⇒ Es+t TAQSK (S
QX+

K ).

As our E-homology is implicitly completed E-homology, this spectral sequence only
converges under very special circumstances (for instance, if it has finitely many lines
on the Er-page for some r). The E1-term may be identified using (2.4):

E1
s,∗
∼= Bs(Id, T̄, E∗SQXK )∧m.

To compute the E2-page, we note that the homology of the uncompleted bar com-
plex is given by:

Hs(B∗(Id, T̄, E∗SQXK )) = LsΩ∗T/E∗E∗S
QX+

K .

Since S
QX+

K is equivalent to P̂SK
(SXK ) as an H∞-algebra, there is an isomorphism

of augmented T-algebras

E∗S
QX+

K
∼= E∗P̂SK

(SXK ) ∼= ŜymE∗(∆
∗ ⊗E∗ Ẽ∗X)

(the last isomorphism follows from Lemma 2.7 and the definition of ∆∗). Here

ŜymE∗ denotes the (graded commutative) power series algebra over E∗. The
Grothendieck spectral sequence of Proposition 3.4

E2
s,t = Tor∆∗

s (Ē0,LtV ∗(ŜymE∗(∆
∗ ⊗E∗ E∗X)))⇒ Ls+tΩ∗T/E∗E∗S

QX+

K

collapses to give

LsΩ∗T/E∗E∗S
QX+

K
∼=

{
Ẽ∗X, s = 0,

0, s > 0.

In particular, this implies that Hs(B∗(Id, T̄, E∗SQXK )) is free over E∗. Therefore,
the higher derived functors of m-adic completion vanish on these homology groups
[Rez09, Prop. 3.2], and it follows that we have

E2
s,∗ = Hs(B∗(Id, T̄, E∗SQXK )∧m)

∼= Hs(B∗(Id, T̄, E∗SQXK ))∧m

∼=

{
Ẽ∗X, s = 0,

0, s > 0.

We conclude that spectral sequence (6.3) converges and collapses to give an iso-
morphism

E∗ TAQSK (S
QX+

K ) ∼= Ẽ∗X.

In particular, there is an isomorphism

K∗TAQSK (S
QX+

K ) ∼= K∗S
X
K .

�
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7. Weiss towers

In this section we freely use the language of Weiss’s orthogonal calculus [Wei95].

Definition 7.1. Let F be a reduced homotopy functor from complex vector spaces
to K-local spectra. We shall say that a tower

· · · → Fn → Fn−1 → · · · → F1

of functors under F is a finite K-local Weiss tower if

(1) the fiber of Fn → Fn−1 is equivalent to the K-localization of a homogeneous
degree n functor from complex vector spaces to spectra, and

(2) The map F → Fn is an equivalence for n� 0.

Remark 7.2. Suppose that {Fn} is a finite K-local Weiss tower for F . We record
the following observations.

(1) The functor Fn are n-excisive. This is because the localization of a homo-
geneous degree n functor is n-excisive.

(2) If {Gn} is a finite K-local Weiss tower for G, and F → G is a natural
transformation, there is a homotopically unique induced compatible system
of natural transformations

Fn → Gn.

This is because if Dn is a homogeneous degree n functor which is K-locally
equivalent to the fiber Fn → Fn−1, the space of natural transformations

Nat((Dn)K , Gm) ' Nat(Dn, Gm)

is contractible for m < n. It follows that the natural map

Nat(Fm, Gm)
'−→ Nat(F,Gm)

is an equivalence.
(3) It follows from (2) that if F admits a finite K-local Goodwillie tower, it is

homotopically unique.

We will construct finite K-local Goodwillie towers of the following functors from
complex vector spaces to spectra:

V 7→ Φ(ΣSV )

V 7→ TAQSK
(S

(ΣSV )+

K ).

In each of these cases, the towers will only have non-trivial layers in degrees pk for
k ≤ h.

Proposition 7.3. The tower {Φ(Pn(Id)(ΣSV ))}n is a finite K-local Weiss tower
for Φ(ΣSV ).

Proof. The fibers of the tower {Φ(Pn(ΣSV ))}n are given by

Dn(Id)(ΣSV )K → Φ(Pn(Id)(ΣSV ))→ Φ(Pn−1(Id)(ΣSV )).
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By [Kuh08, Thm. 8.9], the map

ψ(V )→ Φ(Ppn(Id)(ΣSV ))

is an equivalence. �

Proposition 7.4. The tower {Fn TAQSK
(S

(ΣSV )+

K )} obtained by taking the K-local

Spanier-Whitehead dual of the Kuhn filtration {Fn TAQS(S(ΣSV )+)} is a finite K-
local Weiss tower.

Proof. By 4.6, the fibers of the tower are given by

F (∂n(Id)∨ ∧hΣn (SΣSV

)∧n, SK) ' F (∂n(Id)∨ ∧ (SΣSV

)∧n, SK)hΣn

' (F (∂n(Id)∨ ∧ (SΣSV

)∧n, SK)hΣn)K

' (((∂n(Id) ∧ Sn ∧ SnV )K)hΣn)K

' ((∂n(Id) ∧ Sn ∧ SnV )hΣn
)K .

Thus they are equivalent to K-localizations of homogeneous degree n functors.
Since we have

TAQS(S(ΣV )+) ' hocolim
n

Fn TAQS(S(ΣV )+),

we have

TAQSK
(S

(ΣSV )+

K ) ' holim
n

Fn TAQSK
(S

(ΣSV )+

K ).

Since the layers are equivalent to Dn(Id)(ΣSV )K , they are acyclic for n > ph

[AM99]. �

8. The comparison map on odd spheres

Fix q to be an odd positive integer. The main result of this section is the following
theorem.

Theorem 8.1. The comparison map

cSK : Φ(Sq)→ TAQSK
(S

Sq
+

K )

is an equivalence.

We shall begin with its dual, and establish the following weaker statement.

Lemma 8.2. The natural transformation

cSK
: TAQSK (S

(ΣSV )+

K )→ S
Φ(ΣSV )
K

of functors from complex vector spaces to K-local spectra has a weak section.

Proof. Using work of Arone-Mahowald, Kuhn shows that the map

Φ(X)→ Φ(Pph(Id)(X))

is an equivalence [Kuh08, Thm. 8.9]. Let X = ΣSV , and let

X → Q•+1X
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denote the Bousfield-Kan cosimplicial resolution. Consider the diagram:

(8.3) TAQSK (S
X+

K )
cSK // SΦ(X)

K

S
ΦP

ph
(Id)(X)

K

TAQSK (S
P

ph
(Q•+1)(X)+

K )

OO

cSK //
S

ΦP
ph

(Q•+1)X

K

OO

It is well known (see [AK98]) that there is an equivalence of cosimplicial Σn-spectra:

∂n(Q•+1) ' Σ∞P(n)∨•

so that the induced map

∂n(Id)
'−→ Tot ∂n(Q•+1) ' Tot Σ∞P(n)∨• ' Σ∞ |P(n)•|∨

is equivalence (5.2). For a fixed s, the iterated Snaith splitting implies that the
Goodwillie tower for Qs+1 splits, giving an equivalence

Pph(Q•+1)(X) '
∏

1≤i≤ph
Q(P(i)s ∧hΣi

X∧i).

In particular, the spaces above satisfy the hypotheses of Prop. 6.2, and the com-
parison map

TAQSK (S
P

ph
(Q•+1)(X)+

K )
cSK−−−→ S

ΦP
ph

(Q•+1)X

K

is a levelwise equivalence of simplicial spectra. It follows from Diagram (8.3) that
the natural map ∣∣∣∣SΦP

ph
(Q•+1)(X)

K

∣∣∣∣
K

→ S
ΦP

ph
(Id)(X)

K ' SΦ(X)
K

factors through cSK
:∣∣∣∣SΦ(P

ph
(Q•+1)(X))

K

∣∣∣∣
K

→ TAQSK (S
X+

K )
cSK−−−→ S

Φ(X)
K ' S

Φ(P
ph

(Id)(X))

K .

The lemma will be proven if we can show that the natural map∣∣∣∣SΦ(P
ph

(Q•+1)(X))

K

∣∣∣∣
K

→ S
Φ(P

ph
(Id)(X))

K

is an equivalence. To do this, we will prove that for all n the composite∣∣∣SΦ(Pn(Q•+1)(X))
K

∣∣∣
K
→ S

Φ(Pn(Id)(X))
K

is an equivalence, by induction on n. The map of fiber sequences

Dn(Id)(X) //

��

Pn(Id)(X) //

��

Pn−1(Id)(X)

��
Dn(Q•+1)(X) // Pn(Q•+1)(X) // Pn−1(Q•+1)(X)
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gives a map of fiber sequences∣∣∣SΦ(Pn−1(Q•+1)(X))
K

∣∣∣
K

//

��

∣∣∣SΦ(Pn(Q•+1)(X))
K

∣∣∣
K

//

��

∣∣∣SΦ(Dn(Q•+1)(X))
K

∣∣∣
K

��
S

Φ(Pn−1(Id)(X))
K

// SΦ(Pn(Id)(X))
K

// SΦ(Dn(Id)(X))
K

The induction on n therefore rests on proving that the natural map∣∣∣SDn(Q•+1)(X)
K

∣∣∣
K
'
∣∣∣SΦ(Dn(Q•+1)(X))
K

∣∣∣
K
→ S

Φ(Dn(Id)(X))
K ' SDn(Id)(X)

K

is an equivalence.

Using the finiteness of X and P(n)•, together with the vanishing of K-local Tate
spectra [Kuh04b], we have the following diagram of equivalences∣∣∣SDn(Q•+1)(X)

K

∣∣∣
K

// SDn(Id))(X)
K

∣∣∣SΣ∞P(n)∨•∧hΣnX
∧n

K

∣∣∣
K

//

'

OO

S
Σ∞|P(n)•|∨∧hΣnX

∧n

K

'

OO

∣∣∣∣(SΣ∞P(n)∨•∧X
∧n

K

)hΣn

∣∣∣∣
K

//

'

OO

(
S

Σ∞|P(n)•|∨∧X∧n
K

)hΣn

'

OO

∣∣∣∣(SΣ∞P(n)∨•∧X
∧n

K

)
hΣn

∣∣∣∣
K

//

'

OO

[(
S

Σ∞|P(n)•|∨∧X∧n
K

)
hΣn

]
K

'

OO

∣∣∣∣(Σ∞P(n)• ∧ SX
∧n

K

)
hΣn

∣∣∣∣
K

//

'

OO

[(
Σ∞ |P(n)•| ∧ SX

∧n

K

)
hΣn

]
K

'

OO

The bottom arrow in this diagram is an equivalence, since realizations commute past
homotopy colimits and smash products. Therefore the top arrow in the diagram is
an equivalence, as desired. �

The final ingredient we will need to prove Theorem 8.1 will be a result which will
allow us to dualize Lemma 8.2.

Proposition 8.4. The spectrum Φ(Sq) is K-locally dualizible.

Proof. It suffices to show that its completed Morava E-homology is finitely gener-
ated [HS99]. Since Φ(Sq) ' Φ(Pph(Id)(Sq)) [Kuh08, Sec. 7], one can prove this by
proving Φ(Ppk(Id)(Sq)) has finitely generated completed Morava E-homology by
induction on k. This is done using the fiber sequences

Dpk(Id)(Sq)K → Φ(Ppk(Id)(Sq))→ Φ(Ppk−1(Id)(Sq))
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together with our computation E0L(k)q ∼= C[k]∨−q. Note that C[k]∨−q is finitely
generated by [Rezb, Prop. 4.6]. �

Proof of Theorem 8.1. We can take the K-local Spanier-Whitehead dual of the re-
traction

S
Φ(ΣSV )
K → TAQSK (S

(ΣSV )+

K )
cSK−−−→ S

Φ(ΣSV )
K

provided by Lemma 8.2 to obtain a retraction of functors from complex vector
spaces to K-local spectra:

Φ(ΣSV )
cSK

−−−→ TAQSK
(S

(ΣSV )+

K )→ Φ(ΣSV ).

We therefore get a retraction of the K-local Weiss towers of these functors (see
Propositions 7.3 and 7.4)

{Φ(Pn(Id)(ΣSV ))}n
cSK

−−−→ {Fn TAQSK
(S

(ΣSV )+

K )}n → {Φ(Pn(Id)(ΣSV ))}n.

However, the layers of both of these towers are equivalent to the spectra Dn(Id)(ΣSV )K .
Since the Morava K-theory of these layers is finite, it follows that the map cSK in-
duces an equivalence on the layers of the K-local Weiss towers. Since the K-local
Weiss towers are themselves finite, we deduce that the natural transformation

Φ(ΣSV )
cSK

−−−→ TAQSK
(S

(ΣSV )+

K )

is an equivalence by inducting up the towers. �

Actually, the method of proof gives the following corollary, which allows us to
compare Φ applied to the Goodwillie tower of the identity with the much easier to
understand Kuhn tower.

Corollary 8.5. The comparison map induces an equivalence of towers

{Φ(Pn(Id)(Sq))} cSK

−−−→
'
{Fn TAQSK

(S
Sq

+

K )}.

9. The Morava E-homology of the Goodwillie attaching maps

Fix q to be an odd positive integer. Let αk denote the attaching map connecting
the pk and pk+1-layers of the Goodwillie tower for Sq.

αk : Dpk(Id)(Sq) // BDpk+1(Id)(Sq)

Σq−kL(k)q Σq−kL(k)q

Applying Φ and desuspending, we get a map

Φ(αk) : (L(k)q)K → (L(k + 1)q)K

which should be regarded as the corresponding attaching map between consecutive
non-trivial layers in the vh-periodic Goodwillie tower of the identity.

Note that since ES
q
+ is a commutative E-algebra, the reduced cohomology group

Ẽq(Sq) = V qπ∗E
Sq

+
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is a ∆q-module. Under the isomorphisms

E0L(k)q ∼=
(
C[k]−q ⊗E0

Ẽq(Sq)
)∨

obtained by tensoring the isomorphism of Theorem 5.8 with the fundamental class

in Ẽq(Sq), there is an induced map

E0Φ(αk) :
(
C[k]−q ⊗E0 Ẽ

q(Sq)
)∨
→
(
C[k + 1]−q ⊗E0 Ẽ

q(Sq)
)∨

.

We have the following more refined version of Theorem 5.8.

Theorem 9.1. There is an isomorphism of cochain complexes

(E0L(k)q, E0Φ(αk)) ∼= (C∆q

k (Ẽq(Sq))∨, δ∨k )

where C∆q

k (Ẽq(Sq)) is the Koszul complex for the ∆q-module Ẽq(Sq).

Proof. By Corollary 8.5, it suffices to show that the E-homology of the attaching
maps in the Kuhn tower

α′k : (L(k)q)K '

 Fpk TAQSK (S
Sq

+

K )

Fpk−1 TAQSK (S
Sq

+

K )

∨ →
Fpk+1 TAQSK (S

Sq
+

K )

Fpk TAQSK (S
Sq

+

K )

∨ ' (L(k+1)q)K

have the desired description (here the (−)∨ notation above denotes the K-local
Spanier-Whitehead dual). The result is obtained by dualizing the following diagram

C[k + 1]−q ⊗E0 Ẽ
q(Sq)

δk //
� _

��

C[k]−q ⊗E0 Ẽ
q(Sq)� _

��
Bk+1(Ē0,∆

q, Ẽq(Sq))[k + 1]
dk+1 // Bk(Ē0,∆

q, Ẽq(Sq))[k]

Bk+1(Id, T̄, Ẽ∗(Sq))〈pk+1〉−q
dk+1〈pk〉 //

L

OO

Bk(Id, T̄, Ẽq(Sq))〈pk〉−q

L

OO

E−qBk+1(Id, P̃, I(SS
q
+))〈pk+1〉

dk+1〈pk〉// E−qBk(Id, P̃, I(SS
q
+))〈pk〉

which identifies the E-homology of the attaching map

Fpk+1 TAQSK (S
Sq

+

K )

Fpk TAQSK (S
Sq

+

K )
→

Fpk TAQSK (S
Sq

+

K )

Fpk−1 TAQSK (S
Sq

+

K )
.

In this diagram, the maps dk+1 are the last face maps in the corresponding bar
complexes, and the maps dk+1〈pk〉 are the projections of the face maps on to the
〈pk〉-summands. �

Corollary 9.2. The spectral sequence obtained by applying E∗ to the tower {Φ(Pn(Id)(Sq))}
takes the form

Exts∆q (Ẽq(Sq), Ēt)⇒ Eq+t−sΦ(Sq).



26 MARK BEHRENS AND CHARLES REZK

10. A modular description of the Koszul complex

Reduction to the case of q = 1. In this section we give a modular interpretation

of the Koszul complex C∆q

∗ (Ẽq(Sq)) in the case of q = 1. Since the suspension gives
inclusions of bar complexes (see (2.8))

B(Ē0,∆
q, Ẽq(Sq)) ↪→ B(Ē0,∆

1, Ẽ1(S1))

we deduce that we have an induced map of Koszul complexes

C[k]−q
� � //

σq−1

��

∆q[1]⊗k� _

��
C[k]−1

� � // ∆1[1]⊗k

Furthermore, the map σq−1 above must be an inclusion. We deduce that there is
an inclusion of Koszul complexes

σq−1 : C∆q

∗ (Ẽq(Sq)) ↪→ C∆1

∗ (Ẽ1(S1)).

It follows that the modular description of the Koszul complex we shall give for
q = 1 will extend to a modular description for arbitrary odd q provided we have a
good understanding of the inclusions of lattices

∆q[1] ⊆ ∆1[1],

∆q[2] ⊆ ∆1[2].

This amounts to having a concrete understanding of the second author’s “Wilkerson
Criterion” [Rez09].

The modular isogeny complex. We review the definition of the modular isogeny
complex K∗pk of [Reza] associated to the formal group G.

For (k1, . . . , ks) a sequence of positive integers, let

Subpk1 ,...,pks (G) = Spf(Spk1 ,...,pks )

be the (affine) formal scheme whose R-points are given by

Subpk1 ,...,pks (G)(R) = {H1 < · · · < Hs < G×Spf(E0) Spf(R) : |Hi/Hi−1| = pki}.

Lemma 10.1. There is a canonical isomorphism of E0-algebras

Spk1 ,...,pks
∼= Spk1 ⊗E0

· · · ⊗E0
Spks .

Proof. An R point of Spf(Spk1 ,...,pks ) corresponds to a chain of finite subgroups

(H1 < · · · < Hs)

in G1 := G ×Spf(E0) Spf(R) with |Hi/Hi−1| = pi. Define Gi := G1/Hi−1. Then,

defining, H̃i := Hi/Hi−1, we get a collection of R-points

(Gi, H̃i) ∈ Spf(Spi)(R)

and isomorphisms Gi/H̃i
∼= Gi+1. This is precisely the data of an R-point of

Spf(Spk1 ⊗E0
· · · ⊗E0

Spks ).
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Conversely, given such a sequence (Gi, H̃i) with isomorphisms Gi/H̃i
∼= Gi+1, there

is an associated chain of subgroups (H1, . . . ,Hs) of G1 obtained by pulling back

the subgroup H̃i over the isogeny:

G1 → G1/H̃1
∼= G2 → G2/H̃2

∼= G3 → · · · → Gi−1/H̃i−1
∼= Gi.

�

For k > 0 we define

Kspk =


∏
k1+···+ks=k

ki>0
Spk1 ,...,pks , 1 ≤ s ≤ k,

0, otherwise.

We handle the case of k = 0 by defining

Ks1 =

{
E0, s = 0,

0, s > 0.

For 1 ≤ i ≤ s and a decomposition ki = k′i + k′′i with k′i, k
′′
i > 0, define maps

ui : Spk1 ,...,pks → Spk1 ,...,pk
′
i ,pk

′′
i ,...,pks

on R points by

u∗i : (H1 < · · · < Hs+1) 7→ (H1 < · · · < Ĥi < · · · < Hs+1).

The maps ui, under the isomorphism of Lemma 10.1, all arise from the maps

u1 : Spk′+k′′ → Spk′ ⊗E0
Spk′′ .

In [Rez09], it is established that the maps u1 above are dual to the algebra maps

Γ[k′]⊗E0
Γ[k′′]→ Γ[k′ + k′′].

Taking a product over all possible such decompositions of ki = k′i + k′′i gives a map

ui : Kspk → K
s+1
pk

.

The differentials

δ : Kspk → K
s+1
pk

, 1 ≤ s < k

in the cochain complex K∗pk are given by

δ(x) =
∑

1≤i≤s

(−1)iui(x).

The cohomology of the modular isogeny complex. The key observation of
this section is the following.

Proposition 10.2. There is an isomorphism of cochain complexes

B∗(Ē0, ∆̃
1, Ē0)[k]∨ ∼= K∗pk .

It follows that we have

Hs(K∗pk) ∼=

{
C[k]∨−1, s = k,

0, s 6= k.
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Proof. The suspension isomorphism (2.12)

σ : ∆1 ∼=−→ Γ0

induces an isomorphism of chain complexes

B∗(Ē0, ∆̃
1, Ē0)[k] ∼= B∗(Ē0, Γ̃

0, Ē0)[k].

The isomorphisms (2.9) together with those of Lemma 10.1 induce isomorphisms

Bs(Ē0, Γ̃
0, Ē0)[k]∨ =

 ⊕
k1+···+ks=k

ki>0

Γ̃0[k1]⊗E0 · · · ⊗E0 Γ̃0[ks]


∨

∼=
⊕

k1+···+ks=k
ki>0

Γ̃0[k1]∨ ⊗E0
· · · ⊗E0

Γ̃0[ks]
∨

∼=
⊕

k1+···+ks=k
ki>0

Spk1 ⊗E0
· · · ⊗E0

Spks

∼=
∏

k1+···+ks=k
ki>0

Spk1 ,...,pks

since all of the E0-modules involved are finite and free. Using the facts that Γ0[t]
acts trivially on Ē0 for t > 0, and that the differential in the modular isogeny
complex is an alternating sum of maps dual to the multiplication maps in Γ0, our
isomorphisms yield the desired isomorphism of cochain complexes

B∗(Ē0, ∆̃
1, Ē0)[k]∨ ∼= K∗pk .

Again, appealing the the fact that these cochain complexes are free E0-modules in
each degree, and that the modules C[k]−1 are free (see [Rezb, Prop. 4.6]), we have

Hs(K∗pk) ∼= Hs(B∗(Ē0, ∆̃
1, Ē0)[k]∨)

∼= Hs(B∗(Ē0, ∆̃
1, Ē0)[k])∨

∼=

{
C[k]∨−1, s = k,

0, s 6= k.

�

Modular description of the Koszul differentials. What remains is to give a
modular description of the Koszul differentials

Hk(K∗pk) ∼= C∆1

k (Ẽ1(S1))∨
δ∨k−→ C∆1

k+1(Ẽ1(S1))∨ ∼= Hk+1(K∗pk+1).

Consider the map

uk+1 : Sp, . . . , p︸ ︷︷ ︸
k

→ Sp, . . . , p︸ ︷︷ ︸
k+1

whose effect on R-points is given by

u∗k+1 : (H1 < · · · < Hk+1 < G) 7→ (H2/H1 < · · · < Hk+1/H1 < G/H1).
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Theorem 10.3. The following diagram commutes.

Sp, . . . , p︸ ︷︷ ︸
k

uk+1 //

����

Sp, . . . , p︸ ︷︷ ︸
k+1

����
C∆1

k (Ẽ1(S1))∨
δ∨k

// C∆1

k+1(Ẽ1(S1))∨

Proof. Under the suspension isomorphism σ : ∆1 ∼= Γ0, the ∆1-module Ẽ1(S1) is

isomorphic to the Γ0-module Ẽ0(S0) = E0. Moreover the action map

Γ0[1] ∼= Γ0[1]⊗E0
E0 → E0

is dual to the map t of (2.3)
t : E0 → Sp

whose effect on R points is given by

t∗ : (H < G) 7→ G/H.
The result follows from the isomorphisms

Sp, . . . , p︸ ︷︷ ︸
k

∼= Sp ⊗E0
· · · ⊗E0

Sp︸ ︷︷ ︸
k

∼= Bk(Ē0, Γ̃
0, E0)[k]

∼= Bk(Ē0, ∆̃
0, Ẽ1(S1))[k]

and (2.15). �

Appendix A. The H∞ structure of S
QX+

K

In this appendix we prove the following technical lemma needed in the proof of
Proposition 6.2.

Lemma A.1. Suppose that X is a connected pointed space whose suspension spec-
trum is K-locally strongly dualizible. Then the equivalence

S
QX+

K ' P̂SK
(SXK )

in the proof of Proposition 6.2 is an equivalence of H∞-ring spectra.

The equivalence in Lemma A.1 is given by the sequence of equivalences

P̂SK
(SXK ) =

∏
i

[(SXK )
∧SK

i

hΣi
]K

∏
NΣi−−−−→
'

∏
i

[(SXK )∧SK
i]hΣi ' SP(Σ∞X)

K

s∗X←−−
'

S
QX+

K .

Here sX : PΣ∞X ' Σ∞QX+ is the Kahn splitting, and NΣi
is the norm.

Observe that since K-localization commutes with products when the factors in-
volved are E-local (see [BD10, Cor. 6.1.3]) there is an equivalence∏

i

[(SXK )
∧SK

i

hΣi
]K '

[∏
i

(SXK )
∧SK

i

hΣi

]
K

.
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Therefore, Lemma A.1 follows from the following slightly more general observation.

Lemma A.2. Let R be a commutative S-algebra, X a connected pointed space, and
suppose that R ∧ X is strongly dualizible in the category of R-modules. Then the
composite

P̂R(RX) :=
∏
i

(RX)∧Ri
hΣi

∏
NΣi−−−−→

∏
i

[(RX)∧Ri]hΣi ' RP(Σ∞X) s∗X←−−
'

RQX+

is a map of H∞-R-algebras.

The rest of the appendix will be devoted to a proof of this lemma. Observe that
the dualizible hypothesis on X implies that the natural map

(RX)∧Ri → R(X∧i)

is an equivalence. We therefore may simply use RX
i

to unambiguously refer to
either of these equivalent spectra.

Norm and transfer maps. The proof of Lemma A.2 will necessitate a detailed
understanding of norm and transfer maps in the stable homotopy category, which
we briefly review. The first author learned of this particular perspective on norms
from some lectures of Jacob Lurie.

For a finite group G, let SpG denote the category of G-spectra (G-equivariant ob-
jects in Sp, with weak equivalences given by those equivariant maps which are
equivalences on underlying non-equivariant spectra), and Ho(SpG) the correspond-
ing homotopy category.

Given a homomorphism f : H → G, the associated restriction functor

f∗ : Ho(SpG)→ Ho(SpH)

has a left adjoint

f! : Ho(SpH)→ Ho(SpG)

and a right adjoint

f∗ : Ho(SpH)→ Ho(SpG).

In the case where f : H → G is the inclusion of a subgroup, these functors are
given by induction and coinduction

f!Y = IndGHY = G+ ∧H Y,

f∗Y = CoIndGHY = MapH(G, Y ).

In this special case, since finite products are equivalent to finite wedges in Sp, the
natural map

f!Y = IndGHY
ψf−−→∼= CoIndGHY = f∗Y

is an isomorphism in Ho(SpG), and thus f! is also right adjoint to f∗.
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If f is the unique map to the trivial group f : G→ 1, then these functors are given
by homotopy orbits and homotopy fixed points

f!Y = YhG,

f∗Y = Y hG.

In general, these functors are compatible with composition:

(fg)∗ = g∗f∗,

(fg)! = f!g!,

(fg)∗ = f∗g∗.

For Y1 and Y2 in SpG, let Y1 ∧ Y2 ∈ SpG denote the smash product with diagonal
G-action. For f : H → G, Y ∈ SpH , and Z ∈ SpG, there is a projection formula

Y ∧ (f!Z) ∼= f!((f
∗Y ) ∧ Z).

Finally, if

H
f //

g

��

G

g′

��
H ′

f ′
// G′

is a pullback, then for Y ∈ SpG there is an isomorphism

g!f
∗Y ∼= (f ′)∗(g′)!Y.

For example, if f : G → G/N is a quotient, then for Y ∈ SpG, f!Y is a G/N -
equivariant model for YhN . Indeed, this can be seen formally by considering the
following diagram.

N
k //

i

��

1

j

��
G

f //

h
""D

DD
DD

DD
DD

G/N

g

��
1

Since the square in the above diagram is a pullback, we deduce

j∗f!Y ∼= k!i
∗Y = YhN .

Furthermore, we get an iterated homotopy orbit theorem

(YhN )hG/N = g!f!Y = h!Y = YhG.
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In this language the norm and transfer maps have a particularly nice description.
Suppose that H is a subgroup of G, and consider the diagram:

H
i //

f ��?
??

??
??

? G

g
����

��
��

�

1

For Y ∈ SpG, the transfer is given by the composite

TrGH : YhG = g!Y → g!i∗i
∗Y

ψ−1
i−−−→∼= g!i!i

∗Y ∼= f!i
∗Y = YhH .

If H is normal in G, there is a refinement of the transfer TrHe which is G-equivariant.
Consider the diagram

G

∆
III

II

$$II
II

Id

**UUUUUUUUUUUUUUUUUUUUUUU

Id

��6
66

66
66

66
66

66
66

66

G×G/H G
π2

//

π1

��

G

f

��
G

f
// G/H

Using the fact that the square in the diagram is a pullback, we define the G-
equivariant transfer to be the composite

(A.3) TrHe : f∗YhH = f∗f!Y = (π1)!(π2)∗Y → (π1)!∆∗∆
∗(π2)∗Y

ψ−1
∆−−−→∼= (π1)!∆!∆

∗(π2)∗Y = Y.

The adjoint of this map gives a G/H-equivariant norm map

NH : YhH → f∗Y = Y hH .

The equivariant transfer maps (A.3) can be constructed more generally: for sub-
groups

K ≤ H ≤ G
with K and H normal in G we can construct the G/K equivariant transfer TrHK as
the composite

TrHK : YhH = (YhK)hH/K
TrH/K

e−−−−→ YhK .

We end this section with a lemma which we will need to make use of later.

Lemma A.4. Given X,Y ∈ SpG, the following diagram commutes in Ho(SpG).

XhG ∧ YhG
∼= //

∼=
��

(X ∧ YhG)hG

1∧TrGe
��

(XhG ∧ Y )hG
TrGe ∧1

// (X ∧ Y )hG
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Proof. With respect to the maps:

G

δ
FF

FF

##F
FFF

=

%%

=

  
G×G
π1

��

π2 //

g
FFF

F

##F
FFF

F

G

f

��
G

f
// 1

the lemma follows from the following commutative diagram.

f!X ∧ f!Y

∼=

��

∼= //

∼= **UUUUUUUUUUU f!(X ∧ f∗f!Y )
∼= // f!(X ∧ (π1)!π

∗
2Y )

tt

g!(π
∗
1X ∧ π

∗
2Y )

∼=
�� **UUUUUUUUUUUU

∼= // f!(π1)!(π
∗
1X ∧ π

∗
2Y )

∼=

44iiiiiiiiiiii
f!(π1)!δ!(δ

∗π∗1X ∧ δ
∗π∗2Y )

∼=
��

f!(f
∗f!X ∧ Y )

∼=
��

f!(π2)!(π
∗
1X ∧ π

∗
2Y )

∼=

ttiiiiiiiiiii
g!δ!δ

∗(π∗1X ∧ π
∗
2Y )

∼=

ttiiiiiiiiiiii

∼=
44iiiiiiiiiiii

f!(X ∧ (π1)!δ!δ
∗π∗2Y )

∼=
��

f!((π2)!π
∗
1X ∧ Y ) 66f!(π2)!δ!(δ

∗π∗1X ∧ δ
∗π∗2Y )∼=

// f!((π2)!δ!δ
∗π∗1X ∧ Y ) ∼=

// f!(X ∧ Y )

�

The H∞ structure of RQX+ . The H∞ structure of RQX+ comes from the Σi-
equivariant diagonal maps

QX+
∆−→ (QX+)∧i.

Recall the convenient point-set level description of the Kahn stable splitting of QX+

given in [Kuh06].

Lemma A.5 ([Kuh06]). The equivalence

sX : P(X)
'−→ Σ∞QX+

is the map of E∞ ring spectra adjoint to the natural inclusion of spectra

Σ∞X → Σ∞QX+.

Lemma A.6. The following diagram of Σk-spectra commutes

P(Σ∞X)

sX '
��

P(∆) // P((Σ∞X)∨k) P(Σ∞(X∨k))

s
X∨k'
��

Σ∞QX+
∆
// Σ∞(QX+)∧k Σ∞((QX)×k)+ Σ∞Q(X∨k)+
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Proof. By adjointness, this follows from the commutativity of the diagram

Σ∞X

��

∆ // (Σ∞X)∨k Σ∞(X∨k)

��
Σ∞QX+

∆
// Σ∞(QX+)∧k Σ∞((QX)×k)+ Σ∞Q(X∨k)+

�

For a sequence I = (i1, . . . , ik) of non-negative integers, define ‖I‖ := i1 + · · ·+ ik
and |I| := k. Define

ΣI := Σi1 × · · · × Σik ,

and let Σ(I) denote the subgroup of Σk which preserves the sequence I, and define
Σ[I] to be the subgroup of Σi given by

Σ[I] := Σ(I) n ΣI .

There are Σk-equivariant equivalences

(A.7) P(Y ∨k) ' P(Y )∧k '
∨
|I|=k

(Σk)+ ∧Σ(I)
Y
‖I‖
hΣI

.

Let αI denote the I-component of the above equivalence

αI : (Y ∨k)
∧‖I‖
hΣ‖I‖

→ (Σk)+ ∧Σ(I)
Y
∧‖I‖
hΣI

.

Since there is a Σk-equivariant equivalence

(Σk)+ ∧Σ(I)
Y
∧‖I‖
hΣI

= IndΣk

Σ(I)
Y
∧‖I‖
hΣI

'−→ CoIndΣk

Σ(I)
Y
∧‖I‖
hΣI

.

the Σk-equivariant map αI determines and is determined by a Σ(I)-equivariant map

α̃I : (Y ∨k)
∧‖I‖
hΣ‖I‖

→ Y
∧‖I‖
hΣI

.

The following is a consequence of [LMSM86, VII.1.10].

Lemma A.8. The composite

Y
∧‖I‖
hΣ‖I‖

∆−→ (Y ∨k)
∧‖I‖
hΣ‖I‖

α̃I−−→ Y
∧‖I‖
hΣI

is equal to the transfer Tr
Σ‖I‖
ΣI

in Ho(SpΣ(I)
).

The H∞-R-algebra structure of RQX+ is given by structure maps

ξk : (RQX+)∧Rk
hΣk
→ RQX+

whose adjoints are given by the composites (see [BMMS86, Lem. II.3.3])

ξ̃k : (RQX+)∧Rk
hΣk
∧QX+ '

(
(RQX+)∧Rk ∧QX+

)
hΣk

1∧∆−−−→
(
(RQX+)∧Rk ∧ (QX+)∧k

)
hΣk

ev∧k−−−→ R∧Rk
hΣk

µk−−→ R.

Here µk comes from the H∞-R-algebra structure of R itself: under the isomorphism
R∧Rk ∼= R the composite

RhΣk
= R∧Rk

hΣk

µk−−→ R
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is the restriction coming from the map of groups Σk → 1. Therefore the map ξ̃k is
also given by the composite

ξ̃k : (RQX+)∧Rk
hΣk
∧QX+ → (R(QX+)∧k)hΣk

∧QX+ '
(
R(QX+)∧k ∧QX+

)
hΣk

1∧∆−−−→
(
R(QX+)∧k ∧ (QX+)∧k

)
hΣk

ev−→ RhΣk

Res1
Σk−−−−→ R.

Using (A.7) there is a Σk-equivariant equivalence

R(QX+)∧k s∗X−−→
'

R(PX)∧k '
∏
|I|=k

CoIndΣk

Σ(I)
R
X
‖I‖
hΣI '

∏
|I|=k

IndΣk

Σ(I)
R
X
‖I‖
hΣI .

The following lemma is therefore obtained by combining the above description of

ξ̃k with Lemma A.6 and Lemma A.8.

Lemma A.9. The map ξk is give by the composite

ξk : (RQX+)∧Rk
hΣk
→ (R(QX+)∧k)hΣk

'

 ∏
|I|=k

IndΣk

Σ(I)
R
X
‖I‖
hΣI


hΣk

→
∏
|I|=k

(
IndΣk

Σ(I)
R
X
‖I‖
hΣI

)
hΣk

'
∏
|I|=k

(R
X
‖I‖
hΣI )hΣ(I)

'
∏
i

∨
‖I‖=i
|I|=k

(RX
i
hΣI )hΣ(I)

∏
i

∑
I ξ

I
k−−−−−−→
∏
i

RX
i
hΣi

' RPX

' RQX+ .

where the maps ξIk are adjoint to the composites

ξ̃Ik : (R
X
‖I‖
hΣI )hΣ(I)

∧X‖I‖hΣ‖I‖
' (R

X
‖I‖
hΣI ∧X‖I‖hΣ‖I‖

)hΣ(I)

1∧Tr
Σ‖I‖
ΣI−−−−−−→ (R

X
‖I‖
hΣI ∧X‖I‖hΣI

)hΣ(I)

ev−→ RhΣ(I)

Res1
Σ(I)−−−−−→ R.

Completion of the proof of Lemma A.2. The H∞-R-algebra structure of

P̂R(RX) has structure maps

ζk : P̂R(RX)∧Rk
hΣk
→ P̂R(RX)
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which are given by the composites

ζk : P̂R(RX)∧Rk
hΣk

=

(∏
i

(RX
i

)hΣi

)∧Rk

hΣk

→

 ∏
|I|=k

IndΣk

Σ(I)
(RX

‖I‖
)hΣI


hΣk

→
∏
|I|=k

(
IndΣk

Σ(I)
(RX

‖I‖
)hΣI

)
hΣk

'
∏
|I|=k

((RX
‖I‖

)hΣI
)hΣ(I)

'
∏
|I|=k

(RX
‖I‖

)hΣ[I]

'
∏
i

∨
‖I‖=i
|I|=k

(RX
i

)hΣ[I]

∏
i

∑
I Res

Σi
Σ[I]−−−−−−−−−→

∏
i

(RX
i

)hΣi

= P̂R(RX).

Lemma A.2 therefore follows from the following lemma.

Lemma A.10. Fix a partition I with |I| = k and ‖I‖ = i. Then the following
diagram commutes.

(RX
i

)hΣ[I]

Res
Σi
Σ[I] //

NΣI

��

(RX
i

)hΣi

NΣi

��
(RX

i
hΣI )hΣ(I) ξIk

//
RX

i
hΣi

Proof. The construction of the norm as the adjoint to the equivariant transfer
implies that the following diagram commutes.

(RX
i

)hΣ[I]

Res
Σi
Σ[I] //

NΣI

��

NΣ[I]

%%LLLLLLLLLL
(RX

i

)hΣi

NΣi

��
(RX

i
hΣI )hΣ(I) NΣ(I)

//
R
Xi

hΣ[I]

Tr
Σi
Σ[I]

//
RX

i
hΣi

�
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Therefore it suffices to show the commutativity of the diagram below.

(RX
i
hΣI )hΣ(I)

ξIk //

NΣ(I)

��

RX
i
hΣi

R
Xi

hΣ[I]

Tr
Σi
Σ[I]

99sssssssssss

By adjointness this is equivalent to showing the commutativity of the diagram:

(RX
i
hΣI )hΣ(I)

∧Xi
hΣi

ξ̃Ik //

NΣ(I)
∧1

��

R

R
Xi

hΣ[I] ∧Xi
hΣi Tr

Σi
Σ[I]
∧1

// RX
i
hΣi ∧Xi

hΣi

ev

OO

By Lemma A.9, the commutativity of the above diagram is seen in the following
commutative diagram.
(A.11)

(R
Xi

hΣI )hΣ(I)
∧Xi

hΣi

NΣ(I)
∧1

��

1∧Tr
Σi
Σ[I]

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
C

(R
Xi

hΣI ∧Xi
hΣi

)hΣ(I)

1∧Tr
Σi
ΣI//

1∧Tr
Σi
Σ[I]

��

(R
Xi

hΣI ∧Xi
hΣI

)hΣ(I)

ev // RhΣ(I)

Res1Σ(I) // R

(R
Xi

hΣI ∧Xi
hΣ[I]

)hΣ(I)

1∧Tr
Σ[I]
ΣImmm

66mmmm

(R
Xi

hΣ[I] ∧Xi
hΣI

)hΣ(I)

Res
Σ[I]
ΣI
∧1

OO

(2)

(R
Xi

hΣI )hΣ(I)
∧Xi

hΣ[I]

NΣ(I)
∧1

//

(1)

R
Xi

hΣ[I] ∧Xi
hΣ[I]

ev

::tttttttttttttttttttttttttttt

R
Xi

hΣ[I] ∧Xi
hΣi Tr

Σi
Σ[I]
∧1

//
1∧Tr

Σi
Σ[I]

33ffffffffffffffffffffffffffffff
R

Xi
hΣi ∧Xi

hΣi

ev

OO

With the exception of regions (1) and (2) in the above diagram, all of the faces of
the diagram clearly commute.

The commutativity of (1) is seen below, making use of Lemma A.4.

(RX
i
hΣI ∧ (Xi

hΣI
)hΣ(I)

)hΣ(I)

1∧Tr
Σ(I)
1 // (RX

i
hΣI ∧Xi

hΣI
)hΣ(I)

((RX
i
hΣI )hΣ(I)

∧Xi
hΣI

)hΣ(I)

Tr
Σ(I)
1 ∧1

44jjjjjjjjjjjjjjjj NΣ(I)
∧1
// (R

Xi
hΣ[I] ∧Xi

hΣI
)hΣ(I)

Res
Σ[I]
ΣI
∧1

OO

(RX
i
hΣI )hΣ(I)

∧Xi
hΣ[I] NΣ(I)

∧1
//

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiii

R
Xi

hΣ[I] ∧Xi
hΣ[I]
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By adjointness, the commutativity of region (2) in Diagram (A.11) is equivalent to
the commutativity of the following diagram in Ho(SpΣ(I)

), which clearly commutes.

RX
i
hΣI ∧Xi

hΣI

ev // R

R
Xi

hΣ[I] ∧Xi
hΣI

Res
Σ[I]
ΣI
∧1

OO

1∧Res
Σ[I]
ΣI

// R
Xi

hΣ[I] ∧Xi
hΣ[I]

ev

OO
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