Z/m-GRADED LIE ALGEBRAS AND PERVERSE SHEAVES, I

GEORGE LUSZTIG AND ZHIWEI YUN

Abstract

We give a block decomposition of the equivariant derived category arising from a cyclically graded Lie algebra. This generalizes certain aspects of the generalized Springer correspondence to the graded setting.

Contents

Introduction

1. Recollections on \mathbf{Z}-graded Lie algebras
2. $\quad \mathbf{Z} \mapsto$-gradings and ϵ-spirals
3. Admissible systems 294
4. Spiral induction 300
5. Study of a pair of spirals 303
6. Spiral restriction 308
7. The categories $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right), \mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right)$ 311
8. Monomial and quasi-monomial objects 315
9. Examples 316
References

Introduction

0.1. Let \mathbf{k} be an algebraically closed field of characteristic $p \geq 0$. We fix an integer $m>0$ such that $m<p$ whenever $p>0$ and we write \mathbf{Z} / m instead of $\mathbf{Z} / m \mathbf{Z}$. For $n \in \mathbf{Z}$, let \underline{n} denote the image of n in \mathbf{Z} / m.

We also fix G, a semisimple simply connected algebraic group over \mathbf{k} and a \mathbf{Z} / m grading $\mathfrak{g}=\oplus_{i \in \mathbf{Z} / m} \mathfrak{g}_{i}$ (see 0.11) for the Lie algebra \mathfrak{g} of G; we shall assume that either $p=0$ or that p is so large relative to G, that we can operate with \mathfrak{g} as if p was 0 .

For any integer d invertible in \mathbf{k} let $\mu_{d}=\left\{z \in \mathbf{k}^{*} ; z^{d}=1\right\}$. The \mathbf{Z} / m-grading on \mathfrak{g} is the same as an action of μ_{m} on G or a homomorphism $\tilde{\vartheta}: \mu_{m} \rightarrow \operatorname{Aut}(G)$. $\left(\tilde{\vartheta}\right.$ induces a homomorphism $\tilde{\theta}: \mu_{m} \rightarrow \operatorname{Aut}(\mathfrak{g})$ and for $i \in \mathbf{Z} / m$ we have $\mathfrak{g}_{i}=\{x \in$ $\left.\left.\mathfrak{g} ; \tilde{\theta}(z) x=z^{i} x \quad \forall z \in \mu_{m}\right\}.\right)$ Let $G_{\underline{0}}=\left\{g \in G ; g \tilde{\vartheta}(z)=\tilde{\vartheta}(z) g \quad \forall z \in \mu_{m}\right\}$, be a connected reductive subgroup of G with Lie algebra \mathfrak{g}_{0}. For any $i \in \mathbf{Z} / m$, the Ad-action of $G_{\underline{0}}$ on \mathfrak{g} leaves stable \mathfrak{g}_{i} and its closed subset $\mathfrak{g}_{i}^{\text {nil }}:=\mathfrak{g}_{i} \cap \mathfrak{g}^{\text {nil }}$. (Here $\mathfrak{g}^{\text {nil }}$ is the variety of nilpotent elements in \mathfrak{g}.)

[^0]We are interested in studying the equivariant derived categories (see 0.11) $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{i}\right), \mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{i}^{\text {nil }}\right)$. More specifically, we would like to classify $G_{\underline{0}}$-equivariant simple perverse sheaves with support in $\mathfrak{g}_{i}^{\text {nil }}$ and (in the case where $p>0$) their Fourier-Deligne transform. The simple perverse sheaves in $\mathcal{D}_{G_{0}}\left(\mathfrak{g}_{i}^{\text {nil }}\right)$ are in bijection with the pair $(\mathcal{O}, \mathcal{L})$, where \mathcal{O} is a nilpotent $G_{\underline{0}}$-orbit in \mathfrak{g}_{i} and \mathcal{L} is (the isomorphism class of) an irreducible $G_{\underline{0}}$-equivariant local system on \mathcal{O}. (The pair $(\mathcal{O}, \mathcal{L})$ gives rise to the simple perverse sheaf P with support equal to the closure of \mathcal{O} and with $\left.P\right|_{\mathcal{O}}=\mathcal{L}[\operatorname{dim} \mathcal{O}]$.) We denote the set of such $(\mathcal{O}, \mathcal{L})$ by $\mathcal{I}\left(\mathfrak{g}_{i}\right)$. This is a finite set, since the $G_{\underline{0}}$-action on $\mathfrak{g}_{i}^{\text {nil }}$ has only finitely many orbits. Alternatively, if we choose $e \in \mathcal{O}$, then the local system \mathcal{L} corresponds to an irreducible representation of $\pi_{0}\left(G_{\underline{0}}(e)\right.$) (see 0.11), where $G_{\underline{0}}(e)$ is the stabilizer of e under $G_{\underline{0}}$.

There are many \mathbf{Z} / m-graded Lie algebras which appear in nature.
0.2 . In this subsection we assume that $m=2$ and $\mathbf{k}=\mathbf{C}$. Then the $\mathbf{Z} / 2$-grading $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ (with $\left.\mathfrak{k}=\mathfrak{g}_{0}, \mathfrak{p}=\mathfrak{g}_{\underline{1}}\right)$ has been extensively studied in connection with the theory of symmetric spaces and the representation theory of real semisimple groups. In particular, the nilpotent $G_{\underline{0}}$-orbits on \mathfrak{p} are known to be in bijection with the nilpotent orbits in the Lie algebra of a real form of G determined by the Z/2-grading (Kostant and Sekiguchi).
0.3 . Another class of examples comes from cyclic quivers. In this subsection we assume that $m \geq 2$. We consider the simplest such example where V is a \mathbf{k}-vector space equipped with a \mathbf{Z} / m-grading $V=\oplus_{i \in \mathbf{Z} / m} V_{i}$ (see 0.11) and $G=S L(V)$ with the \mathbf{Z} / m-grading given by

$$
\mathfrak{g}_{i}=\left\{T \in \mathfrak{g}=\mathfrak{s l l}(V) ; T\left(V_{j}\right) \subset V_{j+i} \quad \forall j \in \mathbf{Z} / m\right\}
$$

In this case we have $G_{\underline{0}}=S\left(\prod_{i \in \mathbf{Z} / m} G L\left(V_{i}\right)\right)$, the intersection of $S L(V)$ with the Levi subgroup $\prod_{i} G L\left(V_{i}\right)$ of a parabolic subgroup of $G L(V)$. The subspace $\mathfrak{g}_{\underline{1}}$ is

$$
\begin{equation*}
\oplus_{i \in \mathbf{Z} / m} \operatorname{Hom}\left(V_{i}, V_{i+1}\right) . \tag{a}
\end{equation*}
$$

We may consider a quiver Q with m vertices indexed by \mathbf{Z} / m and an arrow $i \mapsto i+1$ for each $i \in \mathbf{Z} / m$,

Then \mathfrak{g}_{1} is the space of representations of Q where we put V_{i} at the vertex i.
More generally, if G is a classical group, then the G_{0}-action on \mathfrak{g}_{1} can be interpreted in terms of a cyclic quiver with some extra structure (see 9.5 for the case where G is a symplectic group).
0.4. In this subsection we forget the \mathbf{Z} / m-grading. Instead of the action of $G_{\underline{0}}$ on \mathfrak{g}_{i} and $\mathfrak{g}_{i}^{\text {nil }}$ we consider the adjoint action of G on \mathfrak{g} and on $\mathfrak{g}^{\text {nil }}$. Let $\mathcal{I}(\mathfrak{g})$ be the set of pairs $(\mathcal{O}, \mathcal{L})$ where \mathcal{O} is a G-orbit on $\mathfrak{g}^{\text {nil }}$ and \mathcal{L} is an irreducible G-equivariant local
system on \mathcal{O} (up to isomorphism). From the results on the generalized Springer theory in [1] we have a canonical decomposition
(a)

$$
\mathcal{I}(\mathfrak{g})=\sqcup_{(L, C)} \mathcal{I}(\mathfrak{g})_{(L, C)},
$$

where (L, C) runs over the G-conjugacy classes of data L, C with L a Levi subgroup of a parabolic subgroup of G and C an L-equivariant cuspidal perverse sheaf on the nilpotent cone of the Lie algebra of L. (Actually, the results of L1] are stated for unipotent elements in G instead of nilpotent elements in \mathfrak{g}.) We call (a) the block decomposition of $\mathcal{I}(\mathfrak{g})$.

Let $P\left(\mathfrak{g}^{\text {nil }}\right)$ be the subcategory of $\mathcal{D}\left(\mathfrak{g}^{\text {nil }}\right)$ consisting of complexes whose perverse cohomology sheaves are G-equivariant. Using (a) and [L3, (7.3.1)], we see that we have a direct sum decomposition

$$
\begin{equation*}
P\left(\mathfrak{g}^{n i l}\right)=\oplus_{(L, C)} P\left(\mathfrak{g}^{n i l}\right)_{(L, C)}, \tag{b}
\end{equation*}
$$

where (L, C) is as in (a). We call (b) the block decomposition of $P\left(\mathfrak{g}^{n i l}\right)$. In RR it is shown that the following variant of (b) holds: we have a direct sum decomposition
(c)

$$
\begin{equation*}
\mathcal{D}_{G}\left(\mathfrak{g}^{\text {nil }}\right)=\oplus_{(L, C)} \mathcal{D}_{G}\left(\mathfrak{g}^{\text {nil }}\right)_{(L, C)}, \tag{c}
\end{equation*}
$$

where (L, C) is as in (a). We call (c) the block decomposition of $\mathcal{D}_{G}\left(\mathfrak{g}^{n i l}\right)$.
In this paper we find a \mathbf{Z} / m-graded analogue of this (ungraded) block decomposition.
0.5. We fix ζ, a primitive m-th root of 1 in \mathbf{k} and we set $\vartheta=\tilde{\vartheta}(\zeta): G \rightarrow G$, $\theta=\tilde{\theta}(\zeta): \mathfrak{g} \rightarrow \mathfrak{g}$. Then for $i \in \mathbf{Z} / m$ we have $\mathfrak{g}_{i}=\left\{x \in \mathfrak{g} ; \theta(x)=\zeta^{i} x\right\}$.

Let $\eta \in \mathbf{Z}-\{0\}$. We consider systems $\left(M, \mathfrak{m}_{*}, \tilde{C}\right)$, where

$$
M=\{g \in G ; \operatorname{Ad}(\tau) \vartheta g=g\}
$$

for some semisimple element of finite order $\tau \in G_{\underline{0}}, \mathfrak{m}_{*}=\left\{\mathfrak{m}_{N}\right\}_{N \in \mathbf{Z}}$ is a Z Z-grading of the Lie algebra \mathfrak{m} of M (see 0.11) such that $\mathfrak{m}_{N} \subset \mathfrak{g}_{\underline{N}}$ for all N, M_{0} is the closed connected subgroup of M with Lie algebra \mathfrak{m}_{0} and \tilde{C} is an M_{0}-equivariant cuspidal perverse sheaf on \mathfrak{m}_{η}. We will review the notion of M_{0}-equivariant cuspidal perverse sheaf (already defined in [L4) on \mathfrak{m}_{η} in 1.2. Such a system $\left(M, \mathfrak{m}_{*}, \tilde{C}\right)$ is said to be admissible if a certain technical condition involving the group of components of the center of M is satisfied (see 3.1).

Let $\underline{\mathfrak{T}}_{\eta}$ be the set of admissible systems up to $G_{\underline{0}}$-conjugacy. The following result is proved in 7.9.
Theorem 0.6. There is a canonical direct sum decomposition of $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$ into full subcategories

$$
\mathcal{D}_{G_{\underline{\underline{0}}}}\left(\mathfrak{g}_{\underline{\eta}}^{n i l}\right)=\oplus_{\left(M, \mathfrak{m}_{*}, \tilde{C}\right) \in \underline{\underline{T}}_{\eta}} \mathcal{D}_{G_{\underline{\underline{\underline{1}}}}}\left(\mathfrak{g}_{\underline{\eta}}^{n i l}\right)_{\left(M, \mathfrak{m}_{*}, \tilde{C}\right)}
$$

indexed by $\underline{\underline{T}}_{\eta}$.
In particular, any simple perverse sheaf in $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$ belongs to a well-defined block $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\underline{\eta}}^{n i l}\right)_{\left(M, \mathfrak{m}_{*}, \tilde{C}\right)}$. This gives a map

$$
\Psi: \mathcal{I}\left(\mathfrak{g}_{\underline{\eta}}\right) \rightarrow \underline{\mathfrak{T}}_{\eta} .
$$

In fact, we will first establish the map Ψ in 3.5 and then prove the theorem in 7.9, using a key calculation in Proposition 6.4.

We also show in 3.9 and 7.8 that both the indexing set $\underline{\underline{T}}_{\eta}$ and the blocks $\mathcal{D}_{G_{0}}\left(\mathfrak{g}_{\eta}^{\text {nil }}\right)_{\xi}$ (for $\xi \in \underline{\mathfrak{T}}_{\eta}$) only depend on the image $\underline{\eta} \in \mathbf{Z} / m$ and not on the integer η.

Note that in the case where $m=1$, the theorem can be deduced from 0.4(a). On the other hand, for large m, a \mathbf{Z} / m-grading on \mathfrak{g} is the same as a \mathbf{Z}-grading, so that in this case the theorem can be deduced from the results of [L4]. Thus, the result about block decomposition in this paper generalizes results in [L1] and [L4].
0.7. As an explicit example, let us consider the case where $G=S L_{n}(\mathbf{k}), \eta=1$. In the ungraded case, blocks are in bijection with pairs (d, χ) where d is a divisor of n and $\chi: \mu_{d} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ is a primitive character. (See [L1].) To d we attach the subgroup $M=S\left(G L_{d}^{n / d}\right)$ (a Levi subgroup of a parabolic subgroup) and χ gives a cuspidal perverse sheaf C_{χ} with support equal to the nilpotent cone of the Lie algebra of M. Now in the \mathbf{Z} / m-graded case, we have $G=S L(V), V=\oplus_{i \in \mathbf{Z} / m} V_{i}$ as in 0.3 , and we identify $\mathfrak{g}_{\underline{1}}$ with $\oplus_{i} \operatorname{Hom}\left(V_{i}, V_{i+1}\right)$. In this case, the set of blocks $\underline{\mathfrak{T}}_{1}$ has a similar explicit description. We have a natural bijection
(a)

$$
\underline{\mathfrak{T}}_{1} \leftrightarrow\{(d, f, \chi)\} / \sim .
$$

Here the right hand side is the set of equivalence classes of triples (d, f, χ) where (d, χ) is as in the ungraded case and $f:\{1,2, \ldots, n / d\} \rightarrow \mathbf{Z} / m$ is a map such that

$$
\begin{equation*}
\sharp\{(b, y) \in \mathbf{Z} \times \mathbf{Z} ; 1 \leq b \leq n / d, 0 \leq y \leq d-1, f(b)+\underline{y}=i\}=\operatorname{dim} V_{i} \tag{b}
\end{equation*}
$$

for all $i \in \mathbf{Z} / m$. Two triples (d, f, χ) and $\left(d^{\prime}, f^{\prime}, \chi^{\prime}\right)$ are equivalent if and only if $d=d^{\prime}, \chi=\chi^{\prime}$ and f^{\prime} is obtained from f by composition with a permutation of $\{1,2, \ldots, n / d\}$.
0.8. In the ungraded case, the objects in the block $\mathcal{D}_{G}\left(\mathfrak{g}^{\text {nil }}\right)_{(L, C)}$ are obtained from C via parabolic induction (and decomposition) through any parabolic subgroup P of G containing L as a Levi subgroup. In the \mathbf{Z} / m-graded case, a first attempt to generalize parabolic induction would be to start with a parabolic subgroup of G compatible with the \mathbf{Z} / m-grading on \mathfrak{g}, as defined in the appendix of [55. However, such a parabolic induction does not produce all simple perverse sheaves in $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$. Instead, we introduce a certain induction procedure which we call spiral induction; see Section 4. We introduce the notion of a spiral \mathfrak{p}_{*} which is a sequence of subspaces $\mathfrak{p}_{N} \subset \mathfrak{g}_{\underline{N}}$, one for each $N \in \mathbf{Z}$, satisfying certain conditions; see Section 2. It turns out that spirals are the correct analogues of parabolic subalgebras in the \mathbf{Z} / m-graded case. Moreover, spiral induction includes the parabolic induction defined in the appendix of [L5] as special cases. In fact there are two kinds of spiral inductions, one giving objects in $\mathcal{D}_{G_{\underline{\underline{0}}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$ and the other giving (assuming that $p>0$) Fourier-Deligne transforms of objects in $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{-\underline{\eta}}^{\text {nil }}\right)$. The latter may be viewed as an analogue of character sheaves in the \mathbf{Z} / m-graded setting.
0.9. We now discuss the contents of the various sections. Many arguments in this paper rely on results from [L4] concerning Z-graded Lie algebras; in Section 1 we review some results from L4 that we need. In Section 2 we introduce the ϵ-spirals attached to a \mathbf{Z} / m-graded Lie algebra and their splittings; the analogous concepts in the \mathbf{Z}-graded cases are the parabolic subalgebras compatible with the \mathbf{Z}-grading and their Levi subalgebras compatible with the \mathbf{Z}-grading. We also attach a canonical spiral to any element of $\mathfrak{g}_{\underline{\eta}}^{\text {nil }}$ which plays a crucial role in the arguments of this
paper. In Section 3 we introduce the admissible systems, which eventually will be used to index the blocks in $\mathcal{D}_{G_{\underline{\underline{0}}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$. In Section 4 we introduce the operation of spiral induction which is our main tool in the study of $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$. In Sections 5 and 6 we calculate explicitly the Hom space between two spiral inductions, generalizing to the \mathbf{Z} / m-graded case a result from [L4]. This is used in Section 7 to prove Theorem 0.6 . In Section 8 we introduce monomial and quasi-monomial complexes on $\mathfrak{g}_{\underline{\eta}}^{\text {nil }}$; we show that the monomial complexes (resp. quasi-monomial) complexes generate the appropriate Grothendieck group over $\mathbf{Q}(v)$ (resp. over $\mathbf{Z}\left[v, v^{-1}\right]$) where v is an indeterminate; this again generalizes to the \mathbf{Z} / m-graded case a result from [L4]. This result is of the same type as that which says that the plus part of a quantized enveloping algebra defined in terms of perverse sheaves is generated over $\mathbf{Q}(v)$ by monomials in the E_{i} and over $\mathbf{Z}\left[v, v^{-1}\right]$ by the products of divided powers of the E_{i} (which could be called quasi-monomials). In Section 9 we discuss the examples where $G=S L(V)$ or $G=S p(V)$; in these cases we describe the spirals and in the case of $G=S L(V)$ we describe the blocks.
0.10. It is known that, in the ungraded case, each block of $\mathcal{D}_{G}\left(\mathfrak{g}^{n i l}\right)$ can be related to the category of representations of a certain Weyl group; if m is large, so that the \mathbf{Z} / m grading of \mathfrak{g} is a \mathbf{Z}-grading and $\mathfrak{g}_{\eta}^{\text {nil }}=\mathfrak{g}_{\underline{\eta}}$, then each block of $\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\eta}^{\text {nil }}\right)$ is related to the category of representations of a certain graded affine Hecke algebra with possibly unequal parameters. In fact, without assumptions on m, each block of $\mathcal{D}_{G_{\underline{\underline{0}}}}\left(\mathfrak{g}_{\underline{\eta}}^{\text {nil }}\right)$ is related to a certain graded double affine Hecke algebra (corresponding to an affine Weyl group attached to the block) with possibly unequal parameters; this will be considered in a sequel to this paper. We also plan to describe explicitly the blocks in the case where G is a classical group and relate them to cyclic quivers with extra structure. The case of the symplectic group is partially carried out in 9.5-9.7.
0.11. Notation. All algebraic varieties are assumed to be over \mathbf{k}; all algebraic groups are assumed to be affine. Let l be a prime number invertible in k. For any algebraic variety X we denote by $\mathcal{D}(X)$ the bounded derived category of $\overline{\mathbf{Q}}_{l^{-}}$ complexes on X. Let $D: \mathcal{D}(X) \rightarrow \mathcal{D}(X)$ be Verdier duality.

For $K \in \mathcal{D}(X)$ we denote by $\mathcal{H}^{n} K$ the n-th cohomology sheaf of K and by $\mathcal{H}_{x}^{n} K$ the stalk of $\mathcal{H}^{n} K$ at $x \in X$.

If X^{\prime} is a locally closed smooth irreducible subvariety of X with closure \bar{X}^{\prime} and \mathcal{L} is an irreducible local system on X^{\prime} we denote by $\mathcal{L}^{\sharp} \in \mathcal{D}(X)$ the intersection cohomolgy complex of \bar{X}^{\prime} with coefficients in \mathcal{L}, extended by 0 on $X-\bar{X}^{\prime}$.

If X has a given action of an algebraic group H we denote by $\mathcal{D}_{H}(X)$ the corresponding equivariant derived category.

If H is an algebraic group we denote by H^{0} the identity component of H, by \mathcal{Z}_{H} the center of H. We set $\pi_{0}(H)=H / H^{0}$. Now assume that H is connected. We denote by $\mathfrak{L} H$ the Lie algebra of H and by U_{H} the unipotent radical of H. Let $\mathfrak{h}=\mathfrak{L} H$. If \mathfrak{h}^{\prime} is a Lie subalgebra of \mathfrak{h} we write $e^{\mathfrak{h}^{\prime}} \subset H$ for the closed connected subgroup of H such that $\mathfrak{L}\left(e^{\mathfrak{h}^{\prime}}\right)=\mathfrak{h}^{\prime}$, assuming that such a subgroup exists.

We shall often denote a collection $\left\{V_{N} ; N \in \mathbf{Z}\right\}$ of vector spaces indexed by $N \in \mathbf{Z}$ by the symbol V_{*}.

If V is a \mathbf{k}-vector space, a \mathbf{Z}-grading on V is a collection of subspaces $V_{*}=$ $\left\{V_{k} ; k \in \mathbf{Z}\right\}$ such that $V=\oplus_{k \in \mathbf{Z}} V_{k} ;$ a \mathbf{Z} / m-grading on V is a collection of subspaces
$\left\{V_{i} ; i \in \mathbf{Z} / m\right\}$ such that $V=\oplus_{i \in \mathbf{Z} / m} V_{i} ;$ a \mathbf{Q}-grading on V is a collection of subspaces $\left\{{ }_{\kappa} V ; \kappa \in \mathbf{Q}\right\}$ such that $V=\oplus_{\kappa} \in \mathbf{Q}\left({ }_{\kappa} V\right)$.

A \mathbf{Z}-grading for the Lie algebra \mathfrak{h} is a \mathbf{Z}-grading $\mathfrak{h}_{*}=\left\{\mathfrak{h}_{k} ; k \in \mathbf{Z}\right\}$ of \mathfrak{h} as a vector space satisfying $\left[\mathfrak{h}_{k}, \mathfrak{h}_{k^{\prime}}\right] \subset \mathfrak{h}_{k+k^{\prime}}$ for all $k, k^{\prime} \in \mathbf{Z} ;$ a \mathbf{Z} / m-grading for \mathfrak{h} is a \mathbf{Z} / m-grading $\left\{\mathfrak{h}_{i} ; i \in \mathbf{Z} / m\right\}$ of \mathfrak{h} as a vector space satisfying $\left[\mathfrak{h}_{i}, \mathfrak{h}_{i^{\prime}}\right] \subset \mathfrak{h}_{i+i^{\prime}}$ for all $i, i^{\prime} \in \mathbf{Z} / m$; a \mathbf{Q}-grading for \mathfrak{h} is a \mathbf{Q}-grading $\left\{{ }_{\kappa} \mathfrak{h} ; \kappa \in \mathbf{Q}\right\}$ of \mathfrak{h} as a vector space satisfying $\left[{ }_{\kappa} \mathfrak{h},{ }_{\kappa^{\prime}} \mathfrak{h}\right] \subset{ }_{\kappa+\kappa^{\prime}} \mathfrak{h}$ for all $\kappa, \kappa^{\prime} \in \mathbf{Q}$.

Let Y_{H} be the set of homomorphisms of algebraic groups $\mathbf{k}^{*} \rightarrow H$. For $\lambda \in Y_{H}$ and $c \in \mathbf{Z}$, we define $c \lambda \in Y_{H}$ by $(c \lambda)(t)=\lambda\left(t^{c}\right)$ for $t \in \mathbf{k}^{*}$. We define an equivalence relation on $Y_{H} \times \mathbf{Z}_{>0}$ by $(\lambda, r) \sim\left(\lambda^{\prime}, r^{\prime}\right)$ whenever there exist c, c^{\prime} in $\mathbf{Z}_{>0}$ such that $c \lambda=c^{\prime} \lambda^{\prime}, c r=c^{\prime} r^{\prime}$; the set of equivalence classes for this relation is denoted by $Y_{H, \mathbf{Q}}$. Let $\lambda / r=(1 / r) \lambda$ be the equivalence class of (λ, r). Now $\lambda \mapsto \lambda / 1$ identifies Y_{H} with a subset of $Y_{H, \mathbf{Q}}$. For $\kappa \in \mathbf{Q}, \mu \in Y_{H, \mathbf{Q}}$ we define $\kappa \mu \in Y_{H, \mathbf{Q}}$ by $\kappa \mu=(k \lambda) /\left(k^{\prime} r\right)$, where $k \in \mathbf{Z}, k^{\prime} \in \mathbf{Z}_{>0}, r \in \mathbf{Z}_{>0}, \lambda \in Y_{H}$ are such that $\kappa=k / k^{\prime}$, $\mu=\lambda / r$; this is independent of the choices. In particular, we have $r \mu \in Y_{H}$ for some $r \in \mathbf{Z}_{>0}$.

Let $\lambda \in Y_{H}$. For $k \in \mathbf{Z}$ we set

$$
{ }_{k}^{\lambda} \mathfrak{h}=\left\{x \in \mathfrak{h} ; \operatorname{Ad}(\lambda(t)) x=t^{k} x \quad \forall t \in \mathbf{k}^{*}\right\} .
$$

Note that $\left\{\begin{array}{l}\lambda \\ k\end{array}, k \in \mathbf{Z}\right\}$ is a \mathbf{Z}-grading of \mathfrak{h}.
Now let $\mu \in Y_{H, \mathbf{Q}}$. For $\kappa \in \mathbf{Q}$ we set ${ }_{\kappa}^{\mu} \mathfrak{h}={ }_{r \kappa}^{r \mu} \mathfrak{h}$ where $r \in \mathbf{Z}_{>0}$ is chosen so that $r \mu \in Y_{H}, r \kappa \in \mathbf{Z}$. This is well defined (independent of the choice of r). Note that $\left\{{ }_{\kappa}^{\mu} \mathfrak{h}, \kappa \in \mathbf{Q}\right\}$ is a \mathbf{Q}-grading of \mathfrak{h}.
0.12. Let H be a connected algebraic group acting on an algebraic variety X and let A, B be two H-equivariant semisimple complexes on X; let $j \in \mathbf{Z}$. We define a finite dimensional $\overline{\mathbf{Q}}_{l}$-vector space $\mathbf{D}_{j}(X, H ; A, B)$ as in [L4, 1.7]. For the purpose of this paper, we can take the following formula as the definition of $\mathbf{D}_{j}(X, H ; A, B)$:
(a) $\mathbf{D}_{j}(X, H ; A, B)=\operatorname{Hom}_{\mathcal{D}_{H}(X)}(A, D(B)[-j])^{*}$.

Let $d_{j}(X ; A, B)=\operatorname{dim} \mathbf{D}_{j}(X, H ; A, B),\{A, B\}=\sum_{j \in \mathbf{Z}} d_{j}(X ; A, B) v^{-j} \in \mathbf{N}((v))$ where v is an indeterminate.

If A, B are H-equivariant simple perverse sheaves on X, then

$$
\begin{aligned}
& \{A, B\} \in 1+v \mathbf{N}[[v]] \text { if } B \cong D(A), \\
& \{A, B\} \in v \mathbf{N}[[v]] \text { if } B \not \approx D(A) .
\end{aligned}
$$

(See [L4, 1.8(d)].)
For an algebraic variety X we denote by ρ_{X} the map $X \rightarrow$ (point).
Let v be an indeterminate and let $\mathcal{A}=\mathbf{Z}\left[v, v^{-1}\right]$. Let ${ }^{-}: \mathbf{Q}(v) \rightarrow \mathbf{Q}(v)$ be the field involution such that $\bar{v}=v^{-1}$. This restricts to a ring involution ${ }^{-}: \mathcal{A} \rightarrow \mathcal{A}$.

For any $\eta \in \mathbf{Z}-\{0\}$ we define $\dot{\eta}=\eta /|\eta| \in\{1,-1\}$ where $|\eta|$ is the absolute value of η.

1. Recollections on Z-Graded Lie algebras

In this section we recall notation and results from [L4 that will be used in this paper.
1.1. In this section we fix a connected reductive group H; let $\mathfrak{h}=\mathfrak{L} H$.

Let J^{H} be the variety consisting of all triples $(e, h, f) \in \mathfrak{h}^{3}$ such that $[h, e]=$ $2 e,[h, f]=-2 f,[e, f]=h$ (then e, f are necessarily in $\mathfrak{h}^{\text {nil }}$). If $\phi=(e, h, f) \in J^{H}$, there is a unique homomorphism of algebraic groups $\tilde{\phi}: S L_{2}(\mathbf{k}) \rightarrow H$ such that the differential of $\tilde{\phi}$ carries $\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ to e, h, f respectively; we then define $\iota_{\phi} \in Y_{H}$ by $\iota_{\phi}(t)=\tilde{\phi}\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)$.
1.2. In the remainder of this section we assume that a \mathbf{Z}-grading \mathfrak{h}_{*} for \mathfrak{h} is given. Then there exists $\lambda \in Y_{H}$ and $r \in \mathbf{Z}_{>0}$ with $\mathfrak{h}_{k}={ }_{r k}^{\lambda} \mathfrak{h}$ for all $k \in \mathbf{Z}$. (It follows that ${ }_{\kappa}^{\lambda} \mathfrak{h}=0$ for all $\kappa \in \mathbf{Q}-r \mathbf{Z}$.)
(In this paper we will often refer to results in [L4], even though, strictly speaking, in [L4] a stronger assumption on the \mathbf{Z}-grading of \mathfrak{h} is made, namely that r above can be taken to be 1 . Note that the results of [L4] hold with the same proof when the stronger assumption is replaced by the present assumption.)

We have $\mathfrak{h}_{k} \subset \mathfrak{h}^{\text {nil }}$ for any $k \in \mathbf{Z}-\{0\}$. Note that \mathfrak{h}_{0} is a Lie subalgebra of \mathfrak{h} and that $H_{0}:=e^{\mathfrak{h}_{0}} \subset H$ is well defined and it acts by the Ad-action on each \mathfrak{h}_{k}. If $k \neq 0$, this action has only finitely many orbits (see [L4, 3.5]); we denote by $\dot{\mathfrak{h}}_{k}$ the unique open H_{0}-orbit in \mathfrak{h}_{k}.

Let $\eta \in \mathbf{Z}-\{0\}$.
(a) We say that the \mathbf{Z}-grading \mathfrak{h}_{*} of \mathfrak{h} is η-rigid if there exists $\iota \in Y_{H}$ such that (i), (ii) below hold.
(i) ${ }_{k}^{\iota} \mathfrak{h}=\mathfrak{h}_{\eta k / 2}$ for any $k \in \mathbf{Z}$ such that $\eta k / 2 \in \mathbf{Z}$ and ${ }_{k}^{\iota} \mathfrak{h}=0$ for any $k \in \mathbf{Z}$ such that $\eta k / 2 \notin \mathbf{Z}$;
(ii) $\iota=\iota_{\phi}$ for some $\phi=(e, h, f) \in J^{H}$ such that $e \in \dot{\mathfrak{h}}_{\eta}, h \in \mathfrak{h}_{0}, f \in \mathfrak{h}_{-\eta}$. It follows that $2 k^{\prime} \in \eta \mathbf{Z}$ whenever $\mathfrak{h}_{k^{\prime}} \neq 0$. Note that ι is unique if it exists, since, by (ii), $\iota\left(\mathbf{k}^{*}\right)$ is contained in the derived group of H.

We show:
(b) In the setup of (a), let $\phi^{\prime}=\left(e^{\prime}, h^{\prime}, f^{\prime}\right) \in J^{H}$ be such that $e^{\prime} \in \stackrel{\circ}{\mathfrak{h}}_{\eta}, h^{\prime} \in \mathfrak{h}_{0}$, $f^{\prime} \in \mathfrak{h}_{-\eta}$. Let $\iota^{\prime}=\iota_{\phi^{\prime}}$. Then $\iota^{\prime}=\iota$.

Let ϕ be as in (ii). Using [L4, 3.3], we can find $g_{0} \in H_{0}$ such that $\operatorname{Ad}\left(g_{0}\right)$ carries ϕ to ϕ^{\prime}. It follows that $\operatorname{Ad}\left(g_{0}\right) \iota(t)=\iota^{\prime}(t)$ for any $t \in \mathbf{k}^{*}$. For $k \in \mathbf{Z}$ such that $\eta k / 2 \in \mathbf{Z}$ we have

$$
{ }_{k}^{\iota^{\prime} \mathfrak{h}}=\operatorname{Ad}\left(g_{0}\right)\left({ }_{k}^{\iota} \mathfrak{h}\right)=\operatorname{Ad}\left(g_{0}\right) \mathfrak{h}_{k}=\mathfrak{h}_{k}
$$

for $k \in \mathbf{Z}$ such that $\eta k / 2 \notin \mathbf{Z}$ we have

$$
\begin{gathered}
\stackrel{\iota}{k}_{k}^{\prime} \mathfrak{h}=\operatorname{Ad}\left(g_{0}\right)\left({ }_{k}^{\iota} \mathfrak{h}\right)=0 \\
\iota_{2 k \eta}^{\prime} \mathfrak{h}=\operatorname{Ad}\left(g_{0}\right)\left({ }_{2 k \eta}^{\iota} \mathfrak{h}\right)=\operatorname{Ad}\left(g_{0}\right) \mathfrak{h}_{k}=\mathfrak{h}_{k} .
\end{gathered}
$$

Thus ι^{\prime} satisfies the defining properties of ι in (a). By uniqueness we have $\iota^{\prime}=\iota$ as required.

Let $\mathcal{I}\left(\mathfrak{h}_{\eta}\right)$ be the set of all pairs $(\mathcal{O}, \mathcal{L})$ where \mathcal{O} is an H_{0}-orbit in \mathfrak{h}_{η} and \mathcal{L} is an H_{0}-equivariant irreducible local system on \mathfrak{h}_{η} (up to isomorphism).

Let $\mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$ be the category of $\overline{\mathbf{Q}}_{l}$-complexes on \mathfrak{h}_{η} which are direct sums of shifts of simple H_{0}-equivariant perverse sheaves on \mathfrak{h}_{η}. There are up to isomorphism only finitely many such simple perverse sheaves; they form a set in bijection with $\mathcal{I}\left(\mathfrak{h}_{\eta}\right)$.

An H_{0}-equivariant perverse sheaf A on \mathfrak{h}_{η} is said to be cuspidal if there exists a nilpotent H-orbit \mathcal{C} in \mathfrak{h} and an irreducible H-equivariant cuspidal local system \mathcal{F}
on \mathcal{C} such that $\stackrel{\circ}{\mathfrak{h}}_{\eta} \subset \mathcal{C}$ and $\left.A\right|_{{\stackrel{\circ}{\mathfrak{h}_{\eta}}}}=\left.\mathcal{F}\right|_{\stackrel{\mathfrak{h}}{\eta}^{\circ}}\left[\operatorname{dim} \mathfrak{h}_{\eta}\right]$. If such $(\mathcal{C}, \mathcal{F})$ exists, it is unique; see [L4, 4.2(c)]. Note that if A is cuspidal, then it is necessarily a simple perverse sheaf.
(c) If there exists a cuspidal H_{0}-equivariant perverse sheaf A on \mathfrak{h}_{η}, the grading \mathfrak{h}_{*} of \mathfrak{h} is necessarily η-rigid; moreover, we have $\left.A\right|_{\mathfrak{h}_{\eta}-\circ_{\eta}}=0$.
(See [L4, 4.4(a), 4.4(b)].)
In the setup of (c), the element $\iota \in Y_{H}$ provided by (a) is known to satisfy
(d) ${ }_{k} \mathfrak{h}=0$ unless $k \in 2 \mathbf{Z}$;
we deduce that:
(e) If $k^{\prime} \in \mathbf{Z}$ and $\mathfrak{h}_{k^{\prime}} \neq 0$, then $k^{\prime} / \eta \in \mathbf{Z}$.
1.3. Parabolic induction. In the setup of 1.2 assume that P is a parabolic subgroup of H with $\mathfrak{p}:=\mathfrak{L} P$ satisfying $\mathfrak{p}=\oplus_{k \in \mathbf{Z}} \mathfrak{p}_{k}$ where $\mathfrak{p}_{k}=\mathfrak{p} \cap \mathfrak{h}_{k}$. We set $U=U_{P}, L=P / U, \mathfrak{u}=\mathfrak{L} U, \mathfrak{l}=\mathfrak{L} L=\mathfrak{p} / \mathfrak{u}$. We have $\mathfrak{u}=\oplus_{k \in \mathbf{Z}} \mathfrak{u}_{k}$ where $\mathfrak{u}_{k}=\mathfrak{u} \cap \mathfrak{h}_{k}$. Setting $\mathfrak{l}_{k}=\mathfrak{p}_{k} / \mathfrak{u}_{k}$, we have $\mathfrak{l}=\oplus_{k \in \mathbf{Z}} \mathfrak{l}_{k}$; this gives a Z-grading of the Lie algebra \mathfrak{l}.

Now \mathfrak{p}_{0} is a parabolic subalgebra of the reductive Lie algebra \mathfrak{h}_{0}; we have $\mathfrak{p}_{0}=$ $\mathfrak{L} P_{0}$ where P_{0} is a parabolic subgroup of the connected reductive group H_{0}. Let L_{0} be the image of P_{0} under the obvious homomorphism $P \rightarrow L$. Then $L_{0}=e^{\mathrm{l}_{0}} \subset L$. Now P_{0} acts by the Ad-action on each \mathfrak{p}_{k}. Let $\pi: \mathfrak{p}_{\eta} \rightarrow \mathfrak{l}_{\eta}$ be the obvious projection. We have a diagram

$$
\mathfrak{l}_{\eta} \stackrel{a}{\leftarrow} H_{0} \times \mathfrak{p}_{\eta} \xrightarrow{b} E \xrightarrow{c} \mathfrak{h}_{\eta}
$$

where

$$
\begin{aligned}
E & =\left\{\left(h P_{0}, z\right) \in H_{0} / P_{0} \times \mathfrak{h}_{\eta} ; \operatorname{Ad}\left(h^{-1}\right) z \in \mathfrak{p}_{\eta}\right\}, \\
a(h, z) & =\pi\left(\operatorname{Ad}\left(h^{-1}\right) z\right), b(h, z)=\left(h P_{0}, z\right), c\left(g P_{0}, z\right)=z .
\end{aligned}
$$

Now a is smooth with connected fibers, b is a principal P_{0}-bundle and c is proper. If $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$, then $a^{*} A$ is a P_{0}-equivariant semisimple complex on $H_{0} \times \mathfrak{p}_{\eta}$ hence there is a well-defined semisimple complex A_{1} on E such that $b^{*} A_{1}=a^{*} A$. Since c is proper, the complex

$$
\operatorname{ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}(A):=c_{!} A_{1}
$$

belongs to $\mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$. For $B \in \mathcal{D}\left(\mathfrak{h}_{\eta}\right)$ we can form

$$
\operatorname{res}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}(B):=\pi_{!}\left(\left.B\right|_{\mathfrak{p}_{\eta}}\right) \in \mathcal{D}\left(\mathfrak{l}_{\eta}\right) .
$$

Thus we have functors $\operatorname{res}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}: \mathcal{D}\left(\mathfrak{h}_{\eta}\right) \rightarrow \mathcal{D}\left(\mathfrak{l}_{\eta}\right), \operatorname{ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}: \mathcal{Q}\left(\mathfrak{l}_{\eta}\right) \rightarrow \mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$.
When $\tilde{\mathfrak{l}}$ is a Levi subalgebra of \mathfrak{p} such that $\tilde{\mathfrak{l}}=\oplus_{k \in \mathbf{Z}} \tilde{\mathfrak{l}}_{k}$ with $\tilde{\mathfrak{l}}_{k}=\tilde{\mathfrak{l}} \cap \mathfrak{h}_{k}$, we will sometime consider $\operatorname{ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}(A)$ with $A \in \mathcal{Q}\left(\tilde{\mathfrak{l}}_{\eta}\right)$ by identifying $\tilde{\mathfrak{l}}_{\eta}=\mathfrak{l}_{\eta}$ in an obvious way and A with an object in $\mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$.
1.4. In the setup of 1.3 let S_{P}^{\prime} be the set of Levi subgroups of P and let S_{P} be the set of all $M \in S_{P}^{\prime}$ such that, setting $\mathfrak{L} M=\mathfrak{m}, \mathfrak{m}_{k}=\mathfrak{m} \cap \mathfrak{h}_{k}$, we have $\mathfrak{m}=\oplus_{k \in \mathbf{Z}} \mathfrak{m}_{k}$, or equivalently such that $\operatorname{Ad}(\lambda(t)) \mathfrak{m}=\mathfrak{m}$ for all $t \in \mathbf{k}^{*}$. We have $S_{P} \neq \emptyset$; indeed, we can find $M \in S_{P}^{\prime}$ such that $\lambda\left(k^{*}\right) \subset M$; then $M \in S_{P}$. Since U acts simply transitively by conjugation on S_{P}^{\prime}, it follows that:
(a) The unipotent group $\left\{u \in U ; u \lambda(t)=\lambda(t) u \quad \forall t \in \mathbf{k}^{*}\right\}$ acts simply transitively by conjugation on S_{P}.
1.5. Blocks for $\mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$. Let $\mathfrak{M}_{\eta}(H)$ be the set of all systems

$$
\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)
$$

where M is a Levi subgroup of some parabolic subgroup of $H, \mathfrak{m}=\mathfrak{L} M, \mathfrak{m}_{*}$ is a Z-grading of \mathfrak{m} such that $\mathfrak{m}_{k}=\mathfrak{m} \cap \mathfrak{h}_{k}$ for all $k, M_{0}=e^{\mathfrak{m}_{0}} \subset M$ and \tilde{C} is a cuspidal M_{0}-equivariant perverse sheaf on \mathfrak{m}_{η} (up to isomorphism). Note that H_{0} acts by conjugation on $\mathfrak{M}_{\eta}(H)$. Let $\mathfrak{M}_{\eta}(H)$ be the set of orbits for this action.

In the setup of 1.2 assume that A is a simple H_{0}-equivariant perverse sheaf on \mathfrak{h}_{η}. By [L4, 7.5]:
(a) There exists $P, L, L_{0}, \mathfrak{p}, \mathfrak{l}$ as in 1.3 and a cuspidal L_{0}-equivariant perverse sheaf C on \mathfrak{l}_{η} such that some shift of A is a direct summand of $\operatorname{ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}(C)$.

Assume now that $P^{\prime}, L^{\prime}, L_{0}^{\prime}, \mathfrak{p}^{\prime}, \mathfrak{l}^{\prime}$ is another quintuple like $P, L, L_{0}, \mathfrak{p}, \mathfrak{l}$ and that C^{\prime} is a cuspidal L_{0}^{\prime}-equivariant perverse sheaf on $\mathfrak{l}_{\eta}^{\prime}$ such that some shift of A is a direct summand of $\operatorname{ind}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{h}_{\eta}^{\prime}}\left(C^{\prime}\right)$.

Let $M \in S_{P}, M^{\prime} \in S_{P^{\prime}}^{\prime}$, let $\mathfrak{L} M=\mathfrak{m}=\oplus_{k} \mathfrak{m}_{k}$ be as in 1.4 and let $\mathfrak{L} M^{\prime}=\mathfrak{m}^{\prime}=$ $\oplus_{k} \mathfrak{m}_{k}^{\prime}$ where $\mathfrak{m}_{k}^{\prime}=\mathfrak{m}^{\prime} \cap \mathfrak{h}_{k}$. Let $M_{0}=e^{\mathfrak{m}_{0}} \subset M, M_{0}^{\prime}=e^{\mathfrak{m}_{0}^{\prime}} \subset M^{\prime}$. We can identify $M, M_{0}, \mathfrak{m}, \mathfrak{m}_{k}$ with $L, L_{0}, \mathfrak{l}, \mathfrak{l}_{k}$ via $P \rightarrow L$ and we can identify $M^{\prime}, M_{0}^{\prime}, \mathfrak{m}^{\prime}, \mathfrak{m}_{k}^{\prime}$ with $L^{\prime}, L_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{l}_{k}^{\prime}$ via $P^{\prime} \rightarrow L^{\prime}$. Then C (resp. C^{\prime}) becomes a cuspidal M_{0}-equivariant (resp. M_{0}^{\prime}-equivariant) perverse sheaf \tilde{C} (resp. $\left.\tilde{C}^{\prime}\right)$ on $\mathfrak{m}_{\eta}\left(\right.$ resp. $\left.\mathfrak{m}_{\eta}^{\prime}\right)$.

Using the last sentence of [L4, 15.3], we see that there exists $h \in H_{0}$ such that $\operatorname{Ad}(h)$ carries $M, M_{0}, \mathfrak{m}, \mathfrak{m}_{k}$ to $M^{\prime}, M_{0}^{\prime}, \mathfrak{m}^{\prime}, \mathfrak{m}_{k}^{\prime}$ and \tilde{C} to \tilde{C}^{\prime}. Thus, we have:
(b) $A \mapsto\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{k}, \tilde{C}\right)$ is a well-defined map from the set of (isomorphism classes) of simple H_{0}-equivariant perverse sheaves on \mathfrak{h}_{η} to the set $\underline{\mathfrak{M}}_{\eta}(H)$.
1.6. Let $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{k}, \tilde{C}\right) \in \mathfrak{M}_{\eta}(H)$. We show:
(a) There exists a parabolic subgroup P of H such that M is a Levi subgroup of P and such that, setting $\mathfrak{p}=\mathfrak{L} P, \mathfrak{p}_{k}=\mathfrak{p} \cap \mathfrak{h}_{k}$, we have $\mathfrak{p}=\oplus_{k \in \mathfrak{Z}} \mathfrak{p}_{k}$.

Let $\mathcal{Z}=\mathcal{Z}_{M}^{0}$. Then $\mathfrak{z}=\mathfrak{L} \mathcal{Z}$ is the center of \mathfrak{m}. Since \mathfrak{m}_{0} is a Levi subalgebra of a parabolic subalgebra of \mathfrak{m}, we have $\mathfrak{z} \subset \mathfrak{m}_{0}$ hence $\mathcal{Z} \subset M_{0}$. We can find $\lambda_{1} \in Y_{\mathcal{Z}}$ such that the centralizer of $\lambda_{1}\left(\mathbf{k}^{*}\right)$ in H is equal to the centralizer of \mathcal{Z} in H which equals M. Let $\lambda \in Y_{H}, r$ be as in 1.2. Then $\lambda\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{H_{0}}$. Now $\lambda_{1}\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}$ hence $\lambda_{1}\left(\mathbf{k}^{*}\right) \subset H_{0}$. It follows that $\lambda_{1}(t) \lambda\left(t^{\prime}\right)=\lambda\left(t^{\prime}\right) \lambda_{1}(t)$ for any t, t^{\prime} in \mathbf{k}^{*}. Thus we have $\mathfrak{h}=\oplus_{k \in \mathbf{Z}, k^{\prime} \in \mathbf{Z}}\left(\underset{k r}{\lambda} \mathfrak{h} \cap{ }_{k^{\prime}}^{\lambda_{1}} \mathfrak{h}\right)$. Since the centralizer of $\lambda_{1}\left(\mathbf{k}^{*}\right)$ in \mathfrak{h} equals \mathfrak{m}, we have $\mathfrak{m}=\oplus_{k \in \mathbf{Z}}\left({ }_{k r} \mathfrak{h} \cap{ }_{0}^{\lambda_{1}} \mathfrak{h}\right)$. We set

$$
\mathfrak{p}=\oplus_{k \in \mathbf{Z}, k^{\prime} \in \mathbf{Z}_{\geq 0}}\left({ }_{k r}^{\lambda} \mathfrak{h} \cap{ }_{k^{\prime}}^{\lambda_{1}} \mathfrak{h}\right) .
$$

Clearly, \mathfrak{p} is a parabolic subalgebra of \mathfrak{h} with Levi subalgebra \mathfrak{m} and such that, setting $\mathfrak{p}_{k}=\mathfrak{p} \cap \mathfrak{h}_{k}$, we have $\mathfrak{p}=\oplus_{k \in \mathbf{Z}} \mathfrak{p}_{k}$. This proves (a).
1.7. To any $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{M}_{\eta}(H)$ we associate a simple perverse sheaf A in $\mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$ as follows. Let \mathcal{O} be the H_{0}-orbit in \mathfrak{h}_{η} which contains $\stackrel{\circ}{\mathfrak{m}}_{\eta}$. Let \mathcal{L}^{\prime} be the irreducible M_{0}-equivariant local system on $\stackrel{\circ}{\mathfrak{m}}_{\eta}$ such that $\left.\tilde{C}\right|_{\stackrel{\circ}{\mathfrak{m}}_{\eta}}=\mathcal{L}^{\prime}\left[\operatorname{dim} \mathfrak{m}_{\eta}\right]$. By [L4, 11.2], there is a well-defined irreducible H_{0}-equivariant local system \mathcal{L} on \mathcal{O} such that $\left.\mathcal{L}\right|_{\mathfrak{m}_{\eta}}=\mathcal{L}^{\prime}$. By definition, A is the simple perverse sheaf on \mathfrak{h}_{η} such that $\operatorname{supp} A$ is contained in the closure of \mathcal{O} and $\left.A\right|_{\mathcal{O}}=\mathcal{L}[\operatorname{dim} \mathcal{O}]$.
1.8. Assume that the \mathbf{Z}-grading \mathfrak{h}_{*} of \mathfrak{h} is η-rigid. A perverse sheaf A in $\mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$ is said to be η-semicuspidal if $\operatorname{supp} A=\mathfrak{h}_{\eta}$ and A is attached to some

$$
\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{M}_{\eta}(H),
$$

as in 1.7 (in particular, A is a simple perverse sheaf). In this case we have $\stackrel{\circ}{\mathfrak{m}}_{\eta} \subset \stackrel{\circ}{\mathfrak{h}}_{\eta}$; moreover,
(a) H_{0} acts transitively on the set of systems $\left(M, M_{0}, \mathfrak{p}, \mathfrak{p}_{*}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ such that $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{M}_{\eta}(H), A$ is attached to $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ as in $1.7, \mathfrak{p}$ is a parabolic subalgebra of \mathfrak{h} with Levi subalgebra \mathfrak{m} and $\mathfrak{p}=\oplus_{k \in \mathbf{Z}} \mathfrak{p}_{k}$ where $\mathfrak{p}_{k}=\mathfrak{p} \cap \mathfrak{h}_{k}$. (See [L4, 11.9].)

If $\left(M, M_{0}, \mathfrak{p}, \mathfrak{p}_{*}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ is as in (a), then

$$
\begin{equation*}
\operatorname{ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}(\tilde{C}) \cong \oplus_{j} A\left[-2 s_{j}\right]\left[\operatorname{dim} \mathfrak{m}_{\eta}-\operatorname{dim} \mathfrak{h}_{\eta}\right], \tag{b}
\end{equation*}
$$

where $s_{j} \in \mathbf{N}$ are defined as follows. Choose $\phi=(e, h, f) \in J^{H}$ as in 1.2(ii); let $H_{\phi}=\{g \in H ; \operatorname{Ad}(g)(e)=e, \operatorname{Ad}(g)(h)=h, \operatorname{Ad}(g)(f)=f\}$, let \mathcal{B} be the variety of Borel subgroups of H_{ϕ}^{0}; then s_{j} are defined by $\rho_{\mathcal{B}!} \overline{\mathbf{Q}}_{l}=\oplus_{j} \overline{\mathbf{Q}}_{l}\left[-2 s_{j}\right]$. (See [L4, 11.13].)
1.9. Let \mathcal{X} be the set of all systems $\left(M, M_{0}, \mathfrak{p}, \mathfrak{p}_{*}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{A}\right)$ where \mathfrak{p} is a parabolic subalgebra of \mathfrak{h} with Levi subalgebra $\mathfrak{m}, \mathfrak{p}=\oplus_{k \in \mathbf{Z}} \mathfrak{p}_{k}, \mathfrak{m}=\oplus_{k \in \mathbf{Z}} \mathfrak{m}_{k}$ where $\mathfrak{p}_{k}=$ $\mathfrak{p} \cap \mathfrak{h}_{k}, \mathfrak{m}_{k}=\mathfrak{m} \cap \mathfrak{h}_{k}, M=e^{\mathfrak{m}}, M_{0}=e^{\mathfrak{m}_{0}}$ and \tilde{A} is a simple perverse sheaf in $\mathcal{Q}\left(\mathfrak{m}_{\eta}\right)$ (up to isomorphism) which is η-semicuspidal. We have the following result; see [4, 13.3].
(a) Let $A_{1} \in \mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$. There exists $C_{1}, C_{2}, \ldots, C_{t}, C_{t+1}, \ldots, C_{t+t^{\prime}}$ in $\mathcal{Q}\left(\mathfrak{h}_{\eta}\right)$ such that

$$
A_{1} \oplus C_{1} \oplus C_{2} \oplus \ldots \oplus C_{t}=C_{t+1} \oplus \ldots \oplus C_{t+t^{\prime}}
$$

and each C_{j} is of the form $\operatorname{ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{h}_{\eta}}(\tilde{A})\left[a_{j}\right]$ for some $\left(M, M_{0}, \mathfrak{p}, \mathfrak{p}_{*}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{A}\right) \in \mathcal{X}$ (depending on j) and some $a_{j} \in \mathbf{Z}$.

Erratum to [4]. In the definition of a good object in the second paragraph of [L4, 13.2], one should insert the words "shifts of" after "direct sum of" (twice).
1.10. Let $s \in \mathbf{Z}-\{0\}$. We show:
(a) the subspace $\mathfrak{h}^{(1)}:=\oplus_{k \in s \in \mathfrak{z}_{k}}$ of \mathfrak{h} is the Lie algebra of a well-defined connected reductive subgroup $H^{(1)}$ of H.

We can assume that $s>0$. We shall define $e \in Z_{\geq 0}$ as follows: if $p=0$ we have $e=0$; if $p>0$ we define e by $s=s^{\prime} p^{e}$, where $s^{\prime} \in \mathbf{Z}_{>0}$ is not divisible by p. We shall argue by induction on e. (When $p=0$ we only have to consider the case $e=0$.) Assume first that $e=0$.

Let \bar{H} be the adjoint group of H and let $\overline{\mathfrak{h}}$ be its Lie algebra. Then $\overline{\mathfrak{h}}$ inherits a \mathbf{Z}-grading $\overline{\mathfrak{h}}=\oplus_{k} \overline{\mathfrak{h}}_{k}$ from \mathfrak{h}. If we assume known that $\overline{\mathfrak{h}}^{(1)}:=\oplus_{k \in s} \mathbf{Z} \overline{\mathfrak{h}}_{k}$ is the Lie algebra of a well-defined connected reductive subgroup $\bar{H}^{(1)}$ of \bar{H}, then we can take $H^{(1)}$ to be the identity component of the inverse image of $\bar{H}^{(1)}$ under the obvious map $H \rightarrow \bar{H}$. Thus we can assume that H is adjoint. Let $\lambda \in Y_{H}$ be such that ${ }_{k}^{\lambda} \mathfrak{h}=\mathfrak{h}_{k}$ for all k. Let ζ^{\prime} be a primitive s-th root of $1 \mathrm{in} \mathbf{k}$. (Note that if $p>0$, $s=s^{\prime}$ is not divisible by p.) We define $\omega: H \rightarrow H$ by $\omega(g)=\operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)\right)(g)$; this is an automorphism of H. The automorphism $\omega^{\prime}: \mathfrak{h} \rightarrow \mathfrak{h}$ induced by ω sends $x \in \mathfrak{h}_{k}$ (where $k \in \mathbf{Z}$) to $\zeta^{\prime k} x$. Hence $\omega^{s}=1$ and $\mathfrak{h}^{(1)}$ is equal to $\{x \in \mathfrak{h} ; \omega(x)=x\}$. Let $H^{(1)}$ be the identity component of $\{g \in H ; \omega(g)=g\}$. This is a connected reductive
group with Lie algebra $\mathfrak{h}^{(1)}$. Thus (a) is proved in the case $e=0$. We now assume that $e \geq 1$ hence $p>0$. We can find an element $x_{0} \in \mathfrak{h}$ such that $\left[x_{0}, x\right]=k x$ for any $k \in \mathbf{Z}$ and any $x \in \mathfrak{g}_{k}$. (We can take x_{0} in the image of the tangent map of $\lambda: \mathbf{k}^{*} \rightarrow H$.) Let $\tilde{\mathfrak{h}}=\left\{x \in \mathfrak{h} ;\left[x_{0}, x\right]=0\right\}$. We have $\tilde{\mathfrak{h}}=\oplus_{k \in p} \mathbf{z} \mathfrak{h}_{k}$. Let \tilde{H} be the identity component of $\left\{g \in H ; \operatorname{Ad}(g) x_{0}=x_{0}\right\}$. Since $x_{0} \in \mathfrak{h}$ is semisimple, it follows that \tilde{H} is reductive with Lie algebra $\tilde{\mathfrak{h}}$. We define a Z Z-grading $\tilde{\mathfrak{h}}=\oplus_{k^{\prime} \in \mathbf{Z}} \tilde{\mathfrak{h}}_{k^{\prime}}$ by $\tilde{\mathfrak{h}}_{k^{\prime}}=\mathfrak{h}_{p k^{\prime}}$. By the induction hypothesis applied to $\tilde{H}, \tilde{\mathfrak{h}}$ we see that there is a well-defined connected reductive subgroup $\tilde{H}^{(1)}$ of \tilde{H} whose Lie algebra is
 completes the inductive proof.

2. $\mathbf{Z} \mapsto$-GRADINGS AND ϵ-SPIRALS

In this section we introduce the key notion of this paper, namely a spiral. Spirals are analogues in the \mathbf{Z} / m-graded setting of parabolic subalgebras in the ungraded or Z-graded setting. We also attach a canonical spiral to each nilpotent element in \mathfrak{g}_{δ}.
2.1. In the rest of this paper, $m \geq 1, G, \mathfrak{g}=\oplus_{i \in \mathbf{Z} / m} \mathfrak{g}_{i}$ are as in 0.1 and ζ, ϑ, θ are as in 0.5. Recall that for $i \in \mathbf{Z} / m$ we have $\mathfrak{g}_{i}=\left\{x \in \mathfrak{g} ; \theta(x)=\zeta^{i} x\right\}$ and that $\vartheta: G \rightarrow G$ is the (semisimple) automorphism of G which induces $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$; note that $\theta(\operatorname{Ad}(g) x)=\operatorname{Ad}(\vartheta(g)) \theta(x)$ for all $x \in \mathfrak{g}, g \in G$.

We shall fix $\delta \in \mathbf{Z} / m$.
For any semisimple automorphism $\gamma: G \rightarrow G$, we set $G^{\gamma}=\{g \in G ; \gamma(g)=g\}$. By a theorem of Steinberg [St ,
(a) G^{γ} is a connected reductive subgroup of G.

Now $\mathfrak{g}_{\underline{0}}$ is a Lie subalgebra of \mathfrak{g}. Recall that $G_{\underline{0}}=G^{\vartheta}$ and that the Ad-action of $G_{\underline{0}}$ on \mathfrak{g} leaves stable \mathfrak{g}_{i} and its closed subset $\mathfrak{g}_{i}^{\text {nil }}:=\mathfrak{g}_{i} \cap \mathfrak{g}^{\text {nil }}$ for any $i \in \mathbf{Z} / m$.

Let \mathfrak{G} be the set of subgroups of G of the form $G^{\operatorname{Ad}(\tau) \vartheta}$ for some semisimple element of finite order $\tau \in G_{\underline{0}}$; by (a), any group in \mathfrak{G} is a connected reductive subgroup of G. For example, we have $G_{\underline{0}} \in \mathfrak{G}$; hence we have $G_{\underline{0}}=e^{\mathfrak{g}_{0}}$.
2.2. Let $\langle\rangle:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbf{k}$ be a Killing form; it is nondegenerate and it satisfies $\left\langle\mathfrak{g}_{i}, \mathfrak{g}_{j}\right\rangle=0$ whenever $i+j \neq \underline{0}$ in \mathbf{Z} / m. Hence for any $i \in \mathbf{Z} / m,\langle\rangle:, \mathfrak{g}_{i} \times \mathfrak{g}_{-i} \rightarrow \mathbf{k}$ is nondegenerate.
2.3. The Morozov-Jacobson theorem in the \mathbf{Z} / m-graded setting. We set $J=J^{G}$; see 1.1. For $x \in \mathfrak{g}^{\text {nil }}$ let $J(x)=\{(e, h, f) \in J ; e=x\}, G(x)=\{g \in$ $G ; \operatorname{Ad}(g) x=x\}$ and let $U=U_{G(x)^{0}}$. Recall the following result of MorozovJacobson and Kostant; see Ko.
(a) We have $J(x) \neq \emptyset$. The U-action on $J(x)$ given by

$$
u:(e, h, f) \mapsto u(e, h, f):=(e, \operatorname{Ad}(u) h, \operatorname{Ad}(u) f)
$$

is simply transitive.
Assume now that $x \in \mathfrak{g}_{\delta}^{\text {nil }}$. We set

$$
J_{\delta}(x)=\left\{(e, h, f) \in J(x) ; e=x, h \in \mathfrak{g}_{0}, f \in \mathfrak{g}_{-\delta}\right\} .
$$

We show:
(b) We have $J_{\delta}(x) \neq \emptyset$. The $\left(U \cap G_{\underline{0}}\right)$-action on $J_{\delta}(x)$ (restriction of the U-action in (a)) is simply transitive.

If $(e, h, f) \in J(x)$, then $\left(\zeta^{-\delta} e, h, \zeta^{\delta} f\right) \in J_{\delta}\left(\zeta^{-\delta} x\right)$ and

$$
\left(\zeta^{-\delta} \theta(e), \theta(h), \zeta^{\delta} \theta(f)\right) \in J\left(\zeta^{-\delta} \theta(x)\right)=J(x)
$$

(we use that $\theta(e)=\zeta^{\delta} e$). Hence $(e, h, f) \mapsto\left(\zeta^{-\delta} \theta(e), \theta(h), \zeta^{\delta} \theta(f)\right)$ is a morphism $\theta^{\prime}: J(x) \rightarrow J(x)$. Next we note that $g \mapsto \vartheta(g)$ defines a homomorphism $G(x) \rightarrow$ $G(x)$. (If $\operatorname{Ad}(g) x=x$, then $\theta(x)=\theta(\operatorname{Ad}(g) x)=\operatorname{Ad}(\vartheta(g)) \theta(x)$. Since $\theta(x)=\zeta^{\delta} x$, we see that $\zeta^{\delta} x=\operatorname{Ad}(\vartheta(g)) \zeta^{\delta} x$ hence $x=\operatorname{Ad}(\vartheta(g)) x$ and $\vartheta(g) \in G(x)$.) This restricts to a homomorphism $\theta^{\prime \prime}: U \rightarrow U$ with fixed point set $U^{\theta^{\prime \prime}}$. For $u \in U$, $(e, h, f) \in J(x)$ we have $\theta^{\prime}(u(e, h, f))=\theta^{\prime \prime}(u) \theta^{\prime}(e, h, f)$. By (a), J(x) is an affine space. Since $\theta^{\prime m}=1$ and m is invertible in \mathbf{k}, the fixed point set $J(x)^{\theta^{\prime}}$ is nonempty. Since the U-action on $J(x)$ is simply transitive, it follows that this restricts to a simply transitive action of $U^{\theta^{\prime \prime}}$ on $J(x)^{\theta^{\prime}}$. We have $J(x)^{\theta^{\prime}}=J_{\delta}(x)$ and $U^{\theta^{\prime \prime}}=$ $U \cap G_{\underline{0}}$. We see that (b) holds.
2.4. Let $\lambda \in Y_{G_{\underline{0}}}$ (resp. $\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}$). Since λ (resp. μ) can be viewed as an element of $Y_{G}\left(\right.$ resp. $\left.\overline{Y_{G, \mathbf{Q}}}\right)$, the decomposition $\mathfrak{g}=\oplus_{k \in \mathbf{Z}}\left({ }_{k}^{\lambda} \mathfrak{g}\right)\left(\right.$ resp. $\left.\mathfrak{g}=\oplus_{\kappa \in \mathbf{Q}}\left({ }_{\kappa}^{\mu} \mathfrak{g}\right)\right)$ is defined as in 1.1. For $i \in \mathbf{Z} / m$ and for $k \in \mathbf{Z}$ (resp. $\kappa \in \mathbf{Q}$) we set ${ }_{k}^{\lambda} \mathfrak{g}_{i}={ }_{k}^{\lambda} \mathfrak{g} \cap \mathfrak{g}_{i}$ (resp. $\left.{ }_{\kappa}^{\mu} \mathfrak{g}_{i}={ }_{\kappa}^{\mu} \mathfrak{g} \cap \mathfrak{g}_{i}\right)$; we then have $\mathfrak{g}_{i}=\oplus_{k \in \mathbf{Z}}\left({ }_{k}^{\lambda} \mathfrak{g}_{i}\right)$ (resp. $\mathfrak{g}_{i}=\oplus_{\kappa \in \mathbf{Q}}\left({ }_{\kappa}^{\mu} \mathfrak{g}_{i}\right)$) for any $i \in \mathbf{Z} / m$ (we now use that $\lambda \in Y_{G_{\underline{0}}}\left(\right.$ resp. $\left.\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}\right)$).

Let $s \in \mathbf{Z}-\{0\}$. We show:
(a) The subspace $\mathfrak{g}^{(1)}:=\oplus_{k \in s} \mathbf{Z}\left({ }_{k} \mathfrak{g}_{k / s}\right)$ of \mathfrak{g} is the Lie algebra of a well-defined connected reductive subgroup $G^{(1)}$ of G.

We apply 1.10 (a) to $H=G, \mathfrak{h}=\mathfrak{g}$ with the \mathbf{Z}-grading $\mathfrak{g}=\oplus_{k}\left({ }_{k} \mathfrak{g}\right)$. We see that there is a well-defined reductive connected subgroup $H^{(1)}$ of G whose Lie algebra is $\mathfrak{h}^{(1)}=\oplus_{k \in s \mathbf{Z}}\left({ }_{k} \mathfrak{g}\right)$. Note that $H^{(1)}$ contains $\lambda\left(\mathbf{k}^{*}\right)$ and is ϑ-stable. We choose $\zeta^{\prime} \in \mathbf{k}^{*}$ such that $\zeta^{\prime s}=\zeta$. We define $\omega: H^{(1)} \rightarrow H^{(1)}$ by $\omega(h)=\operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)\right)^{-1} \vartheta(h)$; this is an automorphism of $H^{(1)}$. The automorphism $\omega^{\prime}: \mathfrak{h}^{(1)} \rightarrow \mathfrak{h}^{(1)}$ induced by ω sends $x \in{ }_{k}^{\lambda} \mathfrak{g}_{i}$ (where $k \in s \mathbf{Z}, i \in \mathbf{Z} / m$) to $\zeta^{\prime-k} \zeta^{i} x=\zeta^{i-k / s} x$. Hence $\omega^{\prime m}=1$ and $\mathfrak{g}^{(1)}$ is equal to $\left\{x \in \mathfrak{h}^{(1)} ; \omega^{\prime}(x)=x\right\}$. Let $G^{(1)}$ be the identity component of $\left\{h \in H^{(1)} ; \omega(h)=h\right\}$. Then $G^{(1)}$ is a connected reductive subgroup of $H^{(1)}$ with Lie algebra $\mathfrak{g}^{(1)}$. This proves (a).

Now ${ }_{0}^{\lambda} \mathfrak{g}_{\underline{0}}$ is a Levi subalgebra of a parabolic subalgebra of $\mathfrak{g}_{\underline{0}}$. Hence $e^{{ }_{0}^{\lambda} \mathfrak{g}_{\underline{0}}}$ is a well-defined subgroup of $G_{\underline{0}}$ (a Levi subgroup of a parabolic subgroup of $G_{\underline{0}}$). We have
(b) $e^{\lambda}{ }^{\lambda} \mathfrak{g}_{\underline{0}} \subset G^{(1)}$.
2.5. The definition of ϵ-spirals. In the rest of this section we fix $\epsilon \in\{1,-1\}$. For any $\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}$ and any $N \in \mathbf{Z}$ we set
(a)

$$
\epsilon_{\mathfrak{p}_{N}^{\mu}}^{\mu}=\oplus_{\kappa \in \mathbf{Q} ; \kappa \geq N \epsilon}\left({ }_{\kappa}^{\mu} \mathfrak{g}_{\underline{N}}\right) .
$$

If $r \in \mathbf{Z}_{>0}$ is such that $\lambda:=r \mu \in Y_{G_{\underline{0}}}$ then we have

$$
\epsilon_{\mathfrak{p}_{N}}^{\mu}=\oplus_{k \in \mathbf{Z} ; k \geq r N \epsilon}\left(\begin{array}{l}
\lambda \\
k
\end{array} \mathfrak{g}_{\underline{N}}\right)
$$

A collection $\left\{\mathfrak{p}_{N} ; N \in \mathbf{Z}\right\}$ (or \mathfrak{p}_{*}) of subspaces of \mathfrak{g} is said to be an ϵ-spiral if there exists $\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}$ such that $\mathfrak{p}_{N}={ }^{\epsilon} \mathfrak{p}_{N}^{\mu}$ for any $N \in \mathbf{Z}$. We then set (for $N \in \mathbf{Z}$)

$$
\mathfrak{u}_{N}=\left\{x \in \mathfrak{g}_{\underline{N}} ;\left\langle x,{ }^{\epsilon_{\mathfrak{p}}}{ }_{-N}^{\mu}\right\rangle=0\right\}=\oplus_{\kappa \in \mathbf{Q} ; \kappa>N \epsilon}\left({ }_{\kappa}^{\mu} \mathfrak{g}_{\underline{N}}\right)
$$

We say that $\mathfrak{u}_{*}=\left\{\mathfrak{u}_{N} ; N \in \mathbf{Z}\right\}$ is the nilradical of \mathfrak{p}_{*}.

The following properties of $\mathfrak{p}_{*}, \mathfrak{u}_{*}$ are immediate:
$\ldots \subset \mathfrak{p}_{N} \subset \mathfrak{p}_{N-\epsilon m} \subset \mathfrak{p}_{N-2 \epsilon m} \subset \ldots$ for any N;
$\mathfrak{p}_{N} \subset \mathfrak{g}_{\underline{N}}$ for any $N ; \mathfrak{p}_{N}=0$ if $N \epsilon \gg 0 ; \mathfrak{p}_{N}=\mathfrak{g}_{\underline{N}}$ if $N \epsilon \ll 0 ;$
$\left[\mathfrak{p}_{N}, \mathfrak{p}_{N^{\prime}}\right] \subset \mathfrak{p}_{N+N^{\prime}}$ for any N, N^{\prime} in \mathbf{Z};
$\ldots \subset \mathfrak{u}_{N} \subset \mathfrak{u}_{N-\epsilon m} \subset \mathfrak{u}_{N-2 \epsilon m} \subset \ldots$ for any N;
$\mathfrak{u}_{N} \subset \mathfrak{p}_{N}$ for any $N ; \mathfrak{u}_{N}=\mathfrak{g}_{N}$ if $N \epsilon \ll 0 ;$
$\left[\mathfrak{u}_{N}, \mathfrak{p}_{N^{\prime}}\right] \subset \mathfrak{u}_{N+N^{\prime}}$ for any N, N^{\prime} in \mathbf{Z}.
For $N \in \mathbf{Z}$ we set $\mathfrak{l}_{N}=\mathfrak{p}_{N} / \mathfrak{u}_{N}$ and $\mathfrak{l}=\oplus_{N \in \mathbf{Z}} \mathfrak{l}_{N}$. We have $\mathfrak{l}_{N}=0$ if $N \gg 0$ or if $N \ll 0$ hence $\operatorname{dim} \mathfrak{l}<\infty$; moreover, [,] : $\mathfrak{p}_{N} \times \mathfrak{p}_{N^{\prime}} \rightarrow \mathfrak{p}_{N+N^{\prime}}$ induces an operation $\mathfrak{l}_{N} \times \mathfrak{l}_{N^{\prime}} \rightarrow \mathfrak{l}_{N+N^{\prime}}$ which defines a Lie algebra structure on \mathfrak{l}.

Note that \mathfrak{p}_{0} is a parabolic subagebra of the reductive Lie algebra \mathfrak{g}_{0} and $\mathfrak{u}_{0}=$ $\left\{x \in \mathfrak{g}_{\underline{0}} ;\left\langle x, \mathfrak{p}_{0}\right\rangle=0\right\}$ is the nilradical of \mathfrak{p}_{0}. We set $P_{0}=e^{\mathfrak{p}_{0}} \subset G_{\underline{0}}, U_{0}=e^{\mathfrak{u}_{0}} \subset G_{\underline{0}}$. Then P_{0} is a parabolic subgroup of $G_{\underline{0}}$ and $U_{0}=U_{P_{0}}$, so that $L_{0}:=P_{0} / U_{0}$ is a connected reductive group. We note that:
(b) The Ad-action of P_{0} on \mathfrak{g} leaves stable \mathfrak{p}_{N} and \mathfrak{u}_{N} for any N.

From (b) we see that for any N there is an induced action of P_{0} on $\mathfrak{l}_{N}=\mathfrak{p}_{N} / \mathfrak{u}_{N}$. We show:
(c) The restriction of this action to U_{0} is trivial.

It is enough to show that the ad-action of \mathfrak{u}_{0} on $\mathfrak{p}_{N} / \mathfrak{u}_{N}$ is zero. This follows from the inclusion $\left[\mathfrak{u}_{0}, \mathfrak{p}_{N}\right] \subset \mathfrak{u}_{N}$ which has been noted earlier.

From (b),(c) we see that for any N there is an induced action of $L_{0}=P_{0} / U_{0}$ on $\mathfrak{l}_{N}=\mathfrak{p}_{N} / \mathfrak{u}_{N}$. We show:
(d) if $x \in \mathfrak{p}_{N}, N \epsilon>0$, then $x \in \mathfrak{g}_{\underline{N}}^{n i l}$.

It is enough to show that for any $x^{\prime} \in \mathfrak{g}$ we have $\operatorname{ad}(x)^{n}\left(x^{\prime}\right)=0$ for $n \gg 0$. We can assume that $x^{\prime} \in \mathfrak{g}_{i}$ for some $i \in \mathbf{Z} / m$. If $N^{\prime} \in \mathbf{Z}$ satisfies $\underline{N}^{\prime}=i$ and $N^{\prime} \epsilon \ll 0$, then $\mathfrak{p}_{N^{\prime}}=\mathfrak{g}_{i}$; thus we have $x^{\prime} \in \mathfrak{p}_{N^{\prime}}$ for some N^{\prime}. We have $\operatorname{ad}(x) x^{\prime}=\left[x, x^{\prime}\right] \in \mathfrak{p}_{N+N^{\prime}}$, $\operatorname{ad}(x)^{2}\left(x^{\prime}\right) \in \mathfrak{p}_{2 n+N^{\prime}}$ and, more generally, $\operatorname{ad}(x)^{n}\left(x^{\prime}\right) \in \mathfrak{p}_{n N+N^{\prime}}$ for $n \geq 1$. If $n \gg 0$ we have $n N \epsilon+N^{\prime} \epsilon \gg 0$ hence $\mathfrak{p}_{n N+N^{\prime}}=0$; thus, $\operatorname{ad}(x)^{n}\left(x^{\prime}\right)=0$. This proves (d).

An element $\mu \in Y_{G_{0}, \mathbf{Q}}$ is said to be p-regular if $r \mu \in Y_{G_{0}}$ for some $r \in \mathbf{Z}_{>0}$ such that $r \notin p \mathbf{Z}$. (This condition holds automatically if $p=0$.) An ϵ-spiral \mathfrak{p}_{*} is said to be p-reqular if $\mathfrak{p}_{*}={ }^{\epsilon} \mathfrak{p}_{*}^{\mu}$ for some p-regular $\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}$.
2.6. Splittings of ϵ-spirals. For $\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}$ and $N \in \mathbf{Z}$ we set

$$
\tilde{\epsilon}_{\dot{V_{N}^{\mu}}}^{\mu}=\oplus_{\kappa \in \mathbf{Q} ; \kappa=N \epsilon}\left({ }_{\kappa}^{\mu} \mathfrak{g}_{\underline{N}}\right)={ }_{N \epsilon}^{\mu} \mathfrak{g}_{\underline{N}} .
$$

If $r \in \mathbf{Z}_{>0}$ is such that $\lambda:=r \mu \in Y_{G_{\underline{0}}}$, then we have

$$
\epsilon \tilde{\mathfrak{I}}_{N}^{\mu}={ }_{r N \epsilon}^{\lambda} \mathfrak{g}_{\underline{N}} .
$$

A splitting of an ϵ-spiral \mathfrak{p}_{*} is a collection $\left\{\tilde{\mathfrak{l}}_{N} ; N \in \mathbf{Z}\right\}$ (or $\tilde{\mathfrak{l}}_{*}$) of subspaces of \mathfrak{g} such that for some $\mu \in Y_{G_{\underline{0}}, \mathbf{Q}}$ we have $\mathfrak{p}_{*}={ }_{\epsilon^{2}}^{\mu}$ and $\tilde{\mathfrak{l}}_{N}={ }_{\epsilon} \tilde{\mathfrak{l}}_{N}^{\mu}$ for any $N \in \mathbf{Z}$. Let \mathfrak{u}_{*} be the nilradical of \mathfrak{p}_{*}. From the definitions we see that $\mathfrak{p}_{N}=\mathfrak{u}_{N} \oplus \tilde{\mathfrak{l}}_{N}$ for any $N,\left[\tilde{\mathfrak{l}}_{N}, \tilde{\mathfrak{l}}_{N^{\prime}}\right] \subset \tilde{\mathfrak{l}}_{N+N^{\prime}}$ for any N, N^{\prime} and the sum $\tilde{\mathfrak{l}}:=\sum_{N \in \mathbf{Z}} \tilde{\mathfrak{l}}_{N}($ in $\mathfrak{g})$ is direct. Now $\tilde{\mathfrak{l}}$ is a Lie subalgebra of \mathfrak{g} which is \mathbf{Z}-graded by the subspaces $\tilde{\mathfrak{l}}_{N}$. Note that the isomorphisms $\tilde{\mathfrak{l}}_{N} \xrightarrow{\sim} \mathfrak{l}_{N}$ (restrictions of the obvious maps $\mathfrak{p}_{N} \rightarrow \mathfrak{l}_{N}$) give rise after taking \oplus_{N} to an isomorphism $\tilde{\mathfrak{l}} \xrightarrow{\sim} \mathfrak{l}$ which is compatible with the Lie algebra structures and the Z-gradings.

For μ as above we can find $\lambda \in Y_{G_{\underline{0}}}$ and $r \in \mathbf{Z}_{>0}$ such that $r \mu=\lambda$. Applying 2.4(a) with $s=r \epsilon$ we see that:
(a) There is a well-defined connected reductive subgroup \tilde{L} of G whose Lie algebra is $\tilde{\mathfrak{l}}$. In particular, $\tilde{\mathfrak{l}}$ and \mathfrak{l} are reductive Lie algebras.

Let $\tilde{L}_{0}=e^{\tilde{I}_{0}}$. From 2.4(b) we have:
(b) $\tilde{L}_{0} \subset \tilde{L}$.

We show:
(c) Assume that we have $\tilde{\mathfrak{L}}_{*}={ }_{\epsilon} \tilde{\mathfrak{l}}_{*}^{\mu}, \mathfrak{p}_{*}={ }^{\epsilon_{p}}{ }_{*}^{\mu}$ where μ is p-regular, that is, $\mu=r \lambda$ with $\lambda \in Y_{G_{0}}$ and $r \in \mathbf{Z}_{>0}$ such that $r \notin p \mathbf{Z}$. Then there exists ζ^{\prime}, a root of 1 in \mathbf{k}^{*} such that $\left.\tilde{\mathfrak{l}}=\left\{x \in \mathfrak{g} ; \operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)^{-1}\right) \theta(x)\right)=x\right\}, \tilde{L}=G^{\operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)^{-1}\right) \vartheta}=e^{\tilde{\mathfrak{l}}} \subset G ;$ note that $\tilde{L} \in \mathfrak{G}$.

Let ζ^{\prime} be a primitive root of 1 of order $r m$ in \mathbf{k}^{*} such that $\zeta^{\prime r \epsilon}=\zeta$. We have $\mathfrak{g}=\oplus_{k \in \mathbf{Z}, i \in \mathbf{Z} / m}\left({ }_{k}^{\lambda} \mathfrak{g}_{i}\right), \tilde{\mathfrak{l}}_{N}={ }_{N r \epsilon}^{\lambda} \mathfrak{g}_{\underline{N}}$ for all $N \in \mathbf{Z}$. For $k, N^{\prime} \in \mathbf{Z}$ and $x \in{ }_{k} \mathfrak{g}_{\underline{N}^{\prime}}$ we have

$$
\operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)^{-1}\right)(\theta(x))=\zeta^{\prime-k} \zeta^{N^{\prime}} x=\zeta^{\prime r N^{\prime} \epsilon-k} x
$$

The condition that $\zeta^{\prime r N^{\prime} \epsilon-k}=1$ is that $r N^{\prime} \epsilon-k \in r m \mathbf{Z}$ or that $k \in r \mathbf{Z}$ and $\underline{N^{\prime}}=\underline{k /(r \epsilon)}$. We see that

$$
\left.\left\{x \in \mathfrak{g} ; \operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)^{-1}\right)(\theta(x))=x\right\}=\oplus_{k \in r \mathbf{Z}, i \in \mathbf{Z} / m ; \underline{k /(r \epsilon)}=i}\left({ }_{k}^{\lambda} \mathfrak{g}_{i}\right)=\oplus_{N \in \mathbf{Z}}{ }_{r N \in \epsilon}^{\lambda} \mathfrak{g}_{\underline{N}}\right)=\tilde{\mathfrak{l}},
$$

and (c) follows.
We return to the general case.
We have $\lambda\left(\mathbf{k}^{*}\right) \subset \tilde{L}_{0} ;$ moreover, $\operatorname{Ad}(\lambda(t))$ acts as identity on $\tilde{\mathfrak{L}}_{0}={ }_{0}^{\lambda} \mathfrak{g}_{0}=\mathfrak{L} \tilde{L}_{0}$; thus, $\lambda\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{\tilde{L}_{0}}$. Since \mathbf{k}^{*} is connected, we deduce:
(d) $\lambda\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{\tilde{L}_{0}}^{0}$.

Note that:
(e) For $t \in \mathbf{k}^{*}, N \in \mathbf{Z}, \operatorname{Ad}(\lambda(t))$ acts on \mathfrak{l}_{N} as $t^{r N \epsilon}$ times identity.

We show:
(f) If $\tilde{\mathfrak{l}}_{*}$ is a splitting of an ϵ-spiral \mathfrak{p}_{*}, then $\tilde{\mathfrak{l}}_{*}$ is a splitting of an $(-\epsilon)$-spiral.

Let $\mu \in Y_{G_{0}, \mathbf{Q}}$ be such that $\tilde{\mathfrak{l}}_{*}=\epsilon \tilde{\mathfrak{T}}_{*}^{\mu}, \mathfrak{p}_{*}={ }^{\boldsymbol{\epsilon}} \mathfrak{p}_{*}^{\mu}$. Let $\mu^{\prime}=(-1) \mu \in Y_{G_{0}, \mathbf{Q}}$. Then $\tilde{\mathfrak{l}}_{*}={ }^{-\epsilon} \tilde{\mathfrak{L}}_{*}^{\mu^{\prime}}$ is a splitting of the $(-\epsilon)$-spiral ${ }^{-\epsilon} \mathfrak{p}_{*}^{\mu^{\prime}}$.
2.7. Let \mathfrak{S} be the set of splittings of an ϵ-spiral \mathfrak{p}_{*}. Clearly, $\mathfrak{S} \neq \emptyset$. Let U_{0} be as in 2.5. Now U_{0} acts on \mathfrak{S} by $u: \tilde{\mathfrak{l}}_{*} \mapsto\left\{\operatorname{Ad}(u) \tilde{\mathfrak{l}}_{N} ; N \in \mathbf{Z}\right\}$. (We use that $\operatorname{Ad}(u) \mathfrak{p}_{N}=\mathfrak{p}_{N}$ for any N.) We show:
(a) This U_{0}-action on \mathfrak{S} is simply transitive.

Let \mathfrak{u}_{*} be the nilradical of \mathfrak{p}_{*}. Let $\tilde{\mathfrak{l}}_{*} \in \mathfrak{S}, \tilde{\mathfrak{l}}_{*}^{\prime} \in \mathfrak{S}$. Since $\tilde{\mathfrak{l}}_{0}, \tilde{\mathfrak{l}}_{0}^{\prime}$ are Levi subalgebras of \mathfrak{p}_{0}, there is a unique $u \in U_{0}$ such that $\operatorname{Ad}(u) \tilde{\mathfrak{l}}_{0}=\tilde{\mathfrak{l}}_{0}^{\prime}$. It remains to show that this u satisfies $\operatorname{Ad}(u) \tilde{\mathfrak{l}}_{N}=\tilde{\mathfrak{l}}_{N}^{\prime}$ for any N. Let $\tilde{\mathfrak{l}}=\oplus_{N} \tilde{\mathfrak{l}}_{N}, \tilde{\mathfrak{l}}^{\prime}=\oplus_{N} \tilde{\mathfrak{l}}_{N}^{\prime}$ (these are Lie subalgebras of \mathfrak{g}) and let $\tilde{L}=e^{\tilde{\mathfrak{l}}} \subset G, \tilde{L}^{\prime}=e^{\tilde{I}^{\prime}} \subset G$. Let μ, μ^{\prime} in $Y_{G_{0}, \mathbf{Q}}$ be such that $\mathfrak{p}_{*}=\epsilon_{\mathfrak{p}_{*}^{\mu}}^{\mu}={ }^{\epsilon} \mathfrak{p}_{*}^{\mu^{\prime}}, \tilde{\mathfrak{l}}_{*}=\tilde{\boldsymbol{\tau}}_{*}^{\mu}, \tilde{\mathfrak{l}}_{*}^{\prime}=\epsilon \tilde{\boldsymbol{\tau}}_{*}^{\mu^{\prime}}$. We can find $r \in \mathbf{Z}_{>0}$ such that $\lambda:=r \mu \in Y_{G_{\underline{0}}}$, $\lambda^{\prime}:=r \mu^{\prime} \in Y_{G_{0}}$. Let \tilde{L}_{0} be as in 2.6 and let \tilde{L}_{0}^{\prime} be the analogous subgroup of \tilde{L}^{\prime}. We now fix $N \in \mathbf{Z}$. The Ad-action of \tilde{L}_{0} (resp. \tilde{L}_{0}^{\prime}) on \mathfrak{g} leaves stable $\tilde{\mathfrak{l}}_{N}, \mathfrak{u}_{N}$ (resp. $\left.\tilde{\mathfrak{l}}_{N}^{\prime}, \mathfrak{u}_{N}\right)$. Let $\tilde{L}_{0}^{\prime \prime}=u \tilde{L}_{0} u^{-1}, \tilde{\mathfrak{l}}_{N}^{\prime \prime}=\operatorname{Ad}(u) \tilde{\mathfrak{l}}_{N}$; then the Ad-action of $\tilde{L}_{0}^{\prime \prime}$ on \mathfrak{g} leaves stable $\tilde{\mathfrak{C}}_{N}^{\prime \prime}, \mathfrak{u}_{N}$. Since $\operatorname{Ad}(u) \tilde{\mathfrak{L}}_{0}=\tilde{\mathfrak{L}}_{0}^{\prime}$, we have $u \tilde{L}_{0} u^{-1}=\tilde{L}_{0}^{\prime}$ hence $\tilde{L}_{0}^{\prime}=\tilde{L}_{0}^{\prime \prime}$. Let T be a maximal torus of $\tilde{L}_{0}^{\prime}=\tilde{L}_{0}^{\prime \prime}$. Now the Ad-action of T on \mathfrak{g} leaves stable
$\tilde{\mathfrak{r}}_{N}^{\prime}, \tilde{\mathfrak{l}}_{N}^{\prime \prime}, \mathfrak{u}_{N}, \mathfrak{p}_{N}$. Let $\mathcal{X}=\operatorname{Hom}\left(T, \mathbf{k}^{*}\right)$. For any $\alpha \in \mathcal{X}$ let

$$
\begin{gathered}
\mathfrak{p}_{N, \alpha}=\left\{x \in \mathfrak{p}_{N} ; \operatorname{Ad}(\tau) x=\alpha(\tau) x \quad \forall \tau \in T\right\}, \quad \mathfrak{u}_{N, \alpha}=\mathfrak{u}_{N} \cap \mathfrak{p}_{N, \alpha}, \\
\tilde{\mathfrak{l}}_{N, \alpha}^{\prime}=\tilde{\mathfrak{l}}_{N}^{\prime} \cap \mathfrak{p}_{N, \alpha}, \quad \tilde{\mathfrak{l}}_{N, \alpha}^{\prime \prime}=\tilde{\mathfrak{l}}_{N}^{\prime \prime} \cap \mathfrak{p}_{N, \alpha} .
\end{gathered}
$$

We have $\tilde{\mathfrak{l}}_{N}^{\prime}=\oplus_{\alpha \in \mathcal{X}} \tilde{\mathfrak{l}}_{N, \alpha}^{\prime}, \tilde{\mathfrak{l}}_{N}^{\prime \prime}=\oplus_{\alpha \in \mathcal{X}} \tilde{\tilde{l}}_{N, \alpha}^{\prime \prime}, \mathfrak{u}_{N}=\oplus_{\alpha \in \mathcal{X}} \mathfrak{u}_{N, \alpha}$. Let $\mathcal{R}^{\prime}=\{\alpha \in$ $\left.\mathcal{X} ; \tilde{\mathfrak{l}}_{N, \alpha}^{\prime} \neq 0\right\}, \mathcal{R}^{\prime \prime}=\left\{\alpha \in \mathcal{X} ; \tilde{\mathfrak{l}}_{N, \alpha}^{\prime \prime} \neq 0\right\}, \tilde{\mathcal{R}}=\left\{\alpha \in \mathcal{X} ; \mathfrak{u}_{N, \alpha} \neq 0\right\}$. Since $\tilde{\mathfrak{l}}_{N}^{\prime}, \tilde{\mathfrak{l}}_{N}^{\prime \prime}$ are T-stable complements of \mathfrak{u}_{N} in \mathfrak{p}_{N}, the T-modules $\tilde{\mathfrak{l}}_{N}^{\prime}, \tilde{\mathfrak{l}}_{N}^{\prime \prime}$ are isomorphic, hence $\mathcal{R}^{\prime}=\mathcal{R}^{\prime \prime}$. Since $\lambda^{\prime}\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{\tilde{L}_{0}^{\prime}}^{0}($ see $2.6(\mathrm{~d}))$, we have $\lambda^{\prime}\left(\mathbf{k}^{*}\right) \subset T$; hence for any $\alpha \in \mathcal{X}$ we can define $\alpha \bullet \lambda^{\prime} \in \mathbf{Z}$ by $\alpha\left(\lambda^{\prime}(t)\right)=t^{\alpha \bullet \lambda^{\prime}}$ for all $t \in \mathbf{k}^{*}$.

Assume that $\alpha \in \tilde{\mathcal{R}}$. Then for any $t \in \mathbf{k}^{*}, \operatorname{Ad}\left(\lambda^{\prime}(t)\right)$ acts on $\mathfrak{u}_{N, \alpha}$ as multiplication by $t^{\alpha \bullet \lambda^{\prime}}$ hence $\mathfrak{u}_{N, \alpha} \subset{ }_{\alpha \bullet \lambda^{\prime}}^{\lambda^{\prime}} \mathfrak{g}_{\underline{N}}$; thus $\underset{\tilde{R} \bullet \lambda^{\prime}}{ } \mathfrak{g}_{\underline{N}}^{\lambda^{\prime}}$ has a nonzero intersection with \mathfrak{u}_{N}, so that $\alpha \bullet \lambda^{\prime}>r N \epsilon$. We see that $\tilde{\mathcal{R}} \subset\left\{\alpha \in \mathcal{X} ; \alpha \bullet \lambda^{\prime}>r N \epsilon\right\}$. Assume now that $\alpha \in \mathcal{R}^{\prime}$. Then for any $t \in \mathbf{k}^{*}, \operatorname{Ad}\left(\lambda^{\prime}(t)\right)$ acts on $\mathfrak{l}_{N, \alpha}^{\prime}$ as multiplication by $t^{\alpha \bullet \lambda^{\prime}}$ hence $\mathfrak{l}_{N, \alpha}^{\prime} \subset{ }_{\alpha \bullet \lambda^{\prime}}^{\lambda^{\prime}} \mathfrak{g}_{N}$; thus, ${ }_{\alpha \bullet \lambda^{\prime}}^{\lambda^{\prime}} \mathfrak{g}_{\underline{N}}$ has a nonzero intersection with $\tilde{\mathfrak{l}}_{N}^{\prime}$, so that $\alpha \bullet \lambda^{\prime}=r N \epsilon$. We see that $\mathcal{R}^{\prime} \subset\left\{\alpha \in \mathcal{X} ; \alpha \bullet \lambda^{\prime}=r N \epsilon\right\}$. It follows that $\mathcal{R}^{\prime} \cap \tilde{\mathcal{R}}=\emptyset$ so that $\mathfrak{p}_{N, \alpha}=\tilde{\mathfrak{l}}_{N, \alpha}^{\prime}$ for $\alpha \in \mathcal{R}^{\prime}$. Since $\mathcal{R}^{\prime}=\mathcal{R}^{\prime \prime}$, we have also $\mathcal{R}^{\prime \prime} \cap \tilde{\mathcal{R}}=\emptyset$, so that $\mathfrak{p}_{N, \alpha}=\tilde{\mathfrak{l}}_{N, \alpha}^{\prime \prime}$ for $\alpha \in \mathcal{R}^{\prime \prime}=\mathcal{R}^{\prime}$. Thus, for $\alpha \in \mathcal{R}^{\prime}=\mathcal{R}^{\prime \prime}$ we have $\tilde{\mathfrak{l}}_{N, \alpha}^{\prime}=\tilde{\mathfrak{l}}_{N, \alpha}^{\prime \prime}$ hence $\tilde{\mathfrak{l}}_{N}^{\prime}=\tilde{\mathfrak{l}}_{N}^{\prime \prime}$ and $\tilde{\mathfrak{l}}_{N}^{\prime}=\operatorname{Ad}(u) \tilde{\mathfrak{l}}_{N}$. This proves (a).

For any splitting $\tilde{\mathfrak{l}}_{*}$ of \mathfrak{p}_{*} we denote by $\tilde{L}\left(\tilde{\mathfrak{l}}_{*}\right)$ the connected reductive subgroup \tilde{L} of G associated to $\tilde{\mathfrak{l}}_{*}$ in 2.6. The family of groups $\left(\tilde{L}\left(\tilde{\mathfrak{l}}_{*}\right)\right)$ indexed by the various splittings $\tilde{\mathfrak{l}}_{*}$ of \mathfrak{p}_{*} has the property that any two groups in the family are canonically isomorphic to each other; the isomorphism is provided by conjugation by a welldefined $u \in U_{0}$ (this follows from (a)). It follows that the groups in the family can be identified with a single connected reductive group L which is canonically isomorphic to each group in the family. Note that L is canonically attached to the ϵ-spiral \mathfrak{p}_{*} and that $\mathfrak{L} L=\mathfrak{l}$ canonically. Note also that L_{0} in 2.5 is naturally a closed subgroup of L.
2.8. Subspirals coming from parabolics of \mathfrak{l}_{*}. Let \mathfrak{p}_{*} be an ϵ-spiral. We define $\mathfrak{u}_{*}, \mathfrak{l}_{*}, \mathfrak{l}$ in terms of \mathfrak{p}_{*} as in 2.5. Let \mathfrak{q} be a parabolic subalgebra of \mathfrak{l} compatible with the \mathbf{Z}-grading of \mathfrak{l} that is, such that $\mathfrak{q}=\oplus_{N \in \mathbf{Z}} \mathfrak{q}_{N}$ where $\mathfrak{q}_{N}=\mathfrak{q} \cap \mathfrak{l}_{N}$. For any $N \in \mathbf{Z}$ let $\hat{\mathfrak{p}}_{N}$ be the inverse image of \mathfrak{q}_{N} under the obvious map $\mathfrak{p}_{N} \rightarrow \mathfrak{l}_{N}$. We show:
(a) $\hat{\mathfrak{p}}_{*}$ is an ϵ-spiral. Moreover, if \mathfrak{p}_{*} is p-reqular then $\hat{\mathfrak{p}}_{*}$ is p-regular.

We can find $\mu \in Y_{G_{0}, \mathbf{Q}}$ such that $\mathfrak{p}_{*}={ }^{\epsilon} \mathfrak{p}_{*}^{\mu}$; let $\tilde{\mathfrak{l}}_{*}=\tilde{\mathfrak{T}}_{*}^{\mu}$. Let \tilde{L} be as in 2.6. Let $\tilde{\mathfrak{q}}$ be the Lie subalgebra of $\tilde{\mathfrak{l}}$ corresponding to \mathfrak{q} under the obvious isomorphism $\tilde{\mathfrak{l}} \xrightarrow{\sim} \mathfrak{l}$ and let $\tilde{\mathfrak{q}}_{N}=\tilde{\mathfrak{q}} \cap \tilde{\mathfrak{l}}_{N}$ so that $\tilde{\mathfrak{q}}=\oplus_{N \in \mathbf{z}} \tilde{\mathfrak{q}}_{N}$. We then have $\hat{\mathfrak{p}}_{N}=\mathfrak{u}_{N} \oplus \tilde{\mathfrak{q}}_{N}$ for all N. Let $r \in \mathbf{Z}_{>0}$ be such that $\lambda:=r \mu \in Y_{G_{0}}$; if \mathfrak{p}_{*} is p-regular we assume in addition that $r \notin p \mathbf{Z}$.

From 2.6(e) we see that for $t \in \mathbf{k}^{*}, \operatorname{Ad}(\lambda(t))$ leaves stable each $\tilde{\mathfrak{q}}_{N}$ hence it leaves stable $\tilde{\mathfrak{q}}$. It follows that \mathbf{k}^{*} acts via $t \mapsto \operatorname{Ad}(\lambda(t))$ on the variety of Levi subalgebras of $\tilde{\mathfrak{q}}$; since this variety is isomorphic to an affine space, there exists a Levi subalgebra \mathfrak{m} of $\tilde{\mathfrak{q}}$ such that $\operatorname{Ad}(\lambda(t)) \mathfrak{m}=\mathfrak{m}$ for all $t \in \mathbf{k}^{*}$. Let R be the closed connected subgroup of \tilde{L} (a torus) such that $\mathfrak{L} R$ is the center of \mathfrak{m}. Since $\tilde{\mathfrak{q}}$ is a parabolic subalgebra of $\tilde{\mathfrak{l}}$ with Levi subalgebra \mathfrak{m}, we can find $\lambda^{\prime} \in Y_{R}$ such that,
setting for any $N^{\prime} \in \mathbf{Z}$:

$$
{\stackrel{\lambda}{\lambda^{\prime}}}^{\boldsymbol{\prime}} \tilde{=}=\left\{x \in \tilde{\mathfrak{l}} ; \operatorname{Ad}\left(\lambda^{\prime}(t)\right) x=t^{N^{\prime}} x \quad \forall t \in \mathbf{k}^{*}\right\}
$$

we have $\tilde{\mathfrak{q}}=\oplus_{N^{\prime} \in \mathbf{Z}}^{\geq 0}\left({ }_{N^{\prime}}^{\prime} \tilde{\mathfrak{l}}\right), \mathfrak{m}={ }_{0}^{\lambda^{\prime}} \tilde{\mathfrak{l}}$. We have $\mathfrak{m}=\oplus_{N} \mathfrak{m}_{N}$ where $\mathfrak{m}_{N}=\mathfrak{m} \cap \tilde{\mathfrak{l}}_{N}$ and \mathfrak{m}_{0} is a Levi subalgebra of a parabolic subalgebra of \mathfrak{m}. Hence a Cartan subalgebra of $\mathfrak{m} \cap \tilde{\mathfrak{l}}_{0}$ is also a Cartan subalgebra of \mathfrak{m}, so that it contains the center of \mathfrak{m}. Thus the center of \mathfrak{m} is contained in $\tilde{\mathfrak{l}}_{0}$, so that $R \subset \tilde{L}_{0}$. Since for any $t, t^{\prime} \in \mathbf{k}^{*}$, $\lambda(t)$ is contained in $\mathcal{Z}_{\tilde{L}_{0}}$ and $\lambda^{\prime}\left(t^{\prime}\right) \in \tilde{L}_{0}$, we have $\lambda(t) \lambda^{\prime}\left(t^{\prime}\right)=\lambda^{\prime}\left(t^{\prime}\right) \lambda(t)$. We can view λ^{\prime} as an element of $Y_{G_{\underline{0}}}$ hence ${ }_{k}^{\lambda^{\prime}} \mathfrak{g}_{i}$ is defined for $k \in \mathbf{Z}, i \in \mathbf{Z} / m$ and we have $\mathfrak{g}_{i}=\oplus_{k \in \mathbf{Z}}\left({ }_{k}^{\lambda^{\prime}} \mathfrak{g}_{i}\right)$ for any $i \in \mathbf{Z} / m$. We can find $a \in \mathbf{Z}_{>0}$ such that ${ }_{k}^{\lambda^{\prime}} \mathfrak{g}_{i}=0$ for any $i \in \mathbf{Z} / m$ and any $k \in \mathbf{Z}-[-a, a]$. Let b be an integer such that $b>2 a, b \notin p \mathbf{Z}$. We define $\lambda^{\prime \prime} \in Y_{G_{\underline{0}}}$ by $\lambda^{\prime \prime}(t)=\lambda\left(t^{b}\right) \lambda^{\prime}(t)=\lambda^{\prime}(t) \lambda\left(t^{b}\right)$ for all $t \in \mathbf{k}^{*}$. By definition, for $k \in \mathbf{Z}, i \in \mathbf{Z} / m$ we have:

$$
\begin{aligned}
\stackrel{\lambda}{k}^{\prime \prime} \mathfrak{g}_{i} & =\left\{x \in \mathfrak{g}_{i} ; \operatorname{Ad}\left(\lambda\left(t^{b}\right) \lambda^{\prime}(t)\right) x=t^{k} x \quad \forall t \in \mathbf{k}^{*}\right\} \\
& =\oplus_{k^{\prime}, k_{2} ; k^{\prime} \in b \mathbf{Z}, k_{2} \in \mathbf{Z}, k^{\prime}+k_{2}=k\left(\underset{k^{\prime} / b}{ } \mathfrak{g}_{i} \cap{ }_{k_{2}}^{\lambda_{2}^{\prime}} \mathfrak{g}_{i}\right) .} .
\end{aligned}
$$

When ${ }_{k}^{\lambda^{\prime \prime}} \mathfrak{g}_{i} \neq 0$ then $k=b k_{1}+k_{2}$ for some $k_{1} \in \mathbf{Z} \cap[-a, a], k_{2} \in \mathbf{Z}$; in this case, k_{1}, k_{2} are uniquely determined by k since $b>2 a$. Thus, we have

$$
\begin{gathered}
{ }_{k}^{\prime \prime} \mathfrak{g}_{i}={ }_{k_{1}}^{\lambda} \mathfrak{g}_{i} \cap{ }_{k_{2}}^{\lambda_{2}^{\prime}} \mathfrak{g}_{i} \text { if } k=b k_{1}+k_{2} \text { with } k_{1}, k_{2} \text { in } \mathbf{Z}, \\
\lambda_{k}^{\prime \prime} \mathfrak{g}_{i}=0, \text { otherwise. }
\end{gathered}
$$

Let $\mu^{\prime}=\frac{1}{b r} \lambda^{\prime \prime} \in Y_{G_{\underline{\Omega}}, \mathbf{Q}}$ and let $\mathfrak{p}_{*}^{\prime}={ }^{\epsilon} \mathfrak{p}_{*}^{\mu^{\prime}}$. For $N \in \mathbf{Z}$ we have

$$
\mathfrak{p}_{N}^{\prime}=\oplus_{k_{1}, k_{2} \in \mathbf{Z} ; b k_{1}+k_{2} \geq N b r \epsilon,\left|k_{2}\right| \leq a}\left(k_{k_{1}}^{\lambda} \mathfrak{g}_{\underline{N}} \cap \hat{k}_{k_{2}}^{\lambda^{\prime}} \mathfrak{g}_{\underline{N}}\right)
$$

The only integer multiple of b in $[-a, a]$ is 0 ; hence the condition that $k_{2} \geq b(r N \epsilon-$ k_{1}) (with $k_{2} \in[-a, a]$) is equivalent to the condition that either $0>b\left(r N \epsilon-k_{1}\right)$, $k_{2} \in[-a, a]$ or that $0=b\left(r N \epsilon-k_{1}\right), k_{2} \in[0, a]$. Thus, $\mathfrak{p}_{N}^{\prime}=X \oplus X^{\prime}$, where

$$
\begin{gathered}
X=\oplus_{k_{1}, k_{2} \in \mathbf{Z} ; k_{1}>r N \epsilon}\left(\hat{k}_{k^{\prime}} \mathfrak{g}_{\underline{N}} \cap \hat{k}_{2}^{\lambda_{2}^{\prime}} \mathfrak{g}_{\underline{N}}\right)=\oplus_{k_{1} \in \mathbf{Z} ; k_{1}>r N \epsilon}\left(\hat{k}_{1} \mathfrak{g}_{\underline{N}}\right)=\mathfrak{u}_{N}, \\
X^{\prime}=\oplus_{k_{1}, k_{2} \in \mathbf{Z} ; k_{1}=r N \epsilon, k_{2} \geq 0}\left(k_{k_{1}} \mathfrak{g}_{\underline{N}} \cap \hat{k}_{2}^{\lambda_{2}^{\prime}} \mathfrak{g}_{\underline{N}}\right)=\tilde{\mathfrak{l}}_{N} \cap\left(\oplus_{k_{2} \in \mathbf{Z} \geq 0}\left({ }_{k_{2}} \mathfrak{g}_{\underline{N}}\right)\right)=\tilde{\mathfrak{l}}_{N} \cap \tilde{\mathfrak{q}}=\tilde{\mathfrak{q}}_{N} .
\end{gathered}
$$

Thus, we have $\mathfrak{p}_{N}^{\prime}=\mathfrak{u}_{N} \oplus \tilde{\mathfrak{q}}_{N}=\hat{\mathfrak{p}}_{N}$. This proves (a).
From the computation in the previous proof we can extract the following:
(b) the splitting $\tilde{\mathfrak{l}}_{*}^{\mu^{\prime}}$ of the ϵ-spiral $\hat{\mathfrak{p}}_{*}=\epsilon_{\mathfrak{p}_{*}^{\mu^{\prime}}}$ is equal to \mathfrak{m}_{*}.
2.9. The spiral attached to an element $x \in \mathfrak{g}_{\delta}^{\text {nil }}$. In the remainder of this paper we fix $\eta \in \mathbf{Z}-\{0\}$ such that $\underline{\eta}=\delta$.

In this subsection we assume that $\epsilon=\dot{\eta}$; see 0.12 . Let $x \in \mathfrak{g}_{\delta}^{\text {nil }}$. We associate to x an ϵ-spiral as follows. By 2.3(b), we can find $\phi=(e, h, f) \in J_{\delta}(x)$ such that $e=x$. Let $\iota=\iota_{\phi} \in Y_{G}$ be as in 1.1. Since the differential of ι is the linear map $\mathbf{k} \rightarrow \mathfrak{g}, z \mapsto z h \in \mathfrak{g}_{0}$, we have $\iota\left(\mathbf{k}^{*}\right) \subset G_{\underline{0}}$ so that ι can be viewed as an element of $Y_{G_{0}}$. Then $\mathfrak{p}_{*}^{\phi}:={ }_{\mathfrak{p}_{*}}^{(|\eta| / 2) \iota}$ is an ϵ-spiral with splitting $\tilde{\mathfrak{l}}_{*}^{\phi}:=\tilde{\mathfrak{f}}_{*}^{(|\eta| / 2) \iota}$. Note that for $N \in \mathbf{Z}$ we have

$$
\mathfrak{p}_{N}^{\phi}=\oplus_{k \in \mathbf{Z} ; k \geq 2 N \epsilon}\binom{\iota /|\eta|}{\mathfrak{g}_{\underline{N}}}, \quad \tilde{\mathfrak{l}}_{N}^{\phi}={ }_{2 N / \eta}^{\iota} \mathfrak{g}_{\underline{N}} \text { if } 2 N / \eta \in \mathbf{Z}, \quad \tilde{\mathfrak{l}}_{N}^{\phi}=0 \text { if } 2 N / \eta \notin \mathbf{Z} .
$$

We show that:
(a) The ϵ-spiral \mathfrak{p}_{*}^{ϕ} is p-regular; it depends only on x, not on ϕ.

The p-regularity follows from the fact that $2 \notin p \mathbf{Z}$. We now prove the second statement of (a). By 2.3(b), another choice for ϕ must be of the form $u \phi$ where $u \in U_{G(x)^{0}} \cap G_{\underline{0}}$. Let $\iota^{\prime}=\iota_{u \phi}$. For $t \in \mathbf{k}^{*}$ we have $\iota^{\prime}(t)=u \iota(t) u^{-1}$ hence ${ }_{k}^{\iota^{\prime}} \mathfrak{g}_{i}=\operatorname{Ad}(u)\left({ }_{k}^{\iota} \mathfrak{g}_{i}\right)$ for any $k \in \mathbf{Z}, i \in \mathbf{Z} / m$. It follows that for $N \in \mathbf{Z}$ we have $\mathfrak{p}_{N}^{u \phi}=\operatorname{Ad}(u) \mathfrak{p}_{N}^{\phi}$. To show that $\mathfrak{p}_{N}^{u \phi}=\mathfrak{p}_{N}^{\phi}$, it is enough to show that $\operatorname{Ad}(u) \mathfrak{p}_{N}^{\phi}=\mathfrak{p}_{N}^{\phi}$. It is enough to show:
$\operatorname{Ad}(u)\left({ }_{k}^{\iota} \mathfrak{g}\right) \subset \oplus_{k^{\prime} ; k^{\prime} \geq k}\left({ }_{k^{\prime}}^{\iota} \mathfrak{g}\right)$ for any $u \in G(x), k \in \mathbf{Z}$.
Let P be the parabolic subgroup of G such that $\mathfrak{L} P=\oplus_{k \in \mathbf{Z} ; k \geq 0}\left({ }_{k} \mathfrak{g}\right)$. Clearly, $\operatorname{Ad}(g)\left({ }_{k}^{l} \mathfrak{g}\right) \subset \oplus_{k^{\prime} ; k^{\prime} \geq k}\left({ }_{k}^{\prime} \mathfrak{g}\right)$ for any $g \in P, k \in \mathbf{Z}$. Hence it is enough to note the known inclusion $G(x) \subset P$. This proves (a).

In view of (a) we will write \mathfrak{p}_{*}^{x} instead of \mathfrak{p}_{*}^{ϕ}, where ϕ is any element in $J_{\delta}(x)$; let \mathfrak{u}_{*}^{x} be the nilradical of \mathfrak{p}_{*}^{x}. Now the splitting $\tilde{\mathfrak{l}}_{*}^{\phi}$ depends in general on ϕ. We set $\tilde{\mathfrak{l}}^{\phi}=\oplus_{N \in \mathbf{Z}} \tilde{\mathrm{r}}_{N}^{\phi}$; this is a Z-graded Lie subalgebra of \mathfrak{g}. Let $\tilde{L}^{\phi}=e^{\tilde{\varphi}^{\phi}} \subset G$; we have $\tilde{L}^{\phi} \in \mathfrak{G}$. Let $\tilde{L}_{0}^{\phi}=e^{\tilde{\mathrm{I}}_{0}^{\phi}} \subset \tilde{L}^{\phi}$. We show:
(b) We have $x \in \tilde{\mathfrak{l}}_{\eta}^{\phi}$; more precisely, x belongs to ${\stackrel{o^{\phi}}{ }}_{\eta}$ (the open \tilde{L}_{0}^{ϕ}-orbit on $\tilde{\mathfrak{l}}_{\eta}^{\phi}$).

The first statement is the same as $x \in{ }_{2}^{\ell} \mathfrak{g}_{\delta}$; this follows from the equality $[h, x]=$ $2 x$. The second statement can be deduced from [L4, 4.2(a)].

We set $\tilde{L}_{0}^{\phi}(x)=\tilde{L}_{0}^{\phi} \cap G(x), G_{\underline{0}}(x)=G_{\underline{0}} \cap G(x)$. We show:
(c) The inclusion $\tilde{L}_{0}^{\phi}(x) \rightarrow G_{0}(x)$ induces an isomorphism on the groups of components.

Let P_{0} be the parabolic subgroup of $G_{\underline{0}}$ such that $\mathfrak{L} P_{0}=\mathfrak{p}_{0}^{x}=\oplus_{k \in \mathbf{Z} ; k \geq 0}\left({ }_{k}^{l} \mathfrak{g}_{\underline{0}}\right)$ and let $U_{0}=U_{P_{0}}$. We set $P_{0}(x)=P_{0} \cap G(\bar{x}), U_{0}(x)=U_{0} \cap G(x)$. Then \tilde{L}_{0}^{ϕ} is a Levi subgroup of P_{0} so that $P_{0}=\tilde{L}_{0}^{\phi} U_{0}$ (semidirect product) and $P_{0}(x)=\tilde{L}_{0}^{\phi}(x) U_{0}(x)$ (semidirect product). Since $U_{0}(x)$ is a connected unipotent group we see that the inclusion $\tilde{L}_{0}^{\phi}(x) \rightarrow P_{0}(x)$ induces an isomorphism on the groups of components. It remains to show that $P_{0}(x)=G_{0}(x)$. As we have noted in the proof of (a), we have $G(x) \subset P$ hence $G_{\underline{0}}(x) \subset P \cap G_{\underline{0}}$; since $P \cap G_{\underline{0}}$ and P_{0} have the same Lie algebra, namely \mathfrak{p}_{0}^{x}, they must have the same identity component; since P_{0} is parabolic in $G_{\underline{0}}$, we must have $P \cap G_{\underline{0}}=P_{0}$, so that $G_{\underline{0}}(x) \subset P_{0}$ and therefore $G_{\underline{0}}(x) \subset P_{0}(x)$. Since the reverse inclusion is obvious, we see that $P_{0}(x)=G_{\underline{0}}(x)$ and (c) is proved.

We show:
(d) If $g \in G_{\underline{0}}$ is such that $\operatorname{Ad}\left(g^{-1}\right)(x) \in \mathfrak{p}_{\eta}^{x}$, then $g \in P_{0}$.

The assumption of (d) implies that $g \in P$. (We use [L4, 5.7] applied to the trivial Z-grading of \mathfrak{g} that is, the Z-grading such that in [L4, 3.1] we have $\mathfrak{g}_{N}=0$ for $N \neq 0$.) Thus, we have $g \in P \cap G_{\underline{0}}$. As in the proof of (c) we have $P \cap G_{\underline{0}}=P_{0}$ and (d) follows.

We show:
(e) The P_{0}-orbit of x in \mathfrak{p}_{η}^{x} is open dense in \mathfrak{p}_{η}^{x}.

We argue as in [L4, 5.9]. It is enough to show that $\operatorname{dim}\left(P_{0}\right)-\operatorname{dim}\left(P_{0} \cap G(x)\right)=$ $\operatorname{dim} \mathfrak{p}_{\eta}^{x}$ or equivalently that

$$
\operatorname{dim} \mathfrak{p}_{0}^{x}-\operatorname{dim} \operatorname{ker}\left(\operatorname{ad}(x): \mathfrak{p}_{0}^{x} \rightarrow \mathfrak{g}_{\delta}\right)=\operatorname{dim} \mathfrak{p}_{\eta}^{x}
$$

Since $x \in \mathfrak{p}_{\eta}^{x}$ (see (b)) and $\left[\mathfrak{p}_{0}^{x}, \mathfrak{p}_{\eta}^{x}\right] \subset \mathfrak{p}_{\eta}^{x}$, we have $\operatorname{ad}(x)\left(\mathfrak{p}_{0}^{x}\right) \subset \mathfrak{p}_{\eta}^{x}$ so that it is enough to show that

$$
\operatorname{dim} \operatorname{ker}\left(\operatorname{ad}(x): \mathfrak{p}_{0}^{x} \rightarrow \mathfrak{p}_{\eta}^{x}\right)=\operatorname{dim} \mathfrak{p}_{0}^{x}-\operatorname{dim} \mathfrak{p}_{\eta}^{x}
$$

or equivalently, that $\operatorname{ad}(x): \mathfrak{p}_{0}^{x} \rightarrow \mathfrak{p}_{\eta}^{x}$ is surjective. By the representation theory of $\mathfrak{s l}_{2}$, the linear map

$$
\operatorname{ad}(x): \oplus_{k \in \mathbf{Z} ; k \geq 0}\left({ }_{k}^{(} \mathfrak{g}\right) \rightarrow \oplus_{k \in \mathbf{Z} ; k \geq 2}\left({ }_{k}^{(} \mathfrak{g}\right)
$$

is surjective. This restricts for any $i \in \mathbf{Z} / m$ to a (necessarily surjective) map

$$
\operatorname{ad}(x): \oplus_{k \in \mathbf{Z} ; k \geq 0}\left({ }_{k}^{\iota} \mathfrak{g}_{i}\right) \rightarrow \oplus_{k \in \mathbf{Z} ; k \geq 2}\left({ }_{k}^{\iota} \mathfrak{g}_{i+\delta}\right)
$$

Taking $i=0$ we see that $\operatorname{ad}(x): \mathfrak{p}_{0}^{x} \rightarrow \mathfrak{p}_{\eta}^{x}$ is surjective. This proves (e).
The assignment $x \mapsto \mathfrak{p}_{*}^{x}$ is a \mathbf{Z} / m-analogue of an assignment in the case of \mathbf{Z} graded Lie algebras given in [L4, §5] which is in turn modelled on a construction in [KL, 7.1].

3. Admissible systems

In this section we introduce the set $\underline{\mathfrak{T}}_{\eta}$ of $G_{\underline{0}}$-conjugacy classes of admissible systems, which will be used to index the blocks in $\mathcal{D}_{G_{0}}\left(\mathfrak{g}_{\delta}^{\text {nil }}\right)$. We also define a map that assigns a pair $(\mathcal{O}, \mathcal{L})$ (where \mathcal{O} is a $G_{\underline{0}}$-orbit in $\mathfrak{g}_{\delta}^{\text {nil }}$ and \mathcal{L} is an irreducible $G_{\underline{0}}$-equivariant local system on it) an element in $\underline{\mathfrak{T}}_{\eta}$.

3.1. Definition of admissible systems. We preserve the setup of 2.1.

Let $\mathfrak{T}_{\eta}^{\prime}$ be the set consisting of all systems $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$, where $M \in \mathfrak{G}$, $\mathfrak{m}=\mathfrak{L} M, \mathfrak{m}_{*}$ is a Z-grading of $\mathfrak{m}, M_{0}=e^{\mathfrak{m}_{0}} \subset M, \tilde{C}$ is a simple cuspidal $M_{0^{-}}$ equivariant perverse sheaf on \mathfrak{m}_{η} (up to isomorphism).

Until the end of 3.4 we fix $\dot{\xi}=\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta}^{\prime}$. Let $\iota \in Y_{M}$ be associated to \tilde{C} as in 1.2(c), (a) (with M, \tilde{C} instead of H, A), so that ${ }_{k} \mathfrak{m}=\mathfrak{m}_{\eta k / 2}$ for any $k \in \mathbf{Z}$ such that $\eta k / 2 \in \mathbf{Z}$ and ${ }_{k}^{\iota} \mathfrak{m}=0$ for any $k \in \mathbf{Z}$ such that $\eta k / 2 \notin \mathbf{Z}$. Then we have $\mathfrak{m}_{k^{\prime}}={ }_{2 k^{\prime} / \eta}^{\iota} \mathfrak{m}$ for $k^{\prime} \in \mathbf{Z}$ such that $2 k^{\prime} / \eta \in \mathbf{Z}$ and $\mathfrak{m}_{k^{\prime}}=0$ for $k^{\prime} \in \mathbf{Z}$ such that $2 k^{\prime} / \eta \notin \mathbf{Z}$. Note that $\iota\left(\mathbf{k}^{*}\right)$ is contained in $\mathcal{Z}_{M_{0}}^{0}$.

The system $\dot{\xi}$ is said to be admissible if conditions (a),(b) below are satisfied:
(a) we have $\mathfrak{m}_{N} \subset \mathfrak{g}_{\underline{N}}$ for any $N \in \mathbf{Z}$;
(b) there exists an element τ of finite order in the torus $\iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}$ of M_{0} such that $M=G^{\operatorname{Ad}(\tau) \vartheta}$.

We now consider the following condition on $\dot{\xi}$ which may or may not hold.
(c) \mathfrak{m}_{*} is a splitting of some p-regular 1 -spiral or, equivalently (see 2.6(f)), of some p-regular (-1)-spiral.

The following result will be proved in 3.2-3.4.
(d) $\dot{\xi}$ is admissible if and only if $\dot{\xi}$ satisfies (c).

We now make some comments on the significance of condition (b). Assume that condition (a) is satisfied and that τ is any semisimple element of finite order of $G_{\underline{0}}$ such that $M=G^{\operatorname{Ad}(\tau) \vartheta}$. We show that we have automatically

$$
\begin{equation*}
\tau \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M} \tag{e}
\end{equation*}
$$

Note that $\vartheta(\tau)=\tau$ since $\tau \in G_{\underline{0}}$ hence $\tau \in G^{\operatorname{Ad}(\tau) \vartheta}=M$.
Let $N \in \mathbf{Z}$ be such that $2 N / \eta \in \mathbf{Z}$. Since $\mathfrak{m}_{N} \subset \mathfrak{g}_{N}, \theta$ acts on \mathfrak{m}_{N} as ζ^{N}; since $\operatorname{Ad}(\tau) \theta$ acts as 1 on \mathfrak{m} we see that $\operatorname{Ad}(\tau)$ acts on \mathfrak{m}_{N} as ζ^{-N}. On the other hand, for $t \in \mathbf{k}^{*}, \operatorname{Ad}(\iota(t))$ acts on \mathfrak{m}_{N} as $t^{2 N / \eta}$. Hence if $t_{0} \in \mathbf{k}^{*}$ satisfies $t_{0}^{2 / \eta}=\zeta^{-1}$, then we have $\operatorname{Ad}\left(\iota\left(t_{0}\right)\right) \operatorname{Ad}\left(\tau^{-1}\right)=t_{0}^{2 N / \eta} \zeta^{N}=\zeta^{-N} \zeta^{N}=1$ on \mathfrak{m}_{N}. It follows that
$\operatorname{Ad}\left(\iota\left(t_{0}\right)\right) \operatorname{Ad}\left(\tau^{-1}\right)=1$ on \mathfrak{m}. Since $\iota\left(t_{0}\right) \tau^{-1} \in M$, we deduce that $\iota\left(t_{0}\right) \tau^{-1} \in \mathcal{Z}_{M}$ hence $\tau \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}$, as asserted.

We see that condition (b) is a strengthening of (e) in which τ is required to lie not only in $\iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}$ but in its identity component.

3.2. We show:

(a) For any element τ_{0} of finite order in a torus T there exists $\lambda_{0} \in Y_{T}$ such that $\tau_{0} \in \lambda_{0}\left(\mathbf{k}^{*}\right)$.

We can find $c \in \mathbf{Z}_{>0}$ such that $c \notin p \mathbf{Z}$ and $\tau_{0}^{c}=1$. Let $\mu_{c}=\left\{z \in \mathbf{k}^{*} ; z^{c}=1\right\}$. For some $a \in \mathbf{N}$ we can identify $T=\left(\mathbf{k}^{*}\right)^{a}$ and τ_{0} with $\left(z_{1}, \ldots, z_{a}\right) \in\left(\mu_{c}\right)^{a} \subset T$. Now μ_{c} is cyclic with generator z_{0}. Thus we have $z_{1}=z_{0}^{k_{1}}, \ldots, z_{a}=z_{0}^{k_{a}}$, where k_{1}, \ldots, k_{a} are integers. We define $\lambda_{0} \in Y_{T}$ by $t \mapsto\left(t^{k_{1}}, \ldots, t^{k_{a}}\right)$. Then $\tau_{0}=\lambda_{0}\left(z_{0}\right)$, as desired.

We remark that in the proof of (a) we can assume that:
(b) $k_{1} \in \mathbf{Z}_{>0}, k_{1} \notin p \mathbf{Z}$.

Indeed, if $p=0$, then $k_{1} \notin p \mathbf{Z}$ is automatic. Assume now that $p>0$. We write $k_{1}=k_{1}^{\prime} p^{e}$, where $k_{1}^{\prime} \in \mathbf{Z}-p \mathbf{Z}, e \in \mathbf{Z}_{\geq 0}$. Define $z_{0}^{\prime} \in \mu_{c}$ by $z_{0}^{\prime}=z_{0}^{p^{e}}$. This is again a generator of μ_{c}. (Recall that $c \notin p \mathbf{Z}$.) We have $z_{1}=\left(z_{0}^{\prime}\right)^{k_{1}^{\prime}}, z_{j}=\left(z_{0}^{\prime}\right)^{k_{j}^{\prime}}$, where $k_{j}^{\prime} \in \mathbf{Z}_{>0}$ for $j=2,3, \ldots, a$. Thus we can replace $z_{0}, k_{1}, \ldots, k_{s}$ by $z_{0}^{\prime}, k_{1}^{\prime}, \ldots, k_{s}^{\prime}$, where $k_{1}^{\prime} \in \mathbf{Z}_{>0}, k_{1}^{\prime} \notin p \mathbf{Z}$. This proves (b).

We now assume that τ as in $3.1(\mathrm{~b})$ is given. We show:
(c) There exist $f \in \mathbf{Z}_{>0}$ and $\lambda^{\prime} \in Y_{\mathcal{Z}_{M}^{0}}$ such that $f \notin p \mathbf{Z}$ and such that, if $\lambda \in Y_{\iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}}$ is defined by $\lambda(t)=\iota\left(t^{f}\right) \lambda^{\prime}(t)$ for all t, then $\tau \in \lambda\left(\mathbf{k}^{*}\right)$.

If ι is identically 1 , then (c) follows from (a) applied to $T=\mathcal{Z}_{M}^{0}$ (we can take $f=1$). Assume now that ι is not identically 1. Then $\iota: \mathbf{k}^{*} \rightarrow M$ has finite kernel. Let $T=\mathbf{k}^{*} \times \mathcal{Z}_{M}^{0}$; we define $d: T \rightarrow \iota\left(k^{*}\right) \mathcal{Z}_{M}^{0}$ by $d(t, g)=\iota(t) g$. By definition, $\iota\left(k^{*}\right)$ is contained in the derived subgroup of M hence it has finite intersection with \mathcal{Z}_{M}^{0}. It follows that d has finite kernel. It is also surjective, hence we can find $\tilde{\tau} \in T$ of finite order such that $d(\tilde{\tau})=\tau$. Using (a), we can find $\lambda_{0} \in Y_{T}$ such that $\tilde{\tau} \in \lambda_{0}\left(\mathbf{k}^{*}\right) ;$ moreover, by (b), we can assume that, setting $\lambda_{0}(t)=\left(\lambda_{1}(t), \lambda^{\prime}(t)\right)$ with $\lambda_{1} \in Y_{\mathbf{k}^{*}}, \lambda^{\prime} \in Y_{\mathcal{Z}_{M}^{0}}$, we have $\lambda_{1}(t)=t^{f}$ for all t where $f \in \mathbf{Z}_{>0}, f \notin p \mathbf{Z}$. Let $\lambda=d \lambda_{0}: \mathbf{k}^{*} \rightarrow \iota\left(k^{*}\right) \mathcal{Z}_{M}^{0}$. We have $\lambda(t)=\iota\left(\lambda_{1}(t)\right) \lambda^{\prime}(t)=\iota\left(t^{f}\right) \lambda^{\prime}(t)$ for $t \in \mathbf{k}^{*}$. Since $d(\tilde{\tau})=\tau$ and $\tilde{\tau} \in \lambda_{0}\left(\mathbf{k}^{*}\right)$, we have $\tau \in \lambda\left(\mathbf{k}^{*}\right)$. This proves (c).
3.3. We now assume that τ as in $3.1(\mathrm{~b})$ is given; let $\lambda, \lambda^{\prime}, f$ be as in $3.2(\mathrm{c})$. We assume also that 3.1 (a) holds. We can find $c \in \mathbf{k}^{*}$ of finite order such that $\lambda(c)=\tau$. (If $\tau \neq 1$, then λ is not identically 1 so it has finite kernel and any $c \in \lambda^{-1}(\tau)$ has finite order; if $\tau=1$ we can take $c=1$.)

Since $\lambda\left(\mathbf{k}^{*}\right) \subset M_{0}$ and $M_{0} \subset G_{\underline{0}}$ (as a consequence of our assumption $\left.3.1(\mathrm{a})\right)$, we can view λ as an element of $Y_{G_{\underline{0}}}^{-}$hence ${ }_{k}^{\lambda} \mathfrak{g}_{i}$ is defined for any $k \in \mathbf{Z}, i \in \mathbf{Z} / m$. Since $\lambda\left(\mathbf{k}^{*}\right) \subset M$, we can view λ as an element of Y_{M} hence ${ }_{k} \mathfrak{m}$ is defined for any $k \in \mathbf{Z}$.

For $t \in \mathbf{k}^{*}, k \in \mathbf{Z}$ such that $2 k / \eta \in \mathbf{Z}$ and $x \in \mathfrak{m}_{k}$ we have $\operatorname{Ad}(\lambda(t)) x=$ $\operatorname{Ad}\left(\iota\left(t^{f}\right)\right) \operatorname{Ad}\left(\lambda^{\prime}(t)\right) x=\operatorname{Ad}\left(\iota\left(t^{f}\right)\right) x=t^{2 k f / \eta} x$ (we use that $\lambda^{\prime}(t) \in \mathcal{Z}_{M}^{0}$). Thus $\mathfrak{m}_{k} \subset{ }_{2 k f / \eta}^{\lambda} \mathfrak{m}$. Recall also that $\mathfrak{m}_{k} \neq 0$ implies $k / \eta \in \mathbf{Z}$; see $1.2(\mathrm{e})$. Since the subspaces \mathfrak{m}_{k} form a direct sum decomposition of \mathfrak{m} and the subspaces ${ }_{j} \mathfrak{m}$ form a
direct sum decomposition of \mathfrak{m}, it follows that:

$$
\begin{align*}
& \mathfrak{m}_{k}={ }_{2 k f / \eta}^{\lambda} \mathfrak{m} \text { for any } k \in \eta \mathbf{Z} \quad \text { and } \tag{a}\\
& { }_{j}^{\lambda} \mathfrak{m}=0 \text { unless } j=2 k f / \eta \quad \text { for some } k \in \eta \mathbf{Z} .
\end{align*}
$$

For $k \in \mathbf{Z}, i \in \mathbf{Z} / m$ and $x \in{ }_{k} \mathfrak{g}_{i}$ we have

$$
\operatorname{Ad}(\tau) \theta(x)=\operatorname{Ad}(\lambda(c)) \theta(x)=\zeta^{i} \operatorname{Ad}(\lambda(c)) x=\zeta^{i} c^{k} x
$$

Since $\mathfrak{m}=\{x \in \mathfrak{g} ; \operatorname{Ad}(\tau)(\theta(x))=x\}$, we see that:
(b)

$$
\mathfrak{m}=\oplus_{j \in \mathbf{Z}, i \in \mathbf{Z} / m ; \zeta^{i} c^{j}=1}\left({ }_{j}^{\lambda} \mathfrak{g}_{i}\right)
$$

If ${ }_{j} \mathfrak{g}_{i}$ is nonzero and contained in \mathfrak{m} then ${ }_{j} \mathfrak{m}$ is nonzero hence by (a) we have $j=2 f k / \eta$ for some $k \in \mathbf{Z}$ and \mathfrak{m}_{k} is a nonzero subspace of \mathfrak{g}_{i}; thus, by 3.1(a), we have $i=\underline{k}$ and $2 k / \eta \in \mathbf{Z}$. Thus we can rewrite (b) as follows:

$$
\mathfrak{m}=\oplus_{k \in \eta \mathbf{Z}_{;} \zeta^{k} c^{2 f k / \eta}=1\left(\begin{array}{l}
\lambda \\
2 f k / \eta \\
\mathfrak{g}_{\underline{k}}
\end{array}\right), ~}^{\text {and }}
$$

that is,
(c)

$$
\mathfrak{m}=\oplus_{k \in \eta \mathbf{Z} ;\left(\zeta^{\eta} c^{2 f}\right)^{k / \eta}=1}\left({ }_{2 f k / \eta}^{\lambda} \mathfrak{g}_{\underline{k}}\right)
$$

Assume now that $\mathfrak{m}_{\eta} \neq 0$. Using (a) we have $\mathfrak{m}_{\eta}={ }_{2 f}^{\lambda} \mathfrak{m} \neq 0$. By 3.1(a) we have $\mathfrak{m}_{\eta} \subset \mathfrak{g}_{\delta}$. It follows that \mathfrak{m} has nonzero intersection with ${ }_{2 f}^{\lambda} \mathfrak{g}_{\delta}$. Now $\operatorname{Ad}(\tau) \theta$ acts on ${ }_{2 f}^{\lambda} \mathfrak{g}_{\delta}$ as multiplication by $\zeta^{\eta} c^{2 f}$ and it acts on \mathfrak{m} as the identity. It follows that $\zeta^{\eta} c^{2 f}=1$. Thus (c) can be rewritten as:

$$
\begin{equation*}
\mathfrak{m}=\oplus_{k \in \eta} \mathbf{Z}\left({ }_{2 f k / \eta}^{\lambda} \mathfrak{g}_{\underline{k}}\right) . \tag{d}
\end{equation*}
$$

Next we assume that $\mathfrak{m}_{\eta}=0$. By the definition of ι (see 3.1) this implies that ι is identically 1 hence $\mathfrak{m}=\mathfrak{m}_{0}$. From (a) we see that $\mathfrak{m}={ }_{0}^{\lambda} \mathfrak{m}$, hence in (c) all summands corresponding to $k \neq 0$ are zero. Thus (d) remains true in this case. We see also that

$$
\mathfrak{m}_{k}={ }_{2 f k \epsilon}^{|\eta| \lambda} \mathfrak{g}_{\underline{k}}
$$

for all $k \in \mathbf{Z}$. Setting $\mu=|\eta| \lambda /(2 f)$ we see that \mathfrak{m}_{*} is a splitting of the p-regular ϵ-spiral $\epsilon_{\mathfrak{p}_{*}^{2 f}}^{\frac{1}{2 f}|\eta| \lambda}$. We see that if $\dot{\xi}$ is admissible then it satisfies 3.1(c).
3.4. Assume now that $\dot{\xi}$ satisfies 3.1(c). Thus \mathfrak{m}_{*} is a splitting of an ϵ-spiral $\mathfrak{p}_{*}={ }^{\epsilon} \mathfrak{p}_{*}^{\mu}$ where μ is p-regular. Applying the conjugacy result 2.7(a) to the two splittings $\mathfrak{m}_{*}, \tilde{\mathfrak{C}}_{*}^{\mu}$ we see that there exists a p-regular μ^{\prime} such that $\mathfrak{p}_{*}={ }^{\epsilon} \mathfrak{p}_{*}^{\mu^{\prime}}, \mathfrak{m}_{*}=\tilde{\mathfrak{V}}_{*}^{\mu^{\prime}}$. Thus we can find $\lambda \in Y_{G_{\underline{0}}}, r \in \mathbf{Z}_{>0}$ such that $r \notin p \mathbf{Z}$ and

$$
\mathfrak{m}_{N}={ }_{r N \epsilon}^{\lambda} \mathfrak{g}_{\underline{N}}
$$

for any $N \in \mathbf{Z}$. In particular, 3.1(a) holds. We now show that 3.1(b) holds. From 2.6(c) we see that $M=G^{\operatorname{Ad}\left(\lambda\left(\zeta^{\prime}\right)^{-1}\right) \vartheta}$ for some root of unity $\zeta^{\prime} \in \mathbf{k}^{*}$. Let $\tau=\lambda\left(\zeta^{\prime}\right)^{-1}$. It remains to show that $\lambda\left(\zeta^{\prime}\right)^{-1} \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}$. More generally, we show that $\lambda(t) \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}$ for any $t \in \mathbf{k}^{*}$. Now λ can be viewed as an element of Y_{M} hence ${ }_{k}^{\lambda} \mathfrak{m}$ is well-defined for any $k \in \mathbf{Z}$ and we have ${ }_{r N \epsilon}^{\lambda} \mathfrak{m}=\mathfrak{m}_{N}$ for any $N \in \mathbf{Z}$. Recall that for $N \in \mathbf{Z}$ we have $\mathfrak{m}_{N}={ }_{2 N / \eta}^{\iota} \mathfrak{m}$ if $N / \eta \in \mathbf{Z}$ and $\mathfrak{m}_{N}=0$ if $N / \eta \notin \mathbf{Z}$. We see that for any $N \in \eta \mathbf{Z}$ and any $t \in \mathbf{k}^{*}, \operatorname{Ad}(\lambda(t))$ acts on \mathfrak{m}_{N} as $t^{r N \epsilon}$ while $\operatorname{Ad}\left(\iota\left(t^{|\eta|}\right)\right)$ acts on \mathfrak{m}_{N} as $t^{2 N \epsilon}$. Hence $\operatorname{Ad}\left(\lambda(t)^{2} \iota(t)^{-r|\eta|}\right)$ acts on \mathfrak{m}_{N} as 1 . Since \mathfrak{m} is the sum of the subspaces \mathfrak{m}_{N}, we see that $\operatorname{Ad}\left(\lambda(t)^{2} \iota(t)^{-r|\eta|}\right)$ acts on \mathfrak{m} as 1 . It follows that $\lambda(t)^{2} \iota(t)^{-r|\eta|} \in \mathcal{Z}_{M}$. Since $t \mapsto \lambda(t)^{2} \iota(t)^{-r|\eta|}$ is a homomorphism of
the connected group \mathbf{k}^{*} into \mathcal{Z}_{M}, its image must be contained in \mathcal{Z}_{M}^{0}. Thus, for any $t \in \mathbf{k}^{*}$ we have $\lambda(t)^{2} \iota(t)^{-r|\eta|} \in \mathcal{Z}_{M}^{0}$ hence $\lambda\left(t^{2}\right) \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}$. Since any $t^{\prime} \in \mathbf{k}^{*}$ is a square, it follows that $\lambda\left(t^{\prime}\right) \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}$ for any $t^{\prime} \in \mathbf{k}^{*}$. We see that, if $\dot{\xi}$ satisfies $3.1(\mathrm{c})$, then $\dot{\xi}$ is admissible. This completes the proof of $3.1(\mathrm{~d})$.
3.5. The map $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\mathfrak{T}}_{\eta}$. Let $\mathcal{I}\left(\mathfrak{g}_{\delta}\right)$ be the set of pairs $(\mathcal{O}, \mathcal{L})$ where \mathcal{O} is a $G_{\underline{0}}$-orbit on $\mathfrak{g}_{\delta}^{\text {nil }}$ and \mathcal{L} is an irreducible $G_{\underline{0}}$-equivariant local system on \mathcal{O} defined up to isomorphism. Since $G_{\underline{0}}$ acts on $\mathfrak{g}_{\delta}^{\text {nil }}$ with finitely many orbits, see Vi], the set $\mathcal{I}\left(\mathfrak{g}_{\delta}\right)$ is finite.

Let \mathfrak{T}_{η} be the set of all $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta}^{\prime}$ which are admissible (see 3.1) or equivalently (see $3.1(\mathrm{~d})$) are such that \mathfrak{m}_{*} is a splitting of some p-regular ϵ-spiral. The group $G_{\underline{0}}$ acts in an obvious way by conjugation on \mathfrak{T}_{η}; we denote by $\underline{\mathfrak{T}}_{\eta}$ the set of orbits, which is a finite set. We will define a map $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\underline{\mathfrak{T}}}_{\eta}$. Let $(\mathcal{O}, \mathcal{L}) \in \mathcal{I}\left(\mathfrak{g}_{\delta}\right)$. Choose $x \in \mathcal{O}$ and $\phi \in J_{\delta}(x)$; define $\mathfrak{u}_{*}^{x}, \tilde{\mathfrak{r}}_{*}^{\phi}, \tilde{\mathfrak{L}}^{\phi}, \tilde{L}^{\phi}, \tilde{L}_{0}^{\phi}$ as in 2.9.
 irreducible \tilde{L}_{0}^{ϕ}-equivariant local system on $\stackrel{\circ}{\mathfrak{\mathfrak { I }}}_{\eta}^{\phi}$. Let A be the simple \tilde{L}_{0}^{ϕ}-equivariant perverse sheaf on $\tilde{\mathfrak{I}}_{\eta}^{\phi}$ whose restriction to $\tilde{\mathfrak{I}}_{\eta}^{\phi}$ is $\mathcal{L}_{1}\left[\operatorname{dim} \tilde{\mathfrak{I}}_{\eta}^{\phi}\right]$. The map $1.5(\mathrm{~b})$ associates to A an element $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ of $\mathfrak{M}_{\eta}\left(\tilde{L}^{\phi}\right)$ well defined up to conjugation by \tilde{L}_{0}^{ϕ}. Using 1.6(a) we can find a parabolic subalgebra \mathfrak{q} of $\tilde{\boldsymbol{q}}^{\phi}$ compatible with the \mathbf{Z} grading of $\tilde{\mathfrak{l}}^{\phi}$ and such that \mathfrak{m} is a Levi subalgebra of \mathfrak{q}. Setting $\mathfrak{p}_{N}^{\prime}=\mathfrak{u}_{N}^{\phi}+\mathfrak{q}_{N}$ for any $N \in \mathbf{Z}$, we see from 2.8(a) that $\mathfrak{p}_{*}^{\prime}$ is a p-regular ϵ-spiral and from $2.8(\mathrm{~b})$ that \mathfrak{m}_{*} is a splitting of $\mathfrak{p}_{*}^{\prime}$. We see that $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta}$.

We now show that the $G_{\underline{0}}$-orbit of $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ is independent of the choices made. First, if x, ϕ are already chosen, then the \tilde{L}_{0}^{ϕ}-orbit of $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ is well defined hence the $G_{\underline{0}}$-orbit of ($M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}$) is well defined (since $\tilde{L}_{0}^{\phi} \subset G_{\underline{0}}$). The independence of the choice of ϕ (when x is given) follows from the homogeneity of $J_{\delta}(x)$ under the group $U \cap G_{\underline{0}}$ in 2.3(b). Finally, the independence of the choice of x follows from the homogeneity of \mathcal{O} under the group $G_{\underline{0}}$. Thus,

$$
(\mathcal{O}, \mathcal{L}) \mapsto\left(G_{\underline{0}}-\text { orbit of }\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)\right)
$$

is a well-defined map $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\underline{T}}_{\eta}$.
3.6. Let $\dot{\xi}=\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta}$. Let $\mathcal{O}_{\dot{\xi}}$ be the unique $G_{\underline{0}}$-orbit in $\mathfrak{g}_{\delta}^{\text {nil }}$ that contains $\stackrel{\circ}{\mathfrak{m}}_{\eta}$. Let $\dot{\xi}^{\prime}=\left(M^{\prime}, M_{0}^{\prime}, \mathfrak{m}^{\prime}, \mathfrak{m}_{*}^{\prime}, \tilde{C}^{\prime}\right) \in \mathfrak{T}_{\eta}$. We show:
(a) If $\mathcal{O}_{\dot{\xi}}=\mathcal{O}_{\dot{\xi}^{\prime}}$, then there exists $g \in G_{\underline{0}}$ such that $\operatorname{Ad}(g)$ carries $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}\right)$ to $\left(M^{\prime}, M_{0}^{\prime}, \mathfrak{m}^{\prime}, \mathfrak{m}_{*}^{\prime}\right)$.

By [L4, 3.3], we can find $\phi=(e, h, f) \in J^{M}, \phi^{\prime}=\left(e^{\prime}, h^{\prime}, f^{\prime}\right) \in J^{M^{\prime}}$ such that:
(b) $e \in \stackrel{\circ}{\mathfrak{m}_{\eta}}, h \in \mathfrak{m}_{0}, f \in \mathfrak{m}_{-\eta}, e^{\prime} \in \stackrel{\stackrel{\circ}{\mathfrak{m}}_{\eta}^{\prime}}{ }, h^{\prime} \in \mathfrak{m}_{0}^{\prime}, f^{\prime} \in \mathfrak{m}_{-\eta}^{\prime}$.

We set $\iota=\iota_{\phi} \in Y_{M}, \iota^{\prime}=\iota_{\phi^{\prime}} \in Y_{M^{\prime}}$. By 1.2(a),(c),(e), we have

$$
\begin{equation*}
\mathfrak{m}_{k}={ }_{2 k / \eta}^{\iota} \mathfrak{m}, \quad \mathfrak{m}_{k}^{\prime}={ }_{2 k / \eta}^{\iota^{\prime}} \mathfrak{m}^{\prime} \text { if } k \in \eta \mathbf{Z}, \mathfrak{m}_{k}=\mathfrak{m}_{k}^{\prime}=0 \text { if } k \in \mathbf{Z}-\eta \mathbf{Z} \tag{c}
\end{equation*}
$$

By assumption, we have $e^{\prime}=\operatorname{Ad}\left(g_{1}\right) e$ for some $g_{1} \in G_{\underline{0}}$. Replacing the system $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}, \phi\right)$ by its image under $\operatorname{Ad}\left(g_{1}\right)$, we see that we can assume that $e=e^{\prime}$. Using 3.1(a) for $\dot{\xi}$ and $\dot{\xi}^{\prime}$, we can view ϕ, ϕ^{\prime} as elements of J_{δ}^{G} with the
same first component. By $2.3(\mathrm{~b})$, we can find $g_{2} \in G_{0}$ such that $\operatorname{Ad}\left(g_{2}\right)$ carries ϕ to ϕ^{\prime}. Replacing $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}, \phi\right)$ by its image under $\operatorname{Ad}\left(g_{1}\right)$, we see that we can assume that $\phi=\phi^{\prime}$ as elements of J^{G}. It follows that $\iota=\iota^{\prime}$ as elements of Y_{G}.

Let

$$
G_{\phi}=\{g \in G ; \operatorname{Ad}(g)(e)=e, \operatorname{Ad}(g)(h)=h, \operatorname{Ad}(g)(f)=f\}
$$

Since e, h, f are contained in \mathfrak{m} we have $\mathcal{Z}_{M} \subset G_{\phi}$. Similarly, since e, h, f are contained in \mathfrak{m}^{\prime}, we have $\mathcal{Z}_{M^{\prime}} \subset G_{\phi}$. We have also $\mathcal{Z}_{M}^{0} \subset G_{0}$ (since the center of \mathfrak{m} is contained in $\mathfrak{m}_{0} \subset \mathfrak{g}_{\underline{0}}$); similarly we have $\mathcal{Z}_{M^{\prime}}^{0} \subset G_{\underline{0}}$. Thus, \mathcal{Z}_{M}^{0} and $\mathcal{Z}_{M^{\prime}}^{0}$ are tori in $\left(G_{\phi} \cap G_{\underline{0}}\right)^{0}$. We show that \mathcal{Z}_{M}^{0} is a maximal torus of $\left(G_{\phi} \cap G_{\underline{0}}\right)^{0}$. Indeed, assume that S is a torus of $\left(G_{\phi} \cap G_{\underline{0}}\right)^{0}$ that contains \mathcal{Z}_{M}^{0}. Since $S \subset G_{\phi}$, for any $s \in S$ we have $\operatorname{Ad}(s) h=h$ hence $s \iota(t)=\iota(t) s$, that is, $\operatorname{Ad}(\iota(t)) s=s$ for $t \in \mathbf{k}^{*}$. Since S contains \mathcal{Z}_{M}^{0}, for any $s \in S, z \in \mathcal{Z}_{M}^{0}$ we have $\operatorname{Ad}(z) s=s$. Since $S \subset G_{\underline{0}}$ we have $\vartheta(s)=s$ for any $s \in S$. We see that $\operatorname{Ad}(\iota(t)) \operatorname{Ad}(z) \vartheta(s)=s$ for any $t \in \mathbf{k}^{*}$, $z \in \mathcal{Z}_{M}^{0}, s \in S$. We can find $\tau \in \iota\left(\mathbf{k}^{*}\right) \mathcal{Z}_{M}^{0}$ such that $M=G^{\operatorname{Ad}(\tau) \vartheta}$. We have seen that $\operatorname{Ad}(\tau) \vartheta(s)=s$ for $s \in S$. Thus $S \subset M$. Since $S \subset G_{\phi}$, we have

$$
S \subset M_{\phi}:=\{g \in M ; \operatorname{Ad}(g)(e)=e, \operatorname{Ad}(g)(h)=h, \operatorname{Ad}(g)(f)=f\},
$$

hence $S \subset M_{\phi}^{0}$. Since e is a distinguished nilpotent element of \mathfrak{m}, we have $M_{\phi}^{0}=$ \mathcal{Z}_{M}^{0}. Thus we have $S \subset \mathcal{Z}_{M}^{0}$. By assumption, we have $\mathcal{Z}_{M}^{0} \subset S$, hence $\mathcal{Z}_{M}^{0}=S$. Thus \mathcal{Z}_{M}^{0} is indeed a maximal torus of $\left(G_{\phi} \cap G_{\underline{0}}\right)^{0}$, as claimed. Similarly we see that $\mathcal{Z}_{M^{\prime}}^{0}$ is a maximal torus of $\left(G_{\phi} \cap G_{\underline{0}}\right)^{0}$. Since any two maximal tori of $\left(G_{\phi} \cap G_{\underline{0}}\right)^{0}$ are conjugate, we can find g_{3} in $\left(G_{\phi} \cap G_{0}\right)^{0}$ such that $\operatorname{Ad}\left(g_{3}\right)$ carries \mathcal{Z}_{M}^{0} to $\mathcal{Z}_{M^{\prime}}^{0}$. (It also carries ϕ to ϕ.)

Replacing $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}, \phi\right)$ by its image under $\operatorname{Ad}\left(g_{3}\right)$, we see that we can assume that $\mathcal{Z}_{M}^{0}=\mathcal{Z}_{M^{\prime}}^{0}$ and $\phi=\phi^{\prime}$.

Assume now that $e=0$ so that $e^{\prime}=0$. By the definition of $\iota=\iota^{\prime}$ we see that $\iota=\iota^{\prime}$ is identically 1 hence $\mathfrak{m}=\mathfrak{m}_{0}, \mathfrak{m}^{\prime}=\mathfrak{m}_{0}^{\prime}$ and $G_{\phi}=G$. Since $e=0$ is distinguished in \mathfrak{m} it follows that M is a torus. Hence $M=\mathcal{Z}_{M}^{0}$. Similarly $M^{\prime}=\mathcal{Z}_{M^{\prime}}^{0}$. Since $\mathcal{Z}_{M}^{0}=\mathcal{Z}_{M^{\prime}}^{0}$ it follows that $M=M^{\prime}$. We see that (a) holds in this case.

In the remainder of the proof we assume that $e \neq 0$ hence $e^{\prime} \neq 0$. Recall that $M=G^{\operatorname{Ad}(\iota(t)) \operatorname{Ad}(z) \vartheta}, M^{\prime}=G^{\left.\operatorname{Ad}\left(\iota t^{\prime}\right)\right) \operatorname{Ad}\left(z^{\prime}\right) \vartheta}$, for some t, t^{\prime} in \mathbf{k}^{*} and some z, z^{\prime} in $\mathcal{Z}_{M}^{0}=\mathcal{Z}_{M^{\prime}}^{0}$. Since $e \in \mathfrak{m}_{\eta}$, we have $\operatorname{Ad}(\iota(t)) \operatorname{Ad}(z) \theta(e)=e$; since $\operatorname{Ad}(z)$ acts as 1 on \mathfrak{m}, we deduce that $t^{2} \zeta^{\eta} e=e$ and since $e \neq 0$, we see that $t^{2}=\zeta^{-\eta}$. Similarly, since $e \in \mathfrak{m}_{\eta}^{\prime}$ we have $\operatorname{Ad}\left(\iota\left(t^{\prime}\right)\right) \operatorname{Ad}\left(z^{\prime}\right) \theta(e)=e$ and $t^{2}=\zeta^{-\eta}$.

We show that for any $k \in \mathbf{Z}$ we have $\mathfrak{m}_{k} \subset \mathfrak{m}^{\prime}$. By $1.2(\mathrm{e})$ we can assume that $k \in \eta \mathbf{Z}$. Let $x \in \mathfrak{m}_{k}$. We must show that $\operatorname{Ad}\left(\iota\left(t^{\prime}\right)\right) \operatorname{Ad}\left(z^{\prime}\right) \theta(x)=x$. Since $\operatorname{Ad}\left(z^{\prime}\right)$ acts by 1 on \mathfrak{m}, it is enough to show that $\zeta^{k} t^{\prime 2 k / \eta} x=x$ or that $\left(\zeta^{\eta} t^{\prime 2}\right)^{k / \eta} x=x$. This follows from $t^{\prime 2}=\zeta^{-\eta}$.

Thus we have $\mathfrak{m}_{k} \subset \mathfrak{m}^{\prime}$. Since this holds for any $k \in \mathbf{Z}$, we deduce that $\mathfrak{m} \subset \mathfrak{m}^{\prime}$. Interchanging the roles of $\mathfrak{m}, \mathfrak{m}^{\prime}$ we see that $\mathfrak{m}^{\prime} \subset \mathfrak{m}$ hence $\mathfrak{m}=\mathfrak{m}^{\prime}$. This implies that $M=M^{\prime}$. Since $\iota=\iota^{\prime}$, we see from (c) that $\mathfrak{m}_{*}=\mathfrak{m}_{*}^{\prime}$. From $\mathfrak{m}_{0}=\mathfrak{m}_{0}^{\prime}$ we deduce that $M_{0}=M_{0}^{\prime}$. This completes the proof of (a).

The following result can be extracted from the proof of (a).
(d) If $\mathfrak{m}_{\eta}=0$ (so that $e=0$), then $\mathfrak{m}=\mathfrak{m}_{0}$ is a Cartan subalgebra of $\mathfrak{g}_{\underline{0}}$.
3.7. Let $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta}$. Let $x \in \stackrel{\circ}{\mathfrak{m}}_{\eta}$. We choose $\phi=(e, h, f) \in J^{M}$ such that $e=x, h \in \mathfrak{m}_{0}, f \in \mathfrak{m}_{-\eta}$ (see [L4, 3.3]). We can view x as an element of $\mathfrak{g}_{\delta}^{\text {nil }}$ and ϕ as an element of $J_{\delta}(x)$. We define $\tilde{\mathfrak{l}}_{*}=\tilde{\mathfrak{l}}_{*}^{\phi}$ as in 2.9. Recall that for $N \in \mathbf{Z}$ we have:

$$
\tilde{\mathfrak{l}}_{N}={ }_{2 N / \eta}^{\iota} \mathfrak{g}_{\underline{N}} \text { if } 2 N / \eta \in \mathbf{Z}, \quad \tilde{\mathfrak{l}}_{N}=0 \text { if } 2 N / \eta \notin \mathbf{Z}
$$

where $\iota=\iota_{\phi} \in Y_{G}$. Let $\tilde{\mathfrak{l}}=\oplus_{N} \tilde{\mathfrak{l}}_{N} \subset \mathfrak{g}$ and let $\tilde{L}=e^{\tilde{\mathfrak{l}}} \subset G$. We show:
(a) \mathfrak{m} is a Levi subalgebra of a parabolic subalgebra of $\tilde{\mathfrak{l}}$ which is compatible with the \mathbf{Z}-grading of $\tilde{\mathfrak{L}}$.

We shall prove (a) without the statement of compatibility with the \mathbf{Z}-grading; then the full statement of (a) would follow from 1.6(a).

Assume first that $x=0$. Then $h=0$ hence ι is the constant map with image 1. It follows that $\tilde{\mathfrak{l}}=\tilde{\mathfrak{l}}_{0}=\mathfrak{g}_{\underline{0}}$ and $\mathfrak{m}=\mathfrak{m}_{0}$; moreover: by $3.6(\mathrm{~d})$, \mathfrak{m} is a Cartan subalgebra of $\mathfrak{g}_{\underline{0}}$. Hence in this case (a) is immediate. In the rest of the proof we assume that $x \neq 0$.

Since $\stackrel{\circ}{\mathfrak{m}}_{\eta}$ carries a cuspidal local system, for any $N \in \mathbf{Z}$ such that $2 N / \eta \in \mathbf{Z}$ we have $\mathfrak{m}_{N}={ }_{2 N / \eta}^{\iota} \mathfrak{m}$. Since $\mathfrak{m}_{N} \subset \mathfrak{g}_{\underline{N}}$, we have $\mathfrak{m}_{N} \subset{ }_{2 N / \eta}^{\iota} \mathfrak{g}_{N}$ hence $\mathfrak{m}_{N} \subset \tilde{\mathfrak{l}}_{N}$. Taking sum over all $N \in \mathbf{Z}$ such that $2 N / \eta \in \mathbf{Z}$, we get $\mathfrak{m} \subset \tilde{\mathfrak{l}}$. We can find $t_{0} \in \mathbf{k}^{*}$, $z \in \mathcal{Z}_{M}^{0}$, both of finite order, such that $\mathfrak{m}=\left\{y \in \mathfrak{g} ; \operatorname{Ad}\left(\iota\left(t_{0}\right)\right) \operatorname{Ad}(z) \theta(y)=y\right\}$. Note that $\tilde{\mathfrak{l}}_{*}=\dot{\eta} \tilde{\mathfrak{l}}_{*}^{(|\eta| / 2) \iota}$

By 2.6(c), we can find $\zeta^{\prime} \in \mathbf{k}^{*}$ such that $\left.\tilde{\mathfrak{l}}=\left\{y \in \mathfrak{g} ; \operatorname{Ad}\left(\iota\left(\zeta^{\prime}\right)^{-1}\right) \theta(y)\right)=y\right\}$. Since $\mathfrak{m} \subset \tilde{\mathfrak{l}}$, we have:
(b) $\mathfrak{m}=\left\{y \in \tilde{\mathfrak{l}} ; \operatorname{Ad}\left(\iota\left(t_{0}\right)\right) \operatorname{Ad}(z) \theta(y)=y\right\}=\left\{y \in \tilde{\mathfrak{l}} ; \operatorname{Ad}\left(\iota\left(t_{0}\right)\right) \operatorname{Ad}(z) \operatorname{Ad}\left(\iota\left(\zeta^{\prime}\right)\right) y=y\right\}$.
(Note that 2.6(c) is applicable since $\tilde{\mathfrak{l}}_{*}=\dot{\eta} \tilde{\mathfrak{l}}_{*}^{(|\eta| / 2) \iota}{ }^{\text {. }}$)
Since $x \in \mathfrak{m}_{\eta} \subset{ }_{2}^{\iota} \mathfrak{g}$, we have $\operatorname{Ad}(\iota(t)) x=t^{2} x$ for any t. Taking $t=t_{0}^{-1}$ or $t=\zeta^{\prime}$ we see that $t_{0}^{-2} x=\operatorname{Ad}\left(\iota\left(t_{0}\right)\right)^{-1} x$ and $\zeta^{\prime 2} x=\operatorname{Ad}\left(\iota\left(\zeta^{\prime}\right)\right) x$. Since $x \in \mathfrak{m}$ and $x \in \tilde{\mathfrak{l}}$ we have $\operatorname{Ad}\left(\iota\left(t_{0}\right)\right)^{-1} x=\theta(x)$ and $\operatorname{Ad}\left(\iota\left(\zeta^{\prime}\right)\right) x=\theta(x)$. It follows that $t_{0}^{-2} x=\zeta^{\prime 2} x$ so that (since $x \neq 0$) we have $t_{0}^{-2}=\zeta^{\prime 2}$.

If $N \in \mathbf{Z}, 2 N / \eta \in \mathbf{Z}$ and $y \in \tilde{\mathfrak{l}}_{N}$, we have $\operatorname{Ad}\left(\iota\left(t_{0} \zeta^{\prime}\right)\right) y=\left(t_{0} \zeta^{\prime}\right)^{2 N / \eta} y=y$. Since $\tilde{\mathfrak{l}}=\oplus_{N} \tilde{\mathfrak{l}}_{N}$ we have $\operatorname{Ad}\left(\iota\left(t_{0} \zeta^{\prime}\right)\right) y=y$ for all $y \in \tilde{\mathfrak{l}}$. Hence (b) implies:
(c) $\mathfrak{m}=\{y \in \tilde{\mathfrak{l}} ; \operatorname{Ad}(z) y=y\}$.

It remains to show that (c) implies (a). Since z is of finite order and $z \in \mathcal{Z}_{M}^{0}$, we can find $\lambda \in Y_{\mathcal{Z}_{M}^{0}}$ such that $z=\lambda\left(t_{1}\right)$ for some $t_{1} \in \mathbf{k}^{*}$. (See 3.2(a).)

Let $\mathfrak{m}^{\prime}=\left\{y \in \tilde{\mathfrak{l}} ; \operatorname{Ad}(\lambda(t)) y=y \quad \forall t \in \mathbf{k}^{*}\right\}$. Note that \mathfrak{m}^{\prime} is a Levi subalgebra of a parabolic subalgebra \mathfrak{q} of $\tilde{\mathfrak{l}}$. Since $\lambda\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{M}^{0}$ we see that $\operatorname{Ad}(\lambda(t))$ acts as 1 on \mathfrak{m} for any t hence $\mathfrak{m} \subset \mathfrak{m}^{\prime}$. Now $\operatorname{Ad}\left(\lambda\left(t_{1}\right)\right)$ acts as 1 on \mathfrak{m}^{\prime}. Since $\mathfrak{m}=\{y \in$ $\left.\tilde{\mathfrak{l}} ; \operatorname{Ad}\left(\lambda\left(t_{1}\right)\right) y=y\right\}$ it follows that $\mathfrak{m}^{\prime}=\mathfrak{m}$. Thus (a) holds.
3.8. Primitive pairs. Let $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta}$. Let $x \in \stackrel{\circ}{\mathfrak{m}}_{\eta}$. We can view x as an element of $\mathfrak{g}_{\delta}^{n i l}$. We set $M_{0}(x)=M_{0} \cap G(x), G_{\underline{0}}(x)=G_{\underline{0}} \cap G(x)$. We show:
(a) The inclusion $M_{0}(x) \rightarrow G_{\underline{0}}(x)$ induces an isomorphism on the groups of components.

Let $\phi \in J^{M}, \tilde{\mathfrak{l}} \tilde{\mathfrak{l}}_{*}, \tilde{L}$ be as in 3.7. Let $\tilde{L}_{0}=e^{\tilde{\mathfrak{l}}_{0}} \subset \tilde{L}$. We have $x \in \stackrel{\circ}{\mathfrak{l}}_{\eta}$ (see [L4, 4.2(a)]). Let $\tilde{L}_{0}(x)=\tilde{L}_{0} \cap G(x)$. To prove (a) it is enough to prove (i) and (ii) below.
(i) The inclusion $M_{0}(x) \rightarrow \tilde{L}_{0}(x)$ induces an isomorphism on the groups of components.
(ii) The inclusion $\tilde{L}_{0}(x) \rightarrow G_{\underline{0}}(x)$ induces an isomorphism on the groups of components.

Now (i) follows from [44, 11.2] (we use 3.7(a)) and (ii) is a special case of 2.9(c). This proves (a).

Let \mathcal{O} be the $G_{\underline{0}}$-orbit of x in $\mathfrak{g}_{\delta}^{\text {nil }}$. Let \mathcal{L}^{\prime} be the irreducible M_{0}-equivariant local system on $\stackrel{\circ}{\mathfrak{m}}_{\eta}$ such that $\left.\tilde{C}\right|_{\stackrel{\circ}{m}_{\eta}}=\mathcal{L}^{\prime}\left[\operatorname{dim} \mathfrak{m}_{\eta}\right]$. Let \mathcal{L} be the irreducible $G_{\underline{0}^{-}}$ equivariant local system on \mathcal{O} which corresponds to \mathcal{L}^{\prime} under (a). We say that $(\mathcal{O}, \mathcal{L}) \in \mathcal{I}\left(\mathfrak{g}_{\delta}\right)$ is the primitive pair corresponding to $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \in \mathfrak{T}_{\eta} ;$ it is clearly independent of the choice of x, ϕ (we use [L4, 3.3]).

Let $\mathcal{L}^{\prime \prime}$ be the irreducible $\tilde{\sim}_{0}$-equivariant local system on $\stackrel{\circ}{\mathfrak{\mathfrak { L }}}_{\eta}$ which corresponds to \mathcal{L}^{\prime} under (i). Let $\mathcal{L}^{\prime \prime \sharp} \in \mathcal{D}\left(\tilde{\mathfrak{}}_{\eta}\right)$ be as in 0.11 . From $1.8(\mathrm{~b})$ we see that:
(b) $\operatorname{ind}_{\mathfrak{q}_{\eta}}^{\tilde{\eta}_{\eta}}(\tilde{C})$ is a nonzero direct sum of shifts of $\mathcal{L}^{\prime \prime \sharp}$.

Consider the map $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \mapsto(\mathcal{O}, \mathcal{L})$ (as above) from \mathfrak{T}_{η} to $\mathcal{I}\left(\mathfrak{g}_{\delta}\right)$; the image of this map is denoted by $\mathcal{I}^{\text {prim }}\left(\mathfrak{g}_{\delta}\right)$. From 3.6(a) and (a) we see that:
(c) This induces a bijection $\omega: \mathfrak{T}_{\eta} \xrightarrow{\sim} \mathcal{I}^{\text {prim }}\left(\mathfrak{g}_{\delta}\right)$.

Using the definitions and $1.8(\mathrm{~b})$, we see that:
(d) For $\xi \in \underline{\mathfrak{T}}_{\eta}$ we have $\Psi(\omega(\xi))=\xi$, where $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\mathfrak{T}}_{\eta}$ is as in 3.5 .

Combining (c) and (d), we have
(e) the restriction of Ψ to $\mathcal{I}^{\text {prim }}\left(\mathfrak{g}_{\delta}\right)$ gives the inverse of ω.

From (d) we get:
(f) The map $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\underline{T}}_{\eta}$ is surjective.

Another proof of (f) is given in 7.3.
3.9. Now let $\eta_{1} \in \mathbf{Z}-\{0\}$ be such that $\underline{\eta}_{1}=\delta$. We define a bijection $\mathfrak{T}_{\eta}^{\prime} \xrightarrow{\sim} \mathfrak{T}_{\eta_{1}}^{\prime}$ by $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right) \mapsto\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{(*)}, \tilde{C}\right)$ where $\mathfrak{m}_{(*)}$ is the new Z-grading on \mathfrak{m}_{*} whose k-component $\mathfrak{m}_{(k)}$ is equal to $\mathfrak{m}_{k \eta / \eta_{1}}$ for any $k \in \eta_{1} \mathbf{Z}$ and is equal to 0 for any $k \in \mathbf{Z}-\eta_{1} \mathbf{Z}$. (This is well defined since $\mathfrak{m}_{k^{\prime}}=0$ for any $k^{\prime} \in \mathbf{Z}-\eta \mathbf{Z}$; see 1.2(e).) Here we regard \tilde{C} as a simple perverse sheaf on $\mathfrak{m}_{\eta}=\mathfrak{m}_{\left(\eta_{1}\right)}$. This restricts to a bijection $\mathfrak{T}_{\eta} \xrightarrow{\sim} \mathfrak{T}_{\eta_{1}}$, which induces a bijection ${\underset{\underline{T}}{\eta}}^{\sim} \xrightarrow{\sim} \mathfrak{T}_{\eta_{1}}$. This allows us to identify canonically all the sets $\mathfrak{T}_{\eta_{1}}$ (for various $\eta_{1} \in \mathbf{Z}-\{0\}$ such that $\underline{\eta}_{1}=\delta$) with a single set \mathfrak{T}_{δ} and also all the sets ${\underset{\underline{T}}{\eta_{1}}}$ (for various $\eta_{1} \in \mathbf{Z}-\{0\}$ such that $\underline{\eta}_{1}=\delta$) with a single set $\underline{\mathfrak{T}}_{\delta}$. Here $\mathfrak{T}_{\delta}, \mathfrak{T}_{\delta}$ are defined purely in terms of δ (independently of the choice of η).

An examination of the construction of the map $\Psi=\Psi_{\eta}: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\underline{\mathfrak{r}}}_{\eta}$ (see 3.5) shows that the bijection ${\underset{\underline{T}}{\eta}}^{\sim}{ }_{\longrightarrow}^{\mathfrak{T}_{\eta_{1}}}$ intertwines Ψ_{η} and $\Psi_{\eta_{1}}$. Therefore we have a well-defined map $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\underline{\mathfrak{T}}}_{\delta}$.

4. Spiral induction

In this section we introduce the key tool in studying the block decomposition for $\mathcal{D}_{G_{0}}\left(\mathfrak{g}_{\delta}^{\text {nil }}\right)$, namely the spiral induction. This is the analogue in the \mathbf{Z} / m-graded setting of the parabolic induction in the ungraded or \mathbf{Z}-graded setting.
4.1. Definition of spiral induction. In addition to $\eta \in \mathbf{Z}-\{0\}$ which has been fixed in 2.9, in this section we fix $\epsilon \in\{1,-1\}$. We denote by \mathfrak{P}^{ϵ} the set of all data of the form:
(a)

$$
\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right)
$$

where \mathfrak{p}_{*} is an ϵ-spiral and $L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}$ are associated to \mathfrak{p}_{*} as in 2.5. Let

$$
\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon}
$$

Let $\pi: \mathfrak{p}_{\eta} \rightarrow \mathfrak{l}_{\eta}$ be the obvious projection. We have a diagram:

$$
\begin{equation*}
\mathfrak{l}_{\eta} \stackrel{a}{\leftarrow} G_{\underline{0}} \times \mathfrak{p}_{\eta} \xrightarrow{b} E^{\prime} \xrightarrow{c} \mathfrak{g}_{\delta} \tag{b}
\end{equation*}
$$

where $E^{\prime}=\left\{\left(g P_{0}, z\right) \in G_{\underline{0}} / P_{0} \times \mathfrak{g}_{\delta} ; \operatorname{Ad}\left(g^{-1}\right) z \in \mathfrak{p}_{\eta}\right\}, a(g, z)=\pi\left(\operatorname{Ad}\left(g^{-1}\right) z\right)$, $b(g, z)=\left(g P_{0}, z\right), c\left(g P_{0}, z\right)=z$. Here a is smooth with connected fibers, b is a principal P_{0}-bundle and c is proper. Now $\mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ is defined as in 1.2, with H, \mathfrak{h} replaced by L, l. If $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$, then $a^{*} A$ is a P_{0}-equivariant semisimple complex on $G_{0} \times \mathfrak{p}_{\eta}$, hence there is a well-defined semisimple complex A_{1} on E^{\prime} such that $b^{*} A_{1}=a^{*} A$. We can form the complex

$$
{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)=c_{!} A_{1} .
$$

Since c is proper, this is a semisimple, $G_{\underline{0}}$-equivariant complex on \mathfrak{g}_{δ}.
If $\tilde{\mathfrak{l}}_{*}$ is a splitting of \mathfrak{p}_{*}, we will sometimes consider ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}{ }^{\mathfrak{g} \delta}(A)$ with $A \in \mathcal{Q}\left(\tilde{\mathfrak{l}}_{\eta}\right)$ by identifying $\tilde{\mathfrak{l}}_{\eta}$ with \mathfrak{l}_{η} in an obvious way and A with an object in $\mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$.

For any $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ we have

$$
\begin{equation*}
D\left({ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)\right)={ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(D(A))[2 e], \tag{c}
\end{equation*}
$$

where e is the dimension of a fiber of a minus the dimension of a fiber of b, or equivalently

$$
\begin{aligned}
e & =\operatorname{dim} \mathfrak{g}_{0}+\operatorname{dim} \mathfrak{p}_{\eta}-\operatorname{dim} \mathfrak{u}_{0}-\left(\operatorname{dim} \mathfrak{p}_{\eta}-\operatorname{dim} \mathfrak{u}_{\eta}\right)-\left(\operatorname{dim} \mathfrak{p}_{0}-\operatorname{dim} \mathfrak{u}_{0}\right) \\
& =\operatorname{dim} \mathfrak{u}_{0}+\operatorname{dim} \mathfrak{u}_{\eta} .
\end{aligned}
$$

Hence, if for $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ we set

$$
{ }^{\epsilon} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)={ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)\left[\operatorname{dim} \mathfrak{u}_{0}+\operatorname{dim} \mathfrak{u}_{\eta}\right]
$$

then
(d)

$$
D\left({ }^{\epsilon} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)\right)={ }^{\epsilon} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\boldsymbol{j}}}(D(A)) .
$$

4.2. Transitivity. We state a transitivity property of induction. In addition to the datum 4.1(a) we consider a parabolic subalgebra \mathfrak{q} of \mathfrak{l} such that $\mathfrak{q}=\oplus_{N \in \mathbf{Z}} \mathfrak{q}_{N}$ where $\mathfrak{q}_{N}=\mathfrak{q} \cap \mathfrak{l}_{N}$. For any $N \in \mathbf{Z}$ let $\hat{\mathfrak{p}}_{N}$ be the inverse image of \mathfrak{q}_{N} under the obvious map $\mathfrak{p}_{N} \rightarrow \mathfrak{l}_{N}$. Then $\hat{\mathfrak{p}}_{*}$ is an ϵ-spiral; see 2.8(a). Let

$$
\left(\hat{\mathfrak{p}}_{*}, \hat{L}, \hat{P}_{0}, \hat{\mathfrak{l}}, \hat{\mathfrak{l}}_{*}, \hat{\mathfrak{u}}_{*}\right) \in \mathfrak{P}^{\epsilon}
$$

be the datum analogous to 4.1(a) defined by $\hat{\mathfrak{p}}_{*}$. Now $\mathcal{Q}\left(\hat{\mathfrak{l}}_{\eta}\right)$ is defined as in 1.2, with H, \mathfrak{h} replaced by $\hat{L}, \hat{\mathfrak{l}}$. If $A \in \mathcal{Q}\left(\hat{\mathfrak{l}}_{\eta}\right)$, then $\operatorname{ind}_{\mathfrak{q}_{\eta}}^{\mathfrak{l}_{\eta}}(A) \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ is defined as in 1.3 and we have canonically
(a)

$$
{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{q} \delta}(A)={ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{j} \delta}\left(\operatorname{ind}_{\mathfrak{q}_{\eta}}^{\mathfrak{l}_{\eta}}(A)\right)
$$

The proof is similar to that of [L2, 4.2]; it is omitted.
4.3. In the setup of 4.1, assume that $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ is a cuspidal perverse sheaf (see 1.2). We have $A=\mathcal{L}^{\sharp}\left[\operatorname{dim} \mathfrak{l}_{\eta}\right]$ where \mathcal{L} is an irreducible local system on ${ }_{\mathfrak{l}}^{\eta}$ and $\mathcal{L}^{\sharp} \in \mathcal{D}\left(\mathfrak{l}_{\eta}\right)$ is as in 0.11. In this case we can give an alternative description of ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(\mathcal{L}^{\sharp}\right)$. Let $P_{0}, \pi: \mathfrak{p}_{\eta} \rightarrow \mathfrak{l}_{\eta}$ be as in 4.1. Let

$$
\left.\dot{\mathfrak{g}}_{\delta}=\left\{\left(g P_{0}, z\right) \in G_{\underline{0}} / P_{0} \times \mathfrak{g}_{\delta} ; \operatorname{Ad}\left(g^{-1}\right) z \in \pi^{-1}\left(\dot{\mathfrak{l}}_{\eta}\right)\right)\right\}
$$

be an open smooth irreducible subvariety of E^{\prime} in 4.1. Let $\dot{\mathcal{L}}$ be the local system on $\dot{\mathfrak{g}}_{\delta}$ defined by $b^{\prime *} \dot{\mathcal{L}}=a^{\prime *} \mathcal{L}$, where

$$
\stackrel{\circ}{\mathfrak{r}}_{\eta} \stackrel{a^{\prime}}{\leftarrow} G_{\underline{0}} \times\left(\pi ^ { - 1 } \left({\left.\left.\stackrel{\circ}{\mathfrak{l}_{\eta}}\right)\right) \xrightarrow{b^{\prime}} \dot{\mathfrak{g}}_{\delta}, ., ~}_{\text {. }}\right.\right.
$$

$a^{\prime}(g, z x)=\pi\left(\operatorname{Ad}\left(g^{-1}\right) z\right), b^{\prime}(g, z)=\left(g P_{0}, z\right)$. Let $\dot{\mathcal{L}}^{\sharp}$ be the intersection cohomology complex of E^{\prime} with coefficients in $\dot{\mathcal{L}}$. From the definitions we have $a^{*} \mathcal{L}^{\sharp}=b^{*} \dot{\mathcal{L}}^{\sharp}$ (a, b as in 4.1). We define $c^{\prime}: \dot{\mathfrak{g}}_{\delta} \rightarrow \mathfrak{g}_{\delta}$ by $c^{\prime}(g, z)=z$. We show:
(a)

$$
{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(\mathcal{L}^{\sharp}\right)=c_{!}^{\prime} \dot{\mathcal{L}}
$$

Using the definitions we see that it is enough to show that the restriction of $\dot{\mathcal{L}}^{\sharp}$ to $E^{\prime}-\dot{\mathfrak{g}}_{\delta}$ is zero. This can be deduced from 1.2(c).
4.4. Let $\mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$ be the subcategory of $\mathcal{D}\left(\mathfrak{g}_{\delta}\right)$ consisting of complexes which are direct sums of shifts of simple $G_{\underline{0}}$-equivariant perverse sheaves B on \mathfrak{g}_{δ} with the following property: there exists a \bar{d} atum $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right)$ as in $4.1($ a) and a simple cuspidal perverse sheaf A in $\mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ such that some shift of B is a direct summand of ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g} \delta}(A)$. We show:
(a) If $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon}$ and A^{\prime} is a simple (not necessarily cuspidal) perverse sheaf in $\mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$, then ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(A^{\prime}\right) \in \mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$.

Using [L4, 7.5] we see that some shift of A^{\prime} is a direct summand of $\operatorname{ind}_{\mathfrak{q}_{\eta}}^{\mathfrak{l}_{\eta}}(A)$ for some $\hat{\mathfrak{l}}, \mathfrak{q}$ as in 4.2 where A is a simple cuspidal perverse sheaf in $\mathcal{Q}\left(\hat{\mathfrak{l}}_{\eta}\right)$. It follows that some shift of ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(A^{\prime}\right)$ is a direct summand of

$$
\begin{equation*}
{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(\operatorname{ind}_{\mathfrak{q}_{\eta}}^{\mathfrak{l}_{\eta}}(A)\right) . \tag{b}
\end{equation*}
$$

It is then enough to show that the complex (b) belongs to $\mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$. This follows from the definitions using the transitivity property 4.2(a).

The functor

$$
{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}: \mathcal{Q}\left(\mathfrak{l}_{\eta}\right) \rightarrow \mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)
$$

(where $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right)$ is as in $4.1($ a)) called spiral induction.
Let $\mathcal{K}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$ be the abelian group generated by symbols (A), one for each isomorphism class of objects of $\mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$, subject to the relations $(A)+\left(A^{\prime}\right)=\left(A \oplus A^{\prime}\right)$ (a Grothendieck group). Now $\mathcal{K}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$ is naturally an \mathcal{A}-module by $v^{n}(A)=(A[n])$ for any $n \in \mathbf{Z}$. We shall write A instead of (A) (in $\left.\mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)\right)$. Clearly, $\mathcal{K}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$ is a free \mathcal{A}-module with a finite distinguished basis given by the various simple perverse sheaves in $\mathcal{Q}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$. Now $A, B \mapsto(A: B)=\{A, D(B)\} \in \mathbf{N}((v))$ (see 0.12) defines a pairing

$$
\begin{equation*}
(:): \mathcal{K}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right) \times \mathcal{K}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right) \rightarrow \mathbf{Z}((v)) \tag{c}
\end{equation*}
$$

which is \mathcal{A}-linear in the first argument, \mathcal{A}-antilinear in the second argument (for $f \mapsto \bar{f})$ and satisfies $\left(b_{1}: b_{2}\right)=\overline{\left(b_{2}: b_{1}\right)}$ for all b_{1}, b_{2} in $\mathcal{K}_{\eta}^{\epsilon}\left(\mathfrak{g}_{\delta}\right)$.
4.5. In addition to the datum 4.1(a) we consider another datum
(a)

$$
\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{r}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon}
$$

such that $\mathfrak{p}_{N} \subset \mathfrak{p}_{N}^{\prime}$ for all $N \in \mathbf{Z}$ and $\mathfrak{p}_{N}=\mathfrak{p}_{N}^{\prime}$ for $N \in\{\eta,-\eta\}$. We then have $\mathfrak{u}_{N}^{\prime} \subset \mathfrak{u}_{N}$ for all $N \in \mathbf{Z}$ and $\mathfrak{u}_{N}=\mathfrak{u}_{N}^{\prime}$ for $N \in\{\eta,-\eta\}$. We also have canonically $\mathfrak{l}_{N}=\mathfrak{l}_{N}^{\prime}$ for $N \in\{\eta,-\eta\}$ and $P_{0} \subset P_{0}^{\prime}$. Let $\mathcal{P}=P_{0}^{\prime} / P_{0}$. Write $\rho_{\mathcal{P}!} \overline{\mathbf{Q}}_{l}=\oplus_{j} \overline{\mathbf{Q}}_{l}\left[-2 a_{j}\right]$ where a_{j} are integers ≥ 0. (Here $\rho_{\mathcal{P}!}$ is as in 0.12.) Let $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)=\mathcal{Q}\left(\mathfrak{l}_{\eta}^{\prime}\right)$. We show:
(b) Let $I={ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A), I^{\prime}={ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(A)$. We have $I \cong \oplus_{j} I^{\prime}\left[-2 a_{j}\right]$.

We consider the commutative diagram

where the upper horizontal maps are as in 4.1(b), the lower horizontal are the analogous maps when $4.1(\mathrm{a})$ is replaced by (a) and $h: E^{\prime} \rightarrow \tilde{E}^{\prime}$ is given by $\left(g P_{0}, z\right) \mapsto\left(g P_{0}^{\prime}, z\right)$. Note that h is a P_{0}^{\prime} / P_{0}-bundle. We can find a complex A_{1} (resp. A_{1}^{\prime}) on $E^{\prime}\left(\right.$ resp. $\left.\tilde{E}^{\prime}\right)$ such that $I=c_{!} A_{1}, I^{\prime}=c_{!}^{\prime} A_{1}^{\prime}$. We have $A_{1}=h^{*} A_{1}^{\prime}$, hence

$$
I=c_{!} A_{1}=c_{!}^{\prime} h_{!} A_{1}=c_{!}^{\prime} h_{!} h^{*} A_{1}^{\prime}=c_{!}^{\prime}\left(A_{1}^{\prime} \otimes h_{!} h^{*} \overline{\mathbf{Q}}_{l}\right)=\oplus_{j} c_{!}^{\prime} A_{1}^{\prime}\left[-2 a_{j}\right]=\oplus_{j} I^{\prime}\left[-2 a_{j}\right] .
$$

This proves (b).

5. Study of a pair of spirals

This section serves as preparation for the next one, which aims to calculate the Hom space between two spiral inductions.
5.1. In addition to $\eta \in \mathbf{Z}-\{0\}$ which has been fixed in 2.9 , in this section we fix $\epsilon^{\prime}, \epsilon^{\prime \prime}$ in $\{1,-1\}$. Let

$$
\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{l}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}}, \quad\left(\mathfrak{p}^{\prime \prime}, L^{\prime \prime}, P_{0}^{\prime \prime}, \mathfrak{l}^{\prime \prime}, \mathfrak{l}_{*}^{\prime \prime}, \mathfrak{u}_{*}^{\prime \prime}\right) \in \mathfrak{P}^{\epsilon^{\prime \prime}} .
$$

We show:
(a) there exists a splitting $\tilde{\mathfrak{l}}_{*}^{\prime}$ of $\mathfrak{p}_{*}^{\prime}$ and a splitting $\tilde{\mathfrak{l}}_{*}^{\prime \prime}$ of $\mathfrak{p}_{*}^{\prime \prime}$ such that, if $\tilde{L}_{0}^{\prime}=$ $e^{\tilde{I}_{0}^{\prime}} \subset G$ and $\tilde{L}_{0}^{\prime \prime}=e^{\tilde{\tau}_{0}^{\prime \prime}} \subset G$, then some maximal torus \mathcal{T} of $G_{\underline{0}}$ is contained in both \tilde{L}_{0}^{\prime} and $\tilde{L}_{0}^{\prime \prime}$.

Let $\tilde{\mathfrak{l}}_{*}^{\prime}$ be any splitting of $\mathfrak{p}_{*}^{\prime}$ and let $\tilde{\mathfrak{l}}_{*}^{\prime \prime}$ be any splitting of $\mathfrak{p}_{*}^{\prime \prime} ;$ let $\tilde{L}_{0}^{\prime}=e^{\tilde{\mathrm{l}}_{0}^{\prime}} \subset G$, $\tilde{L}_{0}^{\prime \prime}=e^{\tilde{r}_{0}^{\prime \prime}} \subset G$. Recall that $P_{0}^{\prime}\left(\right.$ resp. $\left.P_{0}^{\prime \prime}\right)$ is a parabolic subgroup of $G_{\underline{0}}$ with Levi subgroup \tilde{L}_{0}^{\prime} (resp. $\left.\tilde{L}_{0}^{\prime \prime}\right)$; hence there exists a maximal torus \mathcal{T}_{0} of $G_{\underline{0}}$ contained in both $P_{0}^{\prime}, P_{0}^{\prime \prime}$. Let ' \tilde{L}_{0}^{\prime} (resp. ' $\tilde{L}_{0}^{\prime \prime}$) be the Levi subgroup of P_{0}^{\prime} (resp. $P_{0}^{\prime \prime}$) such that $\mathcal{T}_{0} \subset^{\prime} \tilde{L}_{0}^{\prime}$ (resp. $\left.\mathcal{T}_{0} \subset{ }^{\prime} \tilde{L}_{0}^{\prime \prime}\right)$. We can find $u^{\prime} \in U_{P_{0}^{\prime}}, u^{\prime \prime} \in U_{P_{0}^{\prime \prime}}$ such that $\operatorname{Ad}\left(u^{\prime}\right) \tilde{L}_{0}^{\prime}=$ ${ }^{\prime} \tilde{L}_{0}^{\prime}, \operatorname{Ad}\left(u^{\prime \prime}\right) \tilde{L}_{0}^{\prime \prime}={ }^{\prime} \tilde{L}_{0}^{\prime \prime}$. Now $\left\{\operatorname{Ad}\left(u^{\prime}\right) \tilde{\mathfrak{r}}_{N}^{\prime} ; N \in \mathbf{Z}\right\}$ is a splitting of $\left\{\operatorname{Ad}\left(u^{\prime}\right) \mathfrak{p}_{N}^{\prime} ; N \in\right.$ $\mathbf{Z}\}=\mathfrak{p}_{*}^{\prime}$ and $\left\{\operatorname{Ad}\left(u^{\prime \prime}\right) \tilde{\mathfrak{L}}_{N}^{\prime \prime} ; N \in \mathbf{Z}\right\}$ is a splitting of $\left\{\operatorname{Ad}\left(u^{\prime \prime}\right) \mathfrak{p}_{N}^{\prime \prime} ; N \in \mathbf{Z}\right\}=\mathfrak{p}_{*}^{\prime \prime}$. Note that $\operatorname{Ad}\left(u^{\prime}\right) \tilde{L}_{0}^{\prime}, \operatorname{Ad}\left(u^{\prime \prime}\right) \tilde{L}_{0}^{\prime \prime}$ contain a maximal torus of $G_{\underline{0}} ;($ a $)$ is proved.
5.2. Let $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{r}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}},\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon^{\prime \prime}}$. Let $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ be a simple cuspidal perverse sheaf. As in 4.3, we have $A=\mathcal{L}^{\sharp}\left[\operatorname{dim} \mathfrak{l}_{\eta}\right]$ where \mathcal{L} is an irreducible local system on $\mathfrak{\imath}_{\eta}$. Let

$$
B=\epsilon^{\prime} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\boldsymbol{\delta}}}\left(\mathcal{L}^{\sharp}\right)
$$

Let $\pi^{\prime}: \mathfrak{p}_{\eta}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$ be the obvious map with kernel $\mathfrak{u}_{\eta}^{\prime}$. We want to study the complex $K=\pi_{!}^{\prime}\left(\left.B\right|_{\mathfrak{p}_{\eta}^{\prime}}\right) \in \mathcal{D}\left(\mathfrak{l}_{\eta}^{\prime}\right)$. As in 4.3 , let

$$
\dot{\mathfrak{g}}_{\delta}=G_{\underline{0}} \stackrel{P_{0}}{\times} \pi^{-1}\left(\stackrel{\circ}{\mathfrak{l}}_{\eta}\right),
$$

where $\pi: \mathfrak{p}_{\eta} \rightarrow \mathfrak{l}_{\eta}$ is the obvious map; let $\dot{\mathcal{L}}$ be the local system on $\dot{\mathfrak{g}}_{\delta}$ defined in terms of \mathcal{L} as in 4.3. As in 4.3, we define $c^{\prime}: \dot{\mathfrak{g}}_{\delta} \rightarrow \mathfrak{g}_{\delta}$ by $c^{\prime}(g, z)=z$. Let

$$
\dot{\mathfrak{p}}_{\eta}^{\prime}=\left\{\left(g P_{0}, z\right) \in G_{\underline{0}} / P_{0} \times \mathfrak{p}_{\eta}^{\prime} ; \operatorname{Ad}\left(g^{-1}\right) z \in \pi^{-1}\left(\stackrel{\circ}{\mathfrak{r}}_{\eta}\right)\right\}
$$

Note that $\dot{\mathfrak{p}}_{\eta}^{\prime}$ is the closed subvariety $c^{\prime-1} \mathfrak{p}_{\eta}^{\prime}$ of $\dot{\mathfrak{g}}_{\delta}$. The restriction of $\dot{\mathcal{L}}$ from $\dot{\mathfrak{g}}_{\delta}$ to $\dot{\mathfrak{p}}_{\eta}^{\prime}$ is denoted again by $\dot{\mathcal{L}}$. Now c^{\prime} restricts to a map $\dot{\mathfrak{p}}_{\eta}^{\prime} \rightarrow \mathfrak{p}_{\eta}^{\prime}$ whose composition with $\pi^{\prime}: \mathfrak{p}_{\eta}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$ is denoted by $\sigma: \dot{\mathfrak{p}}_{\eta}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$. We have $\sigma:\left(g P_{0}, z\right) \mapsto \pi^{\prime}(z)$. Using 4.3(a) and a proper base change, we see that $K=\sigma_{!}(\dot{\mathcal{L}})$.

We have a partition $\dot{\mathfrak{p}}_{\eta}^{\prime}=\cup_{\Omega} \dot{\mathfrak{p}}_{\eta, \Omega}^{\prime}$ into locally closed subvarieties indexed by the various (P_{0}^{\prime}, P_{0})-double cosets Ω in $G_{\underline{0}}$, where

$$
\dot{\mathfrak{p}}_{\eta, \Omega}^{\prime}=\left\{\left(g P_{0}, z\right) \in \Omega / P_{0} \times \mathfrak{p}_{\eta}^{\prime} ; \operatorname{Ad}\left(g^{-1}\right) z \in \pi^{-1}\left(\stackrel{\circ}{\mathfrak{l}_{\eta}}\right)\right\}
$$

Let $\sigma_{\Omega}: \dot{\mathfrak{p}}_{\eta, \Omega}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$ be the restriction of σ. For any Ω we set

$$
K_{\Omega}=\sigma_{\Omega!}\left(\left.\dot{\mathcal{L}}\right|_{\mathfrak{p}_{\eta, \Omega}^{\prime}}\right) \in \mathcal{D}\left(\mathfrak{r}_{\eta}^{\prime}\right)
$$

We say that Ω is good if for some (or equivalently any) $g_{0} \in \Omega$, the following condition holds: setting $\mathfrak{p}_{N}^{\prime \prime}=\operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N}, \mathfrak{u}_{N}^{\prime \prime}=\operatorname{Ad}\left(g_{0}\right) \mathfrak{u}_{N}$ (for $N \in \mathbf{Z}$), the obvious inclusion

$$
\left(\mathfrak{p}_{N}^{\prime} \cap \operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N}\right) /\left(\mathfrak{p}_{N}^{\prime} \cap \operatorname{Ad}\left(g_{0}\right) \mathfrak{u}_{N}\right) \rightarrow \operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N} / \operatorname{Ad}\left(g_{0}\right) \mathfrak{u}_{N}
$$

is an isomorphism for any $N \in \mathbf{Z}$ that is, $\operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N}=\left(\mathfrak{p}_{N}^{\prime} \cap \operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N}\right)+\operatorname{Ad}\left(g_{0}\right) \mathfrak{u}_{N}$. We say that Ω is bad if it is not good.

Until the end of 5.4 we fix an Ω as above and we choose $g_{0} \in \Omega$. Let $\mathfrak{p}_{N}^{\prime \prime}=$ $\operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N}$; then $\mathfrak{p}_{*}^{\prime \prime}$ is an $\epsilon^{\prime \prime}$-spiral. It determines a datum $\left(\mathfrak{p}_{*}^{\prime \prime}, L^{\prime \prime}, P_{0}^{\prime \prime}, \mathfrak{l}^{\prime \prime}, \mathfrak{l}_{*}^{\prime \prime}, \mathfrak{u}_{*}^{\prime \prime}\right) \in$ $\mathfrak{P}^{\epsilon^{\prime \prime}}$.

By the change of variable $g=h g_{0}$ we may identify $\dot{\mathfrak{p}}_{\eta, \Omega}^{\prime}$ with

$$
\left.\left\{\left(h P_{0}^{\prime \prime}, z\right) \in P_{0}^{\prime} P_{0}^{\prime \prime} / P_{0}^{\prime \prime} \times \mathfrak{p}_{\eta}^{\prime} ; \operatorname{Ad}\left(h^{-1}\right) z \in \operatorname{Ad}\left(g_{0}\right) \pi^{-1}\left(\stackrel{\circ}{\mathfrak{l}}_{\eta}\right)\right)\right\}
$$

which is the same as

$$
\Xi=\left\{\left(h\left(P_{0}^{\prime} \cap P_{0}^{\prime \prime}\right), z\right) \in P_{0}^{\prime} /\left(P_{0}^{\prime} \cap P_{0}^{\prime \prime}\right) \times \mathfrak{p}_{\eta}^{\prime} ; \operatorname{Ad}\left(h^{-1}\right) z \in \pi^{\prime \prime-1}\left(\stackrel{\circ}{\mathfrak{r}_{\eta}^{\prime \prime}}\right)\right\}
$$

(in which $\pi^{\prime \prime}: \mathfrak{p}_{\eta}^{\prime \prime} \rightarrow \mathfrak{l}_{\eta}^{\prime \prime}$ is the obvious map, with kernel $\mathfrak{u}_{\eta}^{\prime \prime}$). In these coordinates, $\sigma_{\Omega}: \dot{\mathfrak{p}}_{\eta, \Omega}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$ becomes $\left(h\left(P_{0}^{\prime} \cap P_{0}^{\prime \prime}\right), z\right) \mapsto \pi^{\prime}(z)$.

We choose a splitting $\tilde{\mathfrak{l}}_{*}^{\prime}$ of $\mathfrak{p}_{*}^{\prime}$ and a splitting $\tilde{\mathfrak{l}}_{*}^{\prime \prime}$ of $\mathfrak{p}_{*}^{\prime \prime}$ as in 5.1(a); let $\tilde{L}_{0}^{\prime}, \tilde{L}_{0}^{\prime \prime}, \mathcal{T}$ be as in 5.1(a).

Let $\mu^{\prime}, \mu^{\prime \prime}$ be elements of $Y_{G_{0}, \mathbf{Q}}$ such that $\mathfrak{p}_{*}^{\prime}=\epsilon^{\prime} \mathfrak{p}_{*}^{\mu^{\prime}}, \tilde{\mathfrak{r}}_{*}^{\prime}=\epsilon^{\prime} \tilde{\mathfrak{V}}_{*}^{\mu^{\prime}}, \mathfrak{p}_{*}^{\prime \prime}=\epsilon^{\prime \prime} \mathfrak{p}_{*}^{\mu^{\prime \prime}}$, $\tilde{\mathfrak{L}}_{*}^{\prime \prime}=\epsilon^{\prime \prime} \tilde{\mathfrak{r}}_{*}^{\mu^{\prime \prime}}$. Let $r^{\prime}, r^{\prime \prime}$ in $\mathbf{Z}_{>0}$ be such that $\lambda^{\prime}:=r^{\prime} \mu^{\prime} \in Y_{G_{\underline{0}}}, \lambda^{\prime \prime}:=r^{\prime \prime} \mu^{\prime \prime} \in Y_{G_{\underline{\underline{0}}}}$.

As in $2.6(\mathrm{~d})$ we have $\lambda^{\prime}\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{\tilde{L}_{0}^{\prime}}^{0}, \lambda^{\prime \prime}\left(\mathbf{k}^{*}\right) \subset \mathcal{Z}_{\tilde{L}_{0}^{\prime \prime}}^{0}$. Since \mathcal{T} is a maximal torus of \tilde{L}_{0}^{\prime}, we must have $\mathcal{Z}_{\tilde{L}_{0}^{\prime}}^{0} \subset \mathcal{T}$ hence $\lambda^{\prime}\left(\mathbf{k}^{*}\right) \subset \mathcal{T}$. Similarly, since \mathcal{T} is a maximal torus of $\tilde{L}_{0}^{\prime \prime}$, we have $\mathcal{Z}_{\tilde{L}_{0}^{\prime \prime}}^{0} \subset \mathcal{T}$ hence $\lambda^{\prime \prime}\left(\mathbf{k}^{*}\right) \subset \mathcal{T}$. Since both $\lambda^{\prime}\left(\mathbf{k}^{*}\right), \lambda^{\prime \prime}\left(\mathbf{k}^{*}\right)$ are contained in the torus \mathcal{T}, we must have $\lambda^{\prime}\left(t^{\prime}\right) \lambda^{\prime \prime}\left(t^{\prime \prime}\right)=\lambda^{\prime \prime}\left(t^{\prime \prime}\right) \lambda^{\prime}\left(t^{\prime}\right)$ for any $t^{\prime}, t^{\prime \prime}$ in \mathbf{k}^{*}. Hence, if for any $k^{\prime}, k^{\prime \prime}$ in \mathbf{Z} and $i \in \mathbf{Z} / m$ we set

$$
k^{\prime}, k^{\prime \prime} \mathfrak{g}_{i}=\left\{x \in \mathfrak{g}_{i} ; \operatorname{Ad}\left(\lambda^{\prime}\left(t^{\prime}\right)\right) x=t^{\prime k^{\prime}} x, \operatorname{Ad}\left(\lambda^{\prime \prime}\left(t^{\prime \prime}\right)\right) x=t^{\prime \prime k^{\prime \prime}} x, \quad \forall t^{\prime}, t^{\prime \prime} \in \mathbf{k}^{*}\right\}
$$

then we have $\mathfrak{g}=\oplus_{k^{\prime}, k^{\prime \prime}, i}\left(k^{\prime}, k^{\prime \prime} \mathfrak{g}_{i}\right)$.
For any $N \in \mathbf{Z}$ we have a direct sum decomposition
(a)

$$
\mathfrak{p}_{N}^{\prime} \cap \mathfrak{p}_{N}^{\prime \prime}=\left(\tilde{\mathfrak{l}}_{N}^{\prime} \cap \tilde{\mathfrak{l}}_{N}^{\prime \prime}\right) \oplus\left(\mathfrak{u}_{N}^{\prime} \cap \tilde{\mathfrak{l}}_{N}^{\prime \prime}\right) \oplus\left(\tilde{\mathfrak{l}}_{N}^{\prime} \cap \mathfrak{u}_{N}^{\prime \prime}\right) \oplus\left(\mathfrak{u}_{N}^{\prime} \cap \mathfrak{u}_{N}^{\prime \prime}\right)
$$

This follows immediately from the decompositions

$$
\begin{gathered}
\mathfrak{p}_{N}^{\prime} \cap \mathfrak{p}_{N}^{\prime \prime}=\oplus_{k^{\prime}, k^{\prime \prime} ; k^{\prime} \geq N r^{\prime} \epsilon^{\prime}, k^{\prime \prime} \geq N r^{\prime \prime} \epsilon^{\prime \prime}}\left(k, k^{\prime} \mathfrak{g}_{\underline{N}}\right), \\
\tilde{\mathfrak{l}}_{N}^{\prime} \cap \tilde{\mathfrak{l}}_{N}^{\prime \prime}=\oplus_{k^{\prime}, k^{\prime \prime} ; k^{\prime}=N r^{\prime} \epsilon^{\prime}, k^{\prime \prime}=N r^{\prime \prime} \epsilon^{\prime \prime}\left(k, k^{\prime}\right.}\left(\mathfrak{g}_{\underline{N}}\right), \\
\mathfrak{u}_{N}^{\prime} \cap \tilde{\mathfrak{l}}_{N}^{\prime \prime}=\oplus_{k^{\prime}, k^{\prime \prime} ; k^{\prime}>N r^{\prime} \epsilon^{\prime}, k^{\prime \prime}=N r^{\prime \prime} \epsilon^{\prime \prime}\left(k, k^{\prime} \mathfrak{g}_{\underline{N}}\right),}, \\
\tilde{\mathfrak{l}}_{N}^{\prime} \cap \mathfrak{u}_{N}^{\prime \prime}=\oplus_{k^{\prime}, k^{\prime \prime} ; k^{\prime}=N r^{\prime} \epsilon^{\prime}, k^{\prime \prime}>N r^{\prime \prime} \epsilon^{\prime \prime}}\left(k, k^{\prime} \mathfrak{g}_{\underline{N}}\right), \\
\mathfrak{u}_{N}^{\prime} \cap \mathfrak{u}^{\prime}, k^{\prime \prime} ; k^{\prime}>N r^{\prime} \epsilon^{\prime}, k^{\prime \prime}>N r^{\prime \prime} \epsilon^{\prime \prime}\left(k, k^{\prime} \mathfrak{g}_{\underline{N}}\right) .
\end{gathered}
$$

For $N \in \mathbf{Z}$ let $\mathfrak{q}_{N}^{\prime \prime}$ be the image of $\mathfrak{p}_{N}^{\prime} \cap \mathfrak{p}_{N}^{\prime \prime}$ under the obvious map $\mathfrak{p}_{N}^{\prime \prime} \rightarrow \mathfrak{l}_{N}^{\prime \prime}$; let $\mathfrak{q}^{\prime \prime}=\oplus_{N \in \mathbf{Z}}\left(\mathfrak{q}_{N}^{\prime \prime}\right)$, a Lie subalgebra of $\mathfrak{l}^{\prime \prime}$. We show:
(b) $\mathfrak{q}^{\prime \prime}$ is a parabolic subalgebra of $\mathfrak{l}^{\prime \prime}$ compatible with the \mathbf{Z}-grading of $\mathfrak{l}^{\prime \prime}$.

For $N \in \mathbf{Z}$ we set $\tilde{\mathfrak{q}}_{N}^{\prime \prime}=\tilde{\mathfrak{l}}_{N}^{\prime \prime} \cap \mathfrak{p}_{N}^{\prime}$. Let $\tilde{\mathfrak{q}}^{\prime \prime}=\oplus_{N \in \mathbf{Z}} \tilde{\mathfrak{q}}_{N}^{\prime \prime}$, a Lie subalgebra of $\tilde{\mathfrak{l}}^{\prime \prime}$. From (a) we see that the obvious isomorphism $\tilde{\mathfrak{l}}^{\prime \prime} \xrightarrow{\sim} \mathfrak{l}^{\prime \prime}$ carries $\tilde{\mathfrak{q}}^{\prime \prime}$ to $\mathfrak{q}^{\prime \prime}$. Hence (b) follows from (c) below:
(c) $\tilde{\mathfrak{q}}^{\prime \prime}$ is a parabolic subalgebra of $\tilde{\mathfrak{L}}^{\prime \prime}$ compatible with the \mathbf{Z}-grading of $\tilde{\mathfrak{L}}^{\prime \prime}$.

We have

$$
\tilde{\mathfrak{q}}^{\prime \prime}=\oplus_{k^{\prime}, N \in \mathbf{Z} ; k^{\prime} \geq N r^{\prime} \epsilon^{\prime}}\left(k^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{\underline{N}}\right) .
$$

We define $\lambda_{1} \in Y_{\tilde{L}^{\prime \prime}}$ by $\lambda_{1}(t)=\lambda^{\prime}\left(t^{r^{\prime \prime}}\right) \lambda^{\prime \prime}\left(t^{-r^{\prime} \epsilon^{\prime} \epsilon^{\prime \prime}}\right)$ for all $t \in \mathbf{k}^{*}$. Then $\operatorname{Ad}\left(\lambda_{1}(t)\right)$ acts on the subspace $k^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{N}$ of $\tilde{\mathfrak{L}}^{\prime \prime}$ as $t^{k^{\prime} r^{\prime \prime}-r^{\prime} r^{\prime \prime} N \epsilon^{\prime}}$; the last exponent of t is ≥ 0 if and only if $k^{\prime} \geq r^{\prime} N \epsilon^{\prime}$ which is just the condition that $k^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{\underline{N}}$ is one of the summands in the direct sum decomposition of $\tilde{\mathfrak{q}}^{\prime \prime}$. This proves (c).

For $N \in \mathbf{Z}$ let $\mathfrak{q}_{N}^{\prime}$ be the image of $\mathfrak{p}_{N}^{\prime} \cap \mathfrak{p}_{N}^{\prime \prime}$ under the obvious map $\mathfrak{p}_{N}^{\prime} \rightarrow \mathfrak{l}_{N}^{\prime}$; let $\mathfrak{q}^{\prime}=\oplus_{N \in \mathbf{Z}} \mathfrak{q}_{N}^{\prime}$, a Lie subalgebra of \mathfrak{l}^{\prime}.

For $N \in \mathbf{Z}$ we set $\tilde{\mathfrak{q}}_{N}^{\prime}=\tilde{\mathfrak{l}}_{N}^{\prime} \cap \mathfrak{p}_{N}^{\prime \prime}$. Let $\tilde{\mathfrak{q}}^{\prime}=\oplus_{N \in \mathbf{Z}} \tilde{\mathfrak{q}}_{N}^{\prime}$, a Lie subalgebra of $\tilde{\mathfrak{l}}^{\prime}$. The following result is proved in the same way as (b),(c).
(d) \mathfrak{q}^{\prime} is a parabolic subalgebra of \mathfrak{l}^{\prime} compatible with the \mathbf{Z}-grading of \mathfrak{l}^{\prime}; $\tilde{\mathfrak{q}}^{\prime}$ is a parabolic subalgebra of $\tilde{\mathfrak{L}}^{\prime}$ compatible with the \mathbf{Z}-grading of $\tilde{\mathfrak{L}}$.

We set ${ }^{\prime} \tilde{\mathfrak{q}}^{\prime \prime}=\oplus_{N}!\tilde{\mathfrak{q}}_{N}^{\prime \prime},!\tilde{\mathfrak{q}}^{\prime}=\oplus_{N}\left(\tilde{\mathfrak{q}}_{N}^{\prime}\right)$, where

$$
!\tilde{\mathfrak{q}}_{N}^{\prime \prime}=\oplus_{k^{\prime} \in \mathbf{Z} ; k^{\prime}>N r^{\prime} \epsilon^{\prime}}\left(k^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{\underline{N}}\right), \quad!\tilde{\mathfrak{q}}_{N}^{\prime}=\oplus_{k^{\prime \prime} \in \mathbf{Z} ; k^{\prime \prime}>N r^{\prime \prime} \epsilon^{\prime \prime}}\left(N r^{\prime} \epsilon^{\prime}, k^{\prime \prime} \mathfrak{g}_{\underline{N}}\right) .
$$

The proof of (c) shows also that ${ }^{\prime} \tilde{\mathfrak{q}}^{\prime \prime}$ is the nilradical of $\tilde{\mathfrak{q}}^{\prime \prime}$ and that

$$
\oplus_{N \in \mathbf{Z}}\left(N r^{\prime} \epsilon^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{N}\right)
$$

is a Levi subalgebra of $\tilde{\mathfrak{q}}^{\prime \prime}$. Similarly, ${ }^{\prime} \tilde{\mathfrak{q}}^{\prime}$ is the nilradical of $\tilde{\mathfrak{q}}^{\prime}$ and

$$
\oplus_{N \in \mathbf{Z}}\left(N r^{\prime} \epsilon^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{\underline{N}}\right)
$$

is a Levi subalgebra of $\tilde{\mathfrak{q}}^{\prime \prime}$. Thus,
(e) $\tilde{\mathfrak{q}}^{\prime}, \tilde{\mathfrak{q}}^{\prime \prime}$ have a common Levi subalgebra, namely $\oplus_{N \in \mathbf{Z}}\left(N r^{\prime} \epsilon^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{N}\right)$.
5.3. In this subsection we assume that Ω is bad. Then for some $N, \tilde{\mathfrak{l}}_{N}^{\prime \prime} \cap \mathfrak{p}_{N}^{\prime}$ is strictly contained in $\tilde{\mathfrak{l}}_{N}^{\prime \prime}$. Hence $\tilde{\mathfrak{q}}^{\prime \prime}$ is a proper parabolic subalgebra of $\tilde{\mathfrak{l}}^{\prime \prime}$ (see 5.2(c)). We will show that
(a)

$$
K_{\Omega}=\sigma_{\Omega!}\left(\dot{\mathcal{L}}_{\dot{\mathfrak{p}}_{\eta, \Omega}^{\prime}}\right)=0 \in \mathcal{D}\left(\mathfrak{l}_{\eta}^{\prime}\right)
$$

This is equivalent to the following statement:
(b) for any $y \in \tilde{\mathfrak{r}}_{\eta}^{\prime}$, the cohomology groups H_{c}^{j} of the variety

$$
\left\{\left(h\left(P_{0}^{\prime} \cap P_{0}^{\prime \prime}\right), z\right) \in P_{0}^{\prime} /\left(P_{0}^{\prime} \cap P_{0}^{\prime \prime}\right) \times \mathfrak{p}_{\eta}^{\prime} ; z-y \in \mathfrak{u}_{\eta}^{\prime}, \operatorname{Ad}\left(h^{-1}\right) z \in \pi^{\prime \prime-1}\left(\mathfrak{r}_{\eta}^{\prime \prime}\right)\right\}
$$

with coefficients in the local system defined by $\dot{\mathcal{L}}$, are zero for all $j \in \mathbf{Z}$.
(We have identified $\tilde{\mathfrak{r}}_{\eta}^{\prime}, \mathfrak{r}_{\eta}^{\prime}$ via π^{\prime}.) Considering the fibers of the first projection of the last variety to $P_{0}^{\prime} /\left(P_{0}^{\prime} \cap P_{0}^{\prime \prime}\right)$, we see that it suffices to show that:
(c) for any $h \in P_{0}^{\prime}$ and any $y \in \tilde{\mathfrak{r}}_{n}^{\prime}$, the cohomology groups H_{c}^{j} of the variety

$$
\left\{z \in \mathfrak{p}_{\eta}^{\prime} ; z-y \in \mathfrak{u}_{\eta}^{\prime}, \operatorname{Ad}\left(h^{-1}\right) z \in \stackrel{\circ}{\tilde{\mathfrak{V}}_{\eta}^{\prime \prime}}+\mathfrak{u}_{\eta}^{\prime \prime}\right\}
$$

with coefficients in the local system defined by $\dot{\mathcal{L}}$, are zero for all $j \in \mathbf{Z}$.
(We have used that $\left.\pi^{\prime \prime-1}\left(\stackrel{\circ}{\mathfrak{l}_{\eta}^{\prime \prime}}\right)=\stackrel{\stackrel{\mathfrak{r}}{\eta}_{\prime \prime}^{\eta}}{{ }_{\eta}}+\mathfrak{u}_{\eta}^{\prime \prime}.\right)$
If z is as in (c), then we have automatically $\operatorname{Ad}\left(h^{-1}\right) z \in \mathfrak{p}_{\eta}^{\prime}$; since $\stackrel{\circ}{\tilde{\mathfrak{I}}_{\eta}^{\prime \prime}}+\mathfrak{u}_{\eta}^{\prime \prime} \subset \mathfrak{p}_{\eta}^{\prime \prime}$, the condition that $\operatorname{Ad}\left(h^{-1}\right) z \in \stackrel{\circ}{\tilde{\mathfrak{I}}_{\eta}^{\prime \prime}}+\mathfrak{u}_{\eta}^{\prime \prime}$ implies $\operatorname{Ad}\left(h^{-1}\right) z \in \mathfrak{p}_{\eta}^{\prime} \cap \mathfrak{p}_{\eta}^{\prime \prime}$. By 5.2(a), we can then write uniquely $\operatorname{Ad}\left(h^{-1}\right) z=\gamma+\nu^{\prime}+\nu^{\prime \prime}+\mu$, where

$$
\begin{equation*}
\gamma \in \tilde{\mathfrak{r}}_{\eta}^{\prime} \cap \tilde{\mathfrak{r}}_{\eta}^{\prime \prime}, \nu^{\prime} \in \mathfrak{u}_{\eta}^{\prime} \cap \tilde{\mathfrak{r}}_{\eta}^{\prime \prime}, \nu^{\prime \prime} \in \tilde{\mathfrak{r}}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}, \mu \in \mathfrak{u}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime} \tag{e}
\end{equation*}
$$

The condition that $\operatorname{Ad}\left(h^{-1}\right) z \in \stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}}+\mathfrak{u}_{\eta}^{\prime \prime}$ can be expressed as $\gamma+\nu^{\prime} \in \stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}}$. The condition that $z-y \in \mathfrak{u}_{\eta}^{\prime}$ is equivalent to $\operatorname{Ad}\left(h^{-1}\right) z-\operatorname{Ad}\left(h^{-1}\right) y \in \mathfrak{u}_{\eta}^{\prime}$ or (if we define $y^{\prime} \in \tilde{\mathfrak{r}}_{\eta}^{\prime}$ by $\left.\operatorname{Ad}\left(h^{-1}\right) y-y^{\prime} \in \mathfrak{u}_{\eta}^{\prime}\right)$ to $\gamma+\nu^{\prime \prime}=y^{\prime}$. Note that $y^{\prime}, \gamma, \nu^{\prime \prime}$ are uniquely determined by h, y. Hence the variety in (c) can be identified with

$$
\left.\left(\gamma+\left(\mathfrak{u}_{\eta}^{\prime} \cap \tilde{\mathfrak{r}}_{\eta}^{\prime \prime}\right)\right) \cap \stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}}\right) \times\left(\mathfrak{u}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}\right)
$$

Under this identification, the local system $\dot{\mathcal{L}}$ is the pullback of \mathcal{L} (viewed as a local system on $\stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}}$) from the first factor. Now the desired vanishing of cohomology follows from the vanishing property [L4, 4.4(c)] of \mathcal{L}, since in our case $\tilde{\mathfrak{q}}^{\prime \prime}=\oplus_{N}\left(\tilde{\mathfrak{l}}_{N}^{\prime \prime} \cap \mathfrak{p}_{N}^{\prime}\right)$ is a proper parabolic subalgebra of $\tilde{\mathfrak{L}}^{\prime \prime}$ with nilradical $\oplus_{N}\left(\tilde{\mathfrak{l}}_{N}^{\prime \prime} \cap \mathfrak{u}_{N}^{\prime}\right)$.
5.4. In this subsection we assume that Ω is good. Then for any N we have $\tilde{\mathfrak{l}}_{N}^{\prime \prime} \cap \mathfrak{p}_{N}^{\prime}=$ $\tilde{\mathfrak{l}}_{N}^{\prime \prime}$ that is, $\tilde{\mathfrak{l}}_{N}^{\prime \prime} \subset \mathfrak{p}_{N}^{\prime}$. We also have $\tilde{\mathfrak{q}}^{\prime \prime}=\tilde{\mathfrak{l}}^{\prime \prime}$. Thus $\tilde{\mathfrak{q}}^{\prime \prime}$ is reductive so it is equal to its Levi subalgebra $\oplus_{N \in \mathbf{Z}}\left(N r^{\prime} \epsilon^{\prime}, N r^{\prime \prime} \epsilon^{\prime \prime} \mathfrak{g}_{N}\right)$ (see $\left.5.2(\mathrm{e})\right)$ which is then equal to $\tilde{\mathfrak{l}}^{\prime \prime}$ and is also a Levi subalgebra of $\tilde{\mathfrak{q}}^{\prime}$ (see 5.2(e)). Thus,
(a) $\tilde{\mathfrak{L}}^{\prime \prime}$ is a Levi subalgebra of $\tilde{\mathfrak{q}}^{\prime}$.

Now $\operatorname{Ad}\left(g_{0}\right)$ defines an isomorphism $\mathfrak{l} \xrightarrow{\sim} \mathfrak{l}^{\prime \prime}$. Composing this with the inverse of the obvious isomorphism $\tilde{\mathfrak{L}}^{\prime \prime} \xrightarrow{\sim} \mathfrak{l}^{\prime \prime}$ we obtain an isomorphism of Z-graded Lie
algebras $\mathfrak{l} \xrightarrow{\sim} \tilde{\mathfrak{l}}^{\prime \prime}$. Using this, we can transport \mathcal{L} (a local system on \mathfrak{l}_{η}; see 5.1) to a local system $\mathcal{L}^{\prime \prime}$ on $\stackrel{\check{\mathfrak{I}}}{\eta}_{\prime \prime}$. Let $\mathcal{L}^{\prime \prime \sharp} \in \mathcal{D}\left(\tilde{\mathfrak{l}}_{\eta}^{\prime \prime}\right)$ be as in 0.11 . Then

$$
\operatorname{ind}_{\tilde{\mathfrak{q}}_{\eta}^{\prime}}^{\tilde{\mathrm{I}}_{n}^{\prime}}\left(\mathcal{L}^{\prime \prime \sharp}\right) \in \mathcal{Q}\left(\tilde{\mathfrak{l}}_{\eta}^{\prime}\right)
$$

is defined as in 1.3 (we identify $\tilde{\mathfrak{l}}^{\prime \prime}$ with the reductive quotient of $\tilde{\mathfrak{q}}^{\prime}$; see (a)). We now state the following result.
(b) We have $K_{\Omega}=\operatorname{ind}_{\tilde{\boldsymbol{q}}_{n}^{\prime}}^{\tilde{r}_{n}^{\prime}}\left(\mathcal{L}^{\prime \prime \sharp}\right)[-2 f]$, where

$$
f=\operatorname{dim} \mathfrak{u}_{0}^{\prime}-\operatorname{dim}\left(\mathfrak{u}_{0}^{\prime} \cap \mathfrak{p}_{0}^{\prime \prime}\right)+\operatorname{dim}\left(\mathfrak{u}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}\right) .
$$

Let $\tilde{Q}_{0}^{\prime}=e^{\tilde{\mathfrak{q}}_{0}^{\prime}} \subset \tilde{L}_{0}^{\prime}$, a parabolic subgroup of \tilde{L}_{0}^{\prime}. Let

$$
\Xi^{\prime}=\left\{\left({ }^{\prime} h \tilde{Q}_{0}^{\prime},{ }^{\prime} z\right) \in \tilde{L}_{0}^{\prime} / \tilde{Q}_{0}^{\prime} \times \tilde{\mathfrak{r}}_{\eta}^{\prime} ; \operatorname{Ad}\left({ }^{\prime} h^{-1}\right)^{\prime} z \in \stackrel{\circ}{\tilde{\mathfrak{l}}_{\eta}^{\prime \prime}}+!\tilde{\mathfrak{q}}_{\eta}\right\}
$$

Define $c^{\prime \prime}: \Xi^{\prime} \rightarrow \tilde{\mathfrak{r}}_{\eta}^{\prime}$ by $c^{\prime \prime}\left({ }^{\prime} h Q_{0}^{\prime},{ }^{\prime} z\right)={ }^{\prime} z$. By the argument in [L4, 6.6] (for \tilde{L}^{\prime} instead of G) we have

$$
\begin{equation*}
\operatorname{ind}_{\tilde{\mathfrak{q}}_{n}^{\prime}}^{\tilde{r}_{n}^{\prime}}\left(\mathcal{L}^{\prime \prime \sharp}\right)=c_{!}^{\prime \prime} \dot{\mathcal{L}}^{\prime \prime}, \tag{c}
\end{equation*}
$$

where $\dot{\mathcal{L}}^{\prime \prime}$ is a certain local system on Ξ^{\prime} determined by $\mathcal{L}^{\prime \prime}$ and such that $\Delta^{*} \dot{\mathcal{L}}^{\prime \prime}=\dot{\mathcal{L}}$ where $\Delta: \Xi \rightarrow \Xi^{\prime}(\Xi$ as in 5.2$)$ is the map induced by the canonical maps $P_{0}^{\prime} \rightarrow \tilde{L}_{0}^{\prime}$ (with kernel $U_{P_{0}^{\prime}}$) and $\mathfrak{p}_{\eta}^{\prime} \rightarrow \tilde{\mathfrak{l}}_{\eta}^{\prime}\left(\right.$ with kernel $\left.\mathfrak{u}_{\eta}^{\prime}\right) ; \dot{\mathcal{L}}$ is the local system on Ξ considered in 5.2. We consider the following statement:
(d) Δ is an affine space bundle with fibers of dimension f.

Assuming that (d) holds, we have

$$
K_{\Omega}=c_{!}^{\prime \prime} \Delta_{!} \dot{\mathcal{L}}=c_{!}^{\prime \prime} \dot{\mathcal{L}}^{\prime \prime} \otimes \Delta_{!} \overline{\mathbf{Q}}_{l}=c_{!}^{\prime \prime} \dot{\mathcal{L}}^{\prime \prime}[-2 f]
$$

and we see that (b) follows from (c). It remains to prove (d).
Let ${ }^{\prime} h \in \tilde{L}_{0}^{\prime},{ }^{\prime} z \in \tilde{\mathfrak{r}}_{\eta}^{\prime}$ be such that $\left({ }^{\prime} h Q_{0}^{\prime},{ }^{\prime} z\right) \in \Xi^{\prime}$. Setting $h={ }^{\prime} h u, z={ }^{\prime} z+\tilde{z}$, we see that $\Delta^{-1}\left({ }^{\prime} h Q_{0}^{\prime}, ' z\right)$ can be identified with

$$
\left\{\left(u\left(U_{P_{0}^{\prime}} \cap P_{0}^{\prime \prime}\right), \tilde{z}\right) \in\left(U_{P_{0}^{\prime}} /\left(U_{P_{0}^{\prime}} \cap P_{0}^{\prime \prime}\right)\right) \times \mathfrak{u}_{\eta}^{\prime} ; \operatorname{Ad}\left(u^{-1}\right) \operatorname{Ad}\left({ }^{\prime} h^{-1}\right)\left({ }^{\prime} z+\tilde{z}\right) \in \stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}}+\mathfrak{u}_{\eta}^{\prime \prime}\right\}
$$

It suffices to show that

$$
\begin{equation*}
\left\{(u, \tilde{z}) \in U_{P_{0}^{\prime}} \times \mathfrak{u}_{\eta}^{\prime} ; \operatorname{Ad}\left(u^{-1}\right) \operatorname{Ad}\left(h^{-1}\right)\left({ }^{\prime} z+\tilde{z}\right) \in \stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}}+\mathfrak{u}_{\eta}^{\prime \prime}\right\} \tag{e}
\end{equation*}
$$

is isomorphic to $U_{P_{0}^{\prime}} \times\left(\mathfrak{u}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}\right)$. If (u, \tilde{z}) are as in (e), we have automatically $\operatorname{Ad}\left(u^{-1}\right) \operatorname{Ad}\left({ }^{\prime} h^{-1}\right)\left({ }^{\prime} z+\tilde{z}\right) \in \mathfrak{p}_{\eta}^{\prime}$ (since ${ }^{\prime} z+\tilde{z} \in \mathfrak{p}_{\eta}^{\prime}$ and $\left.{ }^{\prime} h u \in P_{0}^{\prime}\right)$. Setting $\operatorname{Ad}\left({ }^{\prime} h^{-1}\right)^{\prime} z=$
 variety (e) may be identified with the variety

$$
\begin{equation*}
\left\{\left(u, \tilde{z}^{\prime}\right) \in U_{P_{0}^{\prime}} \times \mathfrak{u}_{\eta}^{\prime} ; \operatorname{Ad}\left(u^{-1}\right) a+\tilde{z}^{\prime} \in{\stackrel{\circ}{\mathfrak{L}_{\eta}^{\prime \prime}}}_{\eta}^{\prime}+\left(\mathfrak{p}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}\right)\right\} \tag{f}
\end{equation*}
$$

By 5.2 (a) we can write uniquely

$$
\operatorname{Ad}\left(u^{-1}\right) a+\tilde{z}^{\prime}=\gamma+\nu+\mu
$$

where $\gamma \in \stackrel{\circ}{\tilde{\mathfrak{I}}_{\eta}^{\prime \prime}}, \nu \in \tilde{\mathfrak{r}}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}, \mu \in \mathfrak{u}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}$. Setting $\hat{z}=\mu-\tilde{z}$ we see that (f) can be identified with the variety of all quintuples $\left(u, \hat{z}, \gamma, \nu, \nu^{\prime}\right)$ in

$$
U_{P_{0}^{\prime}} \times \mathfrak{u}_{\eta}^{\prime} \times \stackrel{\circ}{\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}} \times\left(\tilde{\mathfrak{l}}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}\right) \times\left(\mathfrak{u}_{\eta}^{\prime} \cap \mathfrak{u}_{\eta}^{\prime \prime}\right)
$$

such that
(g)

$$
\operatorname{Ad}\left(u^{-1}\right) a=\gamma+\nu+\hat{z}
$$

Since $a \in \tilde{\mathfrak{r}}_{\eta}^{\prime}$, we have $\operatorname{Ad}\left(u^{-1}\right) a-a \in \mathfrak{u}_{\eta}^{\prime}$ for $u \in U_{P_{0}^{\prime}}$. Hence in (g) we have $\gamma+\nu=a$ and $\hat{z}=\operatorname{Ad}\left(u^{-1}\right) a-a$. In particular, γ, ν are uniquely determined. Thus, our variety may be identified with $U_{P_{0}^{\prime}} \times\left(\mathfrak{u}_{N}^{\prime} \cap \mathfrak{u}_{N}^{\prime \prime}\right)$. This completes the proof of (d), hence that of (b).
5.5. From the results in 5.3 and 5.4 we can deduce, using the argument in [L4, 8.9] (based on [L4, 1.4]), the following result.

Proposition 5.6. We have $K \in \mathcal{Q}\left(\mathrm{l}_{\eta}^{\prime}\right)$; moreover, we have (noncanonically) $K \cong$ $\oplus_{\Omega} K_{\Omega}$, where Ω runs over good $\left(P_{0}^{\prime}, P_{0}\right)$-double cosets in $G_{\underline{0}}$.

6. Spiral Restriction

We introduce the spiral restriction functor which is adjoint to the spiral induction. The main result in this section is Proposition 6.4, which calculates the inner product $\{$,$\} (in the sense of 0.12$) of two spiral inductions.
6.1. Definition of spiral restriction. In addition to $\eta \in \mathbf{Z}-\{0\}$ which has been fixed in 2.9 , in this section we fix $\epsilon^{\prime}, \epsilon^{\prime \prime}$ in $\{1,-1\}$. Let $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{r}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}}$. Let $\pi^{\prime}: \mathfrak{p}_{\eta}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$ be the obvious map. For any $B \in \mathcal{D}\left(\mathfrak{g}_{\delta}\right)$ we set

$$
\epsilon^{\prime} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(B)=\pi_{!}^{\prime}\left(\left.B\right|_{\mathfrak{p}_{\eta}^{\prime}}\right) \in \mathcal{D}\left(\mathfrak{r}_{\eta}^{\prime}\right)
$$

We show:
(a) If $B \in \mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right)$, then ${ }^{\epsilon^{\prime}} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(B) \in \mathcal{Q}\left(\mathfrak{l}_{\eta}^{\prime}\right)$.

To prove this we can assume that B is in addition a simple perverse sheaf. Then, using the definition of $\mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right)$, we see that it is enough to prove (a) in the case where $B=\epsilon^{\prime \prime} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\boldsymbol{\delta}}}\left(\mathcal{L}^{\sharp}\right)$, with $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon^{\prime \prime}}, \mathcal{L}^{\sharp}$ as in 5.2. In this case, (a) follows from 5.6.

We thus have a functor ${ }^{\epsilon^{\prime}} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}^{\prime}}: \mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right) \rightarrow \mathcal{Q}\left(\mathfrak{l}_{\eta}^{\prime}\right)$ called spiral restriction.
We have the following result.
Proposition 6.2 ((Adjunction)). Let $C \in \mathcal{Q}\left(\mathfrak{r}_{\eta}^{\prime}\right)$, and let $B \in \mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right)$. For any $j \in \mathbf{Z}$ we have

$$
\begin{equation*}
d_{j}\left(\mathfrak{l}_{\eta}^{\prime} ; C,{ }^{\epsilon^{\prime}} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(B)\right)=d_{j^{\prime}}\left(\mathfrak{g}_{\delta} ; \epsilon^{\epsilon^{\prime}} \operatorname{Ind}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(C), B\right) \tag{a}
\end{equation*}
$$

where $j^{\prime}=j+2 \operatorname{dim} \mathfrak{u}_{0}^{\prime}$.
The proof is almost a copy of that of [L4, 9.2]. We omit it.

For $B \in \mathcal{D}\left(\mathfrak{g}_{\delta}\right)$ we set

$$
\epsilon^{\prime} \widetilde{\operatorname{Res}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(B)=\epsilon^{\prime} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(B)\left[\operatorname{dim} \mathfrak{u}_{\eta}^{\prime}-\operatorname{dim} \mathfrak{u}_{0}^{\prime}\right]
$$

With this notation, the equality (a) can be reformulated without a shift from j to j^{\prime} as follows:

$$
\begin{equation*}
d_{j}\left(\mathfrak{l}_{\eta}^{\prime} ; C,{ }^{\epsilon^{\prime}} \widetilde{\operatorname{Res}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(B)\right)=d_{j}\left(\mathfrak{g}_{\delta} ; \epsilon^{\prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}(C), B\right) \tag{b}
\end{equation*}
$$

6.3. Let $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{l}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}},\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon^{\prime \prime}}$. Let $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$, $A^{\prime} \in \mathcal{Q}\left(\mathfrak{l}_{\eta}^{\prime}\right)$ be cuspidal perverse sheaves. As in 4.3 we have $A=\mathcal{L}^{\sharp}\left[\operatorname{dim} \mathfrak{l}_{\eta}\right]$, $A^{\prime}=\mathcal{L}^{\prime \prime}\left[\operatorname{dim} \mathfrak{l}_{\eta}^{\prime}\right]$ where $\mathcal{L}\left(\right.$ resp. $\left.\mathcal{L}^{\prime}\right)$ is a local system on $\stackrel{\circ}{\mathfrak{l}}_{\eta}\left(\right.$ resp. $\left.\stackrel{\circ}{\mathfrak{l}}_{\eta}^{\prime}\right)$.

We denote by X the set of all $g \in G_{\underline{0}}$ such that the $\epsilon^{\prime \prime}$-spiral $\left\{\operatorname{Ad}(g) \mathfrak{p}_{N} ; N \in \mathbf{Z}\right\}$ and the ϵ^{\prime}-spiral $\mathfrak{p}_{*}^{\prime}$ have a common splitting. If $g \in X$ there is a unique isomorphism of \mathbf{Z}-graded Lie algebras $\lambda_{g}: \mathfrak{l} \rightarrow \mathfrak{l}^{\prime}$ such that the compositions

$$
\begin{gathered}
\operatorname{Ad}(g) \mathfrak{p}_{N} \cap \mathfrak{p}_{N}^{\prime} \rightarrow \mathfrak{p}_{N}^{\prime} \rightarrow \mathfrak{l}_{N}^{\prime} \\
\operatorname{Ad}(g) \mathfrak{p}_{N} \cap \mathfrak{p}_{N}^{\prime} \xrightarrow{\operatorname{Ad}\left(g^{-1}\right)} \mathfrak{p}_{N} \rightarrow \mathfrak{l}_{N} \xrightarrow{\lambda_{g}} \mathfrak{l}_{N}^{\prime}
\end{gathered}
$$

coincide for any N (the unnamed maps are the obvious imbeddings or projections). Moreover, λ_{g} is induced by an isomorphism $L \rightarrow L^{\prime}$. Let X^{\prime} be the set of all $g \in X$ such that $\lambda_{g}: \mathfrak{l}_{\eta} \xrightarrow{\sim} \mathfrak{l}_{\eta}^{\prime}$ carries \mathcal{L} to the dual of \mathcal{L}^{\prime}. For any $g \in X^{\prime}$ we set

$$
\tau(g)=-\operatorname{dim} \frac{\mathfrak{u}_{0}^{\prime}+\operatorname{Ad}(g) \mathfrak{u}_{0}}{\mathfrak{u}_{0}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{u}_{0}}+\operatorname{dim} \frac{\mathfrak{u}_{\eta}^{\prime}+\operatorname{Ad}(g) \mathfrak{u}_{\eta}}{\mathfrak{u}_{\eta}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{u}_{\eta}}
$$

Note that both X and X^{\prime} are unions of $\left(P_{0}^{\prime}, P_{0}\right)$-double cosets in $G_{\underline{0}}$ and that $\tau(g)$ depends only on the double coset of g. We have the following result.

Proposition 6.4. Let

$$
\Pi=\sum_{j \in \mathbf{Z}} d_{j}\left(\mathfrak{g}_{\delta} ; \epsilon^{\prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}\left(A^{\prime}\right), \epsilon^{\prime \prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)\right) v^{-j} \in \mathbf{N}((v))
$$

We have

$$
\Pi=\left(1-v^{2}\right)^{-r} \sum_{g_{0}} v^{\tau\left(g_{0}\right)}
$$

where r is the dimension of the center of \mathfrak{l} and the sum is taken over a set of representatives g_{0} for the $\left(P_{0}^{\prime}, P_{0}\right)$-double cosets in $G_{\underline{0}}$ that are contained in X^{\prime}. In particular, if $\Pi \neq 0$, then $X^{\prime} \neq \emptyset$.

Using 6.2, we have

$$
\Pi=\sum_{j \in \mathbf{Z}} d_{j}\left(\mathfrak{l}_{\eta}^{\prime} ; A^{\prime}, \epsilon^{\prime} \widetilde{\operatorname{Res}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}\left(\epsilon^{\prime \prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)\right)\right) v^{-j}=\sum_{j \in \mathbf{Z}} d_{j+s}\left(\mathfrak{l}_{\eta}^{\prime} ; A^{\prime}, K\right) v^{-j}
$$

where $s=\operatorname{dim} \mathfrak{u}_{0}+\operatorname{dim} \mathfrak{u}_{\eta}+\operatorname{dim} \mathfrak{u}_{\eta}^{\prime}-\operatorname{dim} \mathfrak{u}_{0}^{\prime}+\operatorname{dim} \mathfrak{l}_{\eta}$ and

$$
K=\epsilon^{\prime} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\eta}}\left(\epsilon^{\prime \prime} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(\mathcal{L}^{\sharp}\right)\right)
$$

is as in 5.2 . Using the description of K in $5.3(\mathrm{a}), 5.4(\mathrm{~b}), 5.6$, we see that
(a)

$$
\Pi=\sum_{j \in \mathbf{Z}} \sum_{g} Q_{j}(g) v^{-j+s-2 f(g)}
$$

where g runs over a set of representatives for the $\left(P_{0}^{\prime}, P_{0}\right)$-double cosets in $G_{\underline{0}}$ which are good (see 5.2) and

$$
\begin{gathered}
Q_{j}(g)=d_{j}\left(\tilde{\mathfrak{l}}_{\eta}^{\prime} ; A^{\prime}, \operatorname{ind}_{\tilde{\mathfrak{q}}_{\eta}^{\prime}}^{\tilde{\prime}_{\eta}^{\prime}}\left(\mathcal{L}^{\prime \prime \sharp}\right)\right), \\
f(g)=\operatorname{dim}\left(\mathfrak{u}_{0}^{\prime} /\left(\mathfrak{u}_{0}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{p}_{0}\right)+\operatorname{dim}\left(\mathfrak{u}_{\eta}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{u}_{\eta}\right) ;\right.
\end{gathered}
$$

the following notation is used:
$\tilde{\mathfrak{r}}_{*}^{\prime}$ is a certain splitting of $\mathfrak{p}_{*}^{\prime}, \tilde{\mathfrak{r}}_{*}^{\prime \prime}$ is a certain splitting of $\left\{\operatorname{Ad}(g) \mathfrak{p}_{N} ; N \in \mathbf{Z}\right\}, \tilde{\mathfrak{q}}^{\prime}=$ $\oplus_{N \in \mathbf{Z}} \tilde{\mathfrak{q}}_{N}^{\prime}\left(\right.$ where $\left.\tilde{\mathfrak{q}}_{N}^{\prime}=\tilde{\mathfrak{l}}_{N}^{\prime} \cap \operatorname{Ad}\left(g_{0}\right) \mathfrak{p}_{N}\right)$ is a parabolic subalgebra of $\tilde{\mathfrak{l}}^{\prime}=\oplus_{N} \tilde{\mathfrak{l}}_{N}^{\prime}$ whose with Levi subalgebra $\tilde{\mathfrak{l}}^{\prime \prime}=\oplus_{N} \tilde{\mathfrak{l}}_{N}^{\prime \prime} ; A^{\prime}$ is viewed as an object of $\mathcal{Q}\left(\tilde{\mathfrak{r}}_{\eta}^{\prime}\right)$ via the obvious isomorphism $\tilde{\mathfrak{l}}_{\eta}^{\prime} \rightarrow \mathfrak{l}_{\eta}^{\prime}$ and $\mathcal{L}^{\prime \prime \sharp} \in \mathcal{Q}\left(\tilde{\mathfrak{l}}_{\eta}^{\prime \prime}\right)$ corresponds to \mathcal{L}^{\sharp} via the isomorphism $\mathfrak{r}_{\eta} \xrightarrow{\operatorname{Ad}(g)} \operatorname{Ad}(g) \mathfrak{p}_{\eta} / \operatorname{Ad}(g) \mathfrak{u}_{\eta}=\tilde{\mathfrak{r}}_{\eta}^{\prime \prime}$.

By the implication $(\mathrm{a}) \Longrightarrow(\mathrm{c})$ in [L4, 10.6], we have $Q_{j}(g)=0$ unless $\tilde{\mathfrak{q}}^{\prime}=\tilde{\mathfrak{l}}^{\prime}$. In this case, since $\tilde{\mathfrak{l}}^{\prime \prime}$ is a Levi subalgebra of $\tilde{\mathfrak{q}}^{\prime}$, we must have $\tilde{\mathfrak{l}}^{\prime}=\tilde{\mathfrak{l}}^{\prime \prime}$ so that $g \in X$. Conversely, if $g \in X$, then the $\left(P_{0}^{\prime}, P_{0}\right)$-double coset of g is good. Indeed, let $\tilde{\mathfrak{V}}_{*}^{\prime}$ be a splitting of $\mathfrak{p}_{*}^{\prime}$ which is also a splitting for $\left\{\operatorname{Ad}(g) \mathfrak{p}_{N} ; N \in \mathbf{Z}\right\}$. We have

$$
\operatorname{Ad}(g) \mathfrak{p}_{N}=\tilde{\mathfrak{l}}_{N}^{\prime} \oplus \operatorname{Ad}(g) \mathfrak{u}_{N} \subset\left(\mathfrak{p}_{N}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{p}_{N}\right)+\operatorname{Ad}(g) \mathfrak{u}_{N} \subset \operatorname{Ad}(g) \mathfrak{p}_{N}
$$

and our claim follows. Thus the sum in (a) can be taken over a set of representatives g for the $\left(P_{0}^{\prime}, P_{0}\right)$-double cosets in G_{0} that are contained in X and for such g we have $Q_{j}(g)=d_{j}\left(\tilde{\mathfrak{l}}_{\eta}^{\prime} ; A^{\prime}, \mathcal{L}^{\prime \prime \sharp}\right)$ where $\tilde{\mathfrak{l}}^{\prime}=\tilde{\mathfrak{l}}^{\prime \prime}, \mathcal{L}^{\prime \prime \sharp} \in \mathcal{Q}\left(\tilde{\mathfrak{l}}_{\eta}^{\prime \prime}\right)$ are as above. Using [L4, 15.1], we see that in the sum over g in (a) we can take $g \in X^{\prime}$ and that the contribution of such g to the sum is $\left(1-v^{2}\right)^{-r} v^{s-2 f(g)-d}$ where $d=\operatorname{dim} \mathfrak{l}_{\eta}$. It remains to show that for g as above we have $s-2 f(g)-d=\tau(g)$. It is enough to show that:
(b) $\mathfrak{u}_{0}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{p}_{0}=\mathfrak{u}_{0}^{\prime} \cap \operatorname{Ad}(g) \mathfrak{u}_{0}$,
(c) $\operatorname{dim}\left(\operatorname{Ad}(g) \mathfrak{u}_{0}\right)=\operatorname{dim} \mathfrak{u}_{0}^{\prime}$.

Now (b),(c) hold since $\operatorname{Ad}(g) \mathfrak{p}_{0}, \mathfrak{p}_{0}^{\prime}$ are parabolic subalgebras of \mathfrak{g}_{0} with nilradicals $\operatorname{Ad}(g) \mathfrak{u}_{0}, \mathfrak{u}_{0}^{\prime}$ and with a common Levi subalgebra. This completes the proof of the proposition.
6.5. In the special case where

$$
\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime} \mathfrak{l}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right)=\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right)
$$

and $A^{\prime} \cong D(A)$, the sum $\sum_{g} v^{\tau(g)}$ in Proposition 6.4 is over a nonempty set of g (we have $1 \in X^{\prime}$) hence the sum is nonzero and Π in 6.4 is nonzero. In particular, we see that
(a)

$$
\epsilon^{\prime \prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g} \delta}(A) \neq 0
$$

6.6. The map ψ from simple perverse sheaves to $\underline{\mathfrak{T}}_{\eta}$. Let B be a simple perverse sheaf in $\mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right)$. We associate to B an element of $\mathfrak{\underline { T }}_{\eta}$ (see 3.5) as follows. We can find, $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon^{\prime \prime}}$ and A as in 6.3 such that

$$
\epsilon^{\prime \prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A) \cong B[d] \oplus C,
$$

where $d \in \mathbf{Z}$ and $C \in \mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right)$. Let $\tilde{\mathfrak{l}}_{*}$ be a splitting of \mathfrak{p}_{*}. Let $\tilde{\mathfrak{l}}=\oplus_{N} \tilde{\mathfrak{l}}_{N}, \tilde{L}=$ $e^{\tilde{\mathfrak{l}}} \subset G, \tilde{L}_{0}=e^{\tilde{\mathfrak{l}}_{0}} \subset G$ and let \tilde{C} be the simple perverse sheaf on $\tilde{\mathfrak{~}}_{\eta}$ corresponding to A under the obvious isomorphism $\tilde{\mathfrak{l}}_{\eta} \xrightarrow{\sim} \mathfrak{l}_{\eta}$. Then $\left(\tilde{L}, \tilde{L}_{0}, \tilde{\mathfrak{l}}, \tilde{\mathfrak{l}}_{*}, \tilde{C}\right)$ is an object of
\mathfrak{T}_{η} and its $G_{\underline{0}}$-orbit is independent of the choice of splitting, by $2.7(\mathrm{a})$. Now let $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \overline{\mathfrak{r}_{*}^{\prime}}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}}, A^{\prime}$ be as in 6.3 (with $\epsilon^{\prime}=\epsilon^{\prime \prime}$) and assume that

$$
\epsilon^{\prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\boldsymbol{\delta}}^{\prime}}\left(A^{\prime}\right) \cong B\left[d^{\prime}\right] \oplus C^{\prime}
$$

where $d^{\prime} \in \mathbf{Z}$ and $C^{\prime} \in \mathcal{Q}_{\eta}^{\epsilon^{\prime \prime}}\left(\mathfrak{g}_{\delta}\right)$. We choose a splitting $\tilde{\mathfrak{l}}_{*}^{\prime}$ of $\mathfrak{p}_{*}^{\prime}$ and we associate to it a system $\left(\tilde{L}^{\prime}, \tilde{L}_{0}^{\prime}, \tilde{\mathfrak{l}}^{\prime}, \tilde{\mathfrak{l}}_{*}^{\prime}, \tilde{C}^{\prime}\right)$ just as $\left(\tilde{L}, \tilde{L}_{0}, \tilde{\mathfrak{l}}, \tilde{\mathfrak{L}}_{*}, \tilde{C}\right)$ was defined in terms of $\tilde{\mathfrak{l}}$; here \tilde{C}^{\prime} corresponds to A^{\prime}. Using $4.1(\mathrm{~d})$, we see that

$$
\epsilon^{\prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{\delta}}\left(D\left(A^{\prime}\right)\right) \cong D(B)\left[-d^{\prime}\right] \oplus D\left(C^{\prime}\right) .
$$

Let Π be as in 6.4 (with A^{\prime} replaced by $D\left(A^{\prime}\right)$ and $\epsilon^{\prime}=\epsilon^{\prime \prime}$). From the definition of Π in 6.4 we have also

$$
\Pi=\left\{B[d] \oplus C, D(B)\left[-d^{\prime}\right] \oplus D\left(C^{\prime}\right)\right\}=v^{d-d^{\prime}} \text { plus an element in } \mathbf{N}((v)) .
$$

(We use 0.12.) In particular we have $\Pi \neq 0$ hence X^{\prime} in 6.4 is nonempty. It follows that $\left(\tilde{L}^{\prime}, \tilde{L}_{0}^{\prime}, \tilde{\mathfrak{l}}^{\prime}, \tilde{\mathfrak{l}}_{*}^{\prime}, \tilde{C}^{\prime}\right)$ and $\left(\tilde{L}, \tilde{L}_{0}, \tilde{\mathfrak{l}}, \tilde{\mathfrak{L}}_{*}, \tilde{C}\right)$ are in the same $G_{\underline{0}}$-orbit. This proves that $B \mapsto\left(\tilde{L}, \tilde{L}_{0}, \tilde{\mathfrak{l}}, \tilde{\mathfrak{c}}_{*}, \tilde{C}\right)$ associates to B a well-defined element $\psi(B) \in \underline{\mathfrak{T}}_{\eta}$.
6.7. For any $\xi \in \underline{\underline{T}}_{\eta}$ let ${ }^{\xi} \mathcal{Q}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)$ be the full subcategory of $\mathcal{Q}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)$ whose objects are direct sums of shifts of simple perverse sheaves B in $\mathcal{Q}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)$ such that $\psi(B)=\xi$ (see 6.6); let ${ }^{\xi} \mathcal{K}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)$ be the (free) \mathcal{A}-submodule of $\mathcal{K}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)$ with basis given by the simple perverse sheaves B in ${ }^{\xi} \mathcal{Q}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)$. Clearly, we have

$$
\mathcal{K}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right)=\oplus_{\xi \in \underline{\underline{\mathfrak{T}}}_{\eta}}{ }^{\xi} \mathcal{K}_{\eta}^{\epsilon^{\prime}}\left(\mathfrak{g}_{\delta}\right) .
$$

7. The categories $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right), \mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right)$

In this section we consider two categories of perverse sheaves $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right), \mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right)$ defined in terms of spiral induction; see 7.8. The simple objects in $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ are supported on $\mathfrak{g}_{\delta}^{\text {nil }}$, while those in $\mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right)$ have Fourier-Deligne transforms supported on $\mathfrak{g}_{\delta}^{\text {nil }}$. We also complete the proof of the main theorem 0.6.
7.1. Let $(\mathcal{O}, \mathcal{L}) \in \mathcal{I}\left(\mathfrak{g}_{\delta}\right)$. Let A_{1} be the simple perverse sheaf on \mathfrak{g}_{δ} such that $\operatorname{supp}\left(A_{1}\right)$ is the closure $\overline{\mathcal{O}}$ of \mathcal{O} in \mathfrak{g}_{δ} and $\left.A_{1}\right|_{\mathcal{O}}=\mathcal{L}[\operatorname{dim} \mathcal{O}]$.

Choose $x \in \mathcal{O}$ and $\phi \in J_{\delta}(x)$; define $\mathfrak{p}_{*}^{x}, \tilde{\mathfrak{L}}_{*}^{\phi}, \tilde{L}^{\phi}, P_{0}$ as in 2.9. Then $\mathcal{Q}\left(\tilde{\mathfrak{r}}_{\eta}^{\phi}\right)$ is defined in terms of $\tilde{\mathfrak{l}}_{*}^{\phi}, \tilde{L}^{\phi}$ and for any $A^{\prime} \in \mathcal{Q}\left(\tilde{ף}_{\eta}^{\phi}\right)$ we can consider

$$
I\left(A^{\prime}\right):={ }^{\dot{\eta}} \operatorname{Ind}_{\mathfrak{p}_{\eta}^{2}}^{\mathfrak{g}_{\boldsymbol{\delta}}}\left(A^{\prime}\right) \in \mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right) ;
$$

see 4.1. We show:
(a) If $A^{\prime} \in \mathcal{Q}\left(\tilde{(}_{\eta}{ }^{\phi}\right)$, then the support of $I\left(A^{\prime}\right)$ is contained in $\overline{\mathcal{O}}$.

Let $y \in \mathfrak{g}_{\delta}$ be in the support of $I\left(A^{\prime}\right)$. We must show that $y \in \overline{\mathcal{O}}$. From the definition of $I\left(A^{\prime}\right)$, there exists $g \in G_{\underline{0}}$ and $z \in \mathfrak{p}_{\eta}^{x}$ such that $\operatorname{Ad}(g)(z)=y$. Since the support of $I\left(A^{\prime}\right)$ and $\overline{\mathcal{O}}$ are $G_{\underline{0}}$-invariant we may replace y by $\operatorname{Ad}\left(g^{-1}\right) y$ hence we may assume that $y \in \mathfrak{p}_{\eta}^{x}$. Using 2.9(e), we see that \mathfrak{p}_{η}^{x} is equal to the closure of the P_{0}-orbit of x in \mathfrak{p}_{η}^{x}, which is clearly contained in $\overline{\mathcal{O}}$. This proves (a).
 irreducible \tilde{L}_{0}^{ϕ}-equivariant local system on $\stackrel{\circ}{\tilde{\mathfrak{L}}}_{\eta}^{\phi}$. Let $\mathcal{L}_{1}^{\sharp} \in \mathcal{D}\left(\tilde{\mathfrak{r}}_{\eta}^{\phi}\right)$ be as in 0.11 and let $A=\mathcal{L}_{1}^{\sharp}\left[\operatorname{dim} \tilde{\mathrm{I}}_{\eta}^{\phi}\right]$. We show:
(b) $\left.I\left(\mathcal{L}_{1}^{\sharp}\right)\right|_{\mathcal{O}}$ is \mathcal{L}.

Let $E_{\mathcal{O}}^{\prime}$ be the inverse image of \mathcal{O} under $c: E^{\prime} \rightarrow \mathfrak{g}_{\delta}$ (where c, E^{\prime} are as in 4.1 with $\mathfrak{p}_{*}=\mathfrak{p}_{*}^{x}, \epsilon=\dot{\eta}$). From the definitions we see that it is enough to check that the map $c_{\mathcal{O}}: E_{\mathcal{O}}^{\prime} \rightarrow \mathcal{O}$ (restriction of c) is bijective on \mathbf{k}-points. Since $G_{\underline{0}}$ acts naturally on both $E_{\mathcal{O}}^{\prime}$ and \mathcal{O} compatibly with c and the action on \mathcal{O} is transitive, it suffices to check that $c^{-1}(x)$ is a single point, namely $\left(P_{0}, x\right)$. Let $\left(g P_{0}, x\right) \in c^{-1}(x)$. We have $g \in G_{\underline{0}}, \operatorname{Ad}\left(g^{-1}\right) x \in \mathfrak{p}_{\eta}^{x}$ hence $x \in \operatorname{Ad}(g) \mathfrak{p}_{\eta}^{x}$. From 2.9(d) we deduce that $g \in P_{0}$ hence $\left(g P_{0}, x\right)=\left(P_{0}, x\right)$. This proves (b).

We show:
(c) $I\left(\mathcal{L}_{1}^{\sharp}\right)$ is isomorphic to $\oplus_{j=1}^{r} A_{j}\left[t_{j}\right]$, where $t_{1}=-\operatorname{dim} \mathcal{O}$ and for any $j \geq 2$, A_{j} is a simple $G_{\underline{0}}$-equivariant perverse sheaf on \mathfrak{g}_{δ} with support contained in $\overline{\mathcal{O}}-\mathcal{O}$ and $t_{j} \in \mathbf{Z}$.

This follows from the fact that $I\left(\mathcal{L}_{1}^{\sharp}\right)$ is a semisimple $G_{\underline{0}}$-equivariant perverse sheaf on \mathfrak{g}_{δ} (the decomposition theorem), taking into account (a),(b).

By $1.5(\mathrm{a})$ we can find a parabolic subalgebra \mathfrak{q} of $\tilde{\mathfrak{l}}^{\phi}$, a Levi subalgebra \mathfrak{m} of \mathfrak{q} (with $\mathfrak{q}, \mathfrak{m}$ compatible with the Z-grading of $\tilde{\mathfrak{l}}^{\phi}$) and a cuspidal $M_{0}:=e^{\mathfrak{m}_{0_{-}}}$ equivariant perverse sheaf C on \mathfrak{m}_{η} such that some shift of A is a direct summand of $\operatorname{ind}_{\mathfrak{q}_{\eta}}^{\tilde{q}_{\eta}^{\phi}}(C)$. From the definition we have

$$
\begin{equation*}
\Psi(\mathcal{O}, \mathcal{L})=\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, C\right) \in \underline{\mathfrak{T}}_{\eta} \tag{d}
\end{equation*}
$$

where $M=e^{\mathfrak{m}}$; see 3.5.
For any $N \in \mathbf{Z}$ let $\hat{\mathfrak{p}}_{N}$ be the inverse image of \mathfrak{q}_{N} under the obvious map $\mathfrak{p}_{N} \rightarrow \mathfrak{l}_{N}$. Then by 2.8(a), $\hat{\mathfrak{p}}_{*}$ is an $\dot{\eta}$-spiral and \mathfrak{m}_{*} is a splitting of it, so that, by $4.2(\mathrm{a})$, we have

$$
{ }^{\dot{\eta}} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(C)={ }^{\dot{\eta}} \operatorname{Ind}_{\mathfrak{p}_{\eta}^{\phi}}^{\mathfrak{g}_{\delta}}\left(\operatorname{ind}_{\mathfrak{q}_{\eta}} \stackrel{i}{i}_{\eta}^{\dagger}(C)\right) .
$$

It follows that some shift of ${ }^{\dot{\eta}} \operatorname{Ind}_{\mathfrak{p}_{\eta}^{\phi}}^{\mathfrak{g}_{\delta}}(A)$ is a direct summand of ${ }^{\dot{\eta}} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{q}_{\boldsymbol{\delta}}}(C)$ hence, using (c), we see that some shift of A_{1} is a direct summand of ${ }^{\dot{\eta}} \operatorname{Ind}_{\mathfrak{\mathfrak { I }}_{\eta}}^{\mathfrak{g}_{\eta}}(C)$. In particular we have $A_{1} \in \mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ and $\psi\left(A_{1}\right)=\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, C\right) \in \mathfrak{T}_{\eta}$; see 6.6 (with $\epsilon=\dot{\eta}$). Comparing with (d) we see that:
(e) $\psi\left(A_{1}\right)=\Psi(\mathcal{O}, \mathcal{L})$.
7.2. Characterization of $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ as orbital sheaves. Let A^{\prime} be a semisimple $G_{\underline{0}}$-equivariant complex on \mathfrak{g}_{δ}. We show:
(a) We have $A^{\prime} \in \mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ if and only if $\operatorname{supp}\left(A^{\prime}\right) \subset \mathfrak{g}_{\delta}^{\text {nil }}$.

We can assume that A^{\prime} is a simple perverse sheaf. If $\operatorname{supp}\left(A^{\prime}\right) \subset \mathfrak{g}_{\delta}^{\text {nil }}$, then we have $A^{\prime} \in \mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ by the arguments in 7.1. Conversely, assume that $A^{\prime} \in \mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$. We can find $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\dot{\eta}}$ and $A \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ such that some shift of A^{\prime} is a direct summand of $B:=\dot{\eta} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}(A)$. To show that $\operatorname{supp}\left(A^{\prime}\right) \subset \mathfrak{g}_{\delta}^{\text {nil }}$ it is enough to show that $\operatorname{supp}(B) \subset \mathfrak{g}_{\delta}^{\text {nil }}$ or (with c, A_{1} as in 4.1 with $\left.\epsilon=\dot{\eta}\right)$ that $\operatorname{supp}\left(c_{!} A_{1}\right) \subset \mathfrak{g}_{\delta}^{\text {nil }}$. This would follow if we can show that the image of c is contained in $\mathfrak{g}_{\delta}^{\text {nil }}$. By the
definition of c it is enough to show that $\mathfrak{p}_{\eta} \subset \mathfrak{g}_{\delta}^{\text {nil }}$. This follows from 2.5(d) applied with $N=\eta$.

We now restate 7.1(e) as follows.
(b) Let A^{\prime} be a simple perverse sheaf in $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ and let $(\mathcal{O}, \mathcal{L}) \in \mathcal{I}\left(\mathfrak{g}_{\delta}\right)$ be such that $\operatorname{supp}\left(A^{\prime}\right)=\overline{\mathcal{O}}$ and $\left.A^{\prime}\right|_{\mathcal{O}}=\mathcal{L}[\operatorname{dim} \mathcal{O}]$. Then $\psi\left(A^{\prime}\right)=\Psi(\mathcal{O}, \mathcal{L})$. (Notation of 3.5 and 6.6 with $\epsilon=\dot{\eta}$.)
7.3. We now give another proof of the following statement (see also 3.8(f)):
(a) The map $\Psi: \mathcal{I}\left(\mathfrak{g}_{\delta}\right) \rightarrow \underline{\underline{T}}_{\eta}$ in 3.5 is surjective.

Let $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, C\right)$ be an element of \mathfrak{T}_{η}. We can find an $\dot{\eta}$-spiral \mathfrak{p}_{*} such that \mathfrak{m}_{*} is a splitting of \mathfrak{p}_{*}. By $6.5(\mathrm{a})$, we have $\tilde{\eta}^{\mathrm{Ind}_{\mathfrak{p}_{\eta}}}{ }^{\mathfrak{g}}(C) \neq 0$, that is, there exists a simple perverse sheaf A^{\prime} in $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ such that some shift of A^{\prime} is a direct summand of $\tilde{\eta}_{\mathrm{Ind}_{\mathfrak{p}_{\eta}}}^{\mathfrak{g}_{\boldsymbol{\delta}}}(C)$. It follows that $\psi\left(A^{\prime}\right)=\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, C\right)$ hence, by $7.2(\mathrm{~b})$, we have $\Psi(\mathcal{O}, \mathcal{L})=\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, C\right)$ where $(\mathcal{O}, \mathcal{L})$ corresponds to A^{\prime} as in $7.2(\mathrm{~b})$. This proves (a).
7.4. Until the end of 7.7 we assume that $p>0$. If E, E^{\prime} are finite dimensional \mathbf{k}-vector space with a given perfect bilinear pairing $E \times E^{\prime} \rightarrow \mathbf{k}$, then we have the Fourier-Deligne transform functor $\Phi: \mathcal{D}(E) \rightarrow \mathcal{D}\left(E^{\prime}\right)$ defined in terms of a fixed nontrivial character $\mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ as in [L4, 1.9].
7.5. Fourier transform and spiral restriction. Let $B \in \mathcal{D}\left(\mathfrak{g}_{\delta}\right)$; we denote by $\Phi_{\mathfrak{g}}(B) \in \mathcal{D}\left(\mathfrak{g}_{-\delta}\right)$ the Fourier-Deligne transform of B with respect to the perfect pairing $\mathfrak{g}_{\delta} \times \mathfrak{g}_{-\delta} \rightarrow \mathbf{k}$ defined by \langle,$\rangle .$

Let $\epsilon^{\prime} \in\{1,-1\}$. Let $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{l}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}}$ and let

$$
R_{\eta}=\epsilon^{\prime} \operatorname{Res}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g} \delta}(B) \in \mathcal{D}\left(\mathfrak{l}_{\eta}^{\prime}\right), \quad R_{-\eta}=\epsilon^{\epsilon^{\prime}} \operatorname{Res}_{\mathfrak{p}_{-\eta}^{\prime}}^{\mathfrak{g}-\delta}\left(\Phi_{\mathfrak{g}}(B)\right) \in \mathcal{D}\left(\mathfrak{l}_{-\eta}^{\prime}\right) .
$$

Then
(a) $R_{-\eta}$ is the Fourier-Deligne transform of R_{η} with respect to the perfect pairing $\mathfrak{l}_{\eta} \times \mathfrak{l}_{-\eta} \rightarrow \mathbf{k}$ defined by \langle,$\rangle .$

The proof is almost the same as that of [L4, 10.2]. We omit it.
7.6. Fourier transform and spiral induction. Let $\epsilon^{\prime} \in\{1,-1\}$. Let

$$
\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{r}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{\epsilon^{\prime}}
$$

Let $A \in \mathcal{D}\left(\mathfrak{r}_{\eta}^{\prime}\right)$ be a semisimple complex; we denote by $\Phi_{\mathfrak{l}^{\prime}}(A) \in \mathcal{D}\left(\mathfrak{r}_{-\eta}^{\prime}\right)$ the Fourier-Deligne transform of A with respect to the perfect pairing $\mathfrak{l}_{\eta}^{\prime} \times \mathfrak{l}_{-\eta}^{\prime} \rightarrow \mathbf{k}$ defined by \langle,$\rangle ; note that \Phi_{\mathrm{l}^{\prime}}(A)$ is a semisimple complex. Let

$$
\begin{aligned}
& I_{\eta}=\epsilon^{\prime}{\widetilde{\operatorname{Ind}_{\mathfrak{p}_{\eta}^{\prime}}} \mathfrak{g}_{\delta}}_{\mathfrak{g}^{\prime}}(A) \in \mathcal{D}\left(\mathfrak{g}_{\delta}\right) \\
& I_{-\eta}=\epsilon^{\epsilon^{\prime} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{-\eta}^{\prime}}^{\mathfrak{g}_{-\delta}^{\prime}}\left(\Phi_{\mathfrak{l}^{\prime}}(A)\right) \in \mathcal{D}\left(\mathfrak{g}_{-\delta}\right)} .
\end{aligned}
$$

Then:
(a) $I_{-\eta}$ is the Fourier-Deligne transform of I_{η} with respect to the perfect pairing $\mathfrak{g}_{\delta} \times \mathfrak{g}_{-\delta} \rightarrow \mathbf{k}$ defined by \langle,$\rangle .$

The proof is almost the same as that of [L5, A2]. We omit it.
7.7. Characterization of $\mathcal{Q}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ as anti-orbital sheaves. Let $B \in \mathcal{D}\left(\mathfrak{g}_{\delta}\right)$ be a semisimple complex; let $B^{\prime}=\Phi_{\mathfrak{g}}(B) \in \mathcal{D}\left(\mathfrak{g}_{-\delta}\right)$ be its Fourier-Deligne transform, as in 7.5 . Note that B^{\prime} is again a semisimple complex. We show:
(a) We have $B \in \mathcal{Q}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ if and only if $\operatorname{supp}\left(B^{\prime}\right) \subset \mathfrak{g}_{-\delta}^{\text {nil }}$.

We can assume that B (and hence also B^{\prime}) is a simple perverse sheaf.
Assume first that $B \in \mathcal{Q}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$. We can find $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{l}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{-\dot{\eta}}$ and a cuspidal perverse sheaf C in $\mathcal{Q}\left(r_{\eta}^{\prime}\right)$ such that some shift of B is a direct summand of $-\widetilde{\eta} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}^{\prime}}(C)$. Using $7.6(\mathrm{a})$ we see that some shift of B^{\prime} is a direct summand of
 a cuspidal perverse sheaf in $\mathcal{Q}\left(\mathfrak{l}_{-\eta}^{\prime}\right)$. It follows that $B^{\prime} \in \mathcal{Q}_{-\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{-\delta}\right)$. Using 7.2(a) (with η, δ replaced by $-\eta,-\delta$) we deduce that $\operatorname{supp}\left(B^{\prime}\right) \subset \mathfrak{g}_{-\delta}^{\text {nil }}$.

Conversely, assume that B is such that $\operatorname{supp}\left(B^{\prime}\right) \subset \mathfrak{g}_{-\delta}^{\text {nil }}$. Using 7.2(a), we see that $B^{\prime} \in \mathcal{Q}_{-\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{-\delta}\right)$. We can find $\left(\mathfrak{p}_{*}^{\prime}, L^{\prime}, P_{0}^{\prime}, \mathfrak{l}^{\prime}, \mathfrak{l}_{*}^{\prime}, \mathfrak{u}_{*}^{\prime}\right) \in \mathfrak{P}^{-\dot{\eta}}$ and a cuspidal perverse sheaf C_{1}^{\prime} in $\mathcal{Q}\left(\mathfrak{r}_{-\eta}^{\prime}\right)$ such that some shift of B^{\prime} is a direct summand of $-\dot{\eta} \widetilde{\operatorname{Ind}_{\mathfrak{p}_{-\eta}^{\prime}}^{\mathfrak{g}-\delta}}\left(C_{1}^{\prime}\right)$. We can find a cuspidal perverse sheaf C_{1} in $\mathcal{Q}\left(\mathrm{r}_{\eta}^{\prime}\right)$ such that $C_{1}^{\prime}=\Phi_{1^{\prime}}(C)$ (we use again [L4, 10.6]). Using 7.6(a), we see that some shift of $\Phi_{\mathfrak{g}}(B)$ is a direct summand of $\Phi_{\mathfrak{g}}\left(-\widetilde{\eta}^{\operatorname{Ind}_{\mathfrak{p}_{\eta}^{\prime}}^{\prime}}\left(C_{1}\right)\right)$ hence some shift of B is a direct summand of $-\dot{\eta} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g} \delta}\left(C_{1}\right)$ so that $B \in \mathcal{Q}_{\eta}^{-\grave{\eta}}\left(\mathfrak{g}_{\delta}\right)$. This completes the proof of (a).
7.8. The assumption on p in 7.4 is no longer in force. From $7.2(\mathrm{a})$ we see that $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ (hence also $\left.\mathcal{K}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)\right)$ is independent of η as long as $\underline{\eta}=\delta$. We shall write $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right), \mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ instead of $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right), \mathcal{K}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$. From 7.7(a) we see that $\mathcal{Q}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ (hence also $\mathcal{K}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$) is independent of η as long as $\underline{\eta}=\delta$ (at least when $p>0$, but then the same holds for $p=0$ by standard arguments). We shall write $\mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right), \mathcal{K}^{\prime}\left(\mathfrak{g}_{\delta}\right)$ instead of $\mathcal{Q}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right), \mathcal{K}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$.

For $\xi \in \mathfrak{T}_{\delta}$ we write ${ }^{\xi} \mathcal{Q}\left(\mathfrak{g}_{\delta}\right),{ }^{\xi} \mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ instead of ${ }^{\xi} \mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right),{ }^{\xi} \mathcal{K}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ and we write ${ }^{\xi} \mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right),{ }^{\xi} \mathcal{K}^{\prime}\left(\mathfrak{g}_{\delta}\right)$ instead of ${ }^{\xi} \mathcal{Q}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right),{ }^{\xi} \mathcal{K}_{\eta}^{-\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$. The discussion in 3.9 shows that ${ }^{\xi} \mathcal{Q}\left(\mathfrak{g}_{\delta}\right),{ }^{\xi} \mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ and ${ }^{\xi} \mathcal{Q}^{\prime}\left(\mathfrak{g}_{\delta}\right),{ }^{\xi} \mathcal{K}^{\prime}\left(\mathfrak{g}_{\delta}\right)$ are independent of η as long as $\underline{\eta}=\delta$.
7.9. Proof of Theorem 0.6. Let $\xi \in \underline{\mathfrak{T}}_{\eta}$. Let $K \in \mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\delta}^{\text {nil }}\right)$. We say that $K \in$ $\mathcal{D}_{G_{0}}\left(\mathfrak{g}_{\delta}^{\text {nil }}\right)_{\xi}$ if any simple perverse sheaf B which appears in a perverse cohomology sheaf of K satisfies $\psi(B)=\xi$; note that B belongs to $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$, see 7.2(a); hence $\psi(B)$ is defined as in 6.6.

Now let ξ, ξ^{\prime} in $\underline{\mathfrak{T}}_{\eta}$ be such that $\xi \neq \xi^{\prime}$. Let $K \in \mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\delta}^{n i l}\right)_{\xi}, K^{\prime} \in \mathcal{D}_{G_{\underline{\underline{0}}}}\left(\mathfrak{g}_{\delta}^{n i l}\right)_{\xi^{\prime}}$. We show:
(a) $\operatorname{Hom}_{\mathcal{D}_{G_{0}}\left(\mathfrak{g}_{\delta}^{\text {nil }}\right)}\left(K, K^{\prime}\right)=0$.

We can assume that $K=B[n], K^{\prime}=B^{\prime}\left[n^{\prime}\right]$ where B, B^{\prime} are simple perverse sheaves in $\mathcal{Q}_{\eta}^{\dot{\eta}}\left(\mathfrak{g}_{\delta}\right)$ such that $\psi(B)=\xi, \psi\left(B^{\prime}\right)=\xi^{\prime}$ and n, n^{\prime} are integers. We see that it is enough to prove (a) in the case where $K=\widetilde{\eta} \widetilde{\operatorname{Ind}_{\mathfrak{p}_{\eta}^{\prime}}}{ }^{\mathfrak{g}_{\delta}}\left(A^{\prime}\right)[n], K^{\prime}=\widetilde{\eta_{\text {Ind }}}{\widetilde{\mathfrak{p}_{n}}}_{\mathfrak{g}_{\delta}}(A)\left[n^{\prime}\right]$ with $n, n^{\prime} \in \mathbf{Z}, \mathfrak{p}_{*}, \mathfrak{p}_{*}^{\prime}, A, A^{\prime}$ as in 6.4 , and $\epsilon^{\prime}=\epsilon^{\prime \prime}=\dot{\eta}$, since some shifts of B and B^{\prime} appear as direct summands of such K and K^{\prime}. By 0.12(a), we have an isomorphism

$$
\operatorname{Hom}_{\mathcal{D}_{G_{\underline{0}}\left(\mathfrak{g}_{\delta}^{n i l}\right)}\left(K, K^{\prime}\right)=\mathbf{D}_{0}\left(\mathfrak{g}_{\delta}^{\text {nil }}, G_{\underline{0}} ; K, D\left(K^{\prime}\right)\right)^{*}}
$$

Hence
(b) $\operatorname{dim} \operatorname{Hom}_{\mathcal{D}_{G_{\underline{0}}}\left(\mathfrak{g}_{\delta}^{n i l}\right)}\left(K, K^{\prime}\right)=d_{n-n^{\prime}}\left(\mathfrak{g}_{\delta}^{n i l} ; \dot{\eta} \widetilde{\operatorname{Ind}}_{\mathfrak{p}_{\eta}^{\prime}}^{\mathfrak{g}_{j}}\left(A^{\prime}\right), \widetilde{{ }^{\prime} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{j}}}(D(A))\right)$.

Here we use 4.1(d). Since $\xi \neq \xi^{\prime}$, the set X^{\prime} defined in 6.4 for the pair $\left(D(A), A^{\prime}\right)$ is empty. Therefore the right side of (b) is zero by 6.4. Then (a) follows from (b). We see that Theorem 0.6 holds.

8. Monomial and quasi-monomial objects

The results in this section are parallel to those in 1.8-1.9. They serve as preparation for the next section.
8.1. Let $\epsilon=\dot{\eta}$. We denote by \mathfrak{R}^{ϵ} the set of all data of the form

$$
\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}, A\right)
$$

where $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}_{\mathfrak{l}} \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon}($ see 4.1$)$ and A is a perverse sheaf in $\mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ which is η-semicuspidal (as in 1.8 with H replaced by L).
8.2. An object $B \in \mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ is said to be η-quasi-monomial if $B \cong \widetilde{{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}}(A)$ for some $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}, A\right) \in \mathfrak{R}^{\epsilon}$; if in addition A is taken to be cuspidal, then B is said to be η-monomial. Using $1.8(\mathrm{~b})$ and the transitivity property 4.2 , we see that:
(a) If $B \in \mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ is η-quasi-monomial, then there exists an η-monomial object $B^{\prime} \in \mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ such that $B^{\prime} \cong B\left[a_{1}\right] \oplus B\left[a_{2}\right] \oplus \cdots \oplus B\left[a_{k}\right]$ for some sequence $a_{1}, a_{2}, \ldots, a_{k}$ in $\mathbf{Z}, k \geq 1$. In particular, in $\mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ we have $\left(B^{\prime}\right)=\left(v^{a_{1}}+\cdots+\right.$ $\left.v^{a_{k}}\right)(B)$.

An object of $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ is said to be η-good if it is a direct sum of shifts of η-quasimonomial objects.

Proposition 8.3 (8.3). Let $B \in \mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$. There exists η-good objects B_{1}, B_{2} in $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ such that $B \oplus B_{1} \cong B_{2}$.

We can assume that B is a simple perverse sheaf. We define $(\mathcal{O}, \mathcal{L}) \in \mathcal{I}\left(\mathfrak{g}_{\delta}\right)$ by the requirement that $\operatorname{supp} B$ is the closure $\overline{\mathcal{O}}$ of \mathcal{O} in \mathfrak{g}_{δ} and $\left.B\right|_{\mathcal{O}}=\mathcal{L}[\operatorname{dim} \mathcal{O}]$. We prove the proposition by induction on $\operatorname{dim} \mathcal{O}$. Let $x \in \mathcal{O}$. We associate to x an ϵ-spiral $\mathfrak{p}_{*}=\mathfrak{p}_{*}^{x}$ as in 2.9 ; we complete it uniquely to a system $\left(\mathfrak{p}_{*}, L, P_{0}, \mathfrak{l}, \mathfrak{l}_{*}, \mathfrak{u}_{*}\right) \in \mathfrak{P}^{\epsilon}$. By 7.1(c), there exists $A_{1} \in \mathcal{Q}\left(\mathfrak{l}_{\eta}\right)$ such that ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g} \delta}\left(A_{1}\right) \cong B[d] \oplus B^{\prime}$, where $d \in \mathbf{Z}$ and $B^{\prime} \in \mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$ has support contained in $\overline{\mathcal{O}}-\mathcal{O}$. We now use 1.9(a) for L, A_{1} instead of H, A_{1}; applying ${ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}$ to the equality in $1.9(\mathrm{a})$ we obtain

$$
{ }^{\epsilon} \operatorname{Ind}_{\mathfrak{p}_{\eta}}^{\mathfrak{g}_{\delta}}\left(A_{1}\right) \oplus C_{1}^{\prime} \oplus C_{2}^{\prime} \oplus \ldots \oplus C_{t}^{\prime}=C_{t+1}^{\prime} \oplus \ldots \oplus C_{t+t^{\prime}}^{\prime}
$$

where each C_{j}^{\prime} is an η-quasi-monomial object with a shift (we have used the transitivity property 4.2). Thus we have

$$
B[d] \oplus B^{\prime} \oplus C_{1}^{\prime} \oplus C_{2}^{\prime} \oplus \ldots \oplus C_{t}^{\prime}=C_{t+1}^{\prime} \oplus \ldots \oplus C_{t+t^{\prime}}^{\prime}
$$

Now the induction hypothesis implies that B^{\prime} is η-good. From this and the previous equality we see that B is η-good. The proposition is proved.

Corollary 8.4.

(a) The \mathcal{A}-module $\mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ is generated by the classes of η-quasi-monomial objects of $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$.
(b) The $\mathbf{Q}(v)$-vector space $\mathbf{Q}(v) \otimes_{\mathcal{A}} \mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ is generated by the classes of η monomial objects of $\mathcal{Q}\left(\mathfrak{g}_{\delta}\right)$.
(a) follows immediately from 8.3; (b) follows from (a) using 8.2(a).
8.5. We show:
(a) If B_{1}, B_{2} are elements of $\mathcal{K}\left(\mathfrak{g}_{\delta}\right)$ then $\left\{B_{1}, B_{2}\right\} \in \mathbf{Q}(v)$ (notation of 4.4(c)).

By 8.3, we can assume that B_{1}, B_{2} are classes of η-quasi-monomial objects. By 8.2 (a) we have $f_{1} B_{1}=B_{1}^{\prime}, f_{2} B_{2}=B_{2}^{\prime}$ where $B_{1}^{\prime}, B_{2}^{\prime}$ represent ϵ-monomial objects and f_{1}, f_{2} are nonzero elements of \mathcal{A}. Thus, we can assume that B_{1}, B_{2} represent η-monomial objects. In this case the result follows from 6.4.

9. Examples

In this section we consider examples where $G=S L(V)$ or $S p(V)$. We assume that $m \geq 2$ and $\eta=1$ hence $\delta=\underline{1}$. We write "spiral" instead of " 1 -spiral". We explicitly describe the spirals and the set of blocks $\underline{\mathfrak{T}}_{1}$ in both cases, and describe the map Ψ in the case $G=S L(V)$.
9.1. Spirals for the cyclic quiver. We preserve the notation from 0.3 . Thus we assume that $G=S L(V)$ where $V=\oplus_{i \in \mathbf{Z} / m} V_{i}$. We have an induced \mathbf{Z} / m-grading on $\mathfrak{g}=\mathfrak{s l}(V)$, so that \mathfrak{g}_{1} is the space of all maps in $0.3(\mathrm{a})$. In general, we have $\mathfrak{g}_{i}=\oplus_{j \in \mathbf{Z} / m} \operatorname{Hom}\left(V_{j}, V_{j+i}\right)$.

The datum $\lambda \in Y_{G_{0}, \mathbf{Q}}$ is the same as a \mathbf{Q}-grading on each V_{i}, i.e., $V_{i}=\oplus_{x \in \mathbf{Q}}\left({ }_{x} V_{i}\right)$ such that $\sum_{i} \sum_{x} x \operatorname{dim}\left({ }_{x} V_{i}\right)=0$. Given such a \mathbf{Q}-grading on each V_{i}, the corresponding spiral $\mathfrak{p}_{*}=\left\{\mathfrak{p}_{N} \subset \mathfrak{g}_{N}\right\}_{N \in \mathbf{Z}}$ takes the following form:

$$
\mathfrak{p}_{N}=\left\{\phi \in \mathfrak{s l}(V) \mid \phi\left({ }_{x} V_{j}\right) \subset \oplus_{x^{\prime} \geq x+N}\left(x_{x^{\prime}} V_{j+\underline{N}}\right), \quad \forall j \in \mathbf{Z} / m, x \in \mathbf{Q}\right\} .
$$

A splitting $\mathfrak{m}_{*}=\left\{\mathfrak{m}_{N} \subset \mathfrak{g}_{N}\right\}_{N \in \mathbf{Z}}$ of the spiral \mathfrak{p}_{*} takes the form

$$
\mathfrak{m}_{N}=\left\{\phi \in \mathfrak{s l}(V) \mid \phi\left({ }_{x} V_{j}\right) \subset_{x+N} V_{j+\underline{N}}, \quad \forall j \in \mathbf{Z} / m, x \in \mathbf{Q}\right\} .
$$

For such a grading ${ }_{x} V_{i}$ we may introduce a quiver Q_{λ} as follows. Let J_{λ} be the finite set of pairs $(i, x) \in \mathbf{Z} / m \times \mathbf{Q}$ such that ${ }_{x} V_{i} \neq 0$. Then Q_{λ} has vertex set J_{λ} and an edge $(i, x) \rightarrow(i+1, x+1)$ if both (i, x) and $(i+1, x+1)$ are in J_{λ}. Then Q_{λ} is a disjoint union of directed chains (that is, quivers of type A with exactly one source and exactly one sink). We may identify \mathfrak{m}_{1} with the representation space of the quiver Q_{λ} with vector space ${ }_{x} V_{i}$ on the vertex $(i, x) \in J_{\lambda}$.

Let B be the set of chains in Q_{λ}, and let $J_{\lambda}=\sqcup_{\beta \in B}\left({ }_{\beta} J_{\lambda}\right)$ be the corresponding decomposition of the vertex set. Let ${ }_{\beta} V:=\oplus_{(i, x) \in \beta}\left(x_{x} V_{i}\right)$. Then we have $V=\oplus_{\beta \in B}\left({ }_{\beta} V\right)$. Let $M=e^{\mathfrak{m}}, M_{0}=e^{\mathfrak{m}_{0}}$ where $\mathfrak{m}=\oplus_{N} \mathfrak{m}_{N}$. Then $M=S\left(\prod_{\beta \in B} G L\left({ }_{\beta} V\right)\right), M_{0}=S\left(\prod_{(i, x) \in J_{\lambda}} G L\left({ }_{x} V_{i}\right)\right)$. The center Z_{M} is the subgroup of M where each factor in $G L\left({ }_{\beta} V\right)$ is a scalar matrix.
9.2. Admissible systems for the cyclic quiver. Let d be a divisor of $n=\operatorname{dim} V$. Suppose that the following hold:
(1) Each ${ }_{x} V_{i}$ has dimension ≤ 1.
(2) Each connected component of the quiver Q_{λ} is a directed chain containing exactly d vertices.

In this case, M_{0} is a maximal torus of G stabilizing each line ${ }_{x} V_{i}$ for $(i, x) \in J_{\lambda}$. The open M_{0}-orbit $\stackrel{\circ}{\mathfrak{m}}_{1} \subset \mathfrak{m}_{1}$ consists of representations of Q_{λ} where all arrows are nonzero (hence isomorphisms). The stabilizer of an element in $\stackrel{\circ}{\mathfrak{m}}_{1}$ under M_{0} is exactly Z_{M}, which acts by a scalar z_{β} on each chain $\beta \in B$, such that $\left(\prod_{\beta \in B} z_{\beta}\right)^{d}=$ 1. We see that $\pi_{0}\left(Z_{M}\right) \cong \mu_{d}$. For any primitive character $\chi: \mu_{d} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$, we have
a rank $1 M_{0}$-equivariant local system C_{χ} on $\stackrel{\circ}{\mathfrak{m}}_{1}$ on whose stalks Z_{M} acts via χ. This is a cuspidal local system because it is the restriction of the cuspidal local system on the regular nilpotent orbit of \mathfrak{m} with central character χ. Let \tilde{C}_{χ} be the cuspidal perverse sheaf on \mathfrak{m}_{1} corresponding to C_{χ}. The system $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}_{\chi}\right)$ is admissible. It is easy to see that any admissible system is of the form we just described.

Given such a grading λ, we define a function $f: B \rightarrow \mathbf{Z} / m$ such that $f(\beta)=i$ where (i, x) is the head (origin) of the chain β. Each vertex $(i, x) \in J_{\lambda}$ lies in a unique chain $\beta \in B$ whose head is of the form $\left(f(\beta), x^{\prime}\right)$. Then $x-x^{\prime}=y$ is an integer between 0 and $d-1$ and $f(\beta)+\underline{y}=i$ in \mathbf{Z} / m. This implies that $\operatorname{dim} V_{i}=\sharp\left\{x \in \mathbf{Q} \mid(i, x) \in J_{\lambda}\right\}$ is the same as the number of pairs $(\beta, y) \in B \times$ $\{0,1, \ldots, d-1\}$ such that $f(\beta)+\underline{y}=i$. Choosing a bijection between $\{1,2, \ldots, n / d\}$ and B, the function f may be viewed as a function $\{1,2, \ldots, n / d\} \rightarrow \mathbf{Z} / m$ satisfying $0.7(\mathrm{~b})$. Changing the bijection amounts to precomposing f with a permutation of $\{1,2, \ldots, n / d\}$. Summarizing the above discussion, we get a canonical bijection between \mathfrak{T}_{1} and the set of equivalence classes of triples (d, f, χ) as in $0.7(\mathrm{a})$.
9.3. The map Ψ for the cyclic quiver. We preserve the notation from 9.1. Let $(\mathcal{O}, \mathcal{L}) \in \chi\left(i \mathfrak{g}_{1}\right)$. For each element $e \in \mathcal{O}$, there exists a decomposition of V into Jordan blocks $\left\{{ }_{\alpha} W\right\}_{\alpha \in B_{e}}$ compatible with the \mathbf{Z} / m-grading in the following sense. Each Jordan block ${ }_{\alpha} W$ is a direct sum of finitely many 1-dimensional subspaces indexed by $0,1, \ldots$, i.e., ${ }_{\alpha} W=\left({ }_{\alpha} W_{0}\right) \oplus\left({ }_{\alpha} W_{1}\right) \oplus \ldots$ such that
(1) ${ }_{\alpha} W_{N} \subset V_{h(\alpha)+\underline{N}}$ for some $h(\alpha) \in \mathbf{Z} / m$ (location of the head of the Jordan block α);
(2) e maps ${ }_{\alpha} W_{N}$ isomorphically to ${ }_{\alpha} W_{N+1}$ whenever $N \geq 0$ and ${ }_{\alpha} W_{N+1} \neq 0$.

The datum of $\left\{{ }_{\alpha} W\right\}_{\alpha \in B_{e}}$ as above is the equivalent to the datum of an element $\phi \in J_{\underline{1}}(e)$; see 2.3. From this we may define a quiver Q_{e} whose vertex set J_{e} consists of pairs $(\alpha, N) \in B_{e} \times \mathbf{Z}_{\geq 0}$ such that ${ }_{\alpha} W_{N} \neq 0$, and there is no edge $(\alpha, N) \rightarrow(\alpha, N+1)$ if both $(\alpha, N),(\alpha, N+1)$ are in $B_{e} \times \mathbf{Z}_{\geq 0}$.

Each vertex (α, N) is labelled with the element $h(\alpha)+\underline{N} \in \mathbf{Z} / m$. The isomorphism class of Q_{e} together with the labelling by elements in \mathbf{Z} / m is independent of the choice of e in \mathcal{O} and the choice of the Jordan block decomposition. Therefore we denote this labelled quiver by $Q_{\mathcal{O}}$, with vertex set $J_{\mathcal{O}}$ and set of chains $B_{\mathcal{O}}$.

Let $d^{\prime}=\operatorname{gcd}\{|\alpha|\}_{\alpha \in B_{\mathcal{O}}}$ (here $|\alpha|$ is the number of vertices of the chain α). Then for any $e \in \mathcal{O}$, there is a canonical isomorphism $\pi_{0}\left(G_{0}(e)\right) \cong \mu_{d^{\prime}}$. The local system \mathcal{L} on \mathcal{O} corresponds to a character ρ of $\mu_{d^{\prime}}$, which has order d dividing d^{\prime} and a unique factorization

$$
\rho: \mu_{d^{\prime}} \rightarrow \mu_{d} \xrightarrow{\chi} \overline{\mathbf{Q}}_{l}^{*}
$$

such that χ is injective (here the first map $\mu_{d^{\prime}} \rightarrow \mu_{d}$ is given by $z \mapsto z^{d^{\prime} / d}$). Now we define a new quiver $Q_{\mathcal{O}}^{[d]}$ by removing certain edges from each chain of $Q_{\mathcal{O}}$ such that each chain of $Q_{\mathcal{O}}^{[d]}$ has exactly d vertices. Let B be the set of chains of $Q_{\mathcal{O}}^{[d]}$; then B can be identified with the set $\{1,2, \ldots, n / d\}$. Define $f:\{1,2, \ldots, n / d\} \cong B \rightarrow \mathbf{Z} / m$ to be the map assigning to each $\beta \in B$ the label of its head. This way we get a triple (d, f, χ) as in $0.7(\mathrm{~b})$ whose equivalence class is well-defined.

Proposition 9.4. In the case of cyclic quivers, the map $\Psi: \mathcal{I}\left(\mathfrak{g}_{1}\right) \rightarrow \mathfrak{\underline { T }}_{1}$ sends $(\mathcal{O}, \mathcal{L})$ to the admissible system in $\underline{\mathfrak{T}}_{1}$ which corresponds to the equivalence class of the triple (d, f, χ) defined above under the bijection $0.7(\mathrm{a})$.

Let $e \in \mathcal{O}$, and let $V=\oplus_{\alpha \in B_{e}}\left({ }_{\alpha} W\right),{ }_{\alpha} W={ }_{\alpha} W_{0} \oplus_{\alpha} W_{1} \oplus \cdots$ be a Jordan block decomposition, where ${ }_{\alpha} W_{N} \subset V_{h(\alpha)+N}$ for $\alpha \in B_{e}, N \in \mathbf{Z}_{\geq 0}$. Let L be the Levi subgroup of a parabolic subgroup of \bar{G} such that L stabilizes the decomposition $V=\oplus_{\alpha \in B_{e}}\left({ }_{\alpha} W\right)$. Then $\mathfrak{l}=\mathfrak{L} L$ has a \mathbf{Z}-grading induced from the \mathbf{Z}-grading on each of ${ }_{\alpha} W$. In particular, \mathfrak{l}_{1} is the space of representations of the quiver Q_{e}. The $\operatorname{system}\left(L, L_{0}, \mathfrak{l}, \mathfrak{l}_{*}\right)$ is the $\operatorname{system}\left(\tilde{L}^{\phi}, \tilde{L}_{0}^{\phi}, \tilde{\mathfrak{h}}^{\phi}, \tilde{\mathfrak{l}}_{*}^{\phi}\right)$ attached to some $\phi \in J_{\underline{1}}(e)$ as in 2.9. Then e is in the open L_{0}-orbit $\stackrel{\circ}{l}_{1}$ of \mathfrak{l}_{1}, which is contained in the regular nilpotent orbit of \mathfrak{l}.

Let ${ }_{\alpha} L=S L\left({ }_{\alpha} W\right)$ be the subgroup of L which acts as identity on all blocks ${ }_{\alpha^{\prime}} W$ for $\alpha^{\prime} \neq \alpha$. Then ${ }_{\alpha} \mathfrak{l}=\mathfrak{L}\left({ }_{\alpha} L\right)$ carries a \mathbf{Z}-grading compatible with that on l. For each interval $[a, b] \subset \mathbf{Z}_{\geq 0}$, let ${ }_{\alpha} W_{[a, b]} \subset{ }_{\alpha} W$ be the direct sum of ${ }_{\alpha} W_{N}$ for $a \leq N \leq b$. We decompose ${ }_{\alpha} \bar{W}$ into $|\alpha| / d$ parts each of dimension d :
(a)

$$
{ }_{\alpha} W=\oplus_{j=1}^{|\alpha| / d}\left({ }_{\alpha} W_{[(j-1) d, j d-1]}\right) .
$$

Let ${ }_{\alpha} M \subset{ }_{\alpha} L$ be the subgroup stabilizing the decomposition (a). Then the Lie algebra ${ }_{\alpha} \mathfrak{m}$ of ${ }_{\alpha} M$ inherits a Z-grading from that of ${ }_{\alpha} \mathfrak{l}$, and the open orbit ${ }_{\alpha} \stackrel{\circ}{\mathfrak{m}}_{1}$ carries a local system ${ }_{\alpha} C_{\chi}$ corresponding to the character χ of $\mu_{d} \cong \pi_{0}\left(Z\left({ }_{\alpha} M\right)\right)$. Let ${ }_{\alpha} \tilde{C}_{\chi}$ be the cuspidal perverse sheaf on ${ }_{\alpha} \mathfrak{m}_{1}$ corresponding to ${ }_{\alpha} C_{\chi}$. Define a parabolic subalgebra ${ }_{\alpha} \mathfrak{q} \subset{ }_{\alpha} \mathfrak{l}$ to be the stabilizer of the filtration ${ }_{\alpha} W_{[|\alpha|-d,|\alpha|-1]} \subset$ ${ }_{\alpha} W_{[|\alpha|-2 d,|\alpha|-1]} \subset \cdots \subset{ }_{\alpha} W={ }_{\alpha} W_{[0,|\alpha|-1]}$. Then ${ }_{\alpha} \mathfrak{q}$ is compatible with the Zgrading on ${ }_{\alpha} \mathfrak{l}$ and ${ }_{\alpha} \mathfrak{m}$ is a Levi subalgebra of ${ }_{\alpha} \mathfrak{q}$. The induction

$$
\operatorname{ind}_{\alpha q_{1}}^{\alpha \mathscr{l}_{1}}\left({ }_{\alpha} \tilde{C}_{\chi}\right)
$$

restricted to ${ }_{\alpha}{ }^{\circ} \mathfrak{l}_{1}$ is isomorphic to $\left.\mathcal{L}\right|_{\alpha} \circ_{1}$, because the map c in 1.3 (applied to ${ }_{\alpha} \mathfrak{l},{ }_{\alpha} \mathfrak{q},{ }_{\alpha} \mathfrak{m}$ in place of $\left.\mathfrak{h}, \mathfrak{p}, \mathfrak{l}\right)$ is an isomorphism when restricted to ${ }_{\alpha}{ }_{\mathfrak{l}}^{1}$. Therefore the middle extension of $\left.\mathcal{L}\right|_{\alpha} \circ_{1}$ to \mathfrak{l}_{1} appears as a direct summand of $\operatorname{ind}_{\alpha \mathfrak{q}_{1}}^{\alpha} \mathfrak{l}_{1}\left({ }_{\alpha} \tilde{C}_{\chi}\right)$. Therefore, under the map defined in 1.5(b), the image of $\left({ }_{\alpha} \stackrel{\circ}{1}_{1},\left.\mathcal{L}\right|_{\alpha}{ }_{\alpha}\right)$ is

$$
\left({ }_{\alpha} M,{ }_{\alpha} M_{0},{ }_{\alpha} \mathfrak{m},{ }_{\alpha} \mathfrak{m}_{1},{ }_{\alpha} \tilde{C}_{\chi}\right)
$$

Let ${ }_{\alpha} \tilde{M} \subset G L\left({ }_{\alpha} W\right)$ be the stabilizer of the decomposition (a). Let

$$
M=S\left(\prod_{\alpha \in B_{e}}\left({ }_{\alpha} \tilde{M}\right)\right) \subset L
$$

with Lie algebra $\mathfrak{m} \subset \oplus(\alpha \tilde{\mathfrak{m}})$ and the induced \mathbf{Z}-grading from each $\alpha_{\alpha} \tilde{\mathfrak{m}}=\underset{\circ}{\mathfrak{L}}\left({ }_{\alpha} \tilde{M}\right)$. The open M_{0}-orbit on $\mathfrak{m}_{1}=\oplus\left({ }_{\alpha} \mathfrak{m}_{1}\right)$ is $\stackrel{\circ}{\mathfrak{m}}_{1}=\prod\left({ }_{\alpha} \stackrel{\circ}{\mathfrak{m}}_{1}\right)$. Let $C_{\chi}=\boxtimes\left({ }_{\alpha} C_{\chi}\right)$ on $\stackrel{\circ}{\mathfrak{m}}_{1}$. Let \tilde{C}_{χ} be the cuspidal perverse sheaf on \mathfrak{m}_{1} corresponding to C_{χ}. By the compatibility of the assignment in $1.5(\mathrm{~b})$ with direct products, in the situation $H=L$, the pair $\left(\stackrel{\circ}{\mathfrak{l}}_{1},\left.\mathcal{L}\right|_{\mathfrak{l}_{1}}\right)$ maps to ($\left.M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}_{\chi}\right)$. Therefore, $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}_{\chi}\right)$ is the admissible system attached to $(\mathcal{O}, \mathcal{L})$ through the procedure in 2.9 . By 9.2 , the admissible system $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}_{\chi}\right)$ corresponds to the triple (d, f, χ) defined in 9.3 before the statement of this proposition. This finishes the proof.
9.5. The symplectic quiver. Let V be a finite-dimensional vector space over \mathbf{k} with a nondegenerate symplectic form ω. Assume that m in 0.1 is even. Let $\tilde{\mathfrak{S}}_{m}=\{j ; j=k / 2 ; k=$ an odd integer $\}$ and let \mathfrak{S}_{m} be the set of equivalence
classes for the relation \sim on $\tilde{\mathfrak{S}}_{m}$ given by $j \sim j^{\prime}$ if $j-j^{\prime} \in m \mathbf{Z}$. Note that the involution $j \mapsto-j$ of $\tilde{\mathfrak{S}}_{m}$ induces an involution of \mathfrak{S}_{m} denoted again by $j \mapsto-j$.

For any $N \in \mathbf{Z}$, the map $j \mapsto N+j$ of $\tilde{\mathfrak{S}}_{m}$ onto itself induces a map of \mathfrak{S}_{m} onto itself which depends only on \underline{N} and is denoted by $j \mapsto \underline{N}+j$.

The set \mathfrak{S}_{m} consists of m elements represented by

$$
\left\{\frac{1}{2}, \frac{3}{2}, \ldots, \frac{m-1}{2}, \frac{m+1}{2}, \ldots, m-\frac{1}{2}\right\} .
$$

Consider a grading on V indexed by \mathfrak{S}_{m} :

$$
\begin{equation*}
V=\bigoplus_{j \in \mathfrak{S}_{m}} V_{j} \tag{a}
\end{equation*}
$$

such that $\omega\left(V_{j}, V_{j^{\prime}}\right)=0$ unless $j^{\prime}=-j$ (as elements of $\left.\mathfrak{S}_{m}\right)$. Using the symplectic form, for $j \in \mathfrak{S}_{m}$ we may identify V_{j} with the dual of V_{-j}.

We assume that $G=S p(V)$ and that the \mathbf{Z} / m-grading of $\mathfrak{g}=\mathfrak{s p}(V)$ is given by

$$
\begin{equation*}
\mathfrak{g}_{i}=\left\{\phi \in \mathfrak{s p}(V) \mid \phi\left(V_{j}\right) \subset V_{i+j}, \quad \forall j \in \mathfrak{S}_{m}\right\}, \quad \forall i \in \mathbf{Z} / m \tag{b}
\end{equation*}
$$

In particular, an element $\phi \in \mathfrak{g}_{\underline{1}}$ is a collection of maps $\phi_{i}: V_{i-\frac{1}{2}} \rightarrow V_{i+\frac{1}{2}}, i \in \mathbf{Z} / m$, which can be represented by a cyclic quiver

The condition $\phi \in \mathfrak{s p}(V)$ becomes that
(c)

$$
\phi_{-i}=-\phi_{i}^{*}, \quad \forall i \in \mathbf{Z} / m .
$$

Here $\phi_{i}^{*}: V_{i+\frac{1}{2}}^{*} \rightarrow V_{i-\frac{1}{2}}^{*}$ is the adjoint of ϕ_{i}, which can be viewed as a map $V_{-i-\frac{1}{2}} \rightarrow$ $V_{-i+\frac{1}{2}}$ under the identifications $V_{i+\frac{1}{2}}^{*} \cong V_{-i-\frac{1}{2}}, V_{i-\frac{1}{2}}^{*} \cong V_{-i+\frac{1}{2}}$ using the symplectic pairing. In particular, for $i=0, \phi_{0}: V_{-\frac{1}{2}}=V_{\frac{1}{2}}^{*} \rightarrow V_{\frac{1}{2}}$ can be viewed as a vector $\phi_{0} \in V_{\frac{1}{2}}^{\otimes 2}$. The condition (b) for $i=0$ is equivalent to saying that $\phi_{0} \in \operatorname{Sym}^{2}\left(V_{\frac{1}{2}}\right)$. Similarly, we may view $\phi_{\frac{m}{2}}$ as a vector in $V_{\frac{m+1}{2}}^{\otimes 2}$, and the condition (c) for $i=\frac{m}{2}$ is equivalent to saying that $\phi_{\frac{m}{2}} \in \operatorname{Sym}^{2}\left(V_{\frac{m+1}{2}}\right)$.

We call a representation of the quiver above in which $V_{-j}=V_{j}^{*}$, and (c) holds a symplectic representation. In other words, \mathfrak{g}_{1} is the space of symplectic representations of the quiver above.

We have $G_{\underline{0}} \cong \prod_{\frac{1}{2} \leq j \leq \frac{m-1}{2}} G L\left(V_{j}\right)$, where $G L\left(V_{j}\right) \cong G L\left(V_{-j}\right)$ acts diagonally on both V_{j} and $V_{-j}=V_{m-j} \stackrel{2}{=} V_{j}^{*}$.
9.6. Spirals for the symplectic quiver. Each element $\lambda \in Y_{G_{0}, \mathbf{Q}}$ is the same datum as a \mathbf{Q}-grading on each $V_{j}, j \in \mathfrak{S}_{m}$, i.e., $V_{j}=\oplus_{x \in \mathbf{Q}}\left({ }_{x} V_{j}\right)$ such that under the symplectic form $\omega, \omega\left({ }_{x} V_{j},{ }_{x} V_{-j}\right)=0$ unless $x+x^{\prime}=0$. Then ${ }_{-x} V_{-j}$ can be identified with the dual of ${ }_{x} V_{j}$ for all $(j, x) \in \mathfrak{S}_{m} \times \mathbf{Q}$. The spiral \mathfrak{p}_{*} associated to this grading is

$$
\mathfrak{p}_{N}=\left\{\phi \in \mathfrak{s p}(V) \mid \phi\left({ }_{x} V_{j}\right) \subset \oplus_{x^{\prime} \geq x+N}\left({ }_{x^{\prime}} V_{j+\underline{N}}\right), \quad \forall j \in \mathfrak{S}_{m}, x \in \mathbf{Q}\right\} .
$$

A splitting \mathfrak{m}_{*} of the spiral \mathfrak{p}_{*} takes the form

$$
\mathfrak{m}_{N}=\left\{\pi \in \mathfrak{s p}(V) \mid \phi\left({ }_{x} V_{j}\right) \subset{ }_{x+N} V_{j+\underline{N}}, \quad \forall j \in \mathfrak{S}_{m}, x \in \mathbf{Q}\right\} .
$$

To each such grading, we may attach a quiver Q_{λ} as we did for the cyclic quiver (since the symplectic quiver is a special case of a cyclic quiver). There is an involution on Q_{λ} sending $(j, x) \in J_{\lambda}$ to $(-j,-x) \in J_{\lambda}$. This involution stabilizes at most two chains Q_{λ}^{\prime} and $Q_{\lambda}^{\prime \prime}$ of Q_{λ}. The set of vertices of Q_{λ}^{\prime} (possibly empty) is $J_{\lambda}^{\prime}:=\left\{\left.(x, x)\right|_{x} V_{x} \neq 0\right\} \subset J_{\lambda}$. The set of vertices of $Q_{\lambda}^{\prime \prime}$ (possibly empty) is $J_{\lambda}^{\prime \prime}:=\left\{\left.\left(x-\frac{m}{2}, x\right)\right|_{x} V_{x-\frac{m}{2}} \neq 0\right\} \subset J_{\lambda}$.
9.7. Admissible systems for the symplectic quiver. Suppose that the following hold:
(1) For each $(j, x) \in J-\left(J_{\lambda}^{\prime} \sqcup J_{\lambda}^{\prime \prime}\right)$, we have $\operatorname{dim}_{x} V_{j}=1$.
(2) The chains in Q_{λ} other than Q_{λ}^{\prime} and $Q_{\lambda}^{\prime \prime}$ all consist of a single vertex.
(3) Let $\sharp J_{\lambda}^{\prime}=2 a^{\prime}$ for some $a^{\prime} \in \mathbf{Z}_{\geq 0}$. When $a^{\prime}>0,\left(-a^{\prime}+\frac{1}{2},-a^{\prime}+\frac{1}{2}\right)$ is the head of J_{λ}^{\prime} and $\left(a^{\prime}-\frac{1}{2}, a^{\prime}-\frac{1}{2}\right)$ is the tail. Then $\operatorname{dim}_{x} V_{x}=a^{\prime}+\frac{1}{2}-|x|$ for all $(x, x) \in J_{\lambda}^{\prime}$.
(4) Let $\sharp J_{\lambda}^{\prime \prime}=2 a^{\prime \prime}$ for some $a^{\prime \prime} \in \mathbf{Z}_{\geq 0}$. When $a^{\prime \prime}>0,\left(-a^{\prime \prime}-\frac{m-1}{2},-a^{\prime \prime}+\frac{1}{2}\right)$ is the head of $J_{\lambda}^{\prime \prime}$ and $\left(a^{\prime \prime}-\frac{m+1}{2}, a^{\prime \prime}-\frac{1}{2}\right)$ is the tail. Then $\operatorname{dim}_{x} V_{x-\frac{m}{2}}=a^{\prime \prime}+\frac{1}{2}-|x|$ for all $\left(x-\frac{m}{2}, x\right) \in J_{\lambda}^{\prime \prime}$.

Under these assumptions, $\mathfrak{m}_{1}=\mathfrak{m}_{1}^{\prime} \oplus \mathfrak{m}_{1}^{\prime \prime}$, where $\mathfrak{m}_{1}^{\prime}$ is the space of representations of the quiver Q_{λ}^{\prime} with dimension vector $\operatorname{dim}_{x} V_{x}=a^{\prime}+\frac{1}{2}-|x|$ and satisfying the duality condition $\psi_{i}=-\psi_{-i}^{*}$ (where $\psi_{i}:{ }_{i-\frac{1}{2}} V_{i-\frac{1}{2}} \rightarrow{ }_{i+\frac{1}{2}} V_{i+\frac{1}{2}}$) for all $i \in$ $\left\{-a^{\prime}+1, \ldots, a^{\prime}-1\right\}$. Similarly, $\mathfrak{m}_{1}^{\prime \prime}$ is the space of representations of the quiver $Q_{\lambda}^{\prime \prime}$ with dimension vector $\operatorname{dim}_{x} V_{x-\frac{m}{2}}=a^{\prime \prime}+\frac{1}{2}-|x|$ and satisfying the duality condition $\psi_{i}=-\psi_{-i}^{*}$. The open M_{0}-orbit $\stackrel{\circ}{\mathfrak{m}}_{1}$ consists of those representations of Q_{λ}^{\prime} and $Q_{\lambda}^{\prime \prime}$ where each arrow has maximal rank (either injective or surjective).

Let $V^{\prime}=\oplus_{x} V_{x}$ and $V^{\prime \prime}=\oplus_{x} V_{x-\frac{m}{2}}$. Let $V^{\dagger}=\oplus_{(j, x) \notin J_{\lambda}^{\prime} \cup J_{\lambda}^{\prime \prime}\left(x V_{j}\right) \text {. Then we have }}$ $V=V^{\prime} \oplus V^{\prime \prime} \oplus V^{\dagger}$. This decomposition is preserved by M, and $M \cong S p\left(V^{\prime}\right) \times$ $S p\left(V^{\prime \prime}\right) \times T^{\dagger}$, where T^{\dagger} is the maximal torus in $\operatorname{Sp}\left(V^{\dagger}\right)$ stabilizing each line ${ }_{x} V_{j} \subset$ V^{\dagger}. The center Z_{M} is isomorphic to $\{ \pm 1\} \times\{ \pm 1\} \times T^{\dagger}$ under this decomposition. The stabilizer of a point in $\stackrel{\circ}{\mathfrak{m}}_{1}$ under M_{0} is exactly Z_{M}. Let C be the rank one local system on $\stackrel{\circ}{\mathfrak{m}}_{1}$ on whose stalks $\pi_{0}\left(Z_{M}\right)$ acts nontrivially on both factors of $\{ \pm 1\}$. Then C is cuspidal because it is the restriction of the unique cuspidal local system on \mathfrak{m}. Let \tilde{C} be the cuspidal perverse sheaf on \mathfrak{m}_{1} defined by C. The system $\left(M, M_{0}, \mathfrak{m}, \mathfrak{m}_{*}, \tilde{C}\right)$ is admissible. Moreover, any admissible system is of this form. Under $G_{0^{-}}$-conjugacy, the only invariant of an admissible system is given by the numbers a^{\prime} and $a^{\prime \prime}$. Since $\operatorname{dim} V_{j}^{\prime}+\operatorname{dim} V_{j}^{\prime \prime} \leq \operatorname{dim} V_{j}$, we have the following inequality for all $j \in \mathfrak{S}_{m}$:
(a)

$$
\begin{aligned}
& \operatorname{dim} V_{j} \geq \sharp\left\{\left.-a^{\prime}+\frac{1}{2} \leq x \leq a^{\prime}-\frac{1}{2} \right\rvert\, x \equiv j \quad \bmod m \mathbf{Z}\right\} \\
& +\sharp\left\{\left.-a^{\prime \prime}+\frac{1}{2} \leq x \leq a^{\prime \prime}-\frac{1}{2} \right\rvert\, x \equiv j+\frac{m}{2} \quad \bmod m \mathbf{Z}\right\} .
\end{aligned}
$$

To summarize, we have a natural bijection

$$
\begin{equation*}
\underline{\mathfrak{T}}_{1} \leftrightarrow\left\{\left(a^{\prime}, a^{\prime \prime}\right) \in \mathbf{Z}_{\geq 0} \times \mathbf{Z}_{\geq 0} \text { satisfying (a) for all } j \in \mathfrak{S}_{m}\right\} . \tag{b}
\end{equation*}
$$

The map $\Psi: \mathcal{I}\left(\mathfrak{g}_{1}\right) \rightarrow \mathfrak{T}_{1}$ for the symplectic quiver as well as other graded Lie algebras of classical type will be described in a sequel to this paper using the combinatorics of symbols.

References

[KL] David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153-215, DOI 10.1007/BF01389157. MR862716
[Ko] Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032, DOI 10.2307/2372999. MR0114875
[L1] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205-272, DOI 10.1007/BF01388564. MR732546
[L2] George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193-237, DOI 10.1016/0001-8708(85)90034-9. MR792706
[L3] George Lusztig, Character sheaves. II, Adv. in Math. 57 (1985), no. 3, 266-315, DOI 10.1016/0001-8708(85)90064-7. MR 806210
[L4] George Lusztig, Study of perverse sheaves arising from graded Lie algebras, Adv. Math. 112 (1995), no. 2, 147-217, DOI 10.1006/aima.1995.1031. MR 1327095
[RR] L. Rider and A. Russell, Perverse sheaves on the nilpotent cone and Lusztig's generalized Springer correspondence, arxiv:1409.7132.
[L5] G. Lusztig, Study of antiorbital complexes, Representation theory and mathematical physics, Contemp. Math., vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 259-287, DOI 10.1090/conm/557/11036. MR 2848930
[St] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR0230728
[Vi] È. B. Vinberg, The Weyl group of a graded Lie algebra (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 488-526, 709. MR0430168

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Masssachusetts 02139

E-mail address: gyuri@math.mit.edu
Department of Mathematics, Yale University, New Haven, Connecticut 06511
E-mail address: zhiweiyun@gmail.com

[^0]: Received by the editors October 12, 2016, and, in revised form, June 23, 2017.
 2010 Mathematics Subject Classification. Primary 20G99.
 The first author was supported by NSF grant DMS-1566618.
 The second author was supported by NSF grant DMS-1302071 and the Packard Foundation.

