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Abstract. We give a block decomposition of the equivariant derived category
arising from a cyclically graded Lie algebra. This generalizes certain aspects
of the generalized Springer correspondence to the graded setting.
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Introduction

0.1. Let k be an algebraically closed field of characteristic p ≥ 0. We fix an integer
m > 0 such that m < p whenever p > 0 and we write Z/m instead of Z/mZ. For
n ∈ Z, let n denote the image of n in Z/m.

We also fix G, a semisimple simply connected algebraic group over k and a Z/m-
grading g = ⊕i∈Z/mgi (see 0.11) for the Lie algebra g of G; we shall assume that
either p = 0 or that p is so large relative to G, that we can operate with g as if p
was 0.

For any integer d invertible in k let μd = {z ∈ k∗; zd = 1}. The Z/m-grading

on g is the same as an action of μm on G or a homomorphism ϑ̃ : μm → Aut(G).

(ϑ̃ induces a homomorphism θ̃ : μm → Aut(g) and for i ∈ Z/m we have gi = {x ∈
g; θ̃(z)x = zix ∀z ∈ μm}.) Let G0 = {g ∈ G; gϑ̃(z) = ϑ̃(z)g ∀z ∈ μm}, be a
connected reductive subgroup of G with Lie algebra g0. For any i ∈ Z/m, the

Ad-action of G0 on g leaves stable gi and its closed subset gnili := gi ∩ gnil. (Here

gnil is the variety of nilpotent elements in g.)
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We are interested in studying the equivariant derived categories (see 0.11)
DG0

(gi), DG0
(gnili ). More specifically, we would like to classify G0-equivariant

simple perverse sheaves with support in gnili and (in the case where p > 0) their
Fourier-Deligne transform. The simple perverse sheaves in DG0

(gnili ) are in bi-
jection with the pair (O,L), where O is a nilpotent G0-orbit in gi and L is (the
isomorphism class of) an irreducible G0-equivariant local system on O. (The pair
(O,L) gives rise to the simple perverse sheaf P with support equal to the closure
of O and with P |O = L[dimO].) We denote the set of such (O,L) by I(gi). This
is a finite set, since the G0-action on gnili has only finitely many orbits. Alterna-
tively, if we choose e ∈ O, then the local system L corresponds to an irreducible
representation of π0(G0(e)) (see 0.11), where G0(e) is the stabilizer of e under G0.

There are many Z/m-graded Lie algebras which appear in nature.

0.2. In this subsection we assume that m = 2 and k = C. Then the Z/2-grading
g = k ⊕ p (with k = g0, p = g1) has been extensively studied in connection with
the theory of symmetric spaces and the representation theory of real semisimple
groups. In particular, the nilpotent G0-orbits on p are known to be in bijection
with the nilpotent orbits in the Lie algebra of a real form of G determined by the
Z/2-grading (Kostant and Sekiguchi).

0.3. Another class of examples comes from cyclic quivers. In this subsection we
assume that m ≥ 2. We consider the simplest such example where V is a k-vector
space equipped with a Z/m-grading V = ⊕i∈Z/mVi (see 0.11) and G = SL(V ) with
the Z/m-grading given by

gi = {T ∈ g = sl(V );T (Vj) ⊂ Vj+i ∀j ∈ Z/m}.

In this case we have G0 = S(
∏

i∈Z/m GL(Vi)), the intersection of SL(V ) with the

Levi subgroup
∏

i GL(Vi) of a parabolic subgroup of GL(V ). The subspace g1 is

(a) ⊕i∈Z/m Hom(Vi, Vi+1).

We may consider a quiver Q with m vertices indexed by Z/m and an arrow i �→ i+1
for each i ∈ Z/m,

V2

��

V1
��

. . .

��

V0

��

Vm−2
�� Vm−1

��

Then g1 is the space of representations of Q where we put Vi at the vertex i.
More generally, if G is a classical group, then the G0-action on g1 can be inter-

preted in terms of a cyclic quiver with some extra structure (see 9.5 for the case
where G is a symplectic group).

0.4. In this subsection we forget the Z/m-grading. Instead of the action of G0 on gi

and gnili we consider the adjoint action of G on g and on gnil. Let I(g) be the set of
pairs (O,L) where O is a G-orbit on gnil and L is an irreducible G-equivariant local
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system on O (up to isomorphism). From the results on the generalized Springer
theory in [L1] we have a canonical decomposition

(a) I(g) = 
(L,C)I(g)(L,C),

where (L,C) runs over the G-conjugacy classes of data L,C with L a Levi subgroup
of a parabolic subgroup of G and C an L-equivariant cuspidal perverse sheaf on the
nilpotent cone of the Lie algebra of L. (Actually, the results of [L1] are stated for
unipotent elements in G instead of nilpotent elements in g.) We call (a) the block
decomposition of I(g).

Let P (gnil) be the subcategory of D(gnil) consisting of complexes whose perverse
cohomology sheaves are G-equivariant. Using (a) and [L3, (7.3.1)], we see that we
have a direct sum decomposition

(b) P (gnil) = ⊕(L,C)P (gnil)(L,C),

where (L,C) is as in (a). We call (b) the block decomposition of P (gnil). In [RR] it
is shown that the following variant of (b) holds: we have a direct sum decomposition

(c) DG(g
nil) = ⊕(L,C)DG(g

nil)(L,C),

where (L,C) is as in (a). We call (c) the block decomposition of DG(g
nil).

In this paper we find a Z/m-graded analogue of this (ungraded) block decom-
position.

0.5. We fix ζ, a primitive m-th root of 1 in k and we set ϑ = ϑ̃(ζ) : G → G,

θ = θ̃(ζ) : g → g. Then for i ∈ Z/m we have gi = {x ∈ g; θ(x) = ζix}.
Let η ∈ Z− {0}. We consider systems (M,m∗, C̃), where

M = {g ∈ G; Ad(τ )ϑg = g}
for some semisimple element of finite order τ ∈ G0, m∗ = {mN}N∈Z is a Z-grading
of the Lie algebra m of M (see 0.11) such that mN ⊂ gN for all N , M0 is the closed

connected subgroup of M with Lie algebra m0 and C̃ is an M0-equivariant cuspidal
perverse sheaf on mη. We will review the notion ofM0-equivariant cuspidal perverse

sheaf (already defined in [L4]) on mη in 1.2. Such a system (M,m∗, C̃) is said to
be admissible if a certain technical condition involving the group of components of
the center of M is satisfied (see 3.1).

Let Tη be the set of admissible systems up to G0-conjugacy. The following result
is proved in 7.9.

Theorem 0.6. There is a canonical direct sum decomposition of DG0
(gnilη ) into

full subcategories

DG0
(gnilη ) = ⊕(M,m∗,C̃)∈Tη

DG0
(gnilη )(M,m∗,C̃)

indexed by Tη.

In particular, any simple perverse sheaf in DG0
(gnilη ) belongs to a well-defined

block DG0
(gnilη )(M,m∗,C̃). This gives a map

Ψ : I(gη) → Tη.

In fact, we will first establish the map Ψ in 3.5 and then prove the theorem in 7.9,
using a key calculation in Proposition 6.4.
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We also show in 3.9 and 7.8 that both the indexing set Tη and the blocks

DG0
(gnilη )ξ (for ξ ∈ Tη) only depend on the image η ∈ Z/m and not on the in-

teger η.
Note that in the case where m = 1, the theorem can be deduced from 0.4(a).

On the other hand, for large m, a Z/m-grading on g is the same as a Z-grading,
so that in this case the theorem can be deduced from the results of [L4]. Thus, the
result about block decomposition in this paper generalizes results in [L1] and [L4].

0.7. As an explicit example, let us consider the case where G = SLn(k), η = 1. In
the ungraded case, blocks are in bijection with pairs (d, χ) where d is a divisor of n
and χ : μd → Q̄∗

l is a primitive character. (See [L1].) To d we attach the subgroup

M = S(GL
n/d
d ) (a Levi subgroup of a parabolic subgroup) and χ gives a cuspidal

perverse sheaf Cχ with support equal to the nilpotent cone of the Lie algebra of
M . Now in the Z/m-graded case, we have G = SL(V ), V = ⊕i∈Z/mVi as in 0.3,
and we identify g1 with ⊕i Hom(Vi, Vi+1). In this case, the set of blocks T1 has a
similar explicit description. We have a natural bijection

(a) T1 ↔ {(d, f, χ)}/ ∼ .

Here the right hand side is the set of equivalence classes of triples (d, f, χ) where
(d, χ) is as in the ungraded case and f : {1, 2, . . . , n/d} → Z/m is a map such that

(b) �{(b, y) ∈ Z× Z; 1 ≤ b ≤ n/d, 0 ≤ y ≤ d− 1, f(b) + y = i} = dimVi

for all i ∈ Z/m. Two triples (d, f, χ) and (d′, f ′, χ′) are equivalent if and only if
d = d′, χ = χ′ and f ′ is obtained from f by composition with a permutation of
{1, 2, . . . , n/d}.

0.8. In the ungraded case, the objects in the block DG(g
nil)(L,C) are obtained from

C via parabolic induction (and decomposition) through any parabolic subgroup P
of G containing L as a Levi subgroup. In the Z/m-graded case, a first attempt to
generalize parabolic induction would be to start with a parabolic subgroup of G
compatible with the Z/m-grading on g, as defined in the appendix of [L5]. How-
ever, such a parabolic induction does not produce all simple perverse sheaves in
DG0

(gnilη ). Instead, we introduce a certain induction procedure which we call spiral

induction; see Section 4. We introduce the notion of a spiral p∗ which is a sequence
of subspaces pN ⊂ gN , one for each N ∈ Z, satisfying certain conditions; see Section
2. It turns out that spirals are the correct analogues of parabolic subalgebras in
the Z/m-graded case. Moreover, spiral induction includes the parabolic induction
defined in the appendix of [L5] as special cases. In fact there are two kinds of
spiral inductions, one giving objects in DG0

(gnilη ) and the other giving (assuming

that p > 0) Fourier-Deligne transforms of objects in DG0
(gnil−η). The latter may be

viewed as an analogue of character sheaves in the Z/m-graded setting.

0.9. We now discuss the contents of the various sections. Many arguments in this
paper rely on results from [L4] concerning Z-graded Lie algebras; in Section 1 we
review some results from [L4] that we need. In Section 2 we introduce the ε-spirals
attached to a Z/m-graded Lie algebra and their splittings; the analogous concepts in
the Z-graded cases are the parabolic subalgebras compatible with the Z-grading and
their Levi subalgebras compatible with the Z-grading. We also attach a canonical
spiral to any element of gnilη which plays a crucial role in the arguments of this
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paper. In Section 3 we introduce the admissible systems, which eventually will be
used to index the blocks in DG0

(gnilη ). In Section 4 we introduce the operation of

spiral induction which is our main tool in the study of DG0
(gnilη ). In Sections 5 and 6

we calculate explicitly the Hom space between two spiral inductions, generalizing to
the Z/m-graded case a result from [L4]. This is used in Section 7 to prove Theorem
0.6. In Section 8 we introduce monomial and quasi-monomial complexes on gnilη ;

we show that the monomial complexes (resp. quasi-monomial) complexes generate
the appropriate Grothendieck group over Q(v) (resp. over Z[v, v−1]) where v is an
indeterminate; this again generalizes to the Z/m-graded case a result from [L4].
This result is of the same type as that which says that the plus part of a quantized
enveloping algebra defined in terms of perverse sheaves is generated over Q(v) by
monomials in the Ei and over Z[v, v−1] by the products of divided powers of the
Ei (which could be called quasi-monomials). In Section 9 we discuss the examples
where G = SL(V ) or G = Sp(V ); in these cases we describe the spirals and in the
case of G = SL(V ) we describe the blocks.

0.10. It is known that, in the ungraded case, each block of DG(g
nil) can be related

to the category of representations of a certain Weyl group; if m is large, so that
the Z/m grading of g is a Z-grading and gnilη = gη, then each block of DG0

(gnilη ) is

related to the category of representations of a certain graded affine Hecke algebra
with possibly unequal parameters. In fact, without assumptions onm, each block of
DG0

(gnilη ) is related to a certain graded double affine Hecke algebra (corresponding

to an affine Weyl group attached to the block) with possibly unequal parameters;
this will be considered in a sequel to this paper. We also plan to describe explicitly
the blocks in the case where G is a classical group and relate them to cyclic quivers
with extra structure. The case of the symplectic group is partially carried out in
9.5–9.7.

0.11. Notation. All algebraic varieties are assumed to be over k; all algebraic
groups are assumed to be affine. Let l be a prime number invertible in k. For
any algebraic variety X we denote by D(X) the bounded derived category of Q̄l-
complexes on X. Let D : D(X) → D(X) be Verdier duality.

For K ∈ D(X) we denote by HnK the n-th cohomology sheaf of K and by Hn
xK

the stalk of HnK at x ∈ X.
If X ′ is a locally closed smooth irreducible subvariety of X with closure X̄ ′ and

L is an irreducible local system on X ′ we denote by L� ∈ D(X) the intersection
cohomolgy complex of X̄ ′ with coefficients in L, extended by 0 on X − X̄ ′.

If X has a given action of an algebraic group H we denote by DH(X) the
corresponding equivariant derived category.

If H is an algebraic group we denote by H0 the identity component of H, by
ZH the center of H. We set π0(H) = H/H0. Now assume that H is connected.
We denote by LH the Lie algebra of H and by UH the unipotent radical of H. Let
h = LH. If h′ is a Lie subalgebra of h we write eh

′ ⊂ H for the closed connected
subgroup of H such that L(eh

′
) = h′, assuming that such a subgroup exists.

We shall often denote a collection {VN ;N ∈ Z} of vector spaces indexed by
N ∈ Z by the symbol V∗.

If V is a k-vector space, a Z-grading on V is a collection of subspaces V∗ =
{Vk; k ∈ Z} such that V = ⊕k∈ZVk; a Z/m-grading on V is a collection of subspaces
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{Vi; i ∈ Z/m} such that V = ⊕i∈Z/mVi; a Q-grading on V is a collection of
subspaces {κV ;κ ∈ Q} such that V = ⊕κ∈Q(κV ).

A Z-grading for the Lie algebra h is a Z-grading h∗ = {hk; k ∈ Z} of h as a
vector space satisfying [hk, hk′ ] ⊂ hk+k′ for all k, k′ ∈ Z; a Z/m-grading for h is a
Z/m-grading {hi; i ∈ Z/m} of h as a vector space satisfying [hi, hi′ ] ⊂ hi+i′ for all
i, i′ ∈ Z/m; a Q-grading for h is a Q-grading {κh;κ ∈ Q} of h as a vector space
satisfying [κh, κ′h] ⊂ κ+κ′h for all κ, κ′ ∈ Q.

Let YH be the set of homomorphisms of algebraic groups k∗ → H. For λ ∈ YH

and c ∈ Z, we define cλ ∈ YH by (cλ)(t) = λ(tc) for t ∈ k∗. We define an
equivalence relation on YH × Z>0 by (λ, r) ∼ (λ′, r′) whenever there exist c, c′ in
Z>0 such that cλ = c′λ′, cr = c′r′; the set of equivalence classes for this relation is
denoted by YH,Q. Let λ/r = (1/r)λ be the equivalence class of (λ, r). Now λ �→ λ/1
identifies YH with a subset of YH,Q. For κ ∈ Q, μ ∈ YH,Q we define κμ ∈ YH,Q by
κμ = (kλ)/(k′r), where k ∈ Z, k′ ∈ Z>0, r ∈ Z>0, λ ∈ YH are such that κ = k/k′,
μ = λ/r; this is independent of the choices. In particular, we have rμ ∈ YH for
some r ∈ Z>0.

Let λ ∈ YH . For k ∈ Z we set

λ
kh = {x ∈ h; Ad(λ(t))x = tkx ∀t ∈ k∗}.

Note that {λkh, k ∈ Z} is a Z-grading of h.
Now let μ ∈ YH,Q. For κ ∈ Q we set μ

κh = rμ
rκh where r ∈ Z>0 is chosen so that

rμ ∈ YH , rκ ∈ Z. This is well defined (independent of the choice of r). Note that
{μκh, κ ∈ Q} is a Q-grading of h.

0.12. Let H be a connected algebraic group acting on an algebraic variety X and
let A,B be two H-equivariant semisimple complexes on X; let j ∈ Z. We define a
finite dimensional Q̄l-vector space Dj(X,H;A,B) as in [L4, 1.7]. For the purpose
of this paper, we can take the following formula as the definition of Dj(X,H;A,B):

(a) Dj(X,H;A,B) = HomDH(X)(A,D(B)[−j])∗.

Let dj(X;A,B)= dimDj(X,H;A,B), {A,B}=
∑

j∈Z dj(X;A,B)v−j ∈N((v))
where v is an indeterminate.

If A,B are H-equivariant simple perverse sheaves on X, then

{A,B} ∈ 1 + vN[[v]] if B ∼= D(A),

{A,B} ∈ vN[[v]] if B �∼= D(A).

(See [L4, 1.8(d)].)
For an algebraic variety X we denote by ρX the map X → (point).
Let v be an indeterminate and let A = Z[v, v−1]. Let ¯ : Q(v) → Q(v) be the

field involution such that v̄ = v−1. This restricts to a ring involution¯: A → A.
For any η ∈ Z−{0} we define η̇ = η/|η| ∈ {1,−1} where |η| is the absolute value

of η.

1. Recollections on Z-graded Lie algebras

In this section we recall notation and results from [L4] that will be used in this
paper.
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1.1. In this section we fix a connected reductive group H; let h = LH.
Let JH be the variety consisting of all triples (e, h, f) ∈ h3 such that [h, e] =

2e, [h, f ] = −2f, [e, f ] = h (then e, f are necessarily in hnil). If φ = (e, h, f) ∈ JH ,

there is a unique homomorphism of algebraic groups φ̃ : SL2(k) → H such that the

differential of φ̃ carries ( 0 1
0 0 ) ,

(
1 0
0 −1

)
, ( 0 0

1 0 ) to e, h, f respectively; we then define

ιφ ∈ YH by ιφ(t) = φ̃
(
t 0
0 t−1

)
.

1.2. In the remainder of this section we assume that a Z-grading h∗ for h is given.
Then there exists λ ∈ YH and r ∈ Z>0 with hk = λ

rkh for all k ∈ Z. (It follows that
λ
κh = 0 for all κ ∈ Q− rZ.)

(In this paper we will often refer to results in [L4], even though, strictly speaking,
in [L4] a stronger assumption on the Z-grading of h is made, namely that r above
can be taken to be 1. Note that the results of [L4] hold with the same proof when
the stronger assumption is replaced by the present assumption.)

We have hk ⊂ hnil for any k ∈ Z − {0}. Note that h0 is a Lie subalgebra of h
and that H0 := eh0 ⊂ H is well defined and it acts by the Ad-action on each hk. If

k �= 0, this action has only finitely many orbits (see [L4, 3.5]); we denote by
◦
hk the

unique open H0-orbit in hk.
Let η ∈ Z− {0}.
(a) We say that the Z-grading h∗ of h is η-rigid if there exists ι ∈ YH such that

(i), (ii) below hold.
(i) ι

kh = hηk/2 for any k ∈ Z such that ηk/2 ∈ Z and ι
kh = 0 for any k ∈ Z such

that ηk/2 /∈ Z;

(ii) ι = ιφ for some φ = (e, h, f) ∈ JH such that e ∈
◦
hη, h ∈ h0, f ∈ h−η. It

follows that 2k′ ∈ ηZ whenever hk′ �= 0. Note that ι is unique if it exists, since, by
(ii), ι(k∗) is contained in the derived group of H.

We show:

(b) In the setup of (a), let φ′ = (e′, h′, f ′) ∈ JH be such that e′ ∈
◦
hη, h

′ ∈ h0,
f ′ ∈ h−η. Let ι′ = ιφ′ . Then ι′ = ι.

Let φ be as in (ii). Using [L4, 3.3], we can find g0 ∈ H0 such that Ad(g0) carries
φ to φ′. It follows that Ad(g0)ι(t) = ι′(t) for any t ∈ k∗. For k ∈ Z such that
ηk/2 ∈ Z we have

ι′

k h = Ad(g0)(
ι
kh) = Ad(g0)hk = hk;

for k ∈ Z such that ηk/2 /∈ Z we have

ι′

k h = Ad(g0)(
ι
kh) = 0,

ι′

2kηh = Ad(g0)(
ι
2kηh) = Ad(g0)hk = hk.

Thus ι′ satisfies the defining properties of ι in (a). By uniqueness we have ι′ = ι as
required.

Let I(hη) be the set of all pairs (O,L) where O is an H0-orbit in hη and L is an
H0-equivariant irreducible local system on hη (up to isomorphism).

Let Q(hη) be the category of Q̄l-complexes on hη which are direct sums of shifts
of simple H0-equivariant perverse sheaves on hη. There are up to isomorphism only
finitely many such simple perverse sheaves; they form a set in bijection with I(hη).

An H0-equivariant perverse sheaf A on hη is said to be cuspidal if there exists a
nilpotent H-orbit C in h and an irreducible H-equivariant cuspidal local system F



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

284 GEORGE LUSZTIG AND ZHIWEI YUN

on C such that
◦
hη ⊂ C and A|◦

hη

= F|◦
hη

[dim hη]. If such (C,F) exists, it is unique;

see [L4, 4.2(c)]. Note that if A is cuspidal, then it is necessarily a simple perverse
sheaf.

(c) If there exists a cuspidal H0-equivariant perverse sheaf A on hη, the grading
h∗ of h is necessarily η-rigid; moreover, we have A|

hη−
◦
hη

= 0.

(See [L4, 4.4(a), 4.4(b)].)
In the setup of (c), the element ι ∈ YH provided by (a) is known to satisfy
(d) ι

kh = 0 unless k ∈ 2Z;
we deduce that:
(e) If k′ ∈ Z and hk′ �= 0, then k′/η ∈ Z.

1.3. Parabolic induction. In the setup of 1.2 assume that P is a parabolic sub-
group of H with p := LP satisfying p = ⊕k∈Zpk where pk = p ∩ hk. We set
U = UP , L = P/U , u = LU, l = LL = p/u. We have u = ⊕k∈Zuk where uk = u∩hk.
Setting lk = pk/uk, we have l = ⊕k∈Zlk; this gives a Z-grading of the Lie algebra l.

Now p0 is a parabolic subalgebra of the reductive Lie algebra h0; we have p0 =
LP0 where P0 is a parabolic subgroup of the connected reductive group H0. Let L0

be the image of P0 under the obvious homomorphism P → L. Then L0 = el0 ⊂ L.
Now P0 acts by the Ad-action on each pk. Let π : pη → lη be the obvious projection.
We have a diagram

lη
a←− H0 × pη

b−→ E
c−→ hη,

where

E = {(hP0, z) ∈ H0/P0 × hη; Ad(h−1)z ∈ pη},

a(h, z) = π(Ad(h−1)z), b(h, z) = (hP0, z), c(gP0, z) = z.

Now a is smooth with connected fibers, b is a principal P0-bundle and c is proper.
If A ∈ Q(lη), then a∗A is a P0-equivariant semisimple complex on H0 × pη hence
there is a well-defined semisimple complex A1 on E such that b∗A1 = a∗A. Since c
is proper, the complex

ind
hη
pη
(A) := c!A1

belongs to Q(hη). For B ∈ D(hη) we can form

res
hη
pη
(B) := π!(B|pη

) ∈ D(lη).

Thus we have functors res
hη
pη

: D(hη) → D(lη), ind
hη
pη

: Q(lη) → Q(hη).

When l̃ is a Levi subalgebra of p such that l̃ = ⊕k∈Z l̃k with l̃k = l̃ ∩ hk, we will

sometime consider ind
hη

pη
(A) with A ∈ Q(̃lη) by identifying l̃η = lη in an obvious

way and A with an object in Q(lη).

1.4. In the setup of 1.3 let S′
P be the set of Levi subgroups of P and let SP be the

set of all M ∈ S′
P such that, setting LM = m, mk = m∩ hk, we have m = ⊕k∈Zmk,

or equivalently such that Ad(λ(t))m = m for all t ∈ k∗. We have SP �= ∅; indeed,
we can find M ∈ S′

P such that λ(k∗) ⊂ M ; then M ∈ SP . Since U acts simply
transitively by conjugation on S′

P , it follows that:
(a) The unipotent group {u ∈ U ;uλ(t) = λ(t)u ∀t ∈ k∗} acts simply transitively

by conjugation on SP .
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1.5. Blocks for Q(hη). Let Mη(H) be the set of all systems

(M,M0,m,m∗, C̃),

where M is a Levi subgroup of some parabolic subgroup of H, m = LM , m∗ is a
Z-grading of m such that mk = m∩hk for all k, M0 = em0 ⊂ M and C̃ is a cuspidal
M0-equivariant perverse sheaf on mη (up to isomorphism). Note that H0 acts by
conjugation on Mη(H). Let Mη(H) be the set of orbits for this action.

In the setup of 1.2 assume that A is a simple H0-equivariant perverse sheaf on
hη. By [L4, 7.5]:

(a) There exists P,L, L0, p, l as in 1.3 and a cuspidal L0-equivariant perverse

sheaf C on lη such that some shift of A is a direct summand of ind
hη

pη
(C).

Assume now that P ′, L′, L′
0, p

′, l′ is another quintuple like P,L, L0, p, l and that
C ′ is a cuspidal L′

0-equivariant perverse sheaf on l′η such that some shift of A is a

direct summand of ind
hη

p′
η
(C ′).

Let M ∈ SP ,M
′ ∈ SP ′ , let LM = m = ⊕kmk be as in 1.4 and let LM ′ = m′ =

⊕km
′
k where m′

k = m′ ∩ hk. Let M0 = em0 ⊂ M , M ′
0 = em

′
0 ⊂ M ′. We can identify

M,M0,m,mk with L,L0, l, lk via P → L and we can identify M ′,M ′
0,m

′,m′
k with

L′, L′
0, l

′, l′k via P ′ → L′. Then C (resp. C ′) becomes a cuspidal M0-equivariant

(resp. M ′
0-equivariant) perverse sheaf C̃ (resp. C̃ ′) on mη (resp. m′

η).
Using the last sentence of [L4, 15.3], we see that there exists h ∈ H0 such that

Ad(h) carries M,M0,m,mk to M ′,M ′
0,m

′,m′
k and C̃ to C̃ ′. Thus, we have:

(b) A �→ (M,M0,m,mk, C̃) is a well-defined map from the set of (isomorphism
classes) of simple H0-equivariant perverse sheaves on hη to the set Mη(H).

1.6. Let (M,M0,m,mk, C̃) ∈ Mη(H). We show:
(a) There exists a parabolic subgroup P of H such that M is a Levi subgroup of

P and such that, setting p = LP , pk = p ∩ hk, we have p = ⊕k∈Zpk.
Let Z = Z0

M . Then z = LZ is the center of m. Since m0 is a Levi subalgebra of
a parabolic subalgebra of m, we have z ⊂ m0 hence Z ⊂ M0. We can find λ1 ∈ YZ
such that the centralizer of λ1(k

∗) in H is equal to the centralizer of Z in H which
equals M . Let λ ∈ YH , r be as in 1.2. Then λ(k∗) ⊂ ZH0

. Now λ1(k
∗) ⊂ Z hence

λ1(k
∗) ⊂ H0. It follows that λ1(t)λ(t

′) = λ(t′)λ1(t) for any t, t′ in k∗. Thus we

have h = ⊕k∈Z,k′∈Z(
λ
krh ∩ λ1

k′ h). Since the centralizer of λ1(k
∗) in h equals m, we

have m = ⊕k∈Z(
λ
krh ∩

λ1
0 h). We set

p = ⊕k∈Z,k′∈Z≥0
(λkrh ∩ λ1

k′ h).

Clearly, p is a parabolic subalgebra of h with Levi subalgebra m and such that,
setting pk = p ∩ hk, we have p = ⊕k∈Zpk. This proves (a).

1.7. To any (M,M0,m,m∗, C̃) ∈ Mη(H) we associate a simple perverse sheaf A in

Q(hη) as follows. Let O be the H0-orbit in hη which contains
◦
mη. Let L′ be the

irreducible M0-equivariant local system on
◦
mη such that C̃| ◦

mη
= L′[dimmη]. By

[L4, 11.2], there is a well-defined irreducible H0-equivariant local system L on O
such that L| ◦

mη
= L′. By definition, A is the simple perverse sheaf on hη such that

suppA is contained in the closure of O and A|O = L[dimO].
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1.8. Assume that the Z-grading h∗ of h is η-rigid. A perverse sheaf A in Q(hη) is
said to be η-semicuspidal if suppA = hη and A is attached to some

(M,M0,m,m∗, C̃) ∈ Mη(H),

as in 1.7 (in particular, A is a simple perverse sheaf). In this case we have
◦
mη ⊂

◦
hη;

moreover,
(a) H0 acts transitively on the set of systems (M,M0, p, p∗,m,m∗, C̃) such that

(M,M0,m,m∗, C̃) ∈ Mη(H), A is attached to (M,M0,m,m∗, C̃) as in 1.7, p is a
parabolic subalgebra of h with Levi subalgebra m and p = ⊕k∈Zpk where pk = p∩hk.
(See [L4, 11.9].)

If (M,M0, p, p∗,m,m∗, C̃) is as in (a), then

(b) ind
hη
pη
(C̃) ∼= ⊕jA[−2sj ][dimmη − dim hη],

where sj ∈ N are defined as follows. Choose φ = (e, h, f) ∈ JH as in 1.2(ii);
let Hφ = {g ∈ H; Ad(g)(e) = e,Ad(g)(h) = h,Ad(g)(f) = f}, let B be the
variety of Borel subgroups of H0

φ; then sj are defined by ρB!Q̄l = ⊕jQ̄l[−2sj ].

(See [L4, 11.13].)

1.9. Let X be the set of all systems (M,M0, p, p∗,m,m∗, Ã) where p is a parabolic
subalgebra of h with Levi subalgebra m, p = ⊕k∈Zpk, m = ⊕k∈Zmk where pk =
p∩ hk, mk = m∩ hk, M = em,M0 = em0 and Ã is a simple perverse sheaf in Q(mη)
(up to isomorphism) which is η-semicuspidal. We have the following result; see
[L4, 13.3].

(a) Let A1 ∈ Q(hη). There exists C1, C2, . . . , Ct, Ct+1, . . . , Ct+t′ in Q(hη) such
that

A1 ⊕ C1 ⊕ C2 ⊕ . . .⊕ Ct = Ct+1 ⊕ . . .⊕ Ct+t′

and each Cj is of the form ind
hη
pη
(Ã)[aj ] for some (M,M0, p, p∗,m,m∗, Ã) ∈ X

(depending on j) and some aj ∈ Z.
Erratum to [L4]. In the definition of a good object in the second paragraph of

[L4, 13.2], one should insert the words “shifts of” after “direct sum of” (twice).

1.10. Let s ∈ Z− {0}. We show:
(a) the subspace h(1) := ⊕k∈sZhk of h is the Lie algebra of a well-defined con-

nected reductive subgroup H(1) of H.
We can assume that s > 0. We shall define e ∈ Z≥0 as follows: if p = 0 we

have e = 0; if p > 0 we define e by s = s′pe, where s′ ∈ Z>0 is not divisible by p.
We shall argue by induction on e. (When p = 0 we only have to consider the case
e = 0.) Assume first that e = 0.

Let H̄ be the adjoint group of H and let h̄ be its Lie algebra. Then h̄ inherits a
Z-grading h̄ = ⊕kh̄k from h. If we assume known that h̄(1) := ⊕k∈sZh̄k is the Lie
algebra of a well-defined connected reductive subgroup H̄(1) of H̄, then we can take
H(1) to be the identity component of the inverse image of H̄(1) under the obvious
map H → H̄ . Thus we can assume that H is adjoint. Let λ ∈ YH be such that
λ
kh = hk for all k. Let ζ ′ be a primitive s-th root of 1 in k. (Note that if p > 0,
s = s′ is not divisible by p.) We define ω : H → H by ω(g) = Ad(λ(ζ ′))(g); this is
an automorphism of H. The automorphism ω′ : h → h induced by ω sends x ∈ hk

(where k ∈ Z) to ζ ′kx. Hence ωs = 1 and h(1) is equal to {x ∈ h;ω(x) = x}. Let
H(1) be the identity component of {g ∈ H;ω(g) = g}. This is a connected reductive
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group with Lie algebra h(1). Thus (a) is proved in the case e = 0. We now assume
that e ≥ 1 hence p > 0. We can find an element x0 ∈ h such that [x0, x] = kx
for any k ∈ Z and any x ∈ gk. (We can take x0 in the image of the tangent map

of λ : k∗ → H.) Let h̃ = {x ∈ h; [x0, x] = 0}. We have h̃ = ⊕k∈pZhk. Let H̃ be
the identity component of {g ∈ H; Ad(g)x0 = x0}. Since x0 ∈ h is semisimple, it

follows that H̃ is reductive with Lie algebra h̃. We define a Z-grading h̃ = ⊕k′∈Zh̃k′

by h̃k′ = hpk′ . By the induction hypothesis applied to H̃, h̃ we see that there

is a well-defined connected reductive subgroup H̃(1) of H̃ whose Lie algebra is
⊕k′∈(s/p)Zh̃k′ = ⊕k′∈(s/p)Zhpk′ = ⊕k∈sZhk = h(1). We can take H(1) = H̃(1). This
completes the inductive proof.

2. Z �→-gradings and ε-spirals

In this section we introduce the key notion of this paper, namely a spiral. Spirals
are analogues in the Z/m-graded setting of parabolic subalgebras in the ungraded
or Z-graded setting. We also attach a canonical spiral to each nilpotent element in
gδ.

2.1. In the rest of this paper, m ≥ 1, G, g = ⊕i∈Z/mgi are as in 0.1 and ζ, ϑ, θ

are as in 0.5. Recall that for i ∈ Z/m we have gi = {x ∈ g; θ(x) = ζix} and that
ϑ : G → G is the (semisimple) automorphism of G which induces θ : g → g; note
that θ(Ad(g)x) = Ad(ϑ(g))θ(x) for all x ∈ g, g ∈ G.

We shall fix δ ∈ Z/m.
For any semisimple automorphism γ : G → G, we set Gγ = {g ∈ G; γ(g) = g}.

By a theorem of Steinberg [St],
(a) Gγ is a connected reductive subgroup of G.
Now g0 is a Lie subalgebra of g. Recall that G0 = Gϑ and that the Ad-action of

G0 on g leaves stable gi and its closed subset gnili := gi ∩ gnil for any i ∈ Z/m.

Let G be the set of subgroups of G of the form GAd(τ)ϑ for some semisimple
element of finite order τ ∈ G0; by (a), any group in G is a connected reductive
subgroup of G. For example, we have G0 ∈ G; hence we have G0 = eg0 .

2.2. Let 〈, 〉 : g × g → k be a Killing form; it is nondegenerate and it satisfies
〈gi, gj〉 = 0 whenever i+ j �= 0 in Z/m. Hence for any i ∈ Z/m, 〈, 〉 : gi × g−i → k
is nondegenerate.

2.3. The Morozov-Jacobson theorem in the Z/m-graded setting. We set
J = JG; see 1.1. For x ∈ gnil let J(x) = {(e, h, f) ∈ J ; e = x}, G(x) = {g ∈
G; Ad(g)x = x} and let U = UG(x)0 . Recall the following result of Morozov-
Jacobson and Kostant; see [Ko].

(a) We have J(x) �= ∅. The U-action on J(x) given by

u : (e, h, f) �→ u(e, h, f) := (e,Ad(u)h,Ad(u)f)

is simply transitive.
Assume now that x ∈ gnilδ . We set

Jδ(x) = {(e, h, f) ∈ J(x); e = x, h ∈ g0, f ∈ g−δ}.
We show:

(b)We have Jδ(x) �= ∅. The (U∩G0)-action on Jδ(x) (restriction of the U-action
in (a)) is simply transitive.
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If (e, h, f) ∈ J(x), then (ζ−δe, h, ζδf) ∈ Jδ(ζ
−δx) and

(ζ−δθ(e), θ(h), ζδθ(f)) ∈ J(ζ−δθ(x)) = J(x)

(we use that θ(e) = ζδe). Hence (e, h, f) �→ (ζ−δθ(e), θ(h), ζδθ(f)) is a morphism
θ′ : J(x) → J(x). Next we note that g �→ ϑ(g) defines a homomorphism G(x) →
G(x). (If Ad(g)x = x, then θ(x) = θ(Ad(g)x) = Ad(ϑ(g))θ(x). Since θ(x) = ζδx,
we see that ζδx = Ad(ϑ(g))ζδx hence x = Ad(ϑ(g))x and ϑ(g) ∈ G(x).) This

restricts to a homomorphism θ′′ : U → U with fixed point set Uθ′′
. For u ∈ U ,

(e, h, f) ∈ J(x) we have θ′(u(e, h, f)) = θ′′(u)θ′(e, h, f). By (a), J(x) is an affine

space. Since θ′m = 1 and m is invertible in k, the fixed point set J(x)θ
′
is nonempty.

Since the U -action on J(x) is simply transitive, it follows that this restricts to a

simply transitive action of Uθ′′
on J(x)θ

′
. We have J(x)θ

′
= Jδ(x) and Uθ′′

=
U ∩G0. We see that (b) holds.

2.4. Let λ ∈ YG0
(resp. μ ∈ YG0,Q). Since λ (resp. μ) can be viewed as an element

of YG (resp. YG,Q), the decomposition g = ⊕k∈Z(
λ
kg) (resp. g = ⊕κ∈Q(μκg)) is

defined as in 1.1. For i ∈ Z/m and for k ∈ Z (resp. κ ∈ Q) we set λ
kgi =

λ
kg ∩ gi

(resp. μ
κgi =

μ
κg∩ gi); we then have gi = ⊕k∈Z(

λ
kgi) (resp. gi = ⊕κ∈Q(μκgi)) for any

i ∈ Z/m (we now use that λ ∈ YG0
(resp. μ ∈ YG0,Q)).

Let s ∈ Z− {0}. We show:
(a) The subspace g(1) := ⊕k∈sZ(

λ
kgk/s) of g is the Lie algebra of a well-defined

connected reductive subgroup G(1) of G.
We apply 1.10(a) to H = G, h = g with the Z-grading g = ⊕k(

λ
kg). We see that

there is a well-defined reductive connected subgroup H(1) of G whose Lie algebra
is h(1) = ⊕k∈sZ(

λ
kg). Note that H(1) contains λ(k∗) and is ϑ-stable. We choose

ζ ′ ∈ k∗ such that ζ ′s = ζ. We define ω : H(1) → H(1) by ω(h) = Ad(λ(ζ ′))−1ϑ(h);
this is an automorphism of H(1). The automorphism ω′ : h(1) → h(1) induced by

ω sends x ∈ λ
kgi (where k ∈ sZ, i ∈ Z/m) to ζ ′−kζix = ζi−k/sx. Hence ω′m = 1

and g(1) is equal to {x ∈ h(1);ω′(x) = x}. Let G(1) be the identity component of
{h ∈ H(1);ω(h) = h}. Then G(1) is a connected reductive subgroup of H(1) with
Lie algebra g(1). This proves (a).

Now λ
0g0 is a Levi subalgebra of a parabolic subalgebra of g0. Hence e

λ
0 g0 is a

well-defined subgroup of G0 (a Levi subgroup of a parabolic subgroup of G0). We
have

(b) e
λ
0 g0 ⊂ G(1).

2.5. The definition of ε-spirals. In the rest of this section we fix ε ∈ {1,−1}.
For any μ ∈ YG0,Q and any N ∈ Z we set

(a) ε
p
μ
N = ⊕κ∈Q;κ≥Nε(

μ
κgN ).

If r ∈ Z>0 is such that λ := rμ ∈ YG0
then we have

εp
μ
N = ⊕k∈Z;k≥rNε(

λ
kgN ).

A collection {pN ;N ∈ Z} (or p∗) of subspaces of g is said to be an ε-spiral if there
exists μ ∈ YG0,Q such that pN = εp

μ
N for any N ∈ Z. We then set (for N ∈ Z)

uN = {x ∈ gN ; 〈x, εpμ−N 〉 = 0} = ⊕κ∈Q;κ>Nε(
μ
κgN ).

We say that u∗ = {uN ;N ∈ Z} is the nilradical of p∗.
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The following properties of p∗, u∗ are immediate:

. . . ⊂ pN ⊂ pN−εm ⊂ pN−2εm ⊂ . . . for any N ;
pN ⊂ gN for any N ; pN = 0 if Nε � 0; pN = gN if Nε � 0;
[pN , pN ′ ] ⊂ pN+N ′ for any N,N ′ in Z;
. . . ⊂ uN ⊂ uN−εm ⊂ uN−2εm ⊂ . . . for any N ;
uN ⊂ pN for any N ; uN = gN if Nε � 0;
[uN , pN ′ ] ⊂ uN+N ′ for any N,N ′ in Z.

For N ∈ Z we set lN = pN/uN and l = ⊕N∈ZlN . We have lN = 0 if N � 0 or if
N � 0 hence dim l < ∞; moreover, [, ] : pN × pN ′ → pN+N ′ induces an operation
lN × lN ′ → lN+N ′ which defines a Lie algebra structure on l.

Note that p0 is a parabolic subagebra of the reductive Lie algebra g0 and u0 =
{x ∈ g0; 〈x, p0〉 = 0} is the nilradical of p0. We set P0 = ep0 ⊂ G0, U0 = eu0 ⊂ G0.
Then P0 is a parabolic subgroup of G0 and U0 = UP0

, so that L0 := P0/U0 is a
connected reductive group. We note that:

(b) The Ad-action of P0 on g leaves stable pN and uN for any N .
From (b) we see that for any N there is an induced action of P0 on lN = pN/uN .

We show:
(c) The restriction of this action to U0 is trivial.
It is enough to show that the ad-action of u0 on pN/uN is zero. This follows

from the inclusion [u0, pN ] ⊂ uN which has been noted earlier.
From (b),(c) we see that for any N there is an induced action of L0 = P0/U0 on

lN = pN/uN . We show:
(d) if x ∈ pN , Nε > 0, then x ∈ gnilN .

It is enough to show that for any x′ ∈ g we have ad(x)n(x′) = 0 for n � 0. We can
assume that x′ ∈ gi for some i ∈ Z/m. If N ′ ∈ Z satisfies N ′ = i and N ′ε � 0, then
pN ′ = gi; thus we have x′ ∈ pN ′ for some N ′. We have ad(x)x′ = [x, x′] ∈ pN+N ′ ,
ad(x)2(x′) ∈ p2n+N ′ and, more generally, ad(x)n(x′) ∈ pnN+N ′ for n ≥ 1. If n � 0
we have nNε+N ′ε � 0 hence pnN+N ′ = 0; thus, ad(x)n(x′) = 0. This proves (d).

An element μ ∈ YG0,Q is said to be p-regular if rμ ∈ YG0
for some r ∈ Z>0 such

that r /∈ pZ. (This condition holds automatically if p = 0.) An ε-spiral p∗ is said
to be p-reqular if p∗ = εp

μ
∗ for some p-regular μ ∈ YG0,Q.

2.6. Splittings of ε-spirals. For μ ∈ YG0,Q and N ∈ Z we set

ε̃l
μ
N = ⊕κ∈Q;κ=Nε(

μ
κgN ) = μ

NεgN .

If r ∈ Z>0 is such that λ := rμ ∈ YG0
, then we have

ε̃
l
μ
N = λ

rNεgN .

A splitting of an ε-spiral p∗ is a collection {̃lN ;N ∈ Z} (or l̃∗) of subspaces of g

such that for some μ ∈ YG0,Q we have p∗ = εp
μ
∗ and l̃N = ε̃l

μ
N for any N ∈ Z.

Let u∗ be the nilradical of p∗. From the definitions we see that pN = uN ⊕ l̃N for
any N , [̃lN , l̃N ′ ] ⊂ l̃N+N ′ for any N,N ′ and the sum l̃ :=

∑
N∈Z l̃N (in g) is direct.

Now l̃ is a Lie subalgebra of g which is Z-graded by the subspaces l̃N . Note that
the isomorphisms l̃N

∼−→ lN (restrictions of the obvious maps pN → lN ) give rise

after taking ⊕N to an isomorphism l̃
∼−→ l which is compatible with the Lie algebra

structures and the Z-gradings.
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For μ as above we can find λ ∈ YG0
and r ∈ Z>0 such that rμ = λ. Applying

2.4(a) with s = rε we see that:

(a) There is a well-defined connected reductive subgroup L̃ of G whose Lie algebra

is l̃. In particular, l̃ and l are reductive Lie algebras.

Let L̃0 = el̃0 . From 2.4(b) we have:

(b) L̃0 ⊂ L̃.
We show:
(c) Assume that we have l̃∗ = ε̃l

μ
∗ , p∗ = εp

μ
∗ where μ is p-regular, that is, μ = rλ

with λ ∈ YG0
and r ∈ Z>0 such that r /∈ pZ. Then there exists ζ ′, a root of 1 in

k∗ such that l̃ = {x ∈ g; Ad(λ(ζ ′)−1)θ(x)) = x}, L̃ = GAd(λ(ζ′)−1)ϑ = el̃ ⊂ G; note

that L̃ ∈ G.
Let ζ ′ be a primitive root of 1 of order rm in k∗ such that ζ ′rε = ζ. We have

g = ⊕k∈Z,i∈Z/m(λkgi), l̃N = λ
NrεgN for all N ∈ Z. For k,N ′ ∈ Z and x ∈ λ

kgN ′ we
have

Ad(λ(ζ ′)−1)(θ(x)) = ζ ′−kζN
′
x = ζ ′rN

′ε−kx.

The condition that ζ ′rN
′ε−k = 1 is that rN ′ε − k ∈ rmZ or that k ∈ rZ and

N ′ = k/(rε). We see that

{x ∈ g; Ad(λ(ζ ′)−1)(θ(x)) = x} = ⊕k∈rZ,i∈Z/m;k/(rε)=i(
λ
kgi) = ⊕N∈Z(

λ
rNεgN ) = l̃,

and (c) follows.
We return to the general case.
We have λ(k∗) ⊂ L̃0; moreover, Ad(λ(t)) acts as identity on l̃0 = λ

0g0 = LL̃0;
thus, λ(k∗) ⊂ ZL̃0

. Since k∗ is connected, we deduce:

(d) λ(k∗) ⊂ Z0
L̃0
.

Note that:
(e) For t ∈ k∗, N ∈ Z, Ad(λ(t)) acts on lN as trNε times identity.
We show:
(f) If l̃∗ is a splitting of an ε-spiral p∗, then l̃∗ is a splitting of an (−ε)-spiral.

Let μ ∈ YG0,Q be such that l̃∗ = ε̃l
μ
∗ , p∗ = εp

μ
∗ . Let μ′ = (−1)μ ∈ YG0,Q. Then

l̃∗ = −ε̃l
μ′

∗ is a splitting of the (−ε)-spiral −εp
μ′

∗ .

2.7. Let S be the set of splittings of an ε-spiral p∗. Clearly, S �= ∅. Let U0 be as in
2.5. Now U0 acts on S by u : l̃∗ �→ {Ad(u)̃lN ;N ∈ Z}. (We use that Ad(u)pN = pN

for any N .) We show:
(a) This U0-action on S is simply transitive.

Let u∗ be the nilradical of p∗. Let l̃∗ ∈ S, l̃′∗ ∈ S. Since l̃0, l̃
′
0 are Levi subalgebras

of p0, there is a unique u ∈ U0 such that Ad(u)̃l0 = l̃′0. It remains to show that

this u satisfies Ad(u)̃lN = l̃′N for any N . Let l̃ = ⊕N l̃N , l̃′ = ⊕N l̃′N (these are Lie

subalgebras of g) and let L̃ = el̃ ⊂ G, L̃′ = el̃
′ ⊂ G. Let μ, μ′ in YG0,Q be such that

p∗ = εp
μ
∗ = εp

μ′

∗ , l̃∗ = ε̃l
μ
∗ , l̃

′
∗ = ε̃l

μ′

∗ . We can find r ∈ Z>0 such that λ := rμ ∈ YG0
,

λ′ := rμ′ ∈ YG0
. Let L̃0 be as in 2.6 and let L̃′

0 be the analogous subgroup of

L̃′. We now fix N ∈ Z. The Ad-action of L̃0 (resp. L̃′
0) on g leaves stable l̃N , uN

(resp. l̃′N , uN ). Let L̃′′
0 = uL̃0u

−1, l̃′′N = Ad(u)̃lN ; then the Ad-action of L̃′′
0 on g

leaves stable l̃′′N , uN . Since Ad(u)̃l0 = l̃′0, we have uL̃0u
−1 = L̃′

0 hence L̃′
0 = L̃′′

0 .

Let T be a maximal torus of L̃′
0 = L̃′′

0 . Now the Ad-action of T on g leaves stable
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l̃′N , l̃′′N , uN , pN . Let X = Hom(T,k∗). For any α ∈ X let

pN,α = {x ∈ pN ; Ad(τ )x = α(τ )x ∀τ ∈ T}, uN,α = uN ∩ pN,α,

l̃′N,α = l̃′N ∩ pN,α, l̃′′N,α = l̃′′N ∩ pN,α.

We have l̃′N = ⊕α∈X l̃′N,α, l̃′′N = ⊕α∈X l̃′′N,α, uN = ⊕α∈X uN,α. Let R′ = {α ∈
X ; l̃′N,α �= 0}, R′′ = {α ∈ X ; l̃′′N,α �= 0}, R̃ = {α ∈ X ; uN,α �= 0}. Since l̃′N , l̃′′N
are T -stable complements of uN in pN , the T -modules l̃′N , l̃′′N are isomorphic, hence
R′ = R′′. Since λ′(k∗) ⊂ Z0

L̃′
0

(see 2.6(d)), we have λ′(k∗) ⊂ T ; hence for any

α ∈ X we can define α • λ′ ∈ Z by α(λ′(t)) = tα•λ
′
for all t ∈ k∗.

Assume that α ∈ R̃. Then for any t ∈ k∗, Ad(λ′(t)) acts on uN,α as multipli-

cation by tα•λ
′
hence uN,α ⊂ λ′

α•λ′gN ; thus λ′

α•λ′gN has a nonzero intersection with

uN , so that α • λ′ > rNε. We see that R̃ ⊂ {α ∈ X ;α • λ′ > rNε}. Assume
now that α ∈ R′. Then for any t ∈ k∗, Ad(λ′(t)) acts on l′N,α as multiplication by

tα•λ
′
hence l′N,α ⊂ λ′

α•λ′gN ; thus, λ′

α•λ′gN has a nonzero intersection with l̃′N , so that

α • λ′ = rNε. We see that R′ ⊂ {α ∈ X ;α • λ′ = rNε}. It follows that R′ ∩ R̃ = ∅
so that pN,α = l̃′N,α for α ∈ R′. Since R′ = R′′, we have also R′′ ∩ R̃ = ∅, so that

pN,α = l̃′′N,α for α ∈ R′′ = R′. Thus, for α ∈ R′ = R′′ we have l̃′N,α = l̃′′N,α hence

l̃′N = l̃′′N and l̃′N = Ad(u)̃lN . This proves (a).

For any splitting l̃∗ of p∗ we denote by L̃(̃l∗) the connected reductive subgroup

L̃ of G associated to l̃∗ in 2.6. The family of groups (L̃(̃l∗)) indexed by the various

splittings l̃∗ of p∗ has the property that any two groups in the family are canonically
isomorphic to each other; the isomorphism is provided by conjugation by a well-
defined u ∈ U0 (this follows from (a)). It follows that the groups in the family
can be identified with a single connected reductive group L which is canonically
isomorphic to each group in the family. Note that L is canonically attached to the
ε-spiral p∗ and that LL = l canonically. Note also that L0 in 2.5 is naturally a
closed subgroup of L.

2.8. Subspirals coming from parabolics of l∗. Let p∗ be an ε-spiral. We define
u∗, l∗, l in terms of p∗ as in 2.5. Let q be a parabolic subalgebra of l compatible
with the Z-grading of l that is, such that q = ⊕N∈ZqN where qN = q∩ lN . For any
N ∈ Z let p̂N be the inverse image of qN under the obvious map pN → lN . We
show:

(a) p̂∗ is an ε-spiral. Moreover, if p∗ is p-reqular then p̂∗ is p-regular.

We can find μ ∈ YG0,Q such that p∗ = εp
μ
∗ ; let l̃∗ = ε̃l

μ
∗ . Let L̃ be as in 2.6. Let q̃

be the Lie subalgebra of l̃ corresponding to q under the obvious isomorphism l̃
∼−→ l

and let q̃N = q̃ ∩ l̃N so that q̃ = ⊕N∈Zq̃N . We then have p̂N = uN ⊕ q̃N for all N .
Let r ∈ Z>0 be such that λ := rμ ∈ YG0

; if p∗ is p-regular we assume in addition
that r /∈ pZ.

From 2.6(e) we see that for t ∈ k∗, Ad(λ(t)) leaves stable each q̃N hence it
leaves stable q̃. It follows that k∗ acts via t �→ Ad(λ(t)) on the variety of Levi
subalgebras of q̃; since this variety is isomorphic to an affine space, there exists a
Levi subalgebra m of q̃ such that Ad(λ(t))m = m for all t ∈ k∗. Let R be the closed

connected subgroup of L̃ (a torus) such that LR is the center of m. Since q̃ is a

parabolic subalgebra of l̃ with Levi subalgebra m, we can find λ′ ∈ YR such that,
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setting for any N ′ ∈ Z:

λ′

N ′ l̃ = {x ∈ l̃; Ad(λ′(t))x = tN
′
x ∀t ∈ k∗},

we have q̃ = ⊕N ′∈Z≥0
(λ

′

N ′ l̃), m = λ′

0 l̃. We have m = ⊕NmN where mN = m∩ l̃N and
m0 is a Levi subalgebra of a parabolic subalgebra of m. Hence a Cartan subalgebra
of m ∩ l̃0 is also a Cartan subalgebra of m, so that it contains the center of m.
Thus the center of m is contained in l̃0, so that R ⊂ L̃0. Since for any t, t′ ∈ k∗,
λ(t) is contained in ZL̃0

and λ′(t′) ∈ L̃0, we have λ(t)λ′(t′) = λ′(t′)λ(t). We can

view λ′ as an element of YG0
hence λ′

k gi is defined for k ∈ Z, i ∈ Z/m and we have

gi = ⊕k∈Z(
λ′

k gi) for any i ∈ Z/m. We can find a ∈ Z>0 such that λ′

k gi = 0 for any
i ∈ Z/m and any k ∈ Z− [−a, a]. Let b be an integer such that b > 2a, b /∈ pZ. We
define λ′′ ∈ YG0

by λ′′(t) = λ(tb)λ′(t) = λ′(t)λ(tb) for all t ∈ k∗. By definition, for
k ∈ Z, i ∈ Z/m we have:

λ′′

k gi = {x ∈ gi; Ad(λ(tb)λ′(t))x = tkx ∀t ∈ k∗}

= ⊕k′,k2;k′∈bZ,k2∈Z,k′+k2=k(
λ
k′/bgi ∩ λ′

k2
gi).

When λ′′

k gi �= 0 then k = bk1 + k2 for some k1 ∈ Z ∩ [−a, a], k2 ∈ Z; in this case,
k1, k2 are uniquely determined by k since b > 2a. Thus, we have

λ′′

k gi =
λ
k1
gi ∩ λ′

k2
gi if k = bk1 + k2 with k1, k2 in Z,

λ′′

k gi = 0, otherwise.

Let μ′ = 1
brλ

′′ ∈ YG0,Q and let p′∗ = εp
μ′

∗ . For N ∈ Z we have

p′N = ⊕k1,k2∈Z;bk1+k2≥Nbrε,|k2|≤a(
λ
k1
gN ∩ λ′

k2
gN ).

The only integer multiple of b in [−a, a] is 0; hence the condition that k2 ≥ b(rNε−
k1) (with k2 ∈ [−a, a]) is equivalent to the condition that either 0 > b(rNε − k1),
k2 ∈ [−a, a] or that 0 = b(rNε− k1), k2 ∈ [0, a]. Thus, p′N = X ⊕X ′, where

X = ⊕k1,k2∈Z;k1>rNε(
λ
k1
gN ∩ λ′

k2
gN ) = ⊕k1∈Z;k1>rNε(

λ
k1
gN ) = uN ,

X ′ = ⊕k1,k2∈Z;k1=rNε,k2≥0(
λ
k1
gN ∩ λ′

k2
gN ) = l̃N ∩ (⊕k2∈Z≥0

(λ
′

k2
gN )) = l̃N ∩ q̃ = q̃N .

Thus, we have p′N = uN ⊕ q̃N = p̂N . This proves (a).

From the computation in the previous proof we can extract the following:

(b) the splitting ε̃l
μ′

∗ of the ε-spiral p̂∗ = εp
μ′

∗ is equal to m∗.

2.9. The spiral attached to an element x ∈ gnilδ . In the remainder of this paper
we fix η ∈ Z− {0} such that η = δ.

In this subsection we assume that ε = η̇; see 0.12. Let x ∈ gnilδ . We associate
to x an ε-spiral as follows. By 2.3(b), we can find φ = (e, h, f) ∈ Jδ(x) such that
e = x. Let ι = ιφ ∈ YG be as in 1.1. Since the differential of ι is the linear map
k → g, z �→ zh ∈ g0, we have ι(k∗) ⊂ G0 so that ι can be viewed as an element of

YG0
. Then p

φ
∗ := εp

(|η|/2)ι
∗ is an ε-spiral with splitting l̃

φ
∗ := ε̃l

(|η|/2)ι
∗ . Note that for

N ∈ Z we have

p
φ
N = ⊕k∈Z;k≥2Nε(

ι
k/|η|gN ), l̃

φ
N = ι

2N/ηgN if 2N/η ∈ Z, l̃
φ
N = 0 if 2N/η /∈ Z.

We show that:
(a) The ε-spiral pφ∗ is p-regular; it depends only on x, not on φ.
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The p-regularity follows from the fact that 2 /∈ pZ. We now prove the second
statement of (a). By 2.3(b), another choice for φ must be of the form uφ where
u ∈ UG(x)0 ∩ G0. Let ι′ = ιuφ. For t ∈ k∗ we have ι′(t) = uι(t)u−1 hence
ι′

k gi = Ad(u)(ιkgi) for any k ∈ Z, i ∈ Z/m. It follows that for N ∈ Z we have

p
uφ
N = Ad(u)pφN . To show that puφN = p

φ
N , it is enough to show that Ad(u)pφN = p

φ
N .

It is enough to show:
Ad(u)(ιkg) ⊂ ⊕k′;k′≥k(

ι
k′g) for any u ∈ G(x), k ∈ Z.

Let P be the parabolic subgroup of G such that LP = ⊕k∈Z;k≥0(
ι
kg). Clearly,

Ad(g)(ιkg) ⊂ ⊕k′;k′≥k(
ι
k′g) for any g ∈ P, k ∈ Z. Hence it is enough to note the

known inclusion G(x) ⊂ P . This proves (a).

In view of (a) we will write px∗ instead of pφ∗ , where φ is any element in Jδ(x);

let ux∗ be the nilradical of px∗ . Now the splitting l̃
φ
∗ depends in general on φ. We set

l̃φ = ⊕N∈Z l̃
φ
N ; this is a Z-graded Lie subalgebra of g. Let L̃φ = el̃

φ ⊂ G; we have

L̃φ ∈ G. Let L̃φ
0 = el̃

φ
0 ⊂ L̃φ. We show:

(b) We have x ∈ l̃φη ; more precisely, x belongs to
◦
l̃

φ

η (the open L̃φ
0 -orbit on l̃φη ).

The first statement is the same as x ∈ ι
2gδ; this follows from the equality [h, x] =

2x. The second statement can be deduced from [L4, 4.2(a)].

We set L̃φ
0 (x) = L̃φ

0 ∩G(x), G0(x) = G0 ∩G(x). We show:

(c) The inclusion L̃φ
0 (x) → G0(x) induces an isomorphism on the groups of

components.
Let P0 be the parabolic subgroup of G0 such that LP0 = px0 = ⊕k∈Z;k≥0(

ι
kg0)

and let U0 = UP0
. We set P0(x) = P0∩G(x), U0(x) = U0∩G(x). Then L̃φ

0 is a Levi

subgroup of P0 so that P0 = L̃φ
0U0 (semidirect product) and P0(x) = L̃φ

0 (x)U0(x)
(semidirect product). Since U0(x) is a connected unipotent group we see that the

inclusion L̃φ
0 (x) → P0(x) induces an isomorphism on the groups of components. It

remains to show that P0(x) = G0(x). As we have noted in the proof of (a), we have
G(x) ⊂ P hence G0(x) ⊂ P ∩G0; since P ∩G0 and P0 have the same Lie algebra,
namely px0 , they must have the same identity component; since P0 is parabolic in
G0, we must have P ∩G0 = P0, so that G0(x) ⊂ P0 and therefore G0(x) ⊂ P0(x).
Since the reverse inclusion is obvious, we see that P0(x) = G0(x) and (c) is proved.

We show:
(d) If g ∈ G0 is such that Ad(g−1)(x) ∈ pxη , then g ∈ P0.
The assumption of (d) implies that g ∈ P . (We use [L4, 5.7] applied to the

trivial Z-grading of g that is, the Z-grading such that in [L4, 3.1] we have gN = 0
for N �= 0.) Thus, we have g ∈ P ∩G0. As in the proof of (c) we have P ∩G0 = P0

and (d) follows.
We show:
(e) The P0-orbit of x in pxη is open dense in pxη.
We argue as in [L4, 5.9]. It is enough to show that dim(P0)− dim(P0 ∩G(x)) =

dim pxη or equivalently that

dim p
x
0 − dimker(ad(x) : px0 → gδ) = dim p

x
η .

Since x ∈ pxη (see (b)) and [px0 , p
x
η ] ⊂ pxη , we have ad(x)(p

x
0) ⊂ pxη so that it is enough

to show that

dimker(ad(x) : px0 → pxη) = dim px0 − dim pxη ,
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or equivalently, that ad(x) : px0 → pxη is surjective. By the representation theory of
sl2, the linear map

ad(x) : ⊕k∈Z;k≥0(
ι
kg) → ⊕k∈Z;k≥2(

ι
kg)

is surjective. This restricts for any i ∈ Z/m to a (necessarily surjective) map

ad(x) : ⊕k∈Z;k≥0(
ι
kgi) → ⊕k∈Z;k≥2(

ι
kgi+δ).

Taking i = 0 we see that ad(x) : px0 → pxη is surjective. This proves (e).

The assignment x �→ px∗ is a Z/m-analogue of an assignment in the case of Z-
graded Lie algebras given in [L4, §5] which is in turn modelled on a construction
in [KL, 7.1].

3. Admissible systems

In this section we introduce the set Tη of G0-conjugacy classes of admissible

systems, which will be used to index the blocks in DG0
(gnilδ ). We also define a map

that assigns a pair (O,L) (where O is a G0-orbit in gnilδ and L is an irreducible
G0-equivariant local system on it) an element in Tη.

3.1. Definition of admissible systems. We preserve the setup of 2.1.
Let T′

η be the set consisting of all systems (M,M0,m,m∗, C̃), where M ∈ G,

m = LM , m∗ is a Z-grading of m, M0 = em0 ⊂ M , C̃ is a simple cuspidal M0-
equivariant perverse sheaf on mη (up to isomorphism).

Until the end of 3.4 we fix ξ̇ = (M,M0,m,m∗, C̃) ∈ T′
η. Let ι ∈ YM be associated

to C̃ as in 1.2(c),(a) (with M, C̃ instead of H,A), so that ι
km = mηk/2 for any k ∈ Z

such that ηk/2 ∈ Z and ι
km = 0 for any k ∈ Z such that ηk/2 /∈ Z. Then we have

mk′ = ι
2k′/ηm for k′ ∈ Z such that 2k′/η ∈ Z and mk′ = 0 for k′ ∈ Z such that

2k′/η /∈ Z. Note that ι(k∗) is contained in Z0
M0

.

The system ξ̇ is said to be admissible if conditions (a),(b) below are satisfied:
(a) we have mN ⊂ gN for any N ∈ Z;
(b) there exists an element τ of finite order in the torus ι(k∗)Z0

M of M0 such

that M = GAd(τ)ϑ.
We now consider the following condition on ξ̇ which may or may not hold.
(c) m∗ is a splitting of some p-regular 1-spiral or, equivalently (see 2.6(f)), of

some p-regular (−1)-spiral.
The following result will be proved in 3.2–3.4.
(d) ξ̇ is admissible if and only if ξ̇ satisfies (c).
We now make some comments on the significance of condition (b). Assume that

condition (a) is satisfied and that τ is any semisimple element of finite order of G0

such that M = GAd(τ)ϑ. We show that we have automatically

(e) τ ∈ ι(k∗)ZM .

Note that ϑ(τ ) = τ since τ ∈ G0 hence τ ∈ GAd(τ)ϑ = M .

Let N ∈ Z be such that 2N/η ∈ Z. Since mN ⊂ gN , θ acts on mN as ζN ; since

Ad(τ )θ acts as 1 on m we see that Ad(τ ) acts on mN as ζ−N . On the other hand,

for t ∈ k∗, Ad(ι(t)) acts on mN as t2N/η. Hence if t0 ∈ k∗ satisfies t
2/η
0 = ζ−1,

then we have Ad(ι(t0)) Ad(τ−1) = t
2N/η
0 ζN = ζ−NζN = 1 on mN . It follows that
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Ad(ι(t0)) Ad(τ−1) = 1 on m. Since ι(t0)τ
−1 ∈ M , we deduce that ι(t0)τ

−1 ∈ ZM

hence τ ∈ ι(k∗)ZM , as asserted.
We see that condition (b) is a strengthening of (e) in which τ is required to lie

not only in ι(k∗)ZM but in its identity component.

3.2. We show:
(a) For any element τ0 of finite order in a torus T there exists λ0 ∈ YT such that

τ0 ∈ λ0(k
∗).

We can find c ∈ Z>0 such that c /∈ pZ and τ c0 = 1. Let μc = {z ∈ k∗; zc = 1}.
For some a ∈ N we can identify T = (k∗)a and τ0 with (z1, . . . , za) ∈ (μc)

a ⊂ T .

Now μc is cyclic with generator z0. Thus we have z1 = zk1
0 , . . . , za = zka

0 , where
k1, . . . , ka are integers. We define λ0 ∈ YT by t �→ (tk1 , . . . , tka). Then τ0 = λ0(z0),
as desired.

We remark that in the proof of (a) we can assume that:
(b) k1 ∈ Z>0, k1 /∈ pZ.
Indeed, if p = 0, then k1 /∈ pZ is automatic. Assume now that p > 0. We write

k1 = k′1p
e, where k′1 ∈ Z− pZ, e ∈ Z≥0. Define z′0 ∈ μc by z′0 = zp

e

0 . This is again

a generator of μc. (Recall that c /∈ pZ.) We have z1 = (z′0)
k′
1 , zj = (z′0)

k′
j , where

k′j ∈ Z>0 for j = 2, 3, . . . , a. Thus we can replace z0, k1, . . . , ks by z′0, k
′
1, . . . , k

′
s,

where k′1 ∈ Z>0, k
′
1 /∈ pZ. This proves (b).

We now assume that τ as in 3.1(b) is given. We show:
(c) There exist f ∈ Z>0 and λ′ ∈ YZ0

M
such that f /∈ pZ and such that, if

λ ∈ Yι(k∗)Z0
M

is defined by λ(t) = ι(tf )λ′(t) for all t, then τ ∈ λ(k∗).

If ι is identically 1, then (c) follows from (a) applied to T = Z0
M (we can take

f = 1). Assume now that ι is not identically 1. Then ι : k∗ → M has finite kernel.
Let T = k∗ × Z0

M ; we define d : T → ι(k∗)Z0
M by d(t, g) = ι(t)g. By definition,

ι(k∗) is contained in the derived subgroup of M hence it has finite intersection with
Z0

M . It follows that d has finite kernel. It is also surjective, hence we can find
τ̃ ∈ T of finite order such that d(τ̃) = τ . Using (a), we can find λ0 ∈ YT such that
τ̃ ∈ λ0(k

∗); moreover, by (b), we can assume that, setting λ0(t) = (λ1(t), λ
′(t))

with λ1 ∈ Yk∗ , λ′ ∈ YZ0
M
, we have λ1(t) = tf for all t where f ∈ Z>0, f /∈ pZ. Let

λ = dλ0 : k∗ → ι(k∗)Z0
M . We have λ(t) = ι(λ1(t))λ

′(t) = ι(tf )λ′(t) for t ∈ k∗.
Since d(τ̃ ) = τ and τ̃ ∈ λ0(k

∗), we have τ ∈ λ(k∗). This proves (c).

3.3. We now assume that τ as in 3.1(b) is given; let λ, λ′, f be as in 3.2(c). We
assume also that 3.1(a) holds. We can find c ∈ k∗ of finite order such that λ(c) = τ .
(If τ �= 1, then λ is not identically 1 so it has finite kernel and any c ∈ λ−1(τ ) has
finite order; if τ = 1 we can take c = 1.)

Since λ(k∗) ⊂ M0 and M0 ⊂ G0 (as a consequence of our assumption 3.1(a)),

we can view λ as an element of YG0
hence λ

kgi is defined for any k ∈ Z, i ∈ Z/m.

Since λ(k∗) ⊂ M , we can view λ as an element of YM hence λ
km is defined for any

k ∈ Z.
For t ∈ k∗, k ∈ Z such that 2k/η ∈ Z and x ∈ mk we have Ad(λ(t))x =

Ad(ι(tf )) Ad(λ′(t))x = Ad(ι(tf ))x = t2kf/ηx (we use that λ′(t) ∈ Z0
M ). Thus

mk ⊂ λ
2kf/ηm. Recall also that mk �= 0 implies k/η ∈ Z; see 1.2(e). Since the

subspaces mk form a direct sum decomposition of m and the subspaces λ
jm form a
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direct sum decomposition of m, it follows that:

(a)
mk = λ

2kf/ηm for any k ∈ ηZ and

λ
jm = 0 unless j = 2kf/η for some k ∈ ηZ.

For k ∈ Z, i ∈ Z/m and x ∈ λ
kgi we have

Ad(τ )θ(x) = Ad(λ(c))θ(x) = ζiAd(λ(c))x = ζickx.

Since m = {x ∈ g; Ad(τ )(θ(x)) = x}, we see that:

(b) m = ⊕j∈Z,i∈Z/m;ζicj=1(
λ
j gi).

If λ
j gi is nonzero and contained in m then λ

jm is nonzero hence by (a) we have
j = 2fk/η for some k ∈ Z and mk is a nonzero subspace of gi; thus, by 3.1(a), we
have i = k and 2k/η ∈ Z. Thus we can rewrite (b) as follows:

m = ⊕k∈ηZ;ζkc2fk/η=1(
λ
2fk/ηgk),

that is,

(c) m = ⊕k∈ηZ;(ζηc2f )k/η=1(
λ
2fk/ηgk).

Assume now that mη �= 0. Using (a) we have mη = λ
2fm �= 0. By 3.1(a) we have

mη ⊂ gδ. It follows that m has nonzero intersection with λ
2fgδ. Now Ad(τ )θ acts

on λ
2fgδ as multiplication by ζηc2f and it acts on m as the identity. It follows that

ζηc2f = 1. Thus (c) can be rewritten as:

(d) m = ⊕k∈ηZ(
λ
2fk/ηgk).

Next we assume that mη = 0. By the definition of ι (see 3.1) this implies that
ι is identically 1 hence m = m0. From (a) we see that m = λ

0m, hence in (c) all
summands corresponding to k �= 0 are zero. Thus (d) remains true in this case. We
see also that

mk =
|η|λ
2fkεgk

for all k ∈ Z. Setting μ = |η|λ/(2f) we see that m∗ is a splitting of the p-regular

ε-spiral εp
1
2f |η|λ
∗ . We see that if ξ̇ is admissible then it satisfies 3.1(c).

3.4. Assume now that ξ̇ satisfies 3.1(c). Thus m∗ is a splitting of an ε-spiral p∗ = εp
μ
∗

where μ is p-regular. Applying the conjugacy result 2.7(a) to the two splittings

m∗,
ε̃l
μ
∗ we see that there exists a p-regular μ′ such that p∗ = εp

μ′

∗ , m∗ = ε̃l
μ′

∗ . Thus
we can find λ ∈ YG0

, r ∈ Z>0 such that r /∈ pZ and

mN = λ
rNεgN

for any N ∈ Z. In particular, 3.1(a) holds. We now show that 3.1(b) holds.

From 2.6(c) we see that M = GAd(λ(ζ′)−1)ϑ for some root of unity ζ ′ ∈ k∗. Let
τ = λ(ζ ′)−1. It remains to show that λ(ζ ′)−1 ∈ ι(k∗)Z0

M . More generally, we show
that λ(t) ∈ ι(k∗)Z0

M for any t ∈ k∗. Now λ can be viewed as an element of YM

hence λ
km is well-defined for any k ∈ Z and we have λ

rNεm = mN for any N ∈ Z.
Recall that for N ∈ Z we have mN = ι

2N/ηm if N/η ∈ Z and mN = 0 if N/η /∈ Z.

We see that for any N ∈ ηZ and any t ∈ k∗, Ad(λ(t)) acts on mN as trNε while
Ad(ι(t|η|)) acts on mN as t2Nε. Hence Ad(λ(t)2ι(t)−r|η|) acts on mN as 1. Since
m is the sum of the subspaces mN , we see that Ad(λ(t)2ι(t)−r|η|) acts on m as 1.
It follows that λ(t)2ι(t)−r|η| ∈ ZM . Since t �→ λ(t)2ι(t)−r|η| is a homomorphism of
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the connected group k∗ into ZM , its image must be contained in Z0
M . Thus, for

any t ∈ k∗ we have λ(t)2ι(t)−r|η| ∈ Z0
M hence λ(t2) ∈ ι(k∗)Z0

M . Since any t′ ∈ k∗ is

a square, it follows that λ(t′) ∈ ι(k∗)Z0
M for any t′ ∈ k∗. We see that, if ξ̇ satisfies

3.1(c), then ξ̇ is admissible. This completes the proof of 3.1(d).

3.5. The map Ψ : I(gδ) → Tη. Let I(gδ) be the set of pairs (O,L) where O is a

G0-orbit on gnilδ and L is an irreducible G0-equivariant local system on O defined

up to isomorphism. Since G0 acts on gnilδ with finitely many orbits, see [Vi], the
set I(gδ) is finite.

Let Tη be the set of all (M,M0,m,m∗, C̃) ∈ T′
η which are admissible (see 3.1) or

equivalently (see 3.1(d)) are such that m∗ is a splitting of some p-regular ε-spiral.
The group G0 acts in an obvious way by conjugation on Tη; we denote by Tη the
set of orbits, which is a finite set. We will define a map Ψ : I(gδ) → Tη. Let

(O,L) ∈ I(gδ). Choose x ∈ O and φ ∈ Jδ(x); define ux∗ , l̃
φ
∗ , l̃φ, L̃φ, L̃φ

0 as in 2.9.

Recall that L̃φ ∈ G. We have x ∈
◦
l̃

φ

η (see 2.9(b)). By 2.9(c), L1 := L|◦
l̃

φ

η

is an

irreducible L̃φ
0 -equivariant local system on

◦
l̃

φ

η . Let A be the simple L̃φ
0 -equivariant

perverse sheaf on l̃φη whose restriction to
◦
l̃

φ

η is L1[dim l̃φη ]. The map 1.5(b) associates

to A an element (M,M0,m,m∗, C̃) of Mη(L̃
φ) well defined up to conjugation by L̃φ

0 .

Using 1.6(a) we can find a parabolic subalgebra q of l̃φ compatible with the Z-

grading of l̃φ and such that m is a Levi subalgebra of q. Setting p′N = u
φ
N + qN for

any N ∈ Z, we see from 2.8(a) that p′∗ is a p-regular ε-spiral and from 2.8(b) that

m∗ is a splitting of p′∗. We see that (M,M0,m,m∗, C̃) ∈ Tη.

We now show that the G0-orbit of (M,M0,m,m∗, C̃) is independent of the choices

made. First, if x, φ are already chosen, then the L̃φ
0 -orbit of (M,M0,m,m∗, C̃) is

well defined hence the G0-orbit of (M,M0,m,m∗, C̃) is well defined (since L̃φ
0 ⊂ G0).

The independence of the choice of φ (when x is given) follows from the homogeneity
of Jδ(x) under the group U ∩G0 in 2.3(b). Finally, the independence of the choice
of x follows from the homogeneity of O under the group G0. Thus,

(O,L) �→ (G0 − orbit of (M,M0,m,m∗, C̃))

is a well-defined map Ψ : I(gδ) → Tη.

3.6. Let ξ̇ = (M,M0,m,m∗, C̃) ∈ Tη. Let Oξ̇ be the unique G0-orbit in gnilδ that

contains
◦
mη. Let ξ̇

′ = (M ′,M ′
0,m

′,m′
∗, C̃

′) ∈ Tη. We show:
(a) If Oξ̇ = Oξ̇′ , then there exists g ∈ G0 such that Ad(g) carries (M,M0,m,m∗)

to (M ′,M ′
0,m

′,m′
∗).

By [L4, 3.3], we can find φ = (e, h, f) ∈ JM , φ′ = (e′, h′, f ′) ∈ JM ′
such that:

(b) e ∈ ◦
mη, h ∈ m0, f ∈ m−η, e

′ ∈ ◦
m

′
η, h

′ ∈ m′
0, f

′ ∈ m′
−η.

We set ι = ιφ ∈ YM , ι′ = ιφ′ ∈ YM ′ . By 1.2(a),(c),(e), we have

(c) mk = ι
2k/ηm, m

′
k = ι′

2k/ηm
′ if k ∈ ηZ,mk = m

′
k = 0 if k ∈ Z− ηZ.

By assumption, we have e′ = Ad(g1)e for some g1 ∈ G0. Replacing the system

(M,M0,m,m∗, C̃, φ) by its image under Ad(g1), we see that we can assume that

e = e′. Using 3.1(a) for ξ̇ and ξ̇′, we can view φ, φ′ as elements of JG
δ with the
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same first component. By 2.3(b), we can find g2 ∈ G0 such that Ad(g2) carries φ

to φ′. Replacing (M,M0,m,m∗, C̃, φ) by its image under Ad(g1), we see that we
can assume that φ = φ′ as elements of JG. It follows that ι = ι′ as elements of YG.

Let

Gφ = {g ∈ G; Ad(g)(e) = e,Ad(g)(h) = h,Ad(g)(f) = f}.

Since e, h, f are contained in m we have ZM ⊂ Gφ. Similarly, since e, h, f are
contained in m′, we have ZM ′ ⊂ Gφ. We have also Z0

M ⊂ G0 (since the center of
m is contained in m0 ⊂ g0); similarly we have Z0

M ′ ⊂ G0. Thus, Z0
M and Z0

M ′ are
tori in (Gφ ∩ G0)

0. We show that Z0
M is a maximal torus of (Gφ ∩ G0)

0. Indeed,
assume that S is a torus of (Gφ ∩ G0)

0 that contains Z0
M . Since S ⊂ Gφ, for any

s ∈ S we have Ad(s)h = h hence sι(t) = ι(t)s, that is, Ad(ι(t))s = s for t ∈ k∗.
Since S contains Z0

M , for any s ∈ S, z ∈ Z0
M we have Ad(z)s = s. Since S ⊂ G0 we

have ϑ(s) = s for any s ∈ S. We see that Ad(ι(t)) Ad(z)ϑ(s) = s for any t ∈ k∗,
z ∈ Z0

M , s ∈ S. We can find τ ∈ ι(k∗)Z0
M such that M = GAd(τ)ϑ. We have seen

that Ad(τ )ϑ(s) = s for s ∈ S. Thus S ⊂ M . Since S ⊂ Gφ, we have

S ⊂ Mφ := {g ∈ M ; Ad(g)(e) = e,Ad(g)(h) = h,Ad(g)(f) = f},

hence S ⊂ M0
φ. Since e is a distinguished nilpotent element of m, we have M0

φ =

Z0
M . Thus we have S ⊂ Z0

M . By assumption, we have Z0
M ⊂ S, hence Z0

M = S.
Thus Z0

M is indeed a maximal torus of (Gφ∩G0)
0, as claimed. Similarly we see that

Z0
M ′ is a maximal torus of (Gφ ∩G0)

0. Since any two maximal tori of (Gφ ∩G0)
0

are conjugate, we can find g3 in (Gφ ∩ G0)
0 such that Ad(g3) carries Z0

M to Z0
M ′ .

(It also carries φ to φ.)

Replacing (M,M0,m,m∗, C̃, φ) by its image under Ad(g3), we see that we can
assume that Z0

M = Z0
M ′ and φ = φ′.

Assume now that e = 0 so that e′ = 0. By the definition of ι = ι′ we see
that ι = ι′ is identically 1 hence m = m0, m

′ = m′
0 and Gφ = G. Since e = 0

is distinguished in m it follows that M is a torus. Hence M = Z0
M . Similarly

M ′ = Z0
M ′ . Since Z0

M = Z0
M ′ it follows that M = M ′. We see that (a) holds in

this case.
In the remainder of the proof we assume that e �= 0 hence e′ �= 0. Recall that

M = GAd(ι(t))Ad(z)ϑ, M ′ = GAd(ι(t′)) Ad(z′)ϑ, for some t, t′ in k∗ and some z, z′ in
Z0

M = Z0
M ′ . Since e ∈ mη, we have Ad(ι(t)) Ad(z)θ(e) = e; since Ad(z) acts as 1

on m, we deduce that t2ζηe = e and since e �= 0, we see that t2 = ζ−η. Similarly,
since e ∈ m′

η we have Ad(ι(t′)) Ad(z′)θ(e) = e and t′2 = ζ−η.
We show that for any k ∈ Z we have mk ⊂ m′. By 1.2(e) we can assume that

k ∈ ηZ. Let x ∈ mk. We must show that Ad(ι(t′)) Ad(z′)θ(x) = x. Since Ad(z′)
acts by 1 on m, it is enough to show that ζkt′2k/ηx = x or that (ζηt′2)k/ηx = x.
This follows from t′2 = ζ−η.

Thus we have mk ⊂ m′. Since this holds for any k ∈ Z, we deduce that m ⊂ m′.
Interchanging the roles of m,m′ we see that m′ ⊂ m hence m = m′. This implies
that M = M ′. Since ι = ι′, we see from (c) that m∗ = m′

∗. From m0 = m′
0 we

deduce that M0 = M ′
0. This completes the proof of (a).

The following result can be extracted from the proof of (a).

(d) If mη = 0 (so that e = 0), then m = m0 is a Cartan subalgebra of g0.
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3.7. Let (M,M0,m,m∗, C̃) ∈ Tη. Let x ∈ ◦
mη. We choose φ = (e, h, f) ∈ JM such

that e = x, h ∈ m0, f ∈ m−η (see [L4, 3.3]). We can view x as an element of gnilδ

and φ as an element of Jδ(x). We define l̃∗ = l̃
φ
∗ as in 2.9. Recall that for N ∈ Z

we have:

l̃N = ι
2N/ηgN if 2N/η ∈ Z, l̃N = 0 if 2N/η /∈ Z,

where ι = ιφ ∈ YG. Let l̃ = ⊕N l̃N ⊂ g and let L̃ = el̃ ⊂ G. We show:

(a) m is a Levi subalgebra of a parabolic subalgebra of l̃ which is compatible with

the Z-grading of l̃.
We shall prove (a) without the statement of compatibility with the Z-grading;

then the full statement of (a) would follow from 1.6(a).
Assume first that x = 0. Then h = 0 hence ι is the constant map with image

1. It follows that l̃ = l̃0 = g0 and m = m0; moreover: by 3.6(d), m is a Cartan
subalgebra of g0. Hence in this case (a) is immediate. In the rest of the proof we
assume that x �= 0.

Since
◦
mη carries a cuspidal local system, for any N ∈ Z such that 2N/η ∈ Z

we have mN = ι
2N/ηm. Since mN ⊂ gN , we have mN ⊂ ι

2N/ηgN hence mN ⊂ l̃N .

Taking sum over all N ∈ Z such that 2N/η ∈ Z, we get m ⊂ l̃. We can find t0 ∈ k∗,
z ∈ Z0

M , both of finite order, such that m = {y ∈ g; Ad(ι(t0)) Ad(z)θ(y) = y}. Note

that l̃∗ = η̇ l̃
(|η|/2)ι
∗

By 2.6(c), we can find ζ ′ ∈ k∗ such that l̃ = {y ∈ g; Ad(ι(ζ ′)−1)θ(y)) = y}. Since
m ⊂ l̃, we have:

(b) m={y∈ l̃; Ad(ι(t0)) Ad(z)θ(y)=y}={y∈ l̃; Ad(ι(t0)) Ad(z) Ad(ι(ζ ′))y=y}.

(Note that 2.6(c) is applicable since l̃∗ = η̇ l̃
(|η|/2)ι
∗ .)

Since x ∈ mη ⊂ ι
2g, we have Ad(ι(t))x = t2x for any t. Taking t = t−1

0 or t = ζ ′

we see that t−2
0 x = Ad(ι(t0))

−1x and ζ ′2x = Ad(ι(ζ ′))x. Since x ∈ m and x ∈ l̃ we
have Ad(ι(t0))

−1x = θ(x) and Ad(ι(ζ ′))x = θ(x). It follows that t−2
0 x = ζ ′2x so

that (since x �= 0) we have t−2
0 = ζ ′2.

If N ∈ Z, 2N/η ∈ Z and y ∈ l̃N , we have Ad(ι(t0ζ
′))y = (t0ζ

′)2N/ηy = y. Since

l̃ = ⊕N l̃N we have Ad(ι(t0ζ
′))y = y for all y ∈ l̃. Hence (b) implies:

(c) m = {y ∈ l̃; Ad(z)y = y}.
It remains to show that (c) implies (a). Since z is of finite order and z ∈ Z0

M ,
we can find λ ∈ YZ0

M
such that z = λ(t1) for some t1 ∈ k∗. (See 3.2(a).)

Let m′ = {y ∈ l̃; Ad(λ(t))y = y ∀t ∈ k∗}. Note that m′ is a Levi subalgebra

of a parabolic subalgebra q of l̃. Since λ(k∗) ⊂ Z0
M we see that Ad(λ(t)) acts as

1 on m for any t hence m ⊂ m′. Now Ad(λ(t1)) acts as 1 on m′. Since m = {y ∈
l̃; Ad(λ(t1))y = y} it follows that m′ = m. Thus (a) holds.

3.8. Primitive pairs. Let (M,M0,m,m∗, C̃) ∈ Tη. Let x ∈ ◦
mη. We can view x

as an element of gnilδ . We set M0(x) = M0 ∩G(x), G0(x) = G0 ∩G(x). We show:
(a) The inclusion M0(x) → G0(x) induces an isomorphism on the groups of

components.

Let φ ∈ JM , l̃, l̃∗, L̃ be as in 3.7. Let L̃0 = el̃0 ⊂ L̃. We have x ∈
◦
l̃η (see

[L4, 4.2(a)]). Let L̃0(x) = L̃0 ∩G(x). To prove (a) it is enough to prove (i) and (ii)
below.
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(i) The inclusion M0(x) → L̃0(x) induces an isomorphism on the groups of
components.

(ii) The inclusion L̃0(x) → G0(x) induces an isomorphism on the groups of
components.

Now (i) follows from [L4, 11.2] (we use 3.7(a)) and (ii) is a special case of 2.9(c).
This proves (a).

Let O be the G0-orbit of x in gnilδ . Let L′ be the irreducible M0-equivariant

local system on
◦
mη such that C̃| ◦

mη
= L′[dimmη]. Let L be the irreducible G0-

equivariant local system on O which corresponds to L′ under (a). We say that

(O,L) ∈ I(gδ) is the primitive pair corresponding to (M,M0,m,m∗, C̃) ∈ Tη; it is
clearly independent of the choice of x, φ (we use [L4, 3.3]).

Let L′′ be the irreducible L̃0-equivariant local system on
◦
l̃η which corresponds

to L′ under (i). Let L′′� ∈ D(̃lη) be as in 0.11. From 1.8(b) we see that:

(b) indl̃ηqη
(C̃) is a nonzero direct sum of shifts of L′′�.

Consider the map (M,M0,m,m∗, C̃) �→ (O,L) (as above) from Tη to I(gδ); the
image of this map is denoted by Iprim(gδ). From 3.6(a) and (a) we see that:

(c) This induces a bijection ω : Tη
∼−→ Iprim(gδ).

Using the definitions and 1.8(b), we see that:
(d) For ξ ∈ Tη we have Ψ(ω(ξ)) = ξ, where Ψ : I(gδ) → Tη is as in 3.5.
Combining (c) and (d), we have
(e) the restriction of Ψ to Iprim(gδ) gives the inverse of ω.
From (d) we get:
(f) The map Ψ : I(gδ) → Tη is surjective.
Another proof of (f) is given in 7.3.

3.9. Now let η1 ∈ Z − {0} be such that η
1
= δ. We define a bijection T′

η
∼−→ T′

η1

by (M,M0,m,m∗, C̃) �→ (M,M0,m,m(∗), C̃) where m(∗) is the new Z-grading on
m∗ whose k-component m(k) is equal to mkη/η1

for any k ∈ η1Z and is equal to 0
for any k ∈ Z − η1Z. (This is well defined since mk′ = 0 for any k′ ∈ Z − ηZ; see

1.2(e).) Here we regard C̃ as a simple perverse sheaf on mη = m(η1). This restricts

to a bijection Tη
∼−→ Tη1

, which induces a bijection Tη
∼−→ Tη1

. This allows us to
identify canonically all the sets Tη1

(for various η1 ∈ Z−{0} such that η
1
= δ) with

a single set Tδ and also all the sets Tη1
(for various η1 ∈ Z−{0} such that η

1
= δ)

with a single set Tδ. Here Tδ, Tδ are defined purely in terms of δ (independently
of the choice of η).

An examination of the construction of the map Ψ = Ψη : I(gδ) → Tη (see 3.5)

shows that the bijection Tη
∼−→ Tη1

intertwines Ψη and Ψη1
. Therefore we have a

well-defined map Ψ : I(gδ) → Tδ.

4. Spiral induction

In this section we introduce the key tool in studying the block decomposition for
DG0

(gnilδ ), namely the spiral induction. This is the analogue in the Z/m-graded
setting of the parabolic induction in the ungraded or Z-graded setting.
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4.1. Definition of spiral induction. In addition to η ∈ Z− {0} which has been
fixed in 2.9, in this section we fix ε ∈ {1,−1}. We denote by Pε the set of all data
of the form:

(a) (p∗, L, P0, l, l∗, u∗),

where p∗ is an ε-spiral and L, P0, l, l∗, u∗ are associated to p∗ as in 2.5. Let

(p∗, L, P0, l, l∗, u∗) ∈ P
ε.

Let π : pη → lη be the obvious projection. We have a diagram:

(b) lη
a←− G0 × pη

b−→ E′ c−→ gδ,

where E′ = {(gP0, z) ∈ G0/P0 × gδ; Ad(g−1)z ∈ pη}, a(g, z) = π(Ad(g−1)z),
b(g, z) = (gP0, z), c(gP0, z) = z. Here a is smooth with connected fibers, b is a
principal P0-bundle and c is proper. Now Q(lη) is defined as in 1.2, with H, h
replaced by L, l. If A ∈ Q(lη), then a∗A is a P0-equivariant semisimple complex
on G0 × pη, hence there is a well-defined semisimple complex A1 on E′ such that
b∗A1 = a∗A. We can form the complex

ε Indgδ
pη
(A) = c!A1.

Since c is proper, this is a semisimple, G0-equivariant complex on gδ.

If l̃∗ is a splitting of p∗, we will sometimes consider ε Indgδ
pη
(A) with A ∈ Q(̃lη)

by identifying l̃η with lη in an obvious way and A with an object in Q(lη).
For any A ∈ Q(lη) we have

(c) D(ε Indgδ
pη
(A)) = ε Indgδ

pη
(D(A))[2e],

where e is the dimension of a fiber of a minus the dimension of a fiber of b, or
equivalently

e = dim g0 + dim pη − dim u0 − (dim pη − dim uη)− (dim p0 − dim u0)

= dim u0 + dim uη.

Hence, if for A ∈ Q(lη) we set

εĨnd
gδ

pη
(A) = ε Indgδ

pη
(A)[dim u0 + dim uη],

then

(d) D(εĨnd
gδ

pη
(A)) = εĨnd

gδ

pη
(D(A)).

4.2. Transitivity. We state a transitivity property of induction. In addition to
the datum 4.1(a) we consider a parabolic subalgebra q of l such that q = ⊕N∈ZqN

where qN = q ∩ lN . For any N ∈ Z let p̂N be the inverse image of qN under the
obvious map pN → lN . Then p̂∗ is an ε-spiral; see 2.8(a). Let

(p̂∗, L̂, P̂0, l̂, l̂∗, û∗) ∈ Pε

be the datum analogous to 4.1(a) defined by p̂∗. Now Q(̂lη) is defined as in 1.2,

with H, h replaced by L̂, l̂. If A ∈ Q(̂lη), then indlηqη
(A) ∈ Q(lη) is defined as in 1.3

and we have canonically

(a) ε Indgδ

p̂η
(A) = ε Indgδ

pη
(indlηqη

(A)).

The proof is similar to that of [L2, 4.2]; it is omitted.
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4.3. In the setup of 4.1, assume that A ∈ Q(lη) is a cuspidal perverse sheaf (see

1.2). We have A = L�[dim lη] where L is an irreducible local system on
◦
lη and

L� ∈ D(lη) is as in 0.11. In this case we can give an alternative description of
ε Indgδ

pη
(L�). Let P0, π : pη → lη be as in 4.1. Let

ġδ = {(gP0, z) ∈ G0/P0 × gδ; Ad(g−1)z ∈ π−1(
◦
lη))}

be an open smooth irreducible subvariety of E′ in 4.1. Let L̇ be the local system
on ġδ defined by b′∗L̇ = a′∗L, where

◦
lη

a′
←− G0 × (π−1(

◦
lη))

b′−→ ġδ,

a′(g, zx) = π(Ad(g−1)z), b′(g, z) = (gP0, z). Let L̇� be the intersection cohomology

complex of E′ with coefficients in L̇. From the definitions we have a∗L� = b∗L̇�

(a, b as in 4.1). We define c′ : ġδ → gδ by c′(g, z) = z. We show:

(a) ε Indgδ
pη
(L�) = c′!L̇.

Using the definitions we see that it is enough to show that the restriction of L̇� to
E′ − ġδ is zero. This can be deduced from 1.2(c).

4.4. Let Qε
η(gδ) be the subcategory of D(gδ) consisting of complexes which are

direct sums of shifts of simple G0-equivariant perverse sheaves B on gδ with the
following property: there exists a datum (p∗, L, P0, l, l∗, u∗) as in 4.1(a) and a simple
cuspidal perverse sheaf A in Q(lη) such that some shift of B is a direct summand
of ε Indgδ

pη
(A). We show:

(a) If (p∗, L, P0, l, l∗, u∗) ∈ Pε and A′ is a simple (not necessarily cuspidal) per-
verse sheaf in Q(lη), then

ε Indgδ
pη
(A′) ∈ Qε

η(gδ).

Using [L4, 7.5] we see that some shift of A′ is a direct summand of indlηqη
(A) for

some l̂, q as in 4.2 where A is a simple cuspidal perverse sheaf in Q(̂lη). It follows
that some shift of ε Indgδ

pη
(A′) is a direct summand of

(b) ε Indgδ
pη
(indlηqη

(A)).

It is then enough to show that the complex (b) belongs to Qε
η(gδ). This follows

from the definitions using the transitivity property 4.2(a).

The functor
ε Indgδ

pη
: Q(lη) → Qε

η(gδ)

(where (p∗, L, P0, l, l∗, u∗) is as in 4.1(a)) called spiral induction.

Let Kε
η(gδ) be the abelian group generated by symbols (A), one for each isomor-

phism class of objects of Qε
η(gδ), subject to the relations (A) + (A′) = (A ⊕ A′)

(a Grothendieck group). Now Kε
η(gδ) is naturally an A-module by vn(A) = (A[n])

for any n ∈ Z. We shall write A instead of (A) (in Qε
η(gδ)). Clearly, Kε

η(gδ) is a
free A-module with a finite distinguished basis given by the various simple perverse
sheaves in Qε

η(gδ). Now A,B �→ (A : B) = {A,D(B)} ∈ N((v)) (see 0.12) defines
a pairing

(c) (:) : Kε
η(gδ)×Kε

η(gδ) → Z((v)),

which is A-linear in the first argument, A-antilinear in the second argument (for

f �→ f̄) and satisfies (b1 : b2) = (b2 : b1) for all b1, b2 in Kε
η(gδ).
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4.5. In addition to the datum 4.1(a) we consider another datum

(a) (p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ P

ε

such that pN ⊂ p′N for all N ∈ Z and pN = p′N for N ∈ {η,−η}. We then have
u′N ⊂ uN for all N ∈ Z and uN = u′N for N ∈ {η,−η}. We also have canonically
lN = l′N for N ∈ {η,−η} and P0 ⊂ P ′

0. Let P = P ′
0/P0. Write ρP!Q̄l = ⊕jQ̄l[−2aj ]

where aj are integers ≥ 0. (Here ρP! is as in 0.12.) Let A ∈ Q(lη) = Q(l′η). We
show:

(b) Let I = ε Indgδ
pη
(A), I ′ = ε Indgδ

p′
η
(A). We have I ∼= ⊕jI

′[−2aj ].

We consider the commutative diagram

lη

1

��

G0 × pη
a�� b ��

1

��

E′ c ��

h

��

gδ

1

��
l′η G0 × p′η

a′
�� b′ �� Ẽ′ c′ �� gδ

,

where the upper horizontal maps are as in 4.1(b), the lower horizontal are the

analogous maps when 4.1(a) is replaced by (a) and h : E′ → Ẽ′ is given by
(gP0, z) �→ (gP ′

0, z). Note that h is a P ′
0/P0-bundle. We can find a complex A1

(resp. A′
1) on E′ (resp. Ẽ′) such that I = c!A1, I

′ = c′!A
′
1. We have A1 = h∗A′

1,
hence

I = c!A1 = c′!h!A1 = c′!h!h
∗A′

1 = c′!(A
′
1 ⊗ h!h

∗Q̄l) = ⊕jc
′
!A

′
1[−2aj ] = ⊕jI

′[−2aj ].

This proves (b).

5. Study of a pair of spirals

This section serves as preparation for the next one, which aims to calculate the
Hom space between two spiral inductions.

5.1. In addition to η ∈ Z − {0} which has been fixed in 2.9, in this section we fix
ε′, ε′′ in {1,−1}. Let

(p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ P

ε′ , (p′′, L′′, P ′′
0 , l

′′, l′′∗ , u
′′
∗) ∈ P

ε′′ .

We show:
(a) there exists a splitting l̃′∗ of p′∗ and a splitting l̃′′∗ of p′′∗ such that, if L̃′

0 =

el̃
′
0 ⊂ G and L̃′′

0 = el̃
′′
0 ⊂ G, then some maximal torus T of G0 is contained in both

L̃′
0 and L̃′′

0 .

Let l̃′∗ be any splitting of p′∗ and let l̃′′∗ be any splitting of p′′∗ ; let L̃
′
0 = el̃

′
0 ⊂ G,

L̃′′
0 = el̃

′′
0 ⊂ G. Recall that P ′

0 (resp. P ′′
0 ) is a parabolic subgroup of G0 with Levi

subgroup L̃′
0 (resp. L̃′′

0); hence there exists a maximal torus T0 of G0 contained in

both P ′
0, P

′′
0 . Let ′L̃′

0 (resp. ′L̃′′
0) be the Levi subgroup of P ′

0 (resp. P ′′
0 ) such that

T0 ⊂ ′L̃′
0 (resp. T0 ⊂ ′L̃′′

0). We can find u′ ∈ UP ′
0
, u′′ ∈ UP ′′

0
such that Ad(u′)L̃′

0 =
′L̃′

0, Ad(u′′)L̃′′
0 = ′L̃′′

0 . Now {Ad(u′)̃l′N ;N ∈ Z} is a splitting of {Ad(u′)p′N ;N ∈
Z} = p′∗ and {Ad(u′′)̃l′′N ;N ∈ Z} is a splitting of {Ad(u′′)p′′N ;N ∈ Z} = p′′∗ . Note

that Ad(u′)L̃′
0, Ad(u′′)L̃′′

0 contain a maximal torus of G0; (a) is proved.
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5.2. Let (p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ Pε′ , (p∗, L, P0, l, l∗, u∗) ∈ Pε′′ . Let A ∈ Q(lη) be a

simple cuspidal perverse sheaf. As in 4.3, we have A = L�[dim lη] where L is an

irreducible local system on
◦
lη. Let

B = ε′ Indgδ
pη
(L�).

Let π′ : p′η → l′η be the obvious map with kernel u′η. We want to study the complex
K = π′

!(B|p′
η
) ∈ D(l′η). As in 4.3, let

ġδ = G0

P0× π−1(
◦
lη),

where π : pη → lη is the obvious map; let L̇ be the local system on ġδ defined in
terms of L as in 4.3. As in 4.3, we define c′ : ġδ → gδ by c′(g, z) = z. Let

ṗ′η = {(gP0, z) ∈ G0/P0 × p′η; Ad(g−1)z ∈ π−1(
◦
lη)}.

Note that ṗ′η is the closed subvariety c′−1p′η of ġδ. The restriction of L̇ from ġδ to

ṗ′η is denoted again by L̇. Now c′ restricts to a map ṗ′η → p′η whose composition
with π′ : p′η → l′η is denoted by σ : ṗ′η → l′η. We have σ : (gP0, z) �→ π′(z). Using

4.3(a) and a proper base change, we see that K = σ!(L̇).
We have a partition ṗ′η = ∪Ωṗ

′
η,Ω into locally closed subvarieties indexed by the

various (P ′
0, P0)-double cosets Ω in G0, where

ṗ
′
η,Ω = {(gP0, z) ∈ Ω/P0 × p

′
η; Ad(g−1)z ∈ π−1(

◦
lη)}.

Let σΩ : ṗ′η,Ω → l′η be the restriction of σ. For any Ω we set

KΩ = σΩ!(L̇|ṗ′
η,Ω

) ∈ D(l′η).

We say that Ω is good if for some (or equivalently any) g0 ∈ Ω, the following
condition holds: setting p′′N = Ad(g0)pN , u′′N = Ad(g0)uN (for N ∈ Z), the obvious
inclusion

(p′N ∩ Ad(g0)pN )/(p′N ∩ Ad(g0)uN ) → Ad(g0)pN/Ad(g0)uN

is an isomorphism for any N ∈ Z that is, Ad(g0)pN = (p′N ∩Ad(g0)pN )+Ad(g0)uN .
We say that Ω is bad if it is not good.

Until the end of 5.4 we fix an Ω as above and we choose g0 ∈ Ω. Let p′′N =
Ad(g0)pN ; then p′′∗ is an ε′′-spiral. It determines a datum (p′′∗ , L

′′, P ′′
0 , l

′′, l′′∗ , u
′′
∗) ∈

Pε′′ .
By the change of variable g = hg0 we may identify ṗ′η,Ω with

{(hP ′′
0 , z) ∈ P ′

0P
′′
0 /P

′′
0 × p′η; Ad(h−1)z ∈ Ad(g0)π

−1(
◦
lη))}

which is the same as

Ξ = {(h(P ′
0 ∩ P ′′

0 ), z) ∈ P ′
0/(P

′
0 ∩ P ′′

0 )× p′η; Ad(h−1)z ∈ π′′−1(
◦
l

′′

η)}
(in which π′′ : p′′η → l′′η is the obvious map, with kernel u′′η). In these coordinates,
σΩ : ṗ′η,Ω → l′η becomes (h(P ′

0 ∩ P ′′
0 ), z) �→ π′(z).

We choose a splitting l̃′∗ of p′∗ and a splitting l̃′′∗ of p′′∗ as in 5.1(a); let L̃′
0, L̃

′′
0 , T

be as in 5.1(a).

Let μ′, μ′′ be elements of YG0,Q such that p′∗ = ε′p
μ′

∗ , l̃′∗ = ε′ l̃
μ′

∗ , p′′∗ = ε′′p
μ′′

∗ ,

l̃′′∗ = ε′′ l̃
μ′′

∗ . Let r′, r′′ in Z>0 be such that λ′ := r′μ′ ∈ YG0
, λ′′ := r′′μ′′ ∈ YG0

.
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As in 2.6(d) we have λ′(k∗) ⊂ Z0
L̃′

0

, λ′′(k∗) ⊂ Z0
L̃′′

0

. Since T is a maximal torus

of L̃′
0, we must have Z0

L̃′
0

⊂ T hence λ′(k∗) ⊂ T . Similarly, since T is a maximal

torus of L̃′′
0 , we have Z0

L̃′′
0

⊂ T hence λ′′(k∗) ⊂ T . Since both λ′(k∗), λ′′(k∗) are

contained in the torus T , we must have λ′(t′)λ′′(t′′) = λ′′(t′′)λ′(t′) for any t′, t′′ in
k∗. Hence, if for any k′, k′′ in Z and i ∈ Z/m we set

k′,k′′gi = {x ∈ gi; Ad(λ′(t′))x = t′k
′
x,Ad(λ′′(t′′))x = t′′k

′′
x, ∀t′, t′′ ∈ k∗},

then we have g = ⊕k′,k′′,i(k′,k′′gi).

For any N ∈ Z we have a direct sum decomposition

(a) p
′
N ∩ p

′′
N = (̃l′N ∩ l̃

′′
N )⊕ (u′N ∩ l̃

′′
N )⊕ (̃l′N ∩ u

′′
N )⊕ (u′N ∩ u

′′
N ).

This follows immediately from the decompositions

p
′
N ∩ p

′′
N = ⊕k′,k′′;k′≥Nr′ε′,k′′≥Nr′′ε′′(k,k′gN ),

l̃′N ∩ l̃′′N = ⊕k′,k′′;k′=Nr′ε′,k′′=Nr′′ε′′(k,k′gN ),

u
′
N ∩ l̃

′′
N = ⊕k′,k′′;k′>Nr′ε′,k′′=Nr′′ε′′(k,k′gN ),

l̃
′
N ∩ u

′′
N = ⊕k′,k′′;k′=Nr′ε′,k′′>Nr′′ε′′(k,k′gN ),

u′N ∩ u′′N = ⊕k′,k′′;k′>Nr′ε′,k′′>Nr′′ε′′(k,k′gN ).

For N ∈ Z let q′′N be the image of p′N ∩ p′′N under the obvious map p′′N → l′′N ; let
q′′ = ⊕N∈Z(q

′′
N ), a Lie subalgebra of l′′. We show:

(b) q′′ is a parabolic subalgebra of l′′ compatible with the Z-grading of l′′.

For N ∈ Z we set q̃′′N = l̃′′N ∩ p′N . Let q̃′′ = ⊕N∈Zq̃
′′
N , a Lie subalgebra of l̃′′.

From (a) we see that the obvious isomorphism l̃′′
∼−→ l′′ carries q̃′′ to q′′. Hence (b)

follows from (c) below:

(c) q̃′′ is a parabolic subalgebra of l̃′′ compatible with the Z-grading of l̃′′.
We have

q̃
′′ = ⊕k′,N∈Z;k′≥Nr′ε′(k′,Nr′′ε′′gN ).

We define λ1 ∈ YL̃′′ by λ1(t) = λ′(tr
′′
)λ′′(t−r′ε′ε′′) for all t ∈ k∗. Then Ad(λ1(t))

acts on the subspace k′,Nr′′ε′′gN of l̃′′ as tk
′r′′−r′r′′Nε′ ; the last exponent of t is ≥ 0

if and only if k′ ≥ r′Nε′ which is just the condition that k′,Nr′′ε′′gN is one of the
summands in the direct sum decomposition of q̃′′. This proves (c).

For N ∈ Z let q′N be the image of p′N ∩ p′′N under the obvious map p′N → l′N ; let
q′ = ⊕N∈Zq

′
N , a Lie subalgebra of l′.

For N ∈ Z we set q̃′N = l̃′N ∩ p′′N . Let q̃′ = ⊕N∈Zq̃
′
N , a Lie subalgebra of l̃′. The

following result is proved in the same way as (b),(c).
(d) q′ is a parabolic subalgebra of l′ compatible with the Z-grading of l′; q̃′ is a

parabolic subalgebra of l̃′ compatible with the Z-grading of l̃′.

We set !q̃′′ = ⊕N
!q̃′′N , !q̃′ = ⊕N (!q̃′N ), where

!
q̃
′′
N = ⊕k′∈Z;k′>Nr′ε′(k′,Nr′′ε′′gN ), !

q̃
′
N = ⊕k′′∈Z;k′′>Nr′′ε′′(Nr′ε′,k′′gN ).

The proof of (c) shows also that !q̃′′ is the nilradical of q̃′′ and that

⊕N∈Z(Nr′ε′,Nr′′ε′′gN )

is a Levi subalgebra of q̃′′. Similarly, !q̃′ is the nilradical of q̃′ and

⊕N∈Z(Nr′ε′,Nr′′ε′′gN )
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is a Levi subalgebra of q̃′′. Thus,
(e) q̃′, q̃′′ have a common Levi subalgebra, namely ⊕N∈Z(Nr′ε′,Nr′′ε′′gN ).

5.3. In this subsection we assume that Ω is bad. Then for some N , l̃′′N∩p′N is strictly

contained in l̃′′N . Hence q̃′′ is a proper parabolic subalgebra of l̃′′ (see 5.2(c)). We
will show that

(a) KΩ = σΩ!(L̇|ṗ′
η,Ω

) = 0 ∈ D(l′η).

This is equivalent to the following statement:
(b) for any y ∈ l̃′η, the cohomology groups Hj

c of the variety

{(h(P ′
0 ∩ P ′′

0 ), z) ∈ P ′
0/(P

′
0 ∩ P ′′

0 )× p′η; z − y ∈ u′η,Ad(h−1)z ∈ π′′−1(
◦
l′′η)}

with coefficients in the local system defined by L̇, are zero for all j ∈ Z.
(We have identified l̃′η, l

′
η via π′.) Considering the fibers of the first projection

of the last variety to P ′
0/(P

′
0 ∩ P ′′

0 ), we see that it suffices to show that:

(c) for any h ∈ P ′
0 and any y ∈ l̃′η, the cohomology groups Hj

c of the variety

{z ∈ p′η; z − y ∈ u′η,Ad(h−1)z ∈
◦
l̃ ′′η + u′′η}

with coefficients in the local system defined by L̇, are zero for all j ∈ Z.

(We have used that π′′−1(
◦
l′′η) =

◦
l̃′′η + u′′η .)

If z is as in (c), then we have automatically Ad(h−1)z ∈ p′η; since
◦
l̃′′η + u′′η ⊂ p′′η ,

the condition that Ad(h−1)z ∈
◦
l̃′′η + u′′η implies Ad(h−1)z ∈ p′η ∩ p′′η . By 5.2(a), we

can then write uniquely Ad(h−1)z = γ + ν′ + ν′′ + μ, where

(e) γ ∈ l̃
′
η ∩ l̃

′′
η , ν

′ ∈ u
′
η ∩ l̃

′′
η , ν

′′ ∈ l̃
′
η ∩ u

′′
η , μ ∈ u

′
η ∩ u

′′
η .

The condition that Ad(h−1)z ∈
◦
l̃′′η + u′′η can be expressed as γ + ν′ ∈

◦
l̃′′η . The

condition that z − y ∈ u′η is equivalent to Ad(h−1)z − Ad(h−1)y ∈ u′η or (if we

define y′ ∈ l̃′η by Ad(h−1)y − y′ ∈ u′η) to γ + ν′′ = y′. Note that y′, γ, ν′′ are
uniquely determined by h, y. Hence the variety in (c) can be identified with

(γ + (u′η ∩ l̃
′′
η)) ∩

◦
l̃
′′
η)× (u′η ∩ u

′′
η).

Under this identification, the local system L̇ is the pullback of L (viewed as a local

system on
◦
l̃′′η) from the first factor. Now the desired vanishing of cohomology follows

from the vanishing property [L4, 4.4(c)] of L, since in our case q̃′′ = ⊕N (̃l′′N ∩ p′N )

is a proper parabolic subalgebra of l̃′′ with nilradical ⊕N (̃l′′N ∩ u′N ).

5.4. In this subsection we assume that Ω is good. Then for any N we have l̃′′N∩p′N =

l̃′′N that is, l̃′′N ⊂ p′N . We also have q̃′′ = l̃′′. Thus q̃′′ is reductive so it is equal to its

Levi subalgebra ⊕N∈Z(Nr′ε′,Nr′′ε′′gN ) (see 5.2(e)) which is then equal to l̃′′ and is
also a Levi subalgebra of q̃′ (see 5.2(e)). Thus,

(a) l̃′′ is a Levi subalgebra of q̃′.

Now Ad(g0) defines an isomorphism l
∼−→ l′′. Composing this with the inverse

of the obvious isomorphism l̃′′
∼−→ l′′ we obtain an isomorphism of Z-graded Lie
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algebras l
∼−→ l̃′′. Using this, we can transport L (a local system on

◦
lη; see 5.1) to

a local system L′′ on
◦
l̃′′η . Let L′′� ∈ D(̃l′′η) be as in 0.11. Then

ind
l̃
′
η

q̃′
η
(L′′�) ∈ Q(̃l′η)

is defined as in 1.3 (we identify l̃′′ with the reductive quotient of q̃′; see (a)). We
now state the following result.

(b) We have KΩ = ind
l̃
′
η

q̃′
η
(L′′�)[−2f ], where

f = dim u′0 − dim(u′0 ∩ p′′0) + dim(u′η ∩ u′′η).

Let Q̃′
0 = eq̃

′
0 ⊂ L̃′

0, a parabolic subgroup of L̃′
0. Let

Ξ′ = {(′hQ̃′
0,

′z) ∈ L̃′
0/Q̃

′
0 × l̃′η; Ad(′h−1)′z ∈

◦
l̃ ′′η + !q̃η}.

Define c′′ : Ξ′ → l̃′η by c′′(′hQ′
0,

′z) = ′z. By the argument in [L4, 6.6] (for L̃′

instead of G) we have

(c) ind
l̃
′
η

q̃′
η
(L′′�) = c′′! L̇′′,

where L̇′′ is a certain local system on Ξ′ determined by L′′ and such that Δ∗L̇′′ = L̇
where Δ : Ξ → Ξ′ (Ξ as in 5.2) is the map induced by the canonical maps P ′

0 → L̃′
0

(with kernel UP ′
0
) and p′η → l̃′η (with kernel u′η); L̇ is the local system on Ξ considered

in 5.2. We consider the following statement:
(d) Δ is an affine space bundle with fibers of dimension f .
Assuming that (d) holds, we have

KΩ = c′′! Δ!L̇ = c′′! L̇′′ ⊗Δ!Q̄l = c′′! L̇′′[−2f ]

and we see that (b) follows from (c). It remains to prove (d).

Let ′h ∈ L̃′
0,

′z ∈ l̃′η be such that (′hQ′
0,

′z) ∈ Ξ′. Setting h = ′hu, z = ′z + z̃, we

see that Δ−1(′hQ′
0,

′z) can be identified with

{(u(UP ′
0
∩ P ′′

0 ), z̃) ∈ (UP ′
0
/(UP ′

0
∩ P ′′

0 ))× u
′
η; Ad(u−1) Ad(′h−1)(′z + z̃) ∈

◦
l̃
′′
η + u

′′
η}.

It suffices to show that

(e) {(u, z̃) ∈ UP ′
0
× u

′
η; Ad(u−1) Ad(′h−1)(′z + z̃) ∈

◦
l̃
′′
η + u

′′
η}

is isomorphic to UP ′
0
× (u′η ∩ u′′η). If (u, z̃) are as in (e), we have automatically

Ad(u−1) Ad(′h−1)(′z+ z̃)∈p′η (since ′z+ z̃∈p′η and ′hu∈P ′
0). Setting Ad(′h−1)′z=

a ∈
◦
l̃ ′′η + !q̃η (where a is fixed) and Ad(u−1) Ad(′h−1)z̃ = z̃′ ∈ u′η, we see that the

variety (e) may be identified with the variety

(f) {(u, z̃′) ∈ UP ′
0
× u′η; Ad(u−1)a+ z̃′ ∈

◦
l̃ ′′η + (p′η ∩ u′′η)}.

By 5.2(a) we can write uniquely

Ad(u−1)a+ z̃′ = γ + ν + μ,
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where γ ∈
◦
l̃ ′′η , ν ∈ l̃′η ∩ u′′η , μ ∈ u′η ∩ u′′η . Setting ẑ = μ − z̃ we see that (f) can be

identified with the variety of all quintuples (u, ẑ, γ, ν, ν′) in

UP ′
0
× u

′
η ×

◦
l̃
′′
η × (̃l′η ∩ u

′′
η)× (u′η ∩ u

′′
η)

such that

(g) Ad(u−1)a = γ + ν + ẑ.

Since a ∈ l̃′η, we have Ad(u−1)a − a ∈ u′η for u ∈ UP ′
0
. Hence in (g) we have

γ + ν = a and ẑ = Ad(u−1)a − a. In particular, γ, ν are uniquely determined.
Thus, our variety may be identified with UP ′

0
×(u′N ∩u′′N ). This completes the proof

of (d), hence that of (b).

5.5. From the results in 5.3 and 5.4 we can deduce, using the argument in [L4, 8.9]
(based on [L4, 1.4]), the following result.

Proposition 5.6. We have K ∈ Q(l′η); moreover, we have (noncanonically) K ∼=
⊕ΩKΩ, where Ω runs over good (P ′

0, P0)-double cosets in G0.

6. Spiral restriction

We introduce the spiral restriction functor which is adjoint to the spiral induc-
tion. The main result in this section is Proposition 6.4, which calculates the inner
product {, } (in the sense of 0.12) of two spiral inductions.

6.1. Definition of spiral restriction. In addition to η ∈ Z−{0} which has been

fixed in 2.9, in this section we fix ε′, ε′′ in {1,−1}. Let (p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ Pε′ .

Let π′ : p′η → l′η be the obvious map. For any B ∈ D(gδ) we set

ε′ Resgδ

p′
η
(B) = π′

!(B|p′
η
) ∈ D(l′η).

We show:
(a) If B ∈ Qε′′

η (gδ), then
ε′ Resgδ

p′
η
(B) ∈ Q(l′η).

To prove this we can assume that B is in addition a simple perverse sheaf. Then,
using the definition of Qε′′

η (gδ), we see that it is enough to prove (a) in the case

where B = ε′′ Indgδ
pη
(L�), with (p∗, L, P0, l, l∗, u∗) ∈ Pε′′ , L� as in 5.2. In this case,

(a) follows from 5.6.

We thus have a functor ε′ Resgδ

p′
η
: Qε′′

η (gδ) → Q(l′η) called spiral restriction.

We have the following result.

Proposition 6.2 ((Adjunction)). Let C ∈ Q(l′η), and let B ∈ Qε′′

η (gδ). For any
j ∈ Z we have

(a) dj(l
′
η;C,

ε′ Resgδ

p′
η
(B)) = dj′(gδ;

ε′ Indgδ

p′
η
(C), B),

where j′ = j + 2dim u′0.

The proof is almost a copy of that of [L4, 9.2]. We omit it.
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For B ∈ D(gδ) we set

ε′R̃es
gδ

p′
η
(B) = ε′ Resgδ

p′
η
(B)[dim u′η − dim u′0].

With this notation, the equality (a) can be reformulated without a shift from j to
j′ as follows:

(b) dj(l
′
η;C,

ε′R̃es
gδ

p′
η
(B)) = dj(gδ;

ε′ Ĩnd
gδ

p′
η
(C), B).

6.3. Let (p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ Pε′ , (p∗, L, P0, l, l∗, u∗) ∈ Pε′′ . Let A ∈ Q(lη),

A′ ∈ Q(l′η) be cuspidal perverse sheaves. As in 4.3 we have A = L�[dim lη],

A′ = L′�[dim l′η] where L (resp. L′) is a local system on
◦
lη (resp.

◦
l

′

η).
We denote by X the set of all g ∈ G0 such that the ε′′-spiral {Ad(g)pN ;N ∈ Z}

and the ε′-spiral p′∗ have a common splitting. If g ∈ X there is a unique isomorphism
of Z-graded Lie algebras λg : l → l′ such that the compositions

Ad(g)pN ∩ p′N → p′N → l′N ,

Ad(g)pN ∩ p′N
Ad(g−1)−−−−−→ pN → lN

λg−→ l′N

coincide for any N (the unnamed maps are the obvious imbeddings or projections).
Moreover, λg is induced by an isomorphism L → L′. Let X ′ be the set of all g ∈ X

such that λg : lη
∼−→ l′η carries L to the dual of L′. For any g ∈ X ′ we set

τ (g) = − dim
u′0 +Ad(g)u0
u′0 ∩ Ad(g)u0

+ dim
u′η +Ad(g)uη

u′η ∩Ad(g)uη
.

Note that both X and X ′ are unions of (P ′
0, P0)-double cosets in G0 and that τ (g)

depends only on the double coset of g. We have the following result.

Proposition 6.4. Let

Π =
∑
j∈Z

dj(gδ;
ε′ Ĩnd

gδ

p′
η
(A′), ε

′′
Ĩnd

gδ

pη
(A))v−j ∈ N((v)).

We have

Π = (1− v2)−r
∑
g0

vτ(g0),

where r is the dimension of the center of l and the sum is taken over a set of
representatives g0 for the (P ′

0, P0)-double cosets in G0 that are contained in X ′. In
particular, if Π �= 0, then X ′ �= ∅.

Using 6.2, we have

Π =
∑
j∈Z

dj(l
′
η;A

′, ε
′
R̃es

gδ

p′
η
(ε

′′
Ĩnd

gδ

pη
(A)))v−j =

∑
j∈Z

dj+s(l
′
η;A

′,K)v−j ,

where s = dim u0 + dim uη + dim u′η − dim u′0 + dim lη and

K = ε′ Resgδ

p′
η
(ε

′′
Indgδ

pη
(L�))

is as in 5.2. Using the description of K in 5.3(a), 5.4(b), 5.6, we see that

(a) Π =
∑
j∈Z

∑
g

Qj(g)v
−j+s−2f(g),
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where g runs over a set of representatives for the (P ′
0, P0)-double cosets in G0 which

are good (see 5.2) and

Qj(g) = dj (̃l
′
η;A

′, ind
l̃
′
η

q̃′
η
(L′′�)),

f(g) = dim(u′0/(u
′
0 ∩Ad(g)p0) + dim(u′η ∩ Ad(g)uη);

the following notation is used:
l̃′∗ is a certain splitting of p′∗, l̃

′′
∗ is a certain splitting of {Ad(g)pN ;N ∈ Z}, q̃′ =

⊕N∈Zq̃
′
N (where q̃′N = l̃′N∩Ad(g0)pN ) is a parabolic subalgebra of l̃′ = ⊕N l̃′N whose

with Levi subalgebra l̃′′ = ⊕N l̃′′N ; A′ is viewed as an object of Q(̃l′η) via the obvious

isomorphism l̃′η → l′η and L′′� ∈ Q(̃l′′η) corresponds to L� via the isomorphism

lη
Ad(g)−−−−→ Ad(g)pη/Ad(g)uη = l̃′′η .

By the implication (a) =⇒ (c) in [L4, 10.6], we have Qj(g) = 0 unless q̃′ = l̃′. In

this case, since l̃′′ is a Levi subalgebra of q̃′, we must have l̃′ = l̃′′ so that g ∈ X.
Conversely, if g ∈ X, then the (P ′

0, P0)-double coset of g is good. Indeed, let l̃′∗ be
a splitting of p′∗ which is also a splitting for {Ad(g)pN ;N ∈ Z}. We have

Ad(g)pN = l̃′N ⊕Ad(g)uN ⊂ (p′N ∩ Ad(g)pN ) + Ad(g)uN ⊂ Ad(g)pN

and our claim follows. Thus the sum in (a) can be taken over a set of representatives
g for the (P ′

0, P0)-double cosets in G0 that are contained inX and for such g we have

Qj(g) = dj (̃l
′
η;A

′,L′′�) where l̃′ = l̃′′, L′′� ∈ Q(̃l′′η) are as above. Using [L4, 15.1],
we see that in the sum over g in (a) we can take g ∈ X ′ and that the contribution
of such g to the sum is (1− v2)−rvs−2f(g)−d where d = dim lη. It remains to show
that for g as above we have s− 2f(g)− d = τ (g). It is enough to show that:

(b) u′0 ∩Ad(g)p0 = u′0 ∩Ad(g)u0,
(c) dim(Ad(g)u0) = dim u′0.
Now (b),(c) hold since Ad(g)p0, p

′
0 are parabolic subalgebras of g0 with nilradi-

cals Ad(g)u0, u
′
0 and with a common Levi subalgebra. This completes the proof of

the proposition.

6.5. In the special case where

(p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) = (p∗, L, P0, l, l∗, u∗)

and A′ ∼= D(A), the sum
∑

g v
τ(g) in Proposition 6.4 is over a nonempty set of g

(we have 1 ∈ X ′) hence the sum is nonzero and Π in 6.4 is nonzero. In particular,
we see that

(a) ε′′ Ĩnd
gδ

pη
(A) �= 0.

6.6. The map ψ from simple perverse sheaves to Tη. Let B be a simple

perverse sheaf in Qε′′

η (gδ). We associate to B an element of Tη (see 3.5) as follows.

We can find, (p∗, L, P0, l, l∗, u∗) ∈ Pε′′ and A as in 6.3 such that

ε′′ Ĩnd
gδ

pη
(A) ∼= B[d]⊕ C,

where d ∈ Z and C ∈ Qε′′

η (gδ). Let l̃∗ be a splitting of p∗. Let l̃ = ⊕N l̃N , L̃ =

el̃ ⊂ G, L̃0 = el̃0 ⊂ G and let C̃ be the simple perverse sheaf on l̃η corresponding

to A under the obvious isomorphism l̃η
∼−→ lη. Then (L̃, L̃0, l̃, l̃∗, C̃) is an object of
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Tη and its G0-orbit is independent of the choice of splitting, by 2.7(a). Now let

(p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ Pε′ , A′ be as in 6.3 (with ε′ = ε′′) and assume that

ε′ Ĩnd
gδ

p′
η
(A′) ∼= B[d′]⊕ C ′,

where d′ ∈ Z and C ′ ∈ Qε′′

η (gδ). We choose a splitting l̃′∗ of p′∗ and we associate to

it a system (L̃′, L̃′
0, l̃

′, l̃′∗, C̃
′) just as (L̃, L̃0, l̃, l̃∗, C̃) was defined in terms of l̃; here

C̃ ′ corresponds to A′. Using 4.1(d), we see that

ε′ Ĩnd
gδ

p′
η
(D(A′)) ∼= D(B)[−d′]⊕D(C ′).

Let Π be as in 6.4 (with A′ replaced by D(A′) and ε′ = ε′′). From the definition of
Π in 6.4 we have also

Π = {B[d]⊕ C,D(B)[−d′]⊕D(C ′)} = vd−d′
plus an element in N((v)).

(We use 0.12.) In particular we have Π �= 0 hence X ′ in 6.4 is nonempty. It follows

that (L̃′, L̃′
0, l̃

′, l̃′∗, C̃
′) and (L̃, L̃0, l̃, l̃∗, C̃) are in the same G0-orbit. This proves that

B �→ (L̃, L̃0, l̃, l̃∗, C̃) associates to B a well-defined element ψ(B) ∈ Tη.

6.7. For any ξ ∈ Tη let ξQε′

η (gδ) be the full subcategory of Qε′

η (gδ) whose objects

are direct sums of shifts of simple perverse sheaves B in Qε′

η (gδ) such that ψ(B) = ξ

(see 6.6); let ξKε′

η (gδ) be the (free) A-submodule of Kε′

η (gδ) with basis given by the

simple perverse sheaves B in ξQε′

η (gδ). Clearly, we have

Kε′

η (gδ) = ⊕ξ∈Tη

ξKε′

η (gδ).

7. The categories Q(gδ), Q′(gδ)

In this section we consider two categories of perverse sheaves Q(gδ), Q′(gδ)
defined in terms of spiral induction; see 7.8. The simple objects in Q(gδ) are
supported on gnilδ , while those in Q′(gδ) have Fourier-Deligne transforms supported
on gnilδ . We also complete the proof of the main theorem 0.6.

7.1. Let (O,L) ∈ I(gδ). Let A1 be the simple perverse sheaf on gδ such that
supp(A1) is the closure Ō of O in gδ and A1|O = L[dimO].

Choose x ∈ O and φ ∈ Jδ(x); define p
x
∗ , l̃

φ
∗ , L̃φ, P0 as in 2.9. Then Q(̃lφη ) is defined

in terms of l̃φ∗ , L̃
φ and for any A′ ∈ Q(̃lφη) we can consider

I(A′) := η̇ Indgδ
px
η
(A′) ∈ Qη̇

η(gδ);

see 4.1. We show:
(a) If A′ ∈ Q(̃lφη), then the support of I(A′) is contained in Ō.

Let y ∈ gδ be in the support of I(A′). We must show that y ∈ Ō. From the
definition of I(A′), there exists g ∈ G0 and z ∈ pxη such that Ad(g)(z) = y. Since

the support of I(A′) and Ō are G0-invariant we may replace y by Ad(g−1)y hence
we may assume that y ∈ pxη . Using 2.9(e), we see that pxη is equal to the closure of

the P0-orbit of x in pxη , which is clearly contained in Ō. This proves (a).
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Recall that x ∈
◦
l̃

φ

η (see 2.9(b)) hence
◦
l̃

φ

η ⊂ O. By 2.9(c), L1 := L|◦
l̃

φ

η

is an

irreducible L̃φ
0 -equivariant local system on

◦
l̃

φ

η . Let L
�
1 ∈ D(̃lφη ) be as in 0.11 and let

A = L�
1[dim l̃φη ]. We show:

(b) I(L�
1)|O is L.

Let E′
O be the inverse image of O under c : E′ → gδ (where c, E′ are as in 4.1

with p∗ = px∗ , ε = η̇). From the definitions we see that it is enough to check that
the map cO : E′

O → O (restriction of c) is bijective on k-points. Since G0 acts
naturally on both E′

O and O compatibly with c and the action on O is transitive, it
suffices to check that c−1(x) is a single point, namely (P0, x). Let (gP0, x) ∈ c−1(x).
We have g ∈ G0, Ad(g−1)x ∈ pxη hence x ∈ Ad(g)pxη . From 2.9(d) we deduce that
g ∈ P0 hence (gP0, x) = (P0, x). This proves (b).

We show:
(c) I(L�

1) is isomorphic to ⊕r
j=1Aj [tj ], where t1 = − dimO and for any j ≥ 2,

Aj is a simple G0-equivariant perverse sheaf on gδ with support contained in Ō−O
and tj ∈ Z.

This follows from the fact that I(L�
1) is a semisimple G0-equivariant perverse

sheaf on gδ (the decomposition theorem), taking into account (a),(b).

By 1.5(a) we can find a parabolic subalgebra q of l̃φ, a Levi subalgebra m of

q (with q,m compatible with the Z-grading of l̃φ) and a cuspidal M0 := em0 -
equivariant perverse sheaf C on mη such that some shift of A is a direct summand

of ind
l̃
φ
η
qη (C). From the definition we have

(d) Ψ(O,L) = (M,M0,m,m∗, C) ∈ Tη,

where M = em; see 3.5.
For anyN ∈ Z let p̂N be the inverse image of qN under the obvious map pN → lN .

Then by 2.8(a), p̂∗ is an η̇-spiral and m∗ is a splitting of it, so that, by 4.2(a), we
have

η̇ Indgδ

p̂η
(C) = η̇ Indgδ

p
φ
η
(ind

l̃
φ
η
qη (C)).

It follows that some shift of η̇ Indgδ

p
φ
η
(A) is a direct summand of η̇ Indgδ

p̂η
(C) hence,

using (c), we see that some shift of A1 is a direct summand of η̇ Indgδ

p̂η
(C). In

particular we have A1 ∈ Qη̇
η(gδ) and ψ(A1) = (M,M0,m,m∗, C) ∈ Tη; see 6.6

(with ε = η̇). Comparing with (d) we see that:
(e) ψ(A1) = Ψ(O,L).

7.2. Characterization of Qη̇
η(gδ) as orbital sheaves. Let A′ be a semisimple

G0-equivariant complex on gδ. We show:

(a) We have A′ ∈ Qη̇
η(gδ) if and only if supp(A′) ⊂ gnilδ .

We can assume that A′ is a simple perverse sheaf. If supp(A′) ⊂ gnilδ , then we
have A′ ∈ Qη̇

η(gδ) by the arguments in 7.1. Conversely, assume that A′ ∈ Qη̇
η(gδ).

We can find (p∗, L, P0, l, l∗, u∗) ∈ Pη̇ and A ∈ Q(lη) such that some shift of A′ is a
direct summand of B := η̇ Indgδ

pη
(A). To show that supp(A′) ⊂ gnilδ it is enough to

show that supp(B) ⊂ gnilδ or (with c, A1 as in 4.1 with ε = η̇) that supp(c!A1) ⊂ gnilδ .
This would follow if we can show that the image of c is contained in gnilδ . By the
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definition of c it is enough to show that pη ⊂ gnilδ . This follows from 2.5(d) applied
with N = η.

We now restate 7.1(e) as follows.
(b) Let A′ be a simple perverse sheaf in Qη̇

η(gδ) and let (O,L) ∈ I(gδ) be such

that supp(A′) = Ō and A′|O = L[dimO]. Then ψ(A′) = Ψ(O,L). (Notation of
3.5 and 6.6 with ε = η̇.)

7.3. We now give another proof of the following statement (see also 3.8(f)):
(a) The map Ψ : I(gδ) → Tη in 3.5 is surjective.
Let (M,M0,m,m∗, C) be an element of Tη. We can find an η̇-spiral p∗ such that

m∗ is a splitting of p∗. By 6.5(a), we have η̇ Ĩnd
gδ

pη
(C) �= 0, that is, there exists a

simple perverse sheaf A′ in Qη̇
η(gδ) such that some shift of A′ is a direct summand

of η̇ Ĩnd
gδ

pη
(C). It follows that ψ(A′) = (M,M0,m,m∗, C) hence, by 7.2(b), we have

Ψ(O,L) = (M,M0,m,m∗, C) where (O,L) corresponds to A′ as in 7.2(b). This
proves (a).

7.4. Until the end of 7.7 we assume that p > 0. If E,E′ are finite dimensional
k-vector space with a given perfect bilinear pairing E × E′ → k, then we have the
Fourier-Deligne transform functor Φ : D(E) → D(E′) defined in terms of a fixed
nontrivial character Fp → Q̄∗

l as in [L4, 1.9].

7.5. Fourier transform and spiral restriction. Let B ∈ D(gδ); we denote by
Φg(B) ∈ D(g−δ) the Fourier-Deligne transform of B with respect to the perfect
pairing gδ × g−δ → k defined by 〈, 〉.

Let ε′ ∈ {1,−1}. Let (p′∗, L′, P ′
0, l

′, l′∗, u
′
∗) ∈ Pε′ and let

Rη = ε′ Resgδ

p′
η
(B) ∈ D(l′η), R−η = ε′ Res

g−δ

p′
−η

(Φg(B)) ∈ D(l′−η).

Then
(a) R−η is the Fourier-Deligne transform of Rη with respect to the perfect pairing

lη × l−η → k defined by 〈, 〉.
The proof is almost the same as that of [L4, 10.2]. We omit it.

7.6. Fourier transform and spiral induction. Let ε′ ∈ {1,−1}. Let

(p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ P

ε′ .

Let A ∈ D(l′η) be a semisimple complex; we denote by Φl′(A) ∈ D(l′−η) the
Fourier-Deligne transform of A with respect to the perfect pairing l′η × l′−η → k
defined by 〈, 〉; note that Φl′(A) is a semisimple complex. Let

Iη = ε′ Ĩnd
gδ

p′
η
(A) ∈ D(gδ),

I−η = ε′ Ĩnd
g−δ

p′
−η

(Φl′(A)) ∈ D(g−δ).

Then:
(a) I−η is the Fourier-Deligne transform of Iη with respect to the perfect pairing

gδ × g−δ → k defined by 〈, 〉.
The proof is almost the same as that of [L5, A2]. We omit it.
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7.7. Characterization of Q−η̇
η (gδ) as anti-orbital sheaves. Let B ∈ D(gδ) be

a semisimple complex; let B′ = Φg(B) ∈ D(g−δ) be its Fourier-Deligne transform,
as in 7.5. Note that B′ is again a semisimple complex. We show:

(a) We have B ∈ Q−η̇
η (gδ) if and only if supp(B′) ⊂ gnil−δ.

We can assume that B (and hence also B′) is a simple perverse sheaf.
Assume first that B ∈ Q−η̇

η (gδ). We can find (p′∗, L
′, P ′

0, l
′, l′∗, u

′
∗) ∈ P−η̇ and a

cuspidal perverse sheaf C in Q(l′η) such that some shift of B is a direct summand

of −η̇ Ĩnd
gδ

p′
η
(C). Using 7.6(a) we see that some shift of B′ is a direct summand of

−η̇ Ĩnd
g−δ

p′
−η

(C ′) where C ′ = Φl′(C) ∈ D(l′−η) (notation of 7.6). By [L4, 10.6], C ′ is

a cuspidal perverse sheaf in Q(l′−η). It follows that B′ ∈ Q−η̇
−η(g−δ). Using 7.2(a)

(with η, δ replaced by −η,−δ) we deduce that supp(B′) ⊂ gnil−δ .

Conversely, assume that B is such that supp(B′) ⊂ gnil−δ . Using 7.2(a), we see that

B′ ∈ Q−η̇
−η(g−δ). We can find (p′∗, L

′, P ′
0, l

′, l′∗, u
′
∗) ∈ P−η̇ and a cuspidal perverse

sheaf C ′
1 in Q(l′−η) such that some shift of B′ is a direct summand of −η̇ Ĩnd

g−δ

p′
−η

(C ′
1).

We can find a cuspidal perverse sheaf C1 in Q(l′η) such that C ′
1 = Φl′(C) (we use

again [L4, 10.6]). Using 7.6(a), we see that some shift of Φg(B) is a direct summand

of Φg(
−η̇ Ĩnd

gδ

p′
η
(C1)) hence some shift of B is a direct summand of −η̇ Ĩnd

gδ

p′
η
(C1) so

that B ∈ Q−η̇
η (gδ). This completes the proof of (a).

7.8. The assumption on p in 7.4 is no longer in force. From 7.2(a) we see that
Qη̇

η(gδ) (hence also Kη̇
η(gδ)) is independent of η as long as η = δ. We shall write

Q(gδ),K(gδ) instead of Qη̇
η(gδ), Kη̇

η(gδ). From 7.7(a) we see that Q−η̇
η (gδ) (hence

also K−η̇
η (gδ)) is independent of η as long as η = δ (at least when p > 0, but then

the same holds for p = 0 by standard arguments). We shall write Q′(gδ),K′(gδ)
instead of Q−η̇

η (gδ), K−η̇
η (gδ).

For ξ ∈ Tδ we write ξQ(gδ),
ξK(gδ) instead of ξQη̇

η(gδ),
ξKη̇

η(gδ) and we write
ξQ′(gδ),

ξK′(gδ) instead of ξQ−η̇
η (gδ),

ξK−η̇
η (gδ). The discussion in 3.9 shows that

ξQ(gδ),
ξK(gδ) and

ξQ′(gδ),
ξK′(gδ) are independent of η as long as η = δ.

7.9. Proof of Theorem 0.6. Let ξ ∈ Tη. Let K ∈ DG0
(gnilδ ). We say that K ∈

DG0
(gnilδ )ξ if any simple perverse sheaf B which appears in a perverse cohomology

sheaf of K satisfies ψ(B) = ξ; note that B belongs to Qη̇
η(gδ), see 7.2(a); hence

ψ(B) is defined as in 6.6.
Now let ξ, ξ′ in Tη be such that ξ �= ξ′. Let K ∈ DG0

(gnilδ )ξ, K
′ ∈ DG0

(gnilδ )ξ′ .
We show:

(a) HomDG0
(gnil

δ )(K,K ′) = 0.

We can assume that K = B[n],K ′ = B′[n′] where B,B′ are simple perverse
sheaves inQη̇

η(gδ) such that ψ(B) = ξ, ψ(B′) = ξ′ and n, n′ are integers. We see that

it is enough to prove (a) in the case where K = η̇ Ĩnd
gδ

p′
η
(A′)[n], K ′ = η̇ Ĩnd

gδ

pη
(A)[n′]

with n, n′ ∈ Z, p∗, p
′
∗, A,A′ as in 6.4, and ε′ = ε′′ = η̇, since some shifts of B and B′

appear as direct summands of such K and K ′. By 0.12(a), we have an isomorphism

HomDG0
(gnil

δ )(K,K ′) = D0(g
nil
δ , G0;K,D(K ′))∗.

Hence
(b) dimHomDG0

(gnil
δ )(K,K ′) = dn−n′(gnilδ ; η̇ Ĩnd

gδ

p′
η
(A′), η̇ Ĩnd

gδ

pη
(D(A))).
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Here we use 4.1(d). Since ξ �= ξ′, the set X ′ defined in 6.4 for the pair (D(A), A′)
is empty. Therefore the right side of (b) is zero by 6.4. Then (a) follows from (b).
We see that Theorem 0.6 holds.

8. Monomial and quasi-monomial objects

The results in this section are parallel to those in 1.8–1.9. They serve as prepa-
ration for the next section.

8.1. Let ε = η̇. We denote by Rε the set of all data of the form

(p∗, L, P0, l, l∗, u∗, A),

where (p∗, L, P0, l, l∗, u∗) ∈ Pε (see 4.1) and A is a perverse sheaf in Q(lη) which is
η-semicuspidal (as in 1.8 with H replaced by L).

8.2. An object B ∈ Q(gδ) is said to be η-quasi-monomial if B ∼= εĨnd
gδ

pη
(A) for

some (p∗, L, P0, l, l∗, u∗, A) ∈ Rε; if in addition A is taken to be cuspidal, then B is
said to be η-monomial. Using 1.8(b) and the transitivity property 4.2, we see that:

(a) If B ∈ Q(gδ) is η-quasi-monomial, then there exists an η-monomial ob-
ject B′ ∈ Q(gδ) such that B′ ∼= B[a1] ⊕ B[a2] ⊕ · · · ⊕ B[ak] for some sequence
a1, a2, . . . , ak in Z, k ≥ 1. In particular, in K(gδ) we have (B′) = (va1 + · · · +
vak)(B).

An object of Q(gδ) is said to be η-good if it is a direct sum of shifts of η-quasi-
monomial objects.

Proposition 8.3 (8.3). Let B ∈ Q(gδ). There exists η-good objects B1, B2 in
Q(gδ) such that B ⊕B1

∼= B2.

We can assume that B is a simple perverse sheaf. We define (O,L) ∈ I(gδ) by the
requirement that suppB is the closure Ō of O in gδ and B|O = L[dimO]. We prove
the proposition by induction on dimO. Let x ∈ O. We associate to x an ε-spiral
p∗ = px∗ as in 2.9; we complete it uniquely to a system (p∗, L, P0, l, l∗, u∗) ∈ Pε. By
7.1(c), there exists A1 ∈ Q(lη) such that ε Indgδ

pη
(A1) ∼= B[d]⊕B′, where d ∈ Z and

B′ ∈ Q(gδ) has support contained in Ō − O. We now use 1.9(a) for L,A1 instead
of H,A1; applying

ε Indgδ
pη

to the equality in 1.9(a) we obtain

ε Indgδ
pη
(A1)⊕ C ′

1 ⊕ C ′
2 ⊕ . . .⊕ C ′

t = C ′
t+1 ⊕ . . .⊕ C ′

t+t′ ,

where each C ′
j is an η-quasi-monomial object with a shift (we have used the tran-

sitivity property 4.2). Thus we have

B[d]⊕B′ ⊕ C ′
1 ⊕ C ′

2 ⊕ . . .⊕ C ′
t = C ′

t+1 ⊕ . . .⊕ C ′
t+t′ .

Now the induction hypothesis implies that B′ is η-good. From this and the previous
equality we see that B is η-good. The proposition is proved.

Corollary 8.4.
(a) The A-module K(gδ) is generated by the classes of η-quasi-monomial objects

of Q(gδ).
(b) The Q(v)-vector space Q(v) ⊗A K(gδ) is generated by the classes of η-

monomial objects of Q(gδ).
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(a) follows immediately from 8.3; (b) follows from (a) using 8.2(a).

8.5. We show:
(a) If B1, B2 are elements of K(gδ) then {B1, B2} ∈ Q(v) (notation of 4.4(c)).
By 8.3, we can assume that B1, B2 are classes of η-quasi-monomial objects. By

8.2(a) we have f1B1 = B′
1, f2B2 = B′

2 where B′
1, B

′
2 represent ε-monomial objects

and f1, f2 are nonzero elements of A. Thus, we can assume that B1, B2 represent
η-monomial objects. In this case the result follows from 6.4.

9. Examples

In this section we consider examples where G = SL(V ) or Sp(V ). We assume
that m ≥ 2 and η = 1 hence δ = 1. We write “spiral” instead of “1-spiral”. We
explicitly describe the spirals and the set of blocks T1 in both cases, and describe
the map Ψ in the case G = SL(V ).

9.1. Spirals for the cyclic quiver. We preserve the notation from 0.3. Thus we
assume that G = SL(V ) where V = ⊕i∈Z/mVi. We have an induced Z/m-grading
on g = sl(V ), so that g1 is the space of all maps in 0.3(a). In general, we have
gi = ⊕j∈Z/m Hom(Vj , Vj+i).

The datum λ ∈ YG0,Q is the same as aQ-grading on each Vi, i.e., Vi = ⊕x∈Q(xVi)
such that

∑
i

∑
x x dim(xVi) = 0. Given such a Q-grading on each Vi, the corre-

sponding spiral p∗ = {pN ⊂ gN}N∈Z takes the following form:

pN = {φ ∈ sl(V )|φ(xVj) ⊂ ⊕x′≥x+N (x′Vj+N ), ∀j ∈ Z/m, x ∈ Q}.
A splitting m∗ = {mN ⊂ gN}N∈Z of the spiral p∗ takes the form

mN = {φ ∈ sl(V )|φ(xVj) ⊂ x+NVj+N , ∀j ∈ Z/m, x ∈ Q}.
For such a grading xVi we may introduce a quiver Qλ as follows. Let Jλ be the
finite set of pairs (i, x) ∈ Z/m×Q such that xVi �= 0. Then Qλ has vertex set Jλ
and an edge (i, x) → (i+ 1, x+ 1) if both (i, x) and (i+ 1, x+ 1) are in Jλ. Then
Qλ is a disjoint union of directed chains (that is, quivers of type A with exactly one
source and exactly one sink). We may identify m1 with the representation space of
the quiver Qλ with vector space xVi on the vertex (i, x) ∈ Jλ.

Let B be the set of chains in Qλ, and let Jλ = 
β∈B(βJλ) be the corre-
sponding decomposition of the vertex set. Let βV := ⊕(i,x)∈β(xVi). Then we
have V = ⊕β∈B(βV ). Let M = em,M0 = em0 where m = ⊕NmN . Then
M = S(

∏
β∈B GL(βV )), M0 = S(

∏
(i,x)∈Jλ

GL(xVi)). The center ZM is the sub-

group of M where each factor in GL(βV ) is a scalar matrix.

9.2. Admissible systems for the cyclic quiver. Let d be a divisor of n = dimV .
Suppose that the following hold:

(1) Each xVi has dimension ≤ 1.
(2) Each connected component of the quiver Qλ is a directed chain containing

exactly d vertices.
In this case, M0 is a maximal torus of G stabilizing each line xVi for (i, x) ∈ Jλ.

The open M0-orbit
◦
m1 ⊂ m1 consists of representations of Qλ where all arrows

are nonzero (hence isomorphisms). The stabilizer of an element in
◦
m1 under M0 is

exactly ZM , which acts by a scalar zβ on each chain β ∈ B, such that (
∏

β∈B zβ)
d =

1. We see that π0(ZM ) ∼= μd. For any primitive character χ : μd → Q̄∗
l , we have
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a rank 1 M0-equivariant local system Cχ on
◦
m1 on whose stalks ZM acts via χ.

This is a cuspidal local system because it is the restriction of the cuspidal local
system on the regular nilpotent orbit of m with central character χ. Let C̃χ be the

cuspidal perverse sheaf on m1 corresponding to Cχ. The system (M,M0,m,m∗, C̃χ)
is admissible. It is easy to see that any admissible system is of the form we just
described.

Given such a grading λ, we define a function f : B → Z/m such that f(β) = i
where (i, x) is the head (origin) of the chain β. Each vertex (i, x) ∈ Jλ lies in
a unique chain β ∈ B whose head is of the form (f(β), x′). Then x − x′ = y
is an integer between 0 and d − 1 and f(β) + y = i in Z/m. This implies that
dimVi = �{x ∈ Q|(i, x) ∈ Jλ} is the same as the number of pairs (β, y) ∈ B ×
{0, 1, . . . , d−1} such that f(β)+y = i. Choosing a bijection between {1, 2, . . . , n/d}
and B, the function f may be viewed as a function {1, 2, . . . , n/d} → Z/m satisfying
0.7(b). Changing the bijection amounts to precomposing f with a permutation of
{1, 2, . . . , n/d}. Summarizing the above discussion, we get a canonical bijection
between T1 and the set of equivalence classes of triples (d, f, χ) as in 0.7(a).

9.3. The map Ψ for the cyclic quiver. We preserve the notation from 9.1. Let
(O,L) ∈ χ(ig1). For each element e ∈ O, there exists a decomposition of V into
Jordan blocks {αW}α∈Be

compatible with the Z/m-grading in the following sense.
Each Jordan block αW is a direct sum of finitely many 1-dimensional subspaces
indexed by 0, 1, . . ., i.e., αW = (αW0)⊕ (αW1)⊕ . . . such that

(1) αWN ⊂ Vh(α)+N for some h(α) ∈ Z/m (location of the head of the Jordan
block α);

(2) e maps αWN isomorphically to αWN+1 whenever N ≥ 0 and αWN+1 �= 0.
The datum of {αW}α∈Be

as above is the equivalent to the datum of an element
φ ∈ J1(e); see 2.3. From this we may define a quiver Qe whose vertex set Je
consists of pairs (α,N) ∈ Be × Z≥0 such that αWN �= 0, and there is no edge
(α,N) → (α,N + 1) if both (α,N), (α,N + 1) are in Be × Z≥0.

Each vertex (α,N) is labelled with the element h(α) +N ∈ Z/m. The isomor-
phism class of Qe together with the labelling by elements in Z/m is independent of
the choice of e in O and the choice of the Jordan block decomposition. Therefore
we denote this labelled quiver by QO, with vertex set JO and set of chains BO.

Let d′ = gcd{|α|}α∈BO (here |α| is the number of vertices of the chain α). Then
for any e ∈ O, there is a canonical isomorphism π0(G0(e)) ∼= μd′ . The local system
L on O corresponds to a character ρ of μd′ , which has order d dividing d′ and a
unique factorization

ρ : μd′ → μd
χ−→ Q̄∗

l

such that χ is injective (here the first map μd′ → μd is given by z �→ zd
′/d). Now we

define a new quiver Q
[d]
O by removing certain edges from each chain of QO such that

each chain of Q
[d]
O has exactly d vertices. Let B be the set of chains of Q

[d]
O ; then B

can be identified with the set {1, 2, . . . , n/d}. Define f : {1, 2, . . . , n/d} ∼= B → Z/m
to be the map assigning to each β ∈ B the label of its head. This way we get a
triple (d, f, χ) as in 0.7(b) whose equivalence class is well-defined.

Proposition 9.4. In the case of cyclic quivers, the map Ψ : I(g1) → T1 sends
(O,L) to the admissible system in T1 which corresponds to the equivalence class of
the triple (d, f, χ) defined above under the bijection 0.7(a).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

318 GEORGE LUSZTIG AND ZHIWEI YUN

Let e ∈ O, and let V = ⊕α∈Be
(αW ), αW = αW0 ⊕ αW1 ⊕ · · · be a Jordan block

decomposition, where αWN ⊂ Vh(α)+N for α ∈ Be, N ∈ Z≥0. Let L be the Levi
subgroup of a parabolic subgroup of G such that L stabilizes the decomposition
V = ⊕α∈Be

(αW ). Then l = LL has a Z-grading induced from the Z-grading on
each of αW . In particular, l1 is the space of representations of the quiver Qe. The

system (L,L0, l, l∗) is the system (L̃φ, L̃φ
0 , l̃

φ, l̃φ∗ ) attached to some φ ∈ J1(e) as in

2.9. Then e is in the open L0-orbit
◦
l1 of l1, which is contained in the regular

nilpotent orbit of l.
Let αL = SL(αW ) be the subgroup of L which acts as identity on all blocks

α′W for α′ �= α. Then αl = L(αL) carries a Z-grading compatible with that on
l. For each interval [a, b] ⊂ Z≥0, let αW[a,b] ⊂ αW be the direct sum of αWN for
a ≤ N ≤ b. We decompose αW into |α|/d parts each of dimension d:

(a) αW = ⊕|α|/d
j=1 (αW[(j−1)d,jd−1]).

Let αM ⊂ αL be the subgroup stabilizing the decomposition (a). Then the Lie

algebra αm of αM inherits a Z-grading from that of αl, and the open orbit α
◦
m1

carries a local system αCχ corresponding to the character χ of μd
∼= π0(Z(αM)).

Let αC̃χ be the cuspidal perverse sheaf on αm1 corresponding to αCχ. Define a
parabolic subalgebra αq ⊂ αl to be the stabilizer of the filtration αW[|α|−d,|α|−1] ⊂
αW[|α|−2d,|α|−1] ⊂ · · · ⊂ αW = αW[0,|α|−1]. Then αq is compatible with the Z-
grading on αl and αm is a Levi subalgebra of αq. The induction

indαl1
αq1

(αC̃χ)

restricted to α

◦
l1 is isomorphic to L|

α

◦
l1
, because the map c in 1.3 (applied to

αl, αq, αm in place of h, p, l) is an isomorphism when restricted to α

◦
l1. Therefore

the middle extension of L|
α

◦
l1

to l1 appears as a direct summand of indαl1
αq1

(αC̃χ).

Therefore, under the map defined in 1.5(b), the image of (α
◦
l1,L|

α

◦
l1

) is

(αM, αM0, αm, αm1, αC̃χ).

Let αM̃ ⊂ GL(αW ) be the stabilizer of the decomposition (a). Let

M = S(
∏

α∈Be

(αM̃)) ⊂ L

with Lie algebra m ⊂ ⊕(αm̃) and the induced Z-grading from each αm̃ = L(αM̃).

The openM0-orbit on m1 = ⊕(αm1) is
◦
m1 =

∏
(α

◦
m1). Let Cχ = �(αCχ) on

◦
m1. Let

C̃χ be the cuspidal perverse sheaf on m1 corresponding to Cχ. By the compatibility
of the assignment in 1.5(b) with direct products, in the situation H = L, the

pair (
◦
l1,L|◦

l1

) maps to (M,M0,m,m∗, C̃χ). Therefore, (M,M0,m,m∗, C̃χ) is the

admissible system attached to (O,L) through the procedure in 2.9. By 9.2, the

admissible system (M,M0,m,m∗, C̃χ) corresponds to the triple (d, f, χ) defined in
9.3 before the statement of this proposition. This finishes the proof.

9.5. The symplectic quiver. Let V be a finite-dimensional vector space over
k with a nondegenerate symplectic form ω. Assume that m in 0.1 is even. Let
S̃m = {j; j = k/2; k = an odd integer} and let Sm be the set of equivalence
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classes for the relation ∼ on S̃m given by j ∼ j′ if j − j′ ∈ mZ. Note that the
involution j �→ −j of S̃m induces an involution of Sm denoted again by j �→ −j.

For any N ∈ Z, the map j �→ N + j of S̃m onto itself induces a map of Sm onto
itself which depends only on N and is denoted by j �→ N + j.

The set Sm consists of m elements represented by

{1
2
,
3

2
, . . . ,

m− 1

2
,
m+ 1

2
, . . . ,m− 1

2
}.

Consider a grading on V indexed by Sm:

(a) V =
⊕

j∈Sm

Vj ,

such that ω(Vj , Vj′) = 0 unless j′ = −j (as elements of Sm). Using the symplectic
form, for j ∈ Sm we may identify Vj with the dual of V−j .

We assume that G = Sp(V ) and that the Z/m-grading of g = sp(V ) is given by

(b) gi = {φ ∈ sp(V )|φ(Vj) ⊂ Vi+j , ∀j ∈ Sm}, ∀i ∈ Z/m.

In particular, an element φ ∈ g1 is a collection of maps φi : Vi− 1
2
→ Vi+ 1

2
, i ∈ Z/m,

which can be represented by a cyclic quiver

V− 1
2

φ0

��

V− 3
2

φ−1�� . . .�� Vm+1
2

φm
2 +1��

V 1
2

φ1 �� V 3
2

�� . . .
φm

2 −1�� Vm−1
2

φm
2

��
.

The condition φ ∈ sp(V ) becomes that

(c) φ−i = −φ∗
i , ∀i ∈ Z/m.

Here φ∗
i : V ∗

i+ 1
2

→ V ∗
i− 1

2

is the adjoint of φi, which can be viewed as a map V−i− 1
2
→

V−i+ 1
2
under the identifications V ∗

i+ 1
2

∼= V−i− 1
2
, V ∗

i− 1
2

∼= V−i+ 1
2
using the symplectic

pairing. In particular, for i = 0, φ0 : V− 1
2
= V ∗

1
2

→ V 1
2
can be viewed as a vector

φ0 ∈ V ⊗2
1
2

. The condition (b) for i = 0 is equivalent to saying that φ0 ∈ Sym2(V 1
2
).

Similarly, we may view φm
2
as a vector in V ⊗2

m+1
2

, and the condition (c) for i = m
2 is

equivalent to saying that φm
2
∈ Sym2(Vm+1

2
).

We call a representation of the quiver above in which V−j = V ∗
j , and (c) holds a

symplectic representation. In other words, g1 is the space of symplectic representa-
tions of the quiver above.

We have G0
∼=

∏
1
2≤j≤m−1

2
GL(Vj), where GL(Vj) ∼= GL(V−j) acts diagonally on

both Vj and V−j = Vm−j = V ∗
j .

9.6. Spirals for the symplectic quiver. Each element λ ∈ YG0,Q is the same
datum as a Q-grading on each Vj , j ∈ Sm, i.e., Vj = ⊕x∈Q(xVj) such that under
the symplectic form ω, ω(xVj , x′V−j) = 0 unless x + x′ = 0. Then −xV−j can be
identified with the dual of xVj for all (j, x) ∈ Sm ×Q. The spiral p∗ associated to
this grading is

pN = {φ ∈ sp(V )|φ(xVj) ⊂ ⊕x′≥x+N (x′Vj+N ), ∀j ∈ Sm, x ∈ Q}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

320 GEORGE LUSZTIG AND ZHIWEI YUN

A splitting m∗ of the spiral p∗ takes the form

mN = {π ∈ sp(V )|φ(xVj) ⊂ x+NVj+N , ∀j ∈ Sm, x ∈ Q}.
To each such grading, we may attach a quiver Qλ as we did for the cyclic quiver
(since the symplectic quiver is a special case of a cyclic quiver). There is an in-
volution on Qλ sending (j, x) ∈ Jλ to (−j,−x) ∈ Jλ. This involution stabilizes
at most two chains Q′

λ and Q′′
λ of Qλ. The set of vertices of Q′

λ (possibly empty)
is J ′

λ := {(x, x)|xVx �= 0} ⊂ Jλ. The set of vertices of Q′′
λ (possibly empty) is

J ′′
λ := {(x− m

2 , x)|xVx−m
2
�= 0} ⊂ Jλ.

9.7. Admissible systems for the symplectic quiver. Suppose that the follow-
ing hold:

(1) For each (j, x) ∈ J − (J ′
λ 
 J ′′

λ ), we have dim xVj = 1.
(2) The chains in Qλ other than Q′

λ and Q′′
λ all consist of a single vertex.

(3) Let �J ′
λ = 2a′ for some a′ ∈ Z≥0. When a′ > 0, (−a′+ 1

2 ,−a′+ 1
2 ) is the head

of J ′
λ and (a′− 1

2 , a
′− 1

2 ) is the tail. Then dim xVx = a′+ 1
2 −|x| for all (x, x) ∈ J ′

λ.

(4) Let �J ′′
λ = 2a′′ for some a′′ ∈ Z≥0. When a′′ > 0, (−a′′ − m−1

2 ,−a′′ + 1
2 ) is

the head of J ′′
λ and (a′′ − m+1

2 , a′′ − 1
2 ) is the tail. Then dim xVx−m

2
= a′′ + 1

2 − |x|
for all (x− m

2 , x) ∈ J ′′
λ .

Under these assumptions, m1 = m′
1⊕m′′

1 , where m
′
1 is the space of representations

of the quiver Q′
λ with dimension vector dim xVx = a′ + 1

2 − |x| and satisfying
the duality condition ψi = −ψ∗

−i (where ψi : i− 1
2
Vi− 1

2
→ i+ 1

2
Vi+ 1

2
) for all i ∈

{−a′ + 1, . . . , a′ − 1}. Similarly, m′′
1 is the space of representations of the quiver

Q′′
λ with dimension vector dim xVx−m

2
= a′′ + 1

2 − |x| and satisfying the duality

condition ψi = −ψ∗
−i. The open M0-orbit

◦
m1 consists of those representations of

Q′
λ and Q′′

λ where each arrow has maximal rank (either injective or surjective).
Let V ′ = ⊕xVx and V ′′ = ⊕xVx−m

2
. Let V † = ⊕(j,x)/∈J′

λ∪J′′
λ
(xVj). Then we have

V = V ′ ⊕ V ′′ ⊕ V †. This decomposition is preserved by M , and M ∼= Sp(V ′) ×
Sp(V ′′)× T †, where T † is the maximal torus in Sp(V †) stabilizing each line xVj ⊂
V †. The center ZM is isomorphic to {±1} × {±1} × T † under this decomposition.

The stabilizer of a point in
◦
m1 under M0 is exactly ZM . Let C be the rank one

local system on
◦
m1 on whose stalks π0(ZM ) acts nontrivially on both factors of

{±1}. Then C is cuspidal because it is the restriction of the unique cuspidal local

system on m. Let C̃ be the cuspidal perverse sheaf on m1 defined by C. The
system (M,M0,m,m∗, C̃) is admissible. Moreover, any admissible system is of this
form. Under G0-conjugacy, the only invariant of an admissible system is given by
the numbers a′ and a′′. Since dimV ′

j + dimV ′′
j ≤ dimVj , we have the following

inequality for all j ∈ Sm:

(a)
dimVj ≥ �{−a′ +

1

2
≤ x ≤ a′ − 1

2
|x ≡ j mod mZ}

+ �{−a′′ +
1

2
≤ x ≤ a′′ − 1

2
|x ≡ j +

m

2
mod mZ}.

To summarize, we have a natural bijection

(b) T1 ↔ {(a′, a′′) ∈ Z≥0 × Z≥0 satisfying (a) for all j ∈ Sm}.
The map Ψ : I(g1) → T1 for the symplectic quiver as well as other graded Lie
algebras of classical type will be described in a sequel to this paper using the
combinatorics of symbols.
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