18.118 DECOUPLING LECTURE 2

INSTRUCTOR: LARRY GUTH TRANSCRIBED BY HONG WANG

1. Decoupling for interval

Let $\Omega = [0, N] = \bigcup_{j=1}^{N} [j - 1, j]$ for some large integer N. Let θ_j denote the unit interval [j - 1, j]. If $\operatorname{supp} \widehat{f} \subset \Omega$, then $f = \sum_{j=1}^{N} f_j$ with $f_j(x) = \int_{\theta_j} e^{2\pi i w x} \widehat{f}(w) dw$.

Definition 1.1. The decoupling constant $D_p(N)$ is the smallest constant such that for all f, $supp \widehat{f} \subset \Omega$,

(1)
$$||f||_{L^p(\mathbb{R})} \le D_p(N) (\sum_{j=1}^N ||f_j||_{L^p(\mathbb{R})}^2)^{1/2}.$$

1.1. Building blocks. We consider f_1 , $\operatorname{supp} \widehat{f_1} \subset [0, 1]$.

Question 1.2. Could the graph of $|f_1|$ look like several very narrow (say width $\frac{1}{10000}$) peaks and the rest is about zero (see Figure 1 in the attached picture)?

Let η be a Schwartz function and $\eta = 1$ on [0, 1]. We have $\hat{f}_1 = \hat{f}_1 \cdot \eta$. Then $f_1 = f_1 * \check{\eta}$ and $\check{\eta}$ is also a Schwartz function.

Corollary 1.3. If $supp \widehat{f}_1 \subset [0, 1]$, then

$$||f_1||_{L^{\infty}} \lesssim ||f_1||_{L^1}.$$

Proof. By Young's inequality,

$$\|f_{1}\|_{L^{\infty}} = \|f_{1} * \check{\eta}\|_{L^{\infty}}$$

$$\leq \|f_{1}\|_{L^{1}} \|\check{\eta}\|_{L^{\infty}}$$

$$\lesssim \|f_{1}\|_{L^{1}}.$$

The answer is NO by the above corollary. The height of peaks of $|f_1|$ is as much as $||f_1||_{L^{\infty}}$. However several very narrow peaks with limited height can not add up to the same L^1 -norm.

Question 1.4. How about if we add a flat low tail (see Figure 2) to the graph of $|f_1|$, such that $||f_1||_{L^1}$ is dominated by the flat part. Can the graph of $|f_1|$ still have very narrow peaks?

The answer is still NO. We actually know more about $\check{\eta}$ other than its L^{∞} -norm. We know that $\check{\eta}$ is a Schwartz function:

$$|\check{\eta}(y)| \lesssim_M \left(\frac{1}{1+|y|}\right)^M$$

for any large constant M. In fact, we almost know that $||f_1||_{L^{\infty}(I)} \leq ||f_1||_{L^1(2I)}$ for any unit interval I, where 2I means that we stretch I to twice the length with the same center point.

Lemma 1.5. Locally Constant Lemma If $supp \widehat{f}_1 \subset [0,1]$, and I unit interval, then

$$||f_1||_{L^{\infty}(I)} \lesssim ||f_1||_{L^1(w_I)}.$$

The weighted L^1 -norm is defined as $||f_1||_{L^1(w_I)} := \int_{\mathbb{R}} |f_1|w_I$. The weight function w_I has the following property:

• $w_I \geq 0$.

2

- $w_I \sim 1$ on I.
- w_I is rapidly decaying off I.
- w_I is uniform in choice of I in the sense that $w_{I+a} = w_I(\cdot a)$.

Proof. For any $x \in I$,

$$|f_1(x)| \le \int |f_1(y)| |\check{\eta}(x-y)| dy$$

$$\le \int |f_1(y)| \sup_{x \in I} |\check{\eta}(x-y)| dy$$

We define $w_I(y) = \sup_{x \in I} |\check{\eta}(x-y)|.$

One option of w_I is

$$w_I(y) = (\frac{1}{1 + \operatorname{dist}(y, I)})^{50}.$$

The graph of $|f_1|$ should look like Figure 3: each peak should have width about 1.

Remark 1.6. If $supp \widehat{f}_j \subset [j-1,j]$, then the Fourier transform of $e^{-2\pi i(j-1)x} f_j$ is supported in [0,1]. The Locally Constant Lemma still holds for $f_j, \forall j$.

Example 1.7. We consider f_1 a bump function with height $(||f_1||_{L^{\infty}})$ 1 concentrated on [-1, 1] and $f_1(0)=1$. Figure 4 is the graph of Ref_1 .

We take $f_j(x) = e^{2\pi i (j-1)x} f_1(x)$ and we sum over $j: f = \sum_{j=1}^N f_j$. Now $f_i(0) = 1$ and f(0) = N.

Notice that Ref_j oscillates with frequency about $\frac{1}{j}$. When $|x| \leq 1$ $\frac{1}{10N} \le \frac{1}{10j}, |f_j(x) - 1| \le \frac{1}{4}, \text{ so } |f(x)| \sim N.$ This implies that $||f||_{L^p} \gtrsim N \cdot N^{-1/p} = N^{1-1/p}.$

For the right-hand side, $\|f_j\|_{L^p} \sim 1$ and $(\sum_j \|f_j\|_{L^p}^2)^{1/2} \sim N^{1/2}$. This example gives a lower bound of the decoupling constant as defined in 1

$$D_p(N) \gtrsim N^{1/2 - 1/p}.$$

Proposition 1.8. If $supp \hat{f}_j \subset [j-1, j], j = 1, \ldots, N$, and $f = \sum_j f_j$, then for any $2 \leq p \leq \infty$, the decoupling constant defined in 1

$$D_p(N) \lesssim N^{1/2 - 1/p}$$

In particular, the example described above is sharp.

Remark 1.9. For p = 2 and $p = \infty$, it is easy to estimate $D_p(N)$. When p = 2, by Plancherel's inequality,

$$||f||_{L^2}^2 = \sum_j ||f_j||_{L^2}^2$$

When $p = \infty$, by triangle inequality,

$$||f||_{L^{\infty}} \le \sum_{j=1}^{N} ||f_j||_{L^{\infty}} \le N^{1/2} (\sum_{j=1}^{N} ||f_j||_{L^{\infty}}^2)^{1/2}.$$

1.2. Main Issue. In this subsection, we discuss a hypothetical example for the issue might occur when 2 . Let <math>p = 4 for example, suppose $\forall j, |f_j|$ looks like a function that is 1 at [0,1] and $\frac{1}{N}$ at $[1, N^3]$ and zero elsewhere (See Figure 5 for the graph of $|f_i|$).

- $||f_j||_{L^2} \sim N^{1/2}$ is dominated by the short wide piece at interval $[1, N^3].$
- $||f_i||_{L^4} \sim 1$ is dominated by the peak at [0, 1].

We analyse f through the information provided by f_i .

- By orthogonality, $||f||_{L^2} \sim N$.
- By triangle inequality, $||f||_{L^{\infty}} \leq N$.

Question 1.10. Could it happen that $|f(x)| \sim N$ for most $x \in [0, 1]$?

Proposition 1.8 tells us that this is impossible.

$$||f||_{L^4} \lesssim N^{1/4} (\sum_{j=1}^N ||f_j||_{L^4}^2)^{1/2} \sim N^{3/4}.$$

The following Local Orthogonality Lemma gives an even better estimate.

Lemma 1.11. Local Orthogonality If I is a unit interval, $f = \sum_{j=1}^{N} f_j$ and $supp \hat{f}_j \subset [j-1,j]$, then

$$\|f\|_{L^2(I)}^2 \lesssim \sum_j \|f_j\|_{L^2(w_I)}^2$$

for the weight function w_I with the same property as in the Locally Constant Lemma 1.5.

Proof. We choose $\eta(x)$ such that $|\eta| \sim 1$ on I, and $\operatorname{supp} \widehat{\eta} \subset [-1, 1]$.

$$\begin{split} \int_{I} |f|^{2} &\leq \int_{\mathbb{R}} |f\eta|^{2} \\ &= \int_{\mathbb{R}} |\widehat{\eta} * \widehat{f}|^{2} \\ &= \int_{\mathbb{R}} |\sum_{j} \widehat{\eta} * \widehat{f_{j}}|^{2} \\ &\lesssim \sum_{j} \int_{\mathbb{R}} |\widehat{\eta} * \widehat{f_{j}}|^{2} = \sum_{j} \int_{\mathbb{R}} |f_{j}|^{2} |\eta|^{2} \end{split}$$

Since $\operatorname{supp} \widehat{\eta} \subset [-1, 1]$, the support of $\widehat{\eta} * \widehat{f_j}$ lies in [j - 2, j + 1]. Any frequency lies inside at most O(1) intervals of the form [j - 2, j + 1]. We define $w_I = |\eta|^2$.

Proposition 1.12. (Local decoupling). If I is a unit interval, $2 \le p \le \infty$, f_j and f are defined as in Proposition 1.8, then

$$||f||_{L^p(I)} \lesssim N^{1/2-1/p} (\sum_{j=1}^N ||f_j||_{L^p(w_I)}^2)^{1/2}.$$

Proof. By Local Orthogonality Lemma 1.11 and triangle inequality

$$\int_{I} |f|^{p} \leq (\int_{I} |f|^{2}) ||f||_{L^{\infty}(I)}^{p-2}$$
$$\leq (\sum_{j} ||f_{j}||_{L^{2}(w_{I})}^{2}) (\sum_{j} ||f_{j}||_{L^{\infty}(I)})^{p-2}.$$

By Locally Constant Lemma 1.5,

$$|f_j||_{L^{\infty}(I)} \lesssim ||f_j||_{L^1(w_I)} \lesssim ||f_j||_{L^2(w_I)}.$$

$$\int_{I} |f|^{p} \leq \left(\sum_{j} \|f_{j}\|_{L^{2}(w_{I})}^{2}\right) \left(\sum_{j} \|f_{j}\|_{L^{2}(w_{I})}^{2}\right)^{p-2}$$
$$\lesssim N^{\frac{p-2}{2}} \left(\sum_{j} \|f_{j}\|_{L^{2}(w_{I})}^{2}\right)^{\frac{p}{2}}$$
$$\lesssim N^{\frac{p-2}{2}} \left(\sum_{j} \|f_{j}\|_{L^{p}(w_{I})}^{2}\right)^{\frac{p}{2}}$$

The last inequality follows from Hölder's inequality.

Remark 1.13. Since w_I is a measure with total mass about 1. Hölder's inequality implies that $||f||_{L^p(w_I)} \leq ||f||_{L^q(w_I)}$ if $p \leq q$ and for any function f.

For f_j in particular, Locally Constant Lemma says $||f_j||_{L^{\infty}(I)} \lesssim ||f_j||_{L^1(w_I)}$. Furthermore, we can show $||f_j||_{L^p(w_I)} \lesssim ||f_j||_{L^q(w_I)}$ for any $1 \leq p, q$. It suffices to prove for p > q since other cases are provided by Hölder's inequality. We consider a collection of unit intervals $\{I'\}$ that tiles \mathbb{R} .

$$\begin{split} \|f_{j}\|_{L^{p}(w_{I})}^{p} &\leq \sum_{I'} c(I') \|f_{j}\|_{L^{p}(I')}^{p} \\ &\leq \sum_{I'} c(I') \|f_{j}\|_{L^{\infty}(I')}^{p} \\ &\lesssim \sum_{I'} c(I') \|f_{j}\|_{L^{1}(w_{I'})}^{p} \\ &\lesssim \sum_{I'} c(I') \|f_{j}\|_{L^{q}(w_{I'})}^{p} \\ &\lesssim \|f_{j}\|_{L^{q}(w_{I})}^{p} \end{split}$$

 $c(I') := \sup_{x \in I'} w_I(x)$. Since w_I is a Schwartz function and satisfies the property listed in Lemma 1.5,

$$\sum_{I'} c(I')^{q/p} w_{I'} \lesssim w_I.$$

In the end we used $l^q \ge l^p$ when $q \le p$ to sum up $\|f_j\|_{L^q(w_{I'})}^p$.

1.3. **Parallel Decoupling Lemma.** In this subsection, we prove a general Parallel Decoupling Lemma for general decoupling inequalities.

Lemma 1.14. For some $p \ge 2$ and for any function g_j , $g = \sum_j g_j$ and any measure $\mu_i, w_i, \mu = \sum_i \mu_i, w = \sum_i w_i$, if we know

$$||g||_{L^p(\mu_i)} \le D(\sum_j ||g_j||^2_{L^p(w_i)})^{1/2}, \forall i,$$

then we have

$$||g||_{L^p(\mu)} \le D(\sum_j ||g_j||^2_{L^p(w_i)})^{1/2}$$

for the same decoupling constant D.

Proof. The proof is an application of Minkowski's inequality.

$$\int |g|^{p} \mu = \sum_{i} \int |g|^{p} \mu_{i}$$

$$\leq D^{p} \sum_{i} (\sum_{j} ||g_{j}||_{L^{p}(w_{i})}^{2})^{p/2}$$

$$= D^{p} ||\sum_{j} ||g_{j}||_{L^{p}(w_{i})}^{2} ||_{l_{i}^{p/2}}^{p/2}$$

$$\leq D^{p} [\sum_{j} |||g_{j}||_{L^{p}(w_{i})}^{2} ||_{l_{i}^{p/2}}^{p/2}]^{p/2}$$

$$= D^{p} [\sum_{j} (\sum_{i} ||g_{j}||_{L^{p}(w_{i})}^{p})^{2/p}]^{p/2}$$

$$= D^{p} (\sum_{j} ||g_{j}||_{L^{p}(w)}^{2})^{p/2}$$

6