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1. Introduction

1.1. Cherednik algebras and their representations

Double affine Hecke algebras were introduced by Cherednik to prove Macdonald con-
jectures [8]. Etingof and Ginzburg [14] introduced the graded Cherednik algebra Hgr

ν and 
rational Cherednik algebra Hrat

ν which are the degenerations of the corresponding double 
affine Hecke algebras. Here ν ∈ C is the central charge. We will recall the definitions of 
these algebras in §1.2.5 and in §4.1–4.2 with more details.

The papers [11] and [2] initiated the study of the representation theory of these alge-
bras. In [11], the category O for Hrat

ν -modules was introduced. It consists of Hrat
ν -modules 

with locally nilpotent action of the subalgebra Sym(a). An irreducible representation τ
of the finite Weyl group W naturally gives rise to an Hrat

ν -modules Mν(τ) via induction 
from the subalgebra Sym(a∗) � W . It is shown in [11] that the simple quotients Lν(τ)
of Mν(τ) exhaust all simple modules in the category O.

The study of representation theory of Hrat
ν continued in [2] where the classification of 

all finite-dimensional simple modules in type A was accomplished. Besides type A the 
classification of finite-dimensional representations remains a challenge. In type B it is 
known how many finite-dimensional Hrat

ν -modules there are (see [31]) and more generally 
a combinatorial formula for the characters of the simple modules in the category O
is proved in [23,32] and [36] for the classical root systems. With an exception of H3
(see [1]), outside of the classical types neither classification of the finite-dimensional 
representations nor character formula for the simple modules are known. However, it 
is completely understood when the polynomial representation Mν(triv) of a Cherednik 
algebra has a finite dimensional quotient (see [13] for an algebraic solution and [35] for 
a geometric one): this happens if and only if Lν(triv) is finite-dimensional, if and only if 
ν ∈ Q>0 and its denominator is a regular elliptic number of W (see Definition 3.2.6).

In this paper we do not attempt a classification of irreducible finite-dimensional mod-
ules but rather provide a geometric construction of some families of finite-dimensional 
representations of Hgr

ν and Hrat
ν . In all the examples we checked, our construction seems 

to give all finite-dimensional irreducible modules of Hrat
ν . In particular, we obtain a ge-

ometric construction of the finite-dimensional simple module Lν(triv) and a geometric 
interpretation of the grading and the Frobenius structure on Lν(triv). Our construction 
also allows us to derive a formula for the dimension of Lν(triv).

We remark that the geometric construction for simple modules of Hgr
ν was first system-

atically carried out by Varagnolo and Vasserot in [35] using the equivariant K-theory 
of homogeneous affine Springer fibers. They then constructed simple modules of Hrat

ν

by a purely algebraic degeneration process. Our methods are related but different from 
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those of [35]. We realize Hgr
ν -modules on the equivariant cohomology of homogeneous 

affine Springer fibers, which is technically simpler. Our realization of Hrat
ν -modules is 

also geometric: we construct a filtration (called the perverse filtration, see §8.3) on the 
cohomology of homogeneous affine Springer fibers coming from the global geometry of 
Hitchin fibration and construct an action of Hrat

ν on the associated graded of the perverse 
filtration. Therefore the geometry of Hitchin fibration is a new ingredient in our con-
struction compared to the approach in [35]. Our construction works thanks to the deep 
geometric results about Hitchin fibration proved by Ngô [26] along the way of proving 
the fundamental lemma, and the global Springer theory developed by one of the authors 
(Z.Y.) in his thesis [37] and [38].

1.2. Main results

All varieties are over C in this paper. When talking about (equivariant) cohomology of 
varieties, we mean the singular cohomology of their underlying complex analytic spaces 
with Q-coefficients.

To simplify notation, in this introduction we let G be an almost simple, connected 
and simply-connected reductive group over C, and let G = G ⊗C F where F = C((t)) is 
the field of formal Laurent series in one variable t. In the main body of the paper we shall 
work with quasi-split groups over F and drop the simple-connectedness condition. Let 
T ⊂ G be a fixed maximal torus with Lie algebra t, Weyl group W and root system Φ. 
Let a = X∗(T) ⊗Q and a∗ = X∗(T) ⊗Q.

We shall introduce one by one the algebraic and geometric objects that are involved 
in the statement of our main results.

1.2.1. Homogeneous elements
Let g be the Lie algebra of G and let c = g �G be the GIT quotient, which is isomorphic 

to an affine space Ar (r is the rank of G). There is a canonical weighted action of Gm on 
c induced from the dilation action on g. An element a ∈ c(F )rs is homogeneous of slope 
ν = d/m (in lowest terms) if 

sd · a(t) = a(smt), for any s ∈ C×.

Here we write coordinates of a as formal Laurent series in t, and sd · (−) is the weighted 
action of sd. The slopes ν above are not arbitrary: their denominators m are exactly the 
regular numbers of the Weyl group W (i.e., orders of regular elements in W in the sense 
of Springer [33]). A rational number ν is called an elliptic slope if its denominator is an 
elliptic regular number of W, see Definition 3.2.6. Let c(F )rsν be the set of homogeneous 
elements of slope ν. This is an open subset of an affine space over C.

1.2.2. Homogeneous affine Springer fibers
For any γ ∈ g(F )rs one can define a closed subvariety Spγ of the affine flag variety Fl of 

G called the affine Springer fiber [22]. It classifies Iwahori subalgebras of g containing γ.
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For a ∈ c(F )rsν , we let Spa denote Spγ where γ = κ(a), and κ is the Kostant section 
κ : c(F ) ↪→ g(F ). Because of the homogeneity of a, there is an action of a one-dimensional 
torus Gm(ν) on the affine Springer fiber Spa. When ν is elliptic, Spa is a projective 
scheme.

1.2.3. Notation on Gm(ν)-equivariant cohomology
For a variety Y equipped with an action of the one-dimensional torus Gm(ν), its 

equivariant cohomology H∗
Gm(ν)(Y ) = H∗

Gm(ν)(Y,Q) is a graded module over the graded 
polynomial ring H∗

Gm(ν)(pt) ∼= Q[ε], where ε ∈ H2
Gm(ν)(pt) ∼= X∗(Gm(ν)) ⊗ZQ corresponds 

to m times the canonical generator of X∗(Gm(ν)).
We shall also consider localized and specialized equivariant cohomology. By localized 

equivariant cohomology we mean H∗
Gm(ν)(Y )[ε−1] := H∗

Gm(ν)(Y ) ⊗Q[ε] Q[ε, ε−1]. When Y
is of finite type, this is a free Q[ε, ε−1]-module of finite rank. The specialized equivariant 
cohomology is 

Hε=1(Y ) := H∗
Gm(ν)(Y )/(ε− 1).

This is a vector space over Q whose dimension is the same as the Q[ε, ε−1]-rank of 
H∗

Gm(ν)(Y )[ε−1]. There is a cohomological filtration on Hε=1(Y ) given by H≤i
ε=1(Y ) =

Im(H≤i
Gm(ν)(Y ) → Hε=1(Y )).

Similarly, we define the localized and specialized equivariant cohomology with compact 
support H∗

c,Gm(ν)(Y )[ε−1] and Hc,ε=1(Y ).

1.2.4. Symmetry on the cohomology of homogeneous affine Springer fibers
Let a ∈ c(F )rsν . There is a diagonalizable group Sa (a subgroup of the centralizer of 

γ = κ(a) in G) acting on Spa.
When ν is elliptic, there is also an action of a braid group Ba = π1(c(F )rsν , a) on 

Hε=1(Spa) coming from the monodromy of the family of affine Springer fibers over c(F )rsν . 
Together there is an action of Sa �Ba on Hε=1(Spa).

1.2.5. Cherednik algebras
We shall consider two versions of Cherednik algebras, the graded (aka trigonometric) 

version Hgr
ν and the rational version Hrat

ν . Both of them are free modules over Q[ε]. For 
simplicity we only consider their specializations Hgr

ν,ε=1 and Hrat
ν,ε=1 (specializing ε to 1) 

in this introduction. The algebra Hgr
ν,ε=1, as a vector space, can be written as a tensor 

product of subalgebras 

Hgr
ν = Sym(a∗) ⊗Q[Waff ],

where Waff = X∗(T) �W is the affine Weyl group (note that we assumed G was simply-
connected). The most essential commutation relation in Hgr

ν,ε=1 is given by 

si · ξ − siξ · si = −ν〈ξ, α∨
i 〉,
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for each affine simple reflection si ∈ Waff (corresponding to the simple affine coroot αi) 
and ξ ∈ a∗. Here a should be thought of as part of the “Kac–Moody torus” aKM, and 
the action of Waff on a∗ should be understood in this way.

The graded algebra Hrat
ν is also a tensor product of subalgebras 

Hrat
ν,ε=1 = Sym(a∗) ⊗ Sym(a) ⊗Q[W]

with the most essential commutation relation given by 

[η, ξ] = 〈ξ, η〉 − ν

2

(∑
α∈Φ

〈ξ, α∨〉〈α, η〉rα

)
, ∀ξ ∈ a∗, η ∈ a.

For the graded Cherednik algebra we prove

Theorem 1.2.6. Let ν > 0 be a slope and a ∈ c(F )rsν .

(1) There is an action of Hgr
ν,ε=1 on the compactly supported equivariant cohomology 

Hc,ε=1(Spa).
(2) If ν is elliptic, then Sa � Ba acts on Hε=1(Spa) and the action commutes with the 

action of Hgr
ν,ε=1. Moreover, the image of the restriction map Hε=1(Fl) → Hε=1(Spa)

is the invariant part Hε=1(Spa)Sa�Ba , realizing Hε=1(Spa)Sa�Ba as a quotient of the 
polynomial representation of Hgr

ν,ε=1.
(3) If ν is elliptic, then Hε=1(Spa)Sa�Ba is an irreducible Hgr

ν,ε=1-module.

In the main body of the paper we prove (1) and (2) also for quasi-split groups G. 
Part (1) above appears as Corollary 7.1.6 to Theorem 7.1.5; part (2) is proved in Theo-
rem 5.5.1(2) and Lemma 7.2.2; part (3) appears as Corollary 8.2.4, which is a consequence 
of the next theorem.

For the rational Cherednik algebra we prove

Theorem 1.2.7. Let ν > 0 be an elliptic slope and a ∈ c(F )rsν . Then on H∗
Gm(ν)(Spa)Sa

there is a geometrically defined filtration P≤iH∗
Gm(ν)(Spa)Sa (called the perverse filtra-

tion, coming from the global geometry of the Hitchin fibration), stable under the action 
of Ba, such that

(1) There is a graded action of Hrat
ν,ε=1 on GrP∗ Hε=1(Spa)Sa commuting with the action 

of Ba.
(2) The Hrat

ν,ε=1-module GrP∗ Hε=1(Spa)Sa�Ba is isomorphic to the finite-dimensional ir-
reducible spherical module Lν(triv). Moreover, GrP∗ Hε=1(Spa)Sa�Ba carries a Frobe-
nius algebra structure induced from the cup product.

In the main body of the paper, we also prove a weaker version of the above result when 
G is quasi-split but non-split, and conjecture that the above result should hold in this 
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generality, see Proposition 8.2.2, Theorem 8.2.3 and Conjecture 8.2.5. The conjecture in 
the quasi-split case is supported by examples in §9. The perverse filtration is constructed 
in §8.3; part (1) above is proved in §8.5; part (2) is proved in §8.6.

We also give a formula for the dimension of the irreducible spherical module Lν(triv). 
Let Wν ⊂ Waff be the finite subgroup of the affine Weyl group that stabilizes the 
point νρ∨ in the standard apartment aR of G. Taking the linear part of Wν iden-
tifies it with a subgroup of the finite Weyl group W of G which acts on a∗. Let 
HWν

= Sym(a∗)/Sym(a∗)Wν
+ where Sym(a∗)Wν

+ is the ideal generated by the homo-
geneous Wν-invariant elements of positive degree. To an element w̃ ∈ Waff we attach the 
element λw̃

ν ∈ HWν
defined as 

λw̃
ν :=

∏
α(νρ∨)=ν

w̃−1(α)<0

ᾱ (1.1)

where ᾱ ∈ a∗ is finite part of the affine root α. Let Ann(λw̃
ν ) ⊂ HWν

be the ideal 
annihilating λw̃

ν .

Theorem 1.2.8. Let ν > 0 be an elliptic slope. Then the dimension of the spherical 
irreducible module of Hrat

ν,ε=1 is given by 

dimLν(triv) =
∑

w̃∈Wν\Waff

dimHWν
/Ann(λw̃

ν ). (1.2)

This theorem follows from the combination of Theorem 1.2.7(2) and Theorem 5.5.10. 
In practice, the calculation of dimLν(triv) can be made more effective. If ν = d/m in 
lowest terms, we have Ld/m(triv) = drL1/m(triv) where r is the rank of G. To calculate 
L1/m(triv), the right side of (1.2) only involves very few w̃ lying in certain bounded clans
(see §5.5.4) which are easy to determine. In §9, we compute dimLν(triv) by hand for low 
rank groups, and use computer to generate tables of dimensions for exceptional groups 
(see §9.10).

1.3. Organization of the paper

The paper consists of three parts.
The Algebra part provides basic setup of the groups and algebras involved in the 

main results. The materials in §2 and §4 are standard in the situation of split G, but we 
set things up to treat the quasi-split cases uniformly. The key notion of homogeneous 
elements in a loop algebra is introduced in §3.1, and we relate it to more familiar no-
tions in Lie theory such as graded Lie algebras, regular elements in Weyl groups and 
Moy–Prasad filtration.

The Geometry part studies the geometric and homological properties of homogeneous 
affine Springer fibers (§5) and homogeneous Hitchin fibers (§6). The main new result in 
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§5 is a formula for the dimension of the monodromy-invariant part of the cohomology of 
homogeneous affine Springer fibers (Theorem 5.5.10). Although our main results can be 
stated without referring to Hitchin fibers, the proof of Theorem 1.2.7 uses the relation 
between affine Springer fibers and Hitchin fibers, and uses the global geometry of Hitchin 
fibration in an essential way. In §6 we prove basic geometric properties of Hitchin moduli 
spaces over a weighted projective line, which is needed in order to establish a clean 
comparison result with homogeneous affine Springer fibers (Proposition 6.6.3).

The Representations part then connects the Algebra part and the Geometry part to-
gether. In §7, we construct representations of the graded Cherednik algebra Hgr

ν on the 
equivariant cohomology of homogeneous affine Springer fibers and Hitchin fibers. The 
construction is a straightforward modification of what has been done in [37]. In §8, we 
construct representations of the rational Cherednik algebra Hrat

ν on the associated graded 
pieces of the equivariant cohomology of homogeneous affine Springer fibers and Hitchin 
fibers. The key step in the construction is to define a filtration on these cohomology 
groups such that when passing to the associated graded, the action of Hgr

ν induces an 
action of Hrat

ν . We propose two filtrations, an algebraic one (called the Chern filtration, 
see §8.1) which works for quasi-split G but is only defined on the quotient of the polyno-
mial representation of Hrat, and a geometric one (called the perverse filtration, see §8.3) 
using deep geometric input from Hitchin fibration (such as the support theorem proved 
by Ngô [26]), which currently only works for split groups G. These filtrations coincide 
on spaces where they are both defined, and the final construction of the Hrat

ν -module 
structure and the proof of its properties (such as irreducibility) uses both of them. We 
also prove a duality theorem (Corollary 8.7.4) for the Hrat

ν -modules constructed from 
homogeneous affine Springer fibers for Langlands dual groups G and G∨.

In the final section §9, we compute all examples where the F -rank of G is at most 
two. The relevant Hessenberg varieties appear to have close relationship with classical 
projective geometry such as pencils of quadrics. The fact that the dimensions of their co-
homology add up to the correct number (a sum of dimensions of irreducible Hrat

ν -modules 
people computed earlier) in each single example is a miracle to us. Using computer we 
also give tables of dimensions of Lν(triv) for exceptional groups, and make conjectures 
about the dimension for certain classical groups.

Part 1. Algebra

2. Group-theoretic preliminaries

In this section, we collect the basic definitions and properties of quasi-split reductive 
groups over F = C((t)). All results here are either well-known or variants of well-known 
ones. The reader is invited to come back to this section for clarification of notation.
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2.1. The group G

Let G be an almost simple reductive group over C. We fix a pinning † = (T, B, · · · )
of G, where T is a maximal torus of G and B is a Borel subgroup containing T. This 
determines a based root system φ ⊂ X∗(T) and a based coroot system φ∨ ⊂ X∗(T). Let 
Aut†(G) be the group of pinned automorphisms of G, which is naturally isomorphic to 
Out(G). The Lie algebra of G is denoted by g. For a C-algebra R, we sometimes denote 
g ⊗k R by g(R).

Fix θ : μe ↪→ Out(G) ∼= Aut†(G) an injective homomorphism. We have e = 1 or e = 2
(type A, D or E6) or e = 3 (type D4).

Let H be the neutral component of Gμe,◦. Let A be the neutral component of Tμe,◦. 
Then A is a maximal torus of H and X∗(A) = X∗(T)μe .

Notation: we use boldfaced (or blackboard) letters to denote the absolute data at-
tached to the group G and the usual letters for the relative data attached to either H or 
(G, θ). For example,

• r = rank G = dimT while r = rank H = dimA.
• The absolute root system φ = Φ(G, T); the relative root system Φ = Φ(G, A) (which 

is not necessarily reduced).
• The absolute Weyl group W = NG(T)/T and the relative one W = NH(A)/A = Wμe .

We also introduce the group W′ = W � μe where μe acts on W via θ.

2.2. The group G over F

2.2.1. The field F
Let F = C((t)), the field of formal Laurent series with coefficients in C. Let OF = C[[t]]

be the valuation ring in F . For each integer n ≥ 1, let Fn be the extension C((t1/n))
of F . Then F∞ = ∪n≥1Fn is an algebraic closure of F , with Gal(F∞/F ) is identified 
with the projective limit Ẑ(1) = lim←−−n

μn.
Let ν ∈ Q. The Galois action of Ẑ(1) on tν ∈ F∞ gives a character which we denote 

by ζ �→ ζν . This character only depends on the class of ν in Q/Z. Concretely, if ν = a/b

in lowest terms with b > 0, then the corresponding character is Ẑ(1) natural−−−−−→ μb
[a]−−→ μb.

2.2.2. The quasi-split group G
The homomorphism θ gives a descent datum of the constant group G ⊗C Fe from Fe

to F . We denote the resulting group scheme over F by G. Explicitly, for any F -algebra R, 
G(R) = {g ∈ G(R) ⊗F Fe : ζ(g) = θ(ζ)(g) for all ζ ∈ μe}, where ζ(g) means the action 
on Fe via the Galois action. In other words, G = (ResFe

F (G ⊗C Fe))μe , with μe acting 
simultaneously on Fe through Galois action and on G through θ composed with the 
inversion on Out(G). The torus A := A ⊗C F of G is a maximal split torus of G. The 
torus T gives rise to a maximal torus T = (ResFe

F (T ⊗C Fe))μe of G.
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2.2.3. Integral models
We need an integral model of G over OF . First consider G1 = (ResOFe

OF
(G ⊗C OFe

))μe

(the action of μe is the same as in the case of G above). This is a group scheme over 
Spec OF whose generic fiber is isomorphic to G. The special fiber of G1 has reductive 
quotient equal to Gμe , which may or may not be connected. Let G ⊂ G1 be the fiberwise 
neutral component, which is a smooth group scheme over OF with generic fiber G. In 
fact, G is a special parahoric subgroup of G. We can similarly define an OF -model T
for T . Namely, we first define T1 = (ResOFe

OF
(T ⊗COFe

))μe , then take T to be the fiberwise 
neutral component of T1.

The Lie algebra of G is denoted g. We have g(OF ) = {X(t1/e) ∈ g ⊗Fe : θ(ζ)X(t1/e) =
X(ζt1/e) for all ζ ∈ μe}. This is a Lie algebra over OF . For an OF -algebra R, we use 
g(R) to mean g ⊗OF

R.

2.3. Invariant quotient

Let c = t �W = g �G be the invariant quotient of g. There is a G-invariant morphism 
χ : g → c. As an affine scheme over C, c is isomorphic to an affine space with coordinate 
functions given by the fundamental invariants polynomials f1, · · · , fr on g.

Define c = (ResOFe

OF
(c ⊗C OFe

))μe , where μe acts on both c (via θ) and on OFe
(via 

the inverse of the usual Galois action on Fe). We have a morphism χ : g → c over OF , 
which is induced from χ ⊗OFe

: g ⊗C OFe
→ c ⊗C OFe

.
It is convenient to choose the fundamental invariants f1, · · · , fr so that each of them 

is an eigenvector under the pinned action of μe. Let εi ∈ {0, 1, · · · , e − 1} be the unique 
number such that μe acts on fi via the εth

i power of the tautological character of μe. 
Using the fundamental invariants, we may write 

c(OF ) =
r⊕

i=1
tεi/eOF . (2.1)

We use cF to denote the generic fiber of c, which is the same as (ResFe

F (c ⊗C Fe))μe . 
Let crs ⊂ c be the complement of the discriminant divisor. Since crs is invariant under 
Out(G), we can define crsF := (ResFe

F (crs ⊗C Fe))μe , which is an open subscheme of cF . 
We denote the F -points of crsF by c(F )rs.

2.3.1. Ellipticity
The composition t ⊗ Fe → c ⊗ Fe → cF is a branched W′-cover that is étale over crsF . 

Let a ∈ c(F )rs, viewed as a morphism Spec F → crsF , then it induces a homomorphism 
Πa : Gal(F∞/F ) ∼= Ẑ(1) → W′ (up to conjugacy). A point a ∈ c(F )rs is called elliptic if 
tΠa(Ẑ(1)) = 0. Equivalently, if we fix a topological generator ζ ∈ Ẑ(1), then a is elliptic if 
tΠa(ζ) = 0.
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2.3.2. Kostant section
Let s ⊂ g be the Kostant section defined using the pinning of G. Recall if 

(e, 2ρ∨, f) is the principal sl2-triple of g, then s = e + gf. Since e, f are invariant un-
der pinned automorphisms of G, the isomorphism χ|s : s → c is μe-equivariant. Let 
s = (ResOFe

OF
(s ⊗OFe

))μe ⊂ g. Then the characteristic map χ restricts to an isomorphism 
χ|s : s ∼→ c. The inverse of χ|s is denoted by 

κ : c ∼→ s ⊂ g,

and is called the Kostant section for g.

2.4. Regular centralizers

We define regular elements in g as the open subset greg = g ∩ greg(OFe
). This defines 

an open subscheme greg ⊂ g over OF .
Let I over g be the universal centralizer group scheme. Consider the group scheme I|s

over s and view it as a group scheme over c via χ|s. We denote this group scheme over c
by J , and call it the regular centralizer group scheme of g.

Lemma 2.4.1. There is a canonical morphism ι : χ∗J → I which is the identity when 
restricted to greg.

Proof. Let J ′ and I ′ be the regular centralizer and the universal centralizer group 
schemes over g ⊗C OFe

. Let χ′ : g ⊗ OFe
→ c ⊗ OFe

be the invariant quotient map. 
Then it is shown in [25] that there is a canonical morphism ι′ : χ′∗J ′ → I ′ which 
restricts to the identity on greg ⊗C OFe

.
There are obvious maps I ↪→ I1 := Resg⊗OFe

g (I ′)μe and J ↪→ J1 := Resc⊗OFe
c (J ′)μe . 

The morphism ι′ induces ι1 : χ∗J1 → I1, which is the identity on greg. Consider the 
composition 

βJ : χ∗J1 → I1
βI−−→ G1.

By definition, I = β−1
I (G) ⊂ I1; J = β−1

J (G) ⊂ J1. Therefore ι1 restricts to a morphism 
ι : χ∗J → I which is the identity on greg. �

There is an alternative description of J in the style of [10]. Consider the group scheme 
J
 := (Rest⊗OFe

c ((T ×t) ⊗OFe
))W′ . Then J is an open subgroup of J
 given by removing 

components over the discriminant locus of c as well as over the special fiber of c. We 
omit the details here.

We need a strengthening of Lemma 2.4.1. For each Iwahori I (viewed as a group 
scheme over OF ) of G(F ), we can define the corresponding universal centralizer II over 
Lie I. It consists of pairs (g, γ) ∈ I × Lie I such that Ad(g)γ = γ. There is a natural 
inclusion II ↪→ I|Lie I. Let χI : Lie I ↪→ g → c be the restriction of χ to Lie I.
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Lemma 2.4.2. There is a canonical morphism ιI : χ∗
IJ → II which is such that the 

composition χ∗
IJ → II ↪→ I|Lie I is the restriction of ι to Lie I.

Proof. The argument for Lemma 2.4.1 applies here with the following modifications. 
We only need to produce a canonical map ι′I′ : χ′∗

I′J
′ → I ′I′ . This follows from [37, 

Lemma 2.3.1]. �
2.5. The affine root system

2.5.1. The loop group and parahoric subgroups
The group G(F ) can be viewed as a the C-points of a group ind-scheme LG over C. 

For any C-algebra R, LG(R) is defined to be G(R((t))). We shall abuse the notation and 
write G(F ) for LG if it is clear from the context that G(F ) denotes a group ind-scheme 
over C. Parahoric subgroups P of G(F ) are the OF -points of certain smooth models of 
G over OF (the Bruhat–Tits group schemes). Later we will also considered P as group 
schemes (of infinite type) over C, whose R-points are P(R[[t]]).

2.5.2. The Kac–Moody group
Attached to G there is an affine Kac–Moody group which is a group ind-scheme 

over C. First there is a central extension 1 → Gcen
m → Gcen → G(F ) → 1, where 

Gcen
m is a one-dimensional torus. The central extension Gcen is constructed as in [37, 

6.2.2]: a C-point of Gcen
m is a pair (g, τ) where g ∈ G(F ) and τ is a trivialization of the 

determinant line det(Ad(g)g : g). The affine Kac–Moody group is the semidirect product 
GKM = Gcen �Grot,[e]

m , where Grot,[e]
m -acts as usual on G(F ) and as the identity on Gcen

m .
We have the torus AKM := Gcen

m ×A ×Grot,[e]
m ⊂ GKM (recall A is the neutral component 

of Tμe). Let a := X∗(A) ⊗Z Q and aKM := X∗(AKM) ⊗Z Q, and let a∗ and a∗KM be the 
dual vector spaces.

Let δ/e and Λcan be the generators of X∗(Grot,[e]
m ) and X∗(Gcen

m ) respectively. Dually, let 
e∂ and Kcan be the generators of X∗(Grot,[e]

m ) and X∗(Gcen
m ) respectively. The imaginary 

roots of GKM are 1
eZδ − {0}.1

2.5.3. Affine simple roots
Δ = {α1, · · · , αr} are the simple roots of the reductive group H with respect to A, 

which are in bijection with the μe-orbits on the simple roots of G with respect to T. Let 
β ∈ Φ be the highest weight of the action of A on g1 (the eigenspace of g on which μe

acts via the tautological character). When e = 1, β is the highest root of G. When e > 1
and G is not of type 2A2n, β is the dominant short root in the relative root system Φ; 
when G is of type 2A2n, β is the longest dominant root in Φ, which is twice a shortest

1 This is different from Kac’s convention in [20], where he defines δ to be the generator of positive imaginary 
roots.
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root. We introduce the Dynkin labeling {a0 = 1, a1 · · · , ar} such that 

β =
r∑

i=1
aiαi.

The θ-twisted Coxeter number attached to (G, θ) is 

hθ = e
r∑

i=0
ai.

Let 

α0 = δ/e− β.

Then Δaff = {α0, α1, · · · , αr} is the set of affine simple roots of the Kac–Moody
group GKM. The set of affine roots of GKM will be denoted by Φaff , which is a sub-
set of X∗(Grot,[e]

m ) ⊕ X∗(A).2

2.5.4. Affine simple coroots
Let β∨ ∈ Φ∨ be the coroot attached to β. Let a∨0 = 1 if G is not of type 2A2n and 

a∨0 = 2 otherwise. We introduce the dual labeling {a∨0 , a∨1 · · · , a∨r } such that 

a∨0 β
∨ =

r∑
i=1

a∨i α
∨
i . (2.2)

The θ-twisted dual Coxeter number is defined as 

h∨
θ =

r∑
i=0

a∨i . (2.3)

Note that h∨
θ is always equal to the dual Coxeter number of G. Let 

α∨
0 = 2h∨

θ

a∨0
Kcan − β∨. (2.4)

Then Δ∨
aff = {α∨

0 , α
∨
1 , · · · , } is the set of affine simple coroots of GKM. The set of affine 

coroots of GKM will be denoted by Φ∨
aff , which is a subset of X∗(Gcen

m ) ⊕ X∗(A) ⊂ aKM.

2 When G is of type 2A2n, our convention here is different from that in [20]. Kac takes α0 to be the shortest 
node in the Dynkin diagram of type 2A2n while we take α0 to be the longest one. In Kac’s convention a0 = 2
and a∨

0 = 1, while in our convention a0 = 1 and a∨
0 = 2.
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2.5.5. The affine Weyl group
First we have the extended affine Weyl group W̃ defined as follows. Recall the maximal 

torus T ⊂ G is given an OF -structure T. Then W̃ := NG(T )/T. Since W = NG(T )/T , 
we have a canonical short exact sequence

1 → X∗(T)μe
→ W̃ → W → 1 (2.5)

in which the first term is canonically isomorphic to T (F )/T(OF ).
Let A be the apartment in the building of G attached to T . This is a torsor under 

a ⊗Q R. The group W̃/X∗(T)μe,tors acts on A, and X∗(T)μe
/X∗(T)μe,tors acts as transla-

tions. This defines an embedding

ι : X∗(T)μe
/X∗(T)μe,tors ↪→ a.

Each real affine root of GKM is viewed as an affine function on A. The zero sets of 
the real affine roots gives a stratification of A into facets. Each facet F gives rise to a 
parahoric P ⊂ G(F ) containing T and vice versa. The special parahoric G determines 
a facet FG which is a point. We often use this point to identify A with a ⊗Q R. Since W
can also be identified with NG(T)/T, we may identify W with a reflection subgroup of 
W̃ fixing the vertex FG. This way we can write W̃ = X∗(T )μe

�W .
The complement of the affine root hyperplanes is a disjoint union of alcoves, which are 

in bijection with Iwahori subgroups containing T. The choice of the standard Iwahori I
determines the standard alcove FI adjacent to FG. The standard parahorics corresponds 
bijectively to the facets in the closure of FI. The affine roots whose zero set is tangent 
to FI and whose gradient is pointing towards FI are called affine simple roots.

The affine Weyl group Waff attached to G is the subgroup of W̃ generated by reflec-
tions across the affine root hyperplanes. Equivalently, Waff is generated by the simple 
reflections corresponding to elements in Δaff . We have a similar short exact sequence

1 → Λ → Waff → W → 1,

for some sublattice Λ ⊂ X∗(T)μe
. Let Ω := X∗(T)μe

/Λ. When e = 1, Ω is the fundamental 
group of G, and Λ is the coroot lattice of G. In general, we have an exact sequence

1 → Waff → W̃ → Ω → 1.

Let ΩI be the stabilizer of FI under W̃ , then ΩI → Ω is an isomorphism via the projection 
W̃ � Ω. Therefore we may write W̃ = Waff � ΩI. We may identify ΩI with NG(I)/I.

2.5.6. The invariant symmetric bilinear form
Let

B(·, ·) : X∗(T) × X∗(T) → Z

(x, y) �→
∑

〈α, x〉〈α, y〉

α∈φ
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be the Killing form on X∗(T) (we are summing over all roots of G). Restricting to X∗(A)
we get a W -invariant symmetric bilinear form on X∗(A) and hence on a. As an element 
of Sym2(a)W , we have 

B =
∑
α∈φ

α⊗ α.

We define a symmetric bilinear form BKM on aKM extending B: 

BKM = B + δ ⊗ Λcan + Λcan ⊗ δ. (2.6)

In other words, we have

BKM(∂, a) = 0;BKM(Kcan, a) = 0;BKM(∂, ∂) = BKM(Kcan,Kcan) = 0;

BKM(∂,Kcan) = BKM(Kcan, ∂) = 1;BKM|a = B.

Lemma 2.5.7. The symmetric bilinear form BKM on aKM is W̃ -invariant.

Proof. It is well-known that a W̃ -invariant extension of B exists and takes the form 
B + c(δ ⊗ Λcan + Λcan ⊗ δ) for some constant c. The s0-invariance forces 

c = a∨0B(β∨, β∨)
4eh∨

θ

.

We only need to show that c = 1. When e = 1, β the highest root of G and we have 
the well-known formula B(β∨, β∨) = 4h∨, hence c = 1. When e > 1 and G is not of 
type 2A2n, β∨ is the sum of e mutually orthogonal coroots γ∨

i for i = 0, · · · , e −1 (which 
form an orbit under the action of μe). Each B(γ∨

i , γ
∨
i ) = 4h∨

θ (since G is simply-laced). 
Hence B(β∨, β∨) = 4eh∨

θ and c = 1. Finally, when G is of type 2A2n, β∨ is a coroot of G, 
hence B(β∨, β∨) = 4h∨

θ and again c = 1. �
Lemma 2.5.8. Suppose w̃ ∈ ker(W̃ → W ) with ι(w̃) = λ ∈ a. Then the action of w̃ on 
a∗KM is given by

w̃δ = δ; (2.7)
w̃ξ = ξ + 〈ξ, λ〉δ, for ξ ∈ a∗; (2.8)

w̃Λcan = Λcan − λ∗ − 1
2B(λ, λ)δ, (2.9)

where λ∗ ∈ a∗ is defined by 〈λ∗, y〉 = B(λ, y). Dually, the action of w̃ on aKM is given by

w̃Kcan = Kcan;
w̃η = η + B(λ, η)Kcan, for η ∈ a;
w̃∂ = ∂ − λ− 1

B(λ, λ)Kcan.
2



616 A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601–706
Proof. We only give the proof of the first three equalities and the last three are obtained 
by duality. Equation (2.7) is clear since δ is invariant under all si and Ω. For ξ ∈ a∗, we 
have w̃ξ ∈ ξ + Qδ. We can define a pairing

f : X∗(T)μe
× a∗ → Q

(w̃, ξ) �→ (w̃ξ − ξ)/δ.

It is easy to check that f is bilinear and W -invariant (W acts diagonally on X∗(T)μe
×a∗). 

Therefore f = c〈ξ, ι(w̃)〉 for some constant c ∈ Q. Taking the special element w̃ = rβs0
(β is used to define α0, see §2.5.3). One easily calculates that ι(w̃) = 1

eβ
∨ and w̃ξ =

ξ + 1
e 〈ξ, β∨〉δ. Therefore for this w̃ we have f(w̃, ξ) = 〈ξ, ι(w̃)〉 and the constant c = 1. 

This proves (2.8).
Finally, for ι(w̃) = λ, w̃Λcan takes the form Λcan + ϕ(λ) + q(λ)δ for a linear function 

ϕ : X∗(T)μe
→ a∗ and a quadratic function q : X∗(T)μe

→ Q. On the other hand, 
BKM is invariant under W̃ . Using proven formulas (2.7) and (2.8) one can calculate 
w̃BKM. Comparing with BKM we conclude that ϕ(λ) = − 

∑
α∈φ〈α, λ〉α = −λ∗ and 

q(λ) = −1
2B(λ, λ). This proves (2.9). The dual statements are immediate corollaries of 

what we already proved. �
3. Homogeneous elements in the loop Lie algebra

In this section, we shall systematically study homogeneous elements (or rather con-
jugacy classes) in the loop Lie algebra g(F ). Homogeneous conjugacy classes are those 
which are stable under a one-dimensional torus that is a mixture of “loop rotation” and 
dilation. The main result is a classification theorem for homogeneous conjugacy classes 
in terms of any one of the three well-studied objects in representation theory: regular 
elements in a Weyl group; periodic gradings on g and Moy–Prasad filtrations on g(F ). 
Out treatment here is strongly influenced by the work of Gross, Levy, Reeder and Yu 
(see [30] and [29]).

3.1. Definition and basic properties

3.1.1. Two tori acting on c(F∞)
The one dimensional torus Grot,[n]

m acts on Fn by scaling t1/n (the notation Grot,[n]
m is 

to emphasize the dependence on n; when n = 1 we write Grot,[1]
m as Grot

m ). Let Ĝrot
m =

lim←−−Grot,[n]
m where the transition maps are given by [�] : Grot,[�n]

m → Grot,[n]
m . This can be 

viewed as the universal cover of Grot
m . We have a natural isomorphism X∗(Ĝrot

m ) = Q, 
with X∗(Grot,[n]

m ) identified with 1
nZ ⊂ Q. The actions of Grot,[n]

m on Fn passes to the 
limit to give an action of Ĝrot

m on F∞, and on g(F∞). We have an exact sequence 

1 → Ẑ(1) → Ĝrot
m → Grot

m → 1.
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On the other hand, the one-dimensional torus Gdil
m acts on g(F∞) by dilation: Gdil

m �
λ : X �→ λX for X ∈ g(F∞). The dilation action induces the dilation action of Gdil

m on 
c(F∞) with weights d1, · · · , dr.

Thus we get an action of Ĝrot
m ×Gdil

m on both g(F∞) and c(F∞) such that χ : g(F∞) →
c(F∞) is Ĝrot

m × Gdil
m -equivariant. At finite level, we have an action of Grot,[e]

m × Gdil
m on 

g(Fe) and c(Fe) (but not an action of Grot
m ×Gdil

m on g(F ) or c(F ) if e > 1).
For a rational number ν ∈ Q, we define a subtorus Ĝm(ν) ⊂ Ĝrot

m × Gdil
m as follows. 

The character group of Ĝm(ν) is identified with the quotient of X∗(Ĝrot
m ×Gdil

m ) = Q ⊕Z
defined using the exact sequence 

0 → Z
(ν,1)−−−→ Q⊕ Z → X∗(Ĝm(ν)) → 0.

In particular, the image of Ĝm(ν) in Grot,[n]
m ×Gdil

m is the one-dimensional subtorus whose 
cocharacter lattice is a lattice in Z2 of slope −nν.

Definition 3.1.2. Let ν ∈ Q.

(1) An element a ∈ crs(F∞) is called homogeneous of slope ν if a is fixed under Ĝm(ν). 
Let c(F )rsν denote the set of all homogeneous elements of slope ν.

(2) A regular semisimple element γ ∈ g(F∞) is called homogeneous of slope ν if χ(γ) ∈
crs(F∞) is.

We denote the Galois action of Ẑ(1) on c(F∞) (without the twisting by θ) by ζ : a �→
ζ ·Gal a. The dilation action of s ∈ Gm on c will be denoted by a �→ s ·dil a.

Lemma 3.1.3. Let ν ∈ Q.

(1) If a ∈ crs(F∞) is homogeneous of slope ν, then for any ζ ∈ Ẑ(1) we have 

ζ ·Gal a = ζν ·dil a. (3.1)

(2) An element a ∈ crs(F∞) is homogeneous of slope ν if and only if fi(a) = cit
νdi for 

some ci ∈ C, i = 1, · · · , r.
(3) A regular semisimple element γ ∈ g(F∞) is homogeneous of slope ν if and only if it 

is G(F∞)-conjugate to an element of the form Xtν where X ∈ trs.

Proof. (1) and (2) are direct calculation.
(3) The “if” direction is clear. Now suppose a regular semisimple element γ ∈ g(F∞) is 

homogeneous of slope ν. Then χ(γ) is as described in Part (1) and there exists X ∈ trs(C)
such that χ(Xtν) = a. Both Xtν and γ are regular semisimple elements in g(F∞) with 
the same invariants, they are G(F∞)-conjugate to each other because F∞ is algebraically 
closed. �
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3.2. Homogeneous elements, principal gradings and regular elements in the Weyl group

In this section we shall give two ways to classify homogeneous elements in c(F )rs: one 
using principal gradings on the Lie algebra g and the other using regular homomorphisms 
into the Weyl group W′.

3.2.1. Periodic gradings on g
A periodic grading on the Lie algebra g is a homomorphism 

Ψ : Ẑ(1) → Aut(g)

that factors through some finite quotient. The group of characters of Ẑ(1) is Q/Z. We 
may decompose g according to characters of Ẑ(1)

g =
⊕

ξ∈Q/Z

gξ. (3.2)

The order of such a grading is the minimal positive integer m such that Ψ factors 
through μm. The grading Ψ is adapted to θ if the composition μm → Aut(g) → Out(g)
is the same as μm

[m/e]−−−−→ μe
θ−→ Out(g). Periodic gradings have been studied in depth by 

the Vinberg school.

Definition 3.2.2. Let ξ ∈ Q/Z. The principal grading of slope ξ is the following periodic 
grading adapted to θ:

Ψξ : Ẑ(1) → Gad � μe ⊂ Aut(g)

ζ �→ ζξρ
∨
θ(ζ). (3.3)

Here ζ ∈ μe is the image of ζ in μe; ζξρ
∨ is the image of ζ under the composition 

Ẑ(1) ξ−→ C× ρ∨

−−→ Tad(C) (we have viewed Q/Z as the dual of Ẑ(1)).

3.2.3. Regular homomorphisms into W′

Reformulating the original definition of Springer slightly, we introduce the notion of 
regular homomorphisms into the group W′.

Let Π : Ẑ(1) → W′ be a homomorphism over μe, i.e., the composition Ẑ(1) Π−→
W′ → μe is the tautological projection. Composing with the reflection action of W′ on t, 
we get an action of Ẑ(1) on t. We thus get a decomposition of t into eigenspaces according 
to characters of Ẑ(1)

t =
⊕

ξ∈Q/Z

tξ. (3.4)

The order of such a Π is the minimal positive integer m such that Π factors through μm.
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Definition 3.2.4 (Springer). Let Π : Ẑ(1) → W′ be a homomorphism over μe. Then Π
is called θ-regular if for some ξ ∈ Q/Z, tξ contains a regular element. The eigenvalues 
ξ ∈ Q/Z such that tξ ∩ trs �= ∅ are called the regular eigenvalues of Π.

Let σ be a generator of μe. Let Π : Ẑ(1) → W′ be a θ-regular homomorphism. Let ζ
be a topological generator of Ẑ(1), with Π(ζ) = wσ ∈ Wσ ⊂ W′. Then wσ is a regular 
element in Wσ in the sense of Springer [33, paragraph after Theorem 6.4].

Theorem 3.2.5. Let ν ∈ Q. We denote its image in Q/Z by ν. Then there are natural 
bijections between the following sets 

c(F )rsν ↔ grs
ν /G

Ψν ,◦ ↔ Reg(W′)ν/W, (3.5)

where

• c(F )rsν is the set of homogeneous elements of slope ν (see Definition 3.1.2);
• gν is the ν-piece of the principal grading Ψν of slope ν (see Definition 3.2.2) and 

GΨν ,◦ the neutral component of its centralizer in G; grs
ν = gν ∩ grs;

• Reg(W′)ν is the set of pairs (Π, X) where Π : Ẑ(1) → W′ is a θ-regular homo-
morphism (over μe) and X ∈ trsν = tν ∩ trs (here tν is the ν-piece of t under the 
action of Ẑ(1) via Π). The Weyl group W acts on Reg(W′)ν by simultaneous conju-
gation.

Moreover, under the above bijections, the order of the principal grading Ψν in (2) and 
the order of the homomorphism Π in (3) are both equal to lcm(m1, e), where m1 is the 
denominator of ν in lowest terms.

Proof. We shall define maps 

c(F )rsν

φ1

grs
ν /G

Ψν ,◦
φ2 Reg(W′)ν/W

φ3

Then check their cyclic composition give identity maps.
The map φ1. To a ∈ c(F )rsν we will associate an element Y ∈ gν . Let γ = κ(a) ∈ s(F ). 

We write γ as a formal Laurent series γ(t1/e) in t1/e with coefficients in g. Recall s ·dil a

denotes the dilation action on c, which has positive weights (d1, · · · , dr). The Kostant 
section κ : c ∼→ s ⊂ g satisfies 

κ(s ·dil a) = sAd(s−ρ∨
)κ(a), s ∈ Gm, a ∈ c. (3.6)
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We also denote the Galois action of ζ ∈ Ẑ(1) on g(F∞) (without θ-twisting) by ζ ·Gal (−). 
Using (3.1), we have 

ζ ·Gal γ = κ(ζ ·Gal a) = κ(ζν ·dil a) = ζνAd(ζ−νρ∨
)κ(a) = ζνAd(ζ−νρ∨

)γ. (3.7)

Since γ ∈ g, we have ζ ·Gal γ = θ(ζ)(γ), therefore 

Ad(ζνρ
∨
)θ(ζ)γ = ζνγ. (3.8)

In other words, γ ∈ gν ⊗ Fe. Homogeneity of a implies that γ lies in g ⊗ C[t1/e, t−1/e], 
so that it makes sense to specialize t to 1. We assign the element Y = γ(1) ∈ gν to a.

The map φ2. We define a more general map 

{(Ψ, Y ) : Ψ is a periodic grading adapted to θ, Y ∈ grs
ν }/Gad → Reg(W′)ν/W. (3.9)

Here the notation gν means the ν-eigenspace with respect to the periodic grading Ψ. 
Suppose we are given a pair (Ψ, Y ). Since Y is an eigenvector under the action of Ẑ(1)
on g via Ψν , the Cartan subalgebra gY (centralizer of Y in g) is normalized by Ẑ(1). 
Choose g ∈ Gad such that Ad(g)gY = t, we get a homomorphism 

Πg : μm → NGad�μe
(gY ) ∼= NGad�μe

(t) � W′.

Since Y ∈ grs
ν , the element Xg = Ad(g)Y ∈ t then belongs to trsν . Changing the choice 

of g amounts to changing the pair (Πg, Xg) by W-conjugacy. If we change (Ψ, Y ) by 
Gad-conjugacy, the resulting (Π, X) also changes by W-conjugacy. The map φ2 is ob-
tained by applying this construction to the pair (Ψν , Y ∈ grs

ν ).
The map φ3. Let Π : Ẑ(1) → W′ be θ-regular and let X ∈ trsν . We define a = χ(Xtν)

which is homogeneous of slope ν but a priori only an element in crs(F∞). We need to 
check that a ∈ c(F )rs, i.e., for any ζ ∈ Ẑ(1) = Gal(F∞/F ), ζ ·Gal (Xtν) is W-conjugate 
to θ(ζ)(X)tν (recall ζ is the image of ζ in μe). Since X ∈ tν , we have Π(ζ)(X) = ζνX, 
therefore 

ζ ·Gal (Xtν) = ζνXtν = Π(ζ)(X)tν = Π(ζζ−1)θ(ζ)(X)tν .

Since the homomorphism Π is over μe, Π(ζ)ζ−1 ∈ W, hence the right side above is 
W-conjugate to θ(ζ)(X)tν . This shows a ∈ c(F )rs.

The composition φ3 ◦ φ2 ◦ φ1 is the identity. This amounts to the fact that 
χ(κ(a(1))tν) = a. By Lemma 3.1.3, we have a = (citνdi)ri=1 in terms of fundamental 
invariants. Then fi(κ(a(1))tν) = tνdifi(κ(a(1))) = cit

νdi , as desired.
The composition φ1 ◦ φ3 ◦ φ2 is the identity. Start from (Ψν , Y ∈ grs

ν ). Note that 
e ∈ gν . It is shown in [28, Theorem 3.5(ii)] that there is an analog of Kostant section for 
the action of GΨν ,◦ on gν . The Kostant section in this situation is given by e + gν ∩ gf. 
Therefore, up to conjugation by GΨν ,◦, we may assume that Y ∈ e + gν ∩ gf. After 
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applying the maps φ3 ◦ φ2, the resulting homogeneous element a = χ(Y tν). Applying 
φ1 again, we get the same principal grading Ψν and the element κ(a(1)) lying in the 
Kostant section. Therefore κ(a(1)) = Y because Y already lies in the Kostant section.

The composition φ2 ◦φ1 ◦φ3 is the identity. We may describe the composition φ2 ◦φ1

more directly. We take Π = Πa. Also by Lemma 3.1.3(3), a is conjugate to Xtν for some 
X ∈ trs well-defined up to W-conjugation. Since a = χ(Xtν) lies in c(F ), it is invariant 
under the Galois action of Ẑ(1). The argument in the construction of the map φ3 then 
shows that X ∈ tν . This defines the map a �→ (Π, X) which is inverse to the map φ3.

Now we have checked that the three sets in (3.5) are in natural bijection to each other.
Finally we calculate the order m(Ψ) of Ψ. We show the following divisibility relations 

m(Ψ) | lcm(m1, e),m(Π) | m(Ψ), lcm(m1, e) | m(Π)

which then imply that m(Π) = m(Ψ) = lcm(m1, e).
The first relation m(Ψ) | lcm(m1, e) follows from (3.3), where we see that the inner 

part ζ �→ ζ−νρ∨ ∈ Gad has order divisible by m1 and the outer part has order e and they 
commute with each other.

The second relation m(Π) | m(Ψ) follows directly from the construction of the map φ2.
The last relation lcm(m1, e) | m(Π): e | m(Π) because Π is over μe; m1 | m(Π) because 

Π has eigenvectors with eigenvalue ν. We have finished the proof of the theorem. �
Definition 3.2.6. 

(1) (Extending [33, p. 174].) A natural number m1 is a θ-regular number (resp. elliptic 
θ-regular number) for W′ if there is a θ-regular (resp. elliptic θ-regular) homomor-
phism Π : Ẑ(1) → W′ which has a regular eigenvector of order m1.

(2) A rational number ν is a θ-admissible slope (resp. elliptic θ-admissible slope) if the 
denominator of ν (in lowest terms) is a θ-regular number (resp. elliptic θ-regular 
number).

When θ is clear from the context, we simply say “(elliptic) regular numbers” and “(el-
liptic) slopes”.

Example 3.2.7. (1) The twisted Coxeter number hθ of (G, θ) (see also §2.5.3) is an elliptic 
θ-regular number because the twisted Coxeter conjugacy class is θ-regular and elliptic 
of order hθ.

(2) Let e = 1 or 2 be the order of the opposition σ ∈ Out(G) (σ acts as −w0 under 
the reflection representation). Let θ : μe → Out(G) denote the unique homomorphism 
sending −1 to σ if e = 2. Then 2 is an elliptic θ-regular number because the element 
Ẑ(1) � μ2 ↪→ W′ (sending −1 ∈ μ2 to w0σ ∈ W′) is elliptic and θ-regular of order 2.
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As a consequence of Theorem 3.2.5, we get the following property for θ-regular ho-
momorphisms. The statement (1) below was proved by Springer in [33, Theorem 6.4(iv)]
by different methods, and the other statements are implicitly checked in [33].

Corollary 3.2.8 (Springer). Recall that we assumed G to be almost simple.3

(1) If two θ-regular homomorphisms into W′ over μe have regular eigenvalues of the 
same order, then they are W-conjugate to each other.

(2) Let Π : Ẑ(1) → W′ be a θ-regular homomorphism. Then all regular eigenvalues of Π
have the same order.

(3) Sending a θ-regular homomorphism to the order of its regular eigenvalues (well-
defined by (2) above) gives a bijection

{θ-regular homomorphisms into W′}/W ↔ {θ-regular numbers}. (3.10)

Proof. (1) Let Π1, Π2 : Ẑ(1) → W′ be θ-regular homomorphisms over μe, with regular 
eigenvalues ξ1 and ξ2 respectively. Assume ξ1 and ξ2 have the same order (as elements 
in Q/Z), and we would like to show that Π1 and Π2 are conjugate under W. Since the 
reflection representation of W′ on t is defined over Q, all eigenspaces of t under Π1 whose 
eigenvalues have the same order are permuted by Aut(C/Q). Therefore we may assume 
ξ1 = ξ2 and denote it by ξ. Let Xi be a regular eigenvector for Πi with eigenvalue ξ, 
i = 1, 2.

Applying the bijection grs
ξ /CGad(Ψξ) ↔ Reg(W′)ξ/W in Theorem 3.2.5, (Πi, Xi) cor-

responds to Yi ∈ grs
ξ (up to CGad(Ψξ)) for i = 1, 2. Applying the map φ2 in the proof of 

Theorem 3.2.5, the construction Y �→ Π is independent of the choice of Y ∈ grs
ξ (because 

Π varies locally constantly with Y and grs
ξ is connected), therefore Π1 (which corresponds 

to Y1) and Π2 (which corresponds to Y2) are W-conjugate.
(2) Since G is almost simple, e = 1, 2 or 3. Suppose Π has two regular eigenvalues 

of orders m1 < m2. By Theorem 3.2.5, we have lcm(m1, e) = lcm(m2, e) (both equal to 
the order of Π). The only possibility is when e > 1, gcd(m1, e) = 1 and m2 = em1. Let 
Π′ be the composition Ẑ(1) m1−−→ Ẑ(1) Π−→ W′, then Π′ is θ-regular of order e, with two 
different regular eigenvalues one of which is 1. Note that θ : μe ↪→ W′ itself is a θ-regular 
homomorphism of order e with regular eigenvalue 1. By (1) above, Π′ is W-conjugate 
to θ. However, we shall check case-by-case that θ does not admit regular eigenvalues 
other than 1, hence getting a contradiction. When e = 2, θ(−1) acts as −w0 on t, where 
w0 ∈ W is the longest element. Therefore the nontrivial eigenspace of θ on t is tw0 , hence 
does not contain regular elements. When e = 3, G is of type D4, then one node in the 
Dynkin diagram is fixed by θ, and a nontrivial eigenspace of θ on t must be killed by 
the corresponding simple root, hence cannot contain any regular elements either.

(3) is an immediate consequence of (1) and (2). �
3 Statements (2) and (3) in this Corollary fail if G is not almost simple and e > 1: a regular homomorphism 

can have regular eigenvalues of different orders.
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3.2.9. Normal form of an admissible slope
Given a θ-admissible slope ν, we first write it as ν = d1/m1 in lowest terms, where 

m1 is a θ-regular number. Using the map (3.10), we get a θ-regular homomorphism 
Π : μm ↪→ W′ of order m (up to conjugacy). We know from Theorem 3.2.5 that m =
lcm(m1, e). Therefore we may write ν = d/m for some integer d. This is called the normal 
form of ν.

3.3. Homogeneous elements and Moy–Prasad filtration

Let ν = d/m > 0 be a θ-admissible slope in the normal form.

3.3.1. The torus Gm(ν)
Let Gm(ν) be the one-dimensional subtorus defined by the homomorphism

Gm(ν) → G̃ad := (Gad(F ) �Grot,[e]
m ) ×Gdil

m (3.11)

s �→ (sdρ
∨
, sm, s−d). (3.12)

Now G̃ad acts on G(F ) with Gdil
m acting trivially, we have an action of Gm(ν) on G(F ). 

Explicitly it is given by 

s ·ν g(t1/e) := Ad(sdρ
∨
)(g(sm/et1/e)). (3.13)

The action of Gm(ν) on G(F ) induces an action on its Lie algebra g(F ), and gives a 
decomposition of g into weight spaces (which are C-vector spaces). For x ∈ 1

mZ, we let 
g(F )x be the weight space with weight mx under Gm(ν). We have 

g(F ) =
⊕̂

x∈ 1
mZ

g(F )x,

where ⊕̂ means t-adic completion. To identify these weight spaces, we need a bit of 
Moy–Prasad theory.

3.3.2. Moy–Prasad filtration
Let A be the apartment for G(F ) corresponding to T (F ) = T(Fe)μe . The parahoric 

G gives a special vertex of A, which allows us to identify A with X∗(T)μe

R . The point 
νρ∨ ∈ A defines a Moy–Prasad filtration g(F )νρ∨,≥x ⊂ g(F ) indexed by rational numbers 
x ∈ 1

mZ. The OF -submodule g(F )νρ∨,≥x is the t-adic completion of the span of affine 
root spaces corresponding to α ∈ Φaff such that α(νρ∨) ≥ x. In particular, g(F )νρ∨,≥0 is 
the Lie algebra of the parahoric subgroup Pν corresponding to the facet containing νρ∨. 
Let Lν be the Levi factor of Pν that contains A. The root system of Lν consists of those 
affine roots α such that α(νρ∨) = 0. Each g(F )νρ∨,≥x is an Lν-module.
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Suppose a ∈ c(F )ν and γ = κ(a). We write γ as a formal power series γ(t1/e) in t1/e

with coefficients in g. Using (3.6), we get 

Ad(sdρ
∨
)γ(sm/et1/e) = sdγ(t1/e). (3.14)

Therefore, γ ∈ g(F )ν . In other words, the Kostant section gives a section 

κ : c(F )ν ↪→ g(F )ν .

Lemma 3.3.3. 

(1) For each x ∈ 1
mZ≥0, we have 

g(F )νρ∨,≥x =
⊕̂

x′≥x
g(F )x′ . (3.15)

(2) Let g = ⊕ξ∈ 1
mZ/Zgξ be the decomposition corresponding to the principal periodic 

grading Ψν of slope ν in (3.3). Then there is a canonical isomorphism g(F )x ∼= gx, 
where x = x mod m ∈ 1

mZ/Z.
(3) The fixed point subgroup L̃ν := G(F )Gm(ν) is a reductive group over C, and it con-

tains Lν as the neutral component.
(4) The group L̃ν is canonically isomorphic to the centralizer GΨν of the principal grad-

ing Ψν (see (3.3)) in G.

Proof. (1) Direct calculation shows that Gm(ν) acts on the affine root space correspond-
ing to α ∈ Φaff ∪ {0} by weight mα(νρ∨). Since each step of the Moy–Prasad filtration 
is a sum of affine root spaces, the statement follows.

(2) The space g(F )x is a sum of affine root spaces. For each α ∈ Φaff ∪{0}, we identify 
the corresponding affine root space with gα, where α ∈ Φ ∪ {0} is the linear part of α. 
These isomorphisms sum up to give g(F )x

∼→ gν .
(3) We have Lie Lν = g(F )0 = Lie G(F )Gm(ν) by identifying the affine roots. There-

fore Lν ⊂ G(F )Gm(ν) as the neutral component. We must also show that G(F )Gm(ν)

only has finitely many components. In fact, G(F )Gm(ν) normalizes pνρ∨,≥0 by (1), hence 
it normalizes Pν . Let P̃ν be the normalizer of Pν in G(F ), then P̃ν/Pν is can be iden-
tified with the stabilizer of the facet FPν

under W̃ , which is a finite group. Therefore 
G(F )Gm(ν)/Lν ⊂ P̃ν/Pν is a finite group, and G(F )Gm(ν) only has finitely many com-
ponents.

(4) By embedding G into a matrix group, it is easy to see that G(Fe)Gm(ν) ⊂
G(C[t1/e, t−1/e]). Therefore we may view an element g ∈ G(F )Gm(ν) as a morphism 
of varieties g : Gm → G. The coordinate on the source Gm is t1/e. The fact that 
g ∈ G(F ) = G(Fe)μe says that g is μe-equivariant: with the multiplication action on 
the source Gm and the action via θ on the target. The Gm(ν)-equivariance of g is same 
as saying that g is Gm-equivariant: s ∈ Gm acts on the source Gm by multiplication 
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by sm/e and acts on the target G by Ad(s−dρ∨). Giving such a map g is equivalent to 
knowing the value g(1) ∈ G satisfying two conditions

• g(η) = θ(η)g(1), ∀η ∈ μe;
• g(ζm/e) = Ad(ζ−dρ∨)g(1), ∀ζ ∈ μm.

The two conditions are consistent if and only if θ(ζm/e)g(1) = Ad(ζ−dρ∨)g(1), or in 
other words, g(1) is invariant under the action of Ψν defined in (3.3). Therefore the 
evaluation at t1/e = 1 gives an isomorphism of reductive groups L̃ν = G(F )Gm(ν) =
G(C[t1/e, t−1/e])μe,Gm(ν) ∼→ GΨν . �
Lemma 3.3.4. Let ν and ν′ be θ-admissible slopes with the same denominators in lowest 
terms. Then there are isomorphisms L̃ν

∼= L̃ν′ and g(F )ν ∼= g(F )ν′ compatible with the 
action of L̃ν and L̃ν′ . One can make these isomorphisms canonical except when G is of 
type 3D4 and the order of ν is divisible by 3.

Proof. Let ν = d1/m1 and ν′ = d′1/m1 in lowest terms. It suffices to treat the case 
d′1 = 1. By Lemma 3.3.3, it suffices to construct compatible isomorphisms between GΨν

and GΨν′ , and between their grading pieces gν and gν′ . In fact, we will show that in 
most cases these isomorphisms are equalities as subgroups of G and subspaces of g.

First assume either e = 1 or e � m1. In this case GΨν ,◦ ⊂ H = Gμe,◦ and gν ⊂ Lie H. 
Working with H instead of G we may assume e = 1. We let m = m1 and d = d1. In this 
case the action Ψν : μm → Aut(G) is simply the composition Ψν′ ◦ [d] (pre-composite 
with the d-th power map on μm). Since d is prime to m we get GΨν = GΨν′ and gν = gν′ .

Next assume e = 2 and 2|m1. Again we write m = m1 and d = d1. In this case d must 
be odd, and again Ψν = Ψν′ ◦ [d]. Therefore the same conclusion as above holds.

Finally we treat the case e = 3 and 3|m1. Again we write m = m1 and d = d1. In this 
case d must be prime to 3. The above argument allows us to replace Ψν′ by Ψ′ := Ψν′◦[d]. 
In other words we are comparing the two gradings Ψν : ζ �→ Ad(ζdρ∨)θ(ζm/e) and Ψ′ :
ζ �→ Ad(ζdρ∨)θ(ζdm/e). When d ≡ 1 mod 3 then Ψ′ = Ψν and the conclusion follows. If 
d ≡ 2 mod 3, then for a primitive ζ ∈ μm with θ(ζm/e) = σ ∈ Aut†(G), the two actions 
Ψν(ζ) = Ad(ζdρ∨)σ and Ψ′(ζ) = Ad(ζdρ∨)σ2. However, the pinned automorphism group 
Aut†(G) of G (of type D4) is isomorphic to S3. Choose an involution τ ∈ Aut†(G) ∼= S3. 
Then conjugation by τ interchanges σ and σ2, and the action of τ (as with all pinned 
automorphisms) commutes with Ad(ζdρ∨). Therefore the automorphism τ of G identifies 
GΨν with GΨν′ = GΨ′ , and identifies gν with gν′ . The proof is complete. �

With the Moy–Prasad grading, we can describe the centralizer Gγ more explicitly.

Lemma 3.3.5. Let G�
γ be the Néron model of Gγ that is of finite type over OF . Then

(1) G�
γ(OF ) ⊂ Pν ·G(F )Gm(ν), which is contained in the normalizer of Pν .
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(2) Let S̃a := L̃ν,γ be the centralizer of γ in L̃ν . The inclusion S̃a ↪→ G�
γ(OF ) identifies 

S̃a with the Levi factor of the pro-algebraic group G�
γ(OF ).

(3) Let Π : μm → W′ be the θ-regular homomorphism corresponding to the θ-regular 
number m by Corollary 3.2.8, then S̃a

∼= TΠ(μm).
(4) Let Sa := Lν,γ be the centralizer of γ in Lν . Then S̃a/Sa is canonically a subgroup 

of Ω. Assume further that ν is elliptic. Then there is an exact sequence 

1 → Sa → S̃a → Ω → 1.

Proof. (1) We first show that Lie G�
γ(OF ) ⊂ g(F )νρ∨,≥0 = Lie Pν . In other words, the 

weights of the Gm(ν)-action on Lie G�
γ(OF ) are non-negative. This can be checked after 

extending F to Fm, with the action of Gm(ν) on G(Fm) given by Gm(ν) � s : g(t1/m) �→
Ad(sdρ∨)g(st1/m). Inside g(Fm), we may conjugate γ to Xtν (X ∈ trs), and G�

γ(OFm
)

to T(OFm
), for which is statement is obvious.

We may write G�
γ(OF ) canonically as the G�,+

γ · G�,red
γ , where G�,+

γ is its the pro-
unipotent radical and G�,red

γ the Levi factor, which is a diagonalizable group over C. 
The above argument shows that the neutral component of G�

γ(OF ) is contained in Pν , 
hence G�,+

γ ⊂ Pν and G�,red,◦
γ ⊂ Lν . It remains to show G�,red

γ ⊂ G(F )Gm(ν). Now G�,red
γ

is a diagonalizable group on which Gm(ν) acts, the action must be trivial because the 
automorphism group of a diagonalizable group is discrete, therefore G�,red

γ ⊂ G(F )Gm(ν).
(3) Recall how we assigned the θ-regular homomorphism Π : μm → W′ to γ(1) ∈ gν

in the proof of Theorem 3.2.5. Since γ(1) ∈ grs, the centralizer T′ = CG(γ(1)) is a 
maximal torus and the principal grading Ψ : μm → Gad � μe normalizes it. Therefore 
Ψ induces a homomorphism Π : μm → NGad�μe

(T′)/T′ ∼= W′. By Lemma 3.3.3(4), the 
group S̃a = L̃ν,γ is the centralizer in G of both the grading Ψ and the element γ(1), 
therefore S̃a = CG(γ(1))Ψ = T′Π(μm) ∼= TΠ(μm).

(2) We have already shown that G�,red
γ ⊂ G(F )Gm(ν) = L̃ν , therefore G�,red

γ ⊂
L̃ν,γ = S̃a. Since S̃a is also diagonalizable in (3), hence reductive, we have G�,red

γ = S̃a.
(4) The quotient S̃a/Sa is a subgroup of L̃ν/Lν = P̃ν/Pν , therefore a subgroup of Ω. It 

remains to show that S̃a/Sa = Ω. Since ν is elliptic, S̃a
∼= Tμm is finite, therefore it suffices 

to show that [S̃a : Sa] = #Ω. Let Gsc → G be the simply-connected cover with kernel Z. 
Define Ssc

a and S̃sc
a as the counterpart of Sa and S̃a for Gsc, then in fact Ssc

a = S̃sc
a since 

Ω is trivial for Gsc. We also have Ssc
a /Zμe = Sa. Let w ∈ W′ be the image of a generator 

of μm under Π, then Ssc
a

∼= Tsc,w and S̃a
∼= Tw by (3). Since w acts elliptically on t, we 

have Ssc
a = #S̃a = det(1 − w|X∗(T)). Therefore [S̃a : Sa] = [Ssc

a : Sa] = #Zμe . Since 
#Ω = #Zμe , we have [S̃a : Sa] = #Ω, hence S̃a/Sa

∼= Ω. �
3.3.6. Cartan subspace and the little Weyl group

Let ν be a θ-admissible slope which corresponds to a θ-regular homomorphism Π :
μm ↪→ W′. Let tν ⊂ t be the eigenspace with eigenvalue ν = ν mod Z as in (3.4). We 
call tν a Cartan subspace for the slope ν. The subspace tν ⊗ tν ⊂ g(Fm) then consists 
of homogeneous elements of slope ν and the homomorphism Π shows that their image 
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under the invariant quotient map g(Fm) → c(Fm) in fact lies in c(F )ν . We therefore get 
a map trsν → c(F )rsν , which is an étale cover with Galois group W (Π, ν), the little Weyl 
group attached to (Π, ν). This notion is equivalent to the notion of little Weyl groups 
attached to gradings on Lie algebras reviewed in [30, §6]. The group μm acts on W
via Π and the conjugation action of W′ on W. The fixed point subgroup WΠ(μm) acts 
on tν . Combining [30, Lemma 19] and [28, Theorem 4.7] (see also [30, Proposition 20], 
applicable here since Π arises from a principal grading according to Theorem 3.2.5), we 
conclude that W (Π, ν) = WΠ(μm).

3.3.7. Family of regular centralizers over c(F )rsν
Let ν > 0 be a θ-admissible slope so that c(F )rsν ⊂ c(OF ). Recall we have the regular 

centralizer group scheme J over c defined in §2.4. For each a ∈ c(OF ) let Ja be the 
group scheme over OF defined by the pullback of J along a : Spec OF → c. We would 
like to define a commutative group scheme Pν over c(F )rsν whose fiber over a is Pa :=
Ja(F )/Ja(OF ).

We use the notation from §3.3.6. We first work over trsν . Every point in trsν gives a 
lifting ̃a : Spec OFm

→ trsν of a : Spec OF → c. The alternative construction of the regular 
centralizers given in [10] then shows that each Jã is canonically isomorphic to the same 
group scheme J̃ over Spec OFm

such that it is a subgroup scheme of T ⊗OFm
with the 

same generic fiber. Moreover J̃ carries a descent datum from Spec OFm
to Spec OF , or 

simply an action of μm that is compatible with its Galois action on OFm
. We then have 

two group ind-schemes over trsν , one is trsν × T(Fm)Π(μm) and the other is its subgroup 
scheme trsν × J̃(OFm

)Π(μm). The desired group ind-scheme Pν , when pulled back to trsν
should be the quotient of these two. Using the action of WΠ(μm) to descend the two 
group ind-schemes from trsν to c(F )rsν , we get the group scheme over c(F )rsν

Pν = trsν
WΠ(μm)

×
(
T(Fm)Π(μm)/J̃(OFm

)Π(μm)
)
.

3.3.8. The group schemes S̃ and S
The results in Lemma 3.3.5 can be stated in families. The group scheme J�

ν(OF ) :=

trsν
WΠ(μm)

× T(OFm
)Π(μm) over c(F )rsν is the family of OF -points of the Néron models of 

the centralizers G�
γ , for γ = κ(a), a ∈ c(F )rsν . The group scheme S̃ over c(F )rsν , defined as 

the family of stabilizers under L̃ν , is canonically isomorphic to the Levi factor of J�
ν(OF ). 

Therefore, Lemma 3.3.5(3) gives an isomorphism of group schemes over c(F )rsν

S̃ ∼= trsν
WΠ(μm)

× TΠ(μm).

By Lemma 3.3.5(4), there is a canonical homomorphism of group schemes S̃ → Ω ×c(F )rsν . 
Let S ⊂ S̃ be the kernel of this homomorphism. Then S is also a smooth affine group 
scheme over c(F )rsν whose fiber over a is the group Sa defined in Lemma 3.3.5(4).
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4. Graded and rational Cherednik algebras

In this section, we recall the definition of two versions of Cherednik algebras, and 
collect some basic facts about their structure and representation theory.

4.1. The graded Cherednik algebra

We first recall the definition of Hgr = Hgr(G, θ). As a Q-vector space, 

Hgr := Sym(X∗(Gdil
m )Q ⊕ a∗KM) ⊗Q[W̃ ].

Let u be the generator of X∗(Gdil
m ), then we may also write 

Hgr = Q[u, δ] ⊗ Sym(a∗) ⊗Q[Λcan] ⊗Q[W̃ ].

The grading is given by

deg(w̃) = 0,∀w̃ ∈ W̃

deg(u) = deg(ξ) = 2,∀ξ ∈ a∗KM

The algebra structure of Hgr is determined by

(GC-1) u is central;
(GC-2) Q[W̃ ] and Sym(a∗KM) are subalgebras;
(GC-3) For each affine simple reflection si ∈ Waff (corresponding to the affine simple 

root αi) and ξ ∈ a∗KM, 

siξ − siξsi = 〈ξ, α∨
i 〉u;

(GC-4) For any ω ∈ ΩI and ξ ∈ a∗KM, 

ωξ = ωξω.

4.1.1. Central charge
We know u is central. From the relations (GC-3) and (GC-4), we see that δ ∈ a∗KM is 

also central.
Using the W̃ -invariance of BKM ∈ Sym2(aKM)W̃ , we see that BKM is also a central 

element in Hgr.
Let 

Hgr
ν = Hgr/(u + νδ).

This is the graded Cherednik algebra with central charge ν. We shall write ε for the image 
of δ = −u/ν in Hgr

ν .
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4.1.2. Specialize ε to 1
Let Hgr

ν,ε=1 be the specialization Hgr
ν /(ε − 1). This is the trigonometric Cherednik 

algebra in the literature. The grading on Hgr only induces a filtration after specialization: 
we define Hgr,≤i

ν,ε=1 ⊂ H
gr
ν,ε=1 to be the image of the degree ≤ i part of Hgr

ν , and call this 
the cohomological filtration.

4.2. The rational Cherednik algebra

4.2.1. Parameters
We shall define a function: 

c : Φ/W → {1, 2, 3}.

Here Φ is the relative root system Φ(G, A) on which W acts by permutation. Recall 
φ = Φ(G, T) is the absolute root system and we have a projection φ → Φ. For α ∈ Φ, let 
cα be the cardinality of the preimage of α under the projection φ → Φ.

We also give the value of c explicitly in the various cases. If e = 1, c is the constant 
function 1. If e > 1, then the relative root system Φ is not necessarily reduced. In any 
case, we can speak about the longest roots (when G is of type 2A2n, there are three root 
lengths). We have 

cα =
{

1 α is longest;
e otherwise.

4.2.2. Rational Cherednik algebra
The bigraded rational Cherednik algebra Hrat = Hrat(G, θ) is, as a vector space, a 

tensor product 

Hrat = Q[δ, u] ⊗ Sym(a) ⊗ Sym(a∗) ⊗Q[W ] ⊗Q[Λcan].

The bigrading is given by

deg(δ) = deg(u) = (2, 0);

deg(Λcan) = (2, 2);

deg(η) = (0,−1) ∀η ∈ a;

deg(ξ) = (2, 1) ∀ξ ∈ a∗;

deg(w) = (0, 0) ∀w ∈ W ;

The first and second component of the grading are called the cohomological grading and 
the perverse grading. The algebra structure is given by
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(RC-1) u and δ are central; Λcan commutes with a∗ and W ;
(RC-2) Sym(a), Sym(a∗) and Q[W ] are subalgebras;
(RC-3) For η ∈ a, ξ ∈ a∗ and w ∈ W , we have wη = wηw, wξ = wξw;
(RC-4) For η ∈ a, ξ ∈ a∗, we have 

[η, ξ] = 〈ξ, η〉δ + 1
2

(∑
α∈Φ

cα〈ξ, α∨〉〈α, η〉rα

)
u

where rα ∈ W is the reflection associated to the root α and cα is the constant 
defined in §4.2.1;

(RC-5) For η ∈ a, we have [η, Λcan] = −η∗ ∈ a∗, where η �→ η∗ is the isomorphism 
a ∼→ a∗ induced by the Killing form B.

4.2.3. The sl2-triple
Let {ξi}, {ηi} be dual orthonormal bases of a∗ and a with respect to B, so that η∗i = ξi. 

Consider the following triple (e, h, f) in Hrat

e = −1
2
∑
i

ξ2
i = −1

2B;

h = 1
2
∑
i

(ξiηi + ηiξi);

f = 1
2
∑
i

η2
i .

Direct calculation also shows 

[h, ξ] = δξ, [h, η] = −δη for all ξ ∈ a∗, λ ∈ a. (4.1)

From this one easily see that {e, h, f} is an almost sl2-triple: 

[h, e] = 2δe, [h, f] = −2δf, [e, f] = δh.

In other words, (e/δ, h/δ, f/δ) is an sl2-triple.

4.2.4. Central charge
The element BKM defined in (2.6) can be viewed as an element in Hrat of bidegree 

(4, 2). The W̃ -invariance of BKM implies that it is a central element of Hrat. Let 

Hrat
ν = Hrat/(u + νδ,BKM).

This is the graded Cherednik algebra with central charge ν. We again use ε to denote the 
image of δ = −u/ν.
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4.2.5. Specializing ε to 1
Let Hrat

ν,ε=1 be the specialization Hrat
ν /(ε − 1). This is the rational Cherednik al-

gebra in the literature. Now the perverse grading induces a grading on Hrat
ν,ε=1

while the cohomological grading only induces a cohomological filtration: Hrat,≤n
ν,ε=1 =

Im(⊕i≤n,j∈ZH
rat(i, j) → Hrat

ν,ε=1).

4.3. Relation between Hgr and Hrat

Proposition 4.3.1. Let (M, F≤iM) be an object in a filtered Q-linear triangulated cate-
gory C. Assume there is a graded action of Hgr on M (i.e., a graded algebra homomor-
phism Hgr → End•

C(M)) in such a way that

• δ, u and W̃ preserve the filtration;
• w̃ − 1 sends F≤iM to F≤i−1M for all w̃ ∈ X∗(T)μe

= ker(W̃ → W );
• ξ sends F≤iM to (F≤i+1M)[2] for all ξ ∈ a∗;
• Λcan sends F≤iM to (F≤i+2)M [2].

Then there is a unique bigraded action of Hrat on GrF∗ M such that

• The δ, u and W actions on GrFi M are induced from that of δ, u and W viewed as 
elements in Hgr;

• For η ∈ X∗(T)μe
/X∗(T)μe,tors ⊂ a ⊂ Hrat, its action GrFi M → GrFi−1M is induced 

from w̃ − 1 ∈ Hgr, where w̃ is any lifting of η to X∗(T)μe
;

• For ξ ∈ a∗ ⊂ Hrat, its effect GrFi M → (GrFi+1M)[2] is induced from ξ ∈ Hgr;
• The effect of Λcan : GrFi M → (GrFi+2M)[2] is induced from Λcan ∈ Hgr.

Proof. We first check that the action of X∗(T)μe
/X∗(T)μe,tors on GrF∗ M given above 

is well-defined, and extends to an action of Sym(a). From the assumptions we see 
that X∗(T)μe

acts on M unipotently, therefore its torsion part acts trivially. From 
this we see that the action of w̃ − 1 for w̃ ∈ X∗(T)μe

only depends on its image 
in X∗(T)μe

/X∗(T)μe,tors ⊂ a. Moreover, for w̃1, w̃2 ∈ X∗(T)μe
, we have w̃1w̃2 − 1 =

(w̃1 − 1)(w̃2 − 1) +(w̃1 − 1) +(w̃2 − 1). Passing to associated graded, the induced map of 
w̃1w̃2 − 1 on GrFi M → GrFi−1M is the same as the one induced by (w̃1 − 1) + (w̃2 − 1). 
Therefore the map X∗(T)μe

/X∗(T)μe,tors → Hom(GrFi M, GrFi−1M) is additive. We may 
extend this map to a by linearity and get an action of Sym(a) on GrF∗ M .

With this checked, the action of Hrat is uniquely determined on the generators. We 
need to check that the relations (RC-1)–(RC-5) hold. The relations (RC-1), (RC-2) and 
the first half of (RC-3) are obvious.

Let w̃ = si1si2 · · · simω be a reduced word for an element w̃ ∈ W̃ , where sij are affine 
simple reflections and ω ∈ ΩI. By the relation (GC-3) for Hgr, we have
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w̃ξ − w̃ξw̃ = (si1 · · · simωξ − si1 ···simωξ)ωu

=
m∑
j=1

si1 · · · sij−1〈α∨
ij ,

sij+1 ···simωξ〉sij+1 · · · simωu

=
m∑
j=1

〈β∨
j , ξ〉si1 · · · sij−1sij+1 · · · simωu,

where β∨
j = ω−1sim ···sij+1α∨

ij
∈ Φ∨

aff is an affine real coroot.
At this point we can check the second half of (RC-3). For w̃ = w ∈ W , the right side 

above belongs to Q[W ]u as a map M → M [2]. Passing to the associated graded we get 
the second half of (RC-3).

Next we check (RC-4). For this we assume w̃ ∈ X∗(T)μe
and its image in a is η. Let 

βj = ω−1sim ···sij+1αij ∈ Φaff . Then the reflection rβj
∈ Waff has the form

rβj
= (ω−1sim · · · sij+1)sij (sij+1 · · · simω)

= (w̃−1si1 · · · sij )sij (sij+1 · · · simω)

= w̃−1si1 · · · sij−1sij+1 · · · simω.

Moreover, since si1si2 · · · simω is reduced, {β1, · · · , βm} is the set of positive real affine 
roots in Φaff such that w̃β < 0. Therefore 

w̃ξ − w̃ξw̃ = w̃
∑

β>0,w̃β<0

〈ξ, β∨〉rβu. (4.2)

Let π : Q[W̃ ] → Q[W ] be induced from the projection W̃ → W . Eventually, we only care 
about the effect of w̃

∑
β>0,w̃β<0〈β∨, ξ〉rβ on GrF∗ M , which only depends on its image 

under π. For ξ ∈ a, we have w̃ξ = ξ + 〈ξ, η〉δ by Lemma 2.5.8. Therefore (4.2) implies

π([w̃ − 1, ξ]) = π((w̃ξ − ξ)w̃) + π(w̃ξ − w̃ξw̃)

= 〈ξ, η〉δ +
∑

β>0,w̃β<0

〈ξ, β∨〉rβu. (4.3)

Here we have written every affine real root β uniquely as β = β + nδ where β ∈ Φ. The 
possible n’s are:

• if β is not a longest root in Φ, then n ∈ 1
eZ;

• if G is not of type 2A2n and β is a long root, then n ∈ Z;
• if G is of type 2A2n and β is a longest root (twice a short root), then n ∈ 1

2 + Z.

Such n are called β-admissible.
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Fix β ∈ Φ, let

Θ(β) := {affine real roots β = β + nδ such that β > 0, w̃β < 0}.

Thus the summation on the right side of (4.3) becomes∑
β∈Φ

〈ξ, β∨〉#Θ(β)rβu. (4.4)

If β > 0, then Θ(β) is in bijection with β-admissible n such that 0 ≤ n < 〈β, η〉. If 
〈β, η〉 > 0, there are cβ〈β, η〉 such admissible n’s (note we always have 〈β, η〉 ∈ 1

cβ
Z), 

hence #Θ(β) = cβ〈β, η〉. If 〈β, η〉 ≤ 0 then Θ(β) = ∅. Similarly analysis applied to 
Θ(−β) shows that if 〈β, η〉 > 0 then Θ(−β) = ∅; if 〈β, η〉 ≤ 0, #Θ(−β) = c−β〈−β, η〉. 
In summary, exactly one of the pair roots α ∈ {±β} contribute to the sum (4.4), and 
Θ(α) is always equal to cα〈α, η〉. Hence (4.4) becomes

1
2
∑
α∈Φ

cα〈ξ, α∨〉〈α, η〉rαu.

Plugging into (4.3) we get (RC-4).
Finally we check (RC-5). Again let w̃ ∈ X∗(T)μe

with image η ∈ a. For ξ = Λcan, we 
have w̃Λcan = Λcan − η∗ − 1

2B(η, η)δ. Therefore,

[w̃ − 1,Λcan] = (w̃Λcan − w̃Λcanw̃) + (w̃Λcan − Λcan)w̃

∈ Q[W̃ ]u + (−η∗ − 1
2B(η, η)δ)(w̃ − 1) − η∗ − 1

2B(η, η)δ.

Except for the term −η∗, the other terms on the right side above send F≤iM to F≤iM [2]. 
Therefore the induced map [w̃−1, Λcan] : GrFi M → GrFi+1M [2] is the same as −η∗, which 
verifies (RC-5). �
4.4. Algebraic representation theory of rational Cherednik algebras

The theory of category O for rational Cherednik algebras was developed in [17]. The 
category O consists of Hrat

ν,ε=1 modules with locally nilpotent action of Sym(a). The 
projective generators of the category are constructed as follows. For any irreducible 
representation τ ∈ Irr(W ), view it as a module over Sym(a) � W on which a acts by 

zero. Define Mν(τ) to be the induction IndH
rat
ν,ε=1

Sym(a)�W τ . In particular Mν(triv) can be 
identified with the polynomial ring Sym(a∗) as vector spaces. The quotient of Mν(τ)
by the sum of all proper submodules is an irreducible representation Lν(τ), see [12, 
Corollary 11.5]. The kernel of the quotient map can be identified with the kernel of a 
natural pairing. Indeed, consider the anti-involution F on Hrat

ν,ε=1 determined by 

F(xi) = yi, F(yi) = xi, F(w) = w−1, w ∈ W.
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A pairing J : M ×M′ → Q is called contravariant if is satisfies 

Jτ (vh, u) = Jτ (v,F(h)u), for all v ∈ M, u ∈ M′ and h ∈ Hrat
ν,ε=1. (4.5)

Theorem 4.4.1. (See [12, Lemma 11.6].) There is a unique bilinear contravariant pairing 
Jτ : Mν(τ∗) ×Mν(τ) → Q that extends the natural pairing between τ and τ∗. Moreover 
Lν(τ) = Mν(τ)/ ker(Jτ ).

Let V [j] be an h-eigenspace corresponding eigenvalue j where h is from the sl2-triple 
{e, h, f}. If V is a finite-dimensional then its graded dimension dimq(V ) := Tr(qh|V ) is 
a Laurent polynomial in q. From the representation theory of sl2 we see that dimq(V )
is palindromic: dimq(V ) = dimq(V )|q=1/q. In the case Lν(τ) is a finite dimensional rep-
resentation, one can compute the action of h on the lowest weight space and conclude 
that degq(Lν(τ)) = ν

2 (
∑

α∈Φ cαrα)|τ − 1
2r, see [15, §3.7]. In particular, if Lν(triv) is 

finite-dimensional, then its graded dimension has the highest q-degree among all finite-
dimensional irreducible representations of Hrat

ν,ε=1.

Corollary 4.4.2. (See [15, Proposition 3.37].) Suppose V is a finite-dimensional quotient 
of Mν(τ) then in the Grothendieck group of the category O we have a decomposition 

[V ] = [Lν(τ)] +
∑

σ,degq(Lν(σ))<D

mτ,σ[Lν(σ)],

where mτ,σ ≥ 0 and D = degq(Lν(τ)).

For an example of the situation when mτ,σ �= 0 see [2, §6.4].

4.4.3. Frobenius algebra structure
The module Lν(triv) is quotient of the polynomial ring Mν(triv) ∼= Sym(a∗) by a 

graded ideal, hence has a graded commutative ring structure. Suppose Lν(triv) is fi-
nite dimensional, then N := degq(Lν(triv)) = ν

2 (
∑

α∈Φ cα) − 1
2r = r

2 (νhθ − 1), and 
the h-eigenspace with the largest eigenvalue N is one dimensional. Let � : Lν(triv) →
Lν(triv)N be the projection onto the top eigenspace of h. Choosing a basis of Lν(triv)N , 
we may view � as a linear functional on Lν(triv). By [12, Theorem 11.12] and [2, Propo-
sition 1.20], the functional � provides a Frobenius algebra structure for this ring Lν(triv). 
Conversely, a finite dimensional quotient of Mν(triv) is a Frobenius algebra if and only if 
it is Lν(triv). In §8.6 we will provide a geometric interpretation of the Frobenius algebra 
structure on Lν(triv).

The representations Lν(triv) are called spherical. In the case of Cherednik algebras 
with equal parameters (i.e., θ = 1), the classification of the finite-dimensional irreducible 
spherical representations is completed in [35]. In particular, it is shown in [35] that 
Lν(triv) is finite-dimensional if and only if ν = d/m, (d, m) = 1 and m is a regular 
elliptic number for W. See also [13] for the treatment of the case of unequal parameters.



A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601–706 635
Part 2. Geometry

5. Homogeneous affine Springer fibers

In this section, we study the geometric and homological properties of homogeneous 
affine Springer fibers for the quasi-split group G.

5.1. The affine flag variety

In this subsection we review some basic facts about the affine flag varieties. The choice 
of the Borel B ⊂ G gives an Iwahori I ⊂ G(F ). A parahoric subgroup P ⊂ G(F ) is called 
standard if it contains I. Let P be the a standard parahoric subgroup of G(F ). The affine 
partial flag variety of G(F ) of type P is the fppf quotient FlP = G(F )/P, where we view 
G(F ) as an ind-scheme over C and P as a group scheme of infinite type over C, see 
§2.5.1. When P = I, FlI is the affine flag variety, and is simply denoted by Fl.

5.1.1. Line bundles on Fl
Alternatively, we may write Fl as GKM/IKM, where IKM = Gcen

m ×I �Grot,[e]
m . There is 

a surjection IKM � AKM, realizing AKM as the reductive quotient of IKM. For each ξ ∈
X∗(AKM), viewed as a homomorphism IKM � AKM

ξ−→ Gm, we get a GKM-equivariant 

(via left action on Fl) line bundle L(ξ) = GKM
IKM,ξ
× A1 over Fl. This construction defines 

a homomorphism 

X∗(AKM) → PicGKM(Fl) (5.1)

sending ξ to L(ξ).

Remark 5.1.2. When ξ = δ ∈ a∗KM, the AKM-equivariant line bundle L(δ) over Fl is the 
eth power of the pull back of the tautological line bundle via [AKM\Fl] → [Grot,[e]

m \pt].

5.1.3. Determinant line bundles
We also have a class of line bundles on Fl given by the determinant construction. 

Each FlP carries a determinant line bundle detP whose fiber at gP is relative determinant 
det(Ad(g)Lie P : Lie P) of the OF -lattices Ad(g)Lie P and Lie P in g(F ). The line bundle 
detP carries a P � Grot,[e]

m -equivariant structure (which acts on FlP by left translation 
and loop rotation). In fact, for h ∈ P �Grot,[e]

m and gP ∈ FlP, the fiber of detP at hgP
is det(Ad(hg) · Lie P : Lie P) = det(Ad(hg)Lie P : Ad(h)Lie P) (because Ad(h)Lie P =
Lie P), the latter can be identified with det(Ad(g)Lie P : Lie P) by the adjoint action 
of h. Let πP : Fl → FlP be the projection. Since all P contain I, the line bundles π∗

P detP
on Fl all carry I �Grot,[e]

m -equivariant structures.
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The line bundle detG on FlG is what we used to define the central extension G(F )cen. 
By construction, we have a G �Grot,[e]

m -equivariant isomorphism of lines bundles on Fl

π∗
GdetG ∼= L(Λcan).

For a parahoric P, π∗
P detP ⊗ det−1

I has fiber at gI equal to det(Ad(g)(Lie P/Lie I)) ⊗
det(Lie P/Lie I))−1. Let 2ρP ∈ a∗KM be the sum of positive roots of LP, then I �
Grot,[e]

m -equivariantly, we have 

π∗
PdetP ∼= detI ⊗ L(−2ρP) ⊗OI�G

rot,[e]
m

(2ρP), (5.2)

where OI×G
rot,[e]
m

(2ρP) means the trivial line bundle on which I � Grot,[e]
m acts via the 

character 2ρP. Comparing (5.2) for P and for G we get 

π∗
GdetG = π∗

PdetP ⊗ L(−2ρG + 2ρP) ⊗OI�G
rot,[e]
m

(−2ρP + 2ρG). (5.3)

5.1.4. Curves on Fl
For each affine simple root αi, i = 0, · · · , r, we have the corresponding homomorphism 

SL2 → G(F ) (view G(F ) as the loop group) and hence an embedding P1 ↪→ Fl. The cycle 
class of this P1 defines an element Ci ∈ H2(Fl,Z�)(−1). We thus get a homomorphism 
from the affine coroot lattice 

ZΦ∨
aff = SpanZ{α∨

0 , · · · , α∨
r } → H2(Fl,Z). (5.4)

Proposition 5.1.5. The homomorphisms (5.4) and (5.1) preserve the pairing between 
X∗(AKM) and X∗(AKM) and the degree pairing between line bundles and curve classes 
up to a sign. In other words, for any ξ ∈ X∗(AKM) and i = 0, 1, · · · , r, we have 

〈ξ, α∨
i 〉 = − deg(L(ξ)|Ci). (5.5)

Proof. For ξ = δ, both sides of (5.5) are zero (since L(δ) is a trivial line bundle). For 
ξ ∈ X∗(A) and 〈ξ, α∨

i 〉 = 0, the character ξ : A → Gm extends to a character LPi
→ Gm, 

therefore L(ξ) is the pullback of a line bundle on FlPi
, and hence deg(L(ξ)|Ci) = 0

because Ci is a fiber of the projection Fl → FlPi
. If ξ = αi, then 〈ξ, α∨

i 〉 = 2 and 
deg(L(αi)|Ci) = −2 by an easy calculation on the flag variety of the SL2 associated 
with the root αi. The above discussion shows that (5.5) holds whenever ξ ∈ X∗(A) ⊕
X∗(Grot,[e]

m ).
It remains to show that (5.5) holds for ξ = Λcan. Applying (5.3) to P = Pi, we have

deg(π∗
GdetG|Ci) = deg(π∗

Pi
detPi

|Ci) + deg(L(αi − 2ρG)|Ci)

= −〈αi − 2ρG, α∨
i 〉 = −2 + 2〈ρG, α∨

i 〉. (5.6)
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Here we have used that deg(π∗
Pi

detPi
|Ci) = 0 because Ci is a fiber of πPi

, and we also 

use the proven identity (5.5) in the case ξ = αi−2ρG ∈ X∗(A) ⊕X∗(Grot,[e]
m ). When i �= 0, 

〈ρG, α∨
i 〉 = 1 hence the right side of (5.6) is zero, which is also equal to 〈Λcan, α

∨
i 〉. For 

i = 0, we have 〈ρG, α∨
0 〉 = −〈ρG, β∨〉 = −(h∨

θ − a∨0 )/a∨0 = 1 − h∨
θ /a

∨
0 by the definition 

of a∨0 and h∨
θ (see (2.2) and (2.3)). Therefore the right side of (5.6) is −2h∨

θ /a
∨
0 . On the 

other hand, the definition of α∨
0 in (2.4) makes sure that 〈Λcan, α

∨
0 〉 = 2h∨

θ /a
∨
0 , therefore 

(5.5) also holds for ξ = Λcan and i = 0. The proof is now complete. �
By the construction in §5.1.1, each line bundle L(ξ) carries a canonical AKM-equivar-

iant structure. Let r(ξ) ∈ H2
AKM

(Fl) denote the AKM-equivariant Chern class of L(ξ). 
This extends to a graded ring homomorphism 

r : Sym•(a∗KM) → H2•
AKM

(Fl).

On the other hand, we have another such ring homomorphism coming from the 
AKM-equivariant cohomology of a point 

� : Sym•(a∗KM) ∼= H2•
AKM

(pt) → H2•
AKM

(Fl).

The next result will be used in construction of the graded Cherednik algebra action 
on the cohomology of affine Springer fibers in §7.1.

Lemma 5.1.6. We have r(BKM) = �(BKM) in H4
AKM

(Fl).

Proof. By equivariant formality of Fl, we can check this identity by restricting to the 
AKM-fixed points of Fl, namely the points w̃I for w̃ ∈ W̃ . We have r(ξ)|w̃I = �(w̃ξ) ∈
H2

AKM
(pt). Since BKM is W̃ -invariant, we have r(BKM)|w̃I = �(w̃BKM) = �(BKM) ∈

H4
AKM

(pt). This means r(BKM) − �(BKM) restricts to zero at every fixed point, hence 
r(BKM) = �(BKM) in H4

AKM
(Fl). �

5.2. Affine Springer fibers

Kazhdan and Lusztig [22] defined the notion of the affine Springer fiber in the affine 
flag variety for split groups. Many basic results on affine Springer fibers can be easily 
generalized to quasi-split groups G.

Definition 5.2.1. (See Kazhdan and Lusztig [22].) Let γ ∈ g(F ) be regular semisimple. 
The affine Springer fiber of γ of type P is the reduced closed subvariety SpP,γ ⊂ FlP
consisting of cosets gP such that Ad(g−1)γ ∈ Lie P. When P = I, we drop I from the 
notion and simply write Spγ .

We have a natural projection πP,γ : Spγ → SpP,γ . The fiber of πP,γ at gP ∈ SpP,γ

is the usual Springer fiber of the image of Ad(g−1)γ ∈ Lie P in lP = Lie LP for the 
group LP. In particular, πP,γ is surjective.
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When G is split, it is shown in [22] that Spγ is a possibly infinite union of projective 
varieties of bounded dimension. Moreover, Spγ is of finite type if γ is elliptic. The next 
lemma generalizes this to the quasi-split case and to general parahorics P.

5.2.2. The centralizer of γ
Let Gγ be the centralizer of γ in G. This is a torus over F and Gγ(F ) acts on SpP,γ

by its left translation action on FlP. Let Aγ ⊂ Gγ be the maximal subtorus that is split 
over F . Using the uniformizer t of F , we have an embedding X∗(Aγ) ↪→ Aγ(F ) ↪→ Gγ(F ). 
We denote the image of this embedding by Λγ. Then Λγ is a free abelian group of finite 
rank (equal to the split rank of Gγ) that acts on SpP,γ .

Lemma 5.2.3. Let γ ∈ g(F ) be regular semisimple, and let P be a standard parahoric 
subgroup of G(F ).

(1) There exists a projective subscheme Z ⊂ SpP,γ such that SpP,γ = Λγ · Z. In partic-
ular, SpP,γ is a possibly infinite union of projective schemes of bounded dimension.

(2) If γ ∈ grs(F ) is elliptic, then SpP,γ is a projective scheme.

Proof. We note that (2) follows from (1) since when γ is elliptic, Aγ is trivial hence 
Λγ = 0.

To prove (1), it suffices to consider the case P = I since the projection πP,γ : Spγ →
SpP,γ is surjective. Let Sp′

γ be the affine Springer fiber defined using Fe in place of F . 
There is a natural μe-action on Sp′

γ , and Spγ is a closed subset of Sp′μe
γ . We use G′

γ , A
′
γ

and Λ′
γ to denote the counterparts of Gγ , Aγ and Λγ when the field F is extended to Fe. 

Then μe naturally acts on Λ′
γ , and we have a natural embedding Λγ ⊂ (Λ′

γ)μe with finite 
index.

We shall apply Kazhdan and Lusztig’s results from [22] to Sp′
γ since G is split over Fe. 

By Kazhdan and Lusztig [22, Prop. 2.1], there exists a projective subscheme Z ′ ⊂ Sp′
γ

such that Sp′
γ = Λ′

γ ·Z ′. By enlarging Z ′ we may assume that Z ′ is stable under μe and 
is still a projective scheme.

Let S ⊂ Λ′
γ be the set of λ ∈ Λ′

γ such that λZ ′ ∩Z ′ �= ∅. Since Z ′ is of finite type, S
is a finite set. We claim that Sp′μe

G ⊂ (σ − id)−1(S) · Z ′. In fact, let λ · z be a μe-fixed 
point of Sp′

γ , where λ ∈ Λ′
γ and z ∈ Z ′. Fix a generator σ ∈ μe. Then σ(λ) · σ(z) = λ · z

which implies that (σ(λ) − λ) · σ(z) = z hence σ(λ) − λ ∈ S, i.e., λ ∈ (σ − id)−1(S).
Finally, since Λγ ⊂ (Λ′

γ)μe has finite index, the quotient (σ − id)−1(S)/Λγ is a 
finite set. Choose coset representatives {λ1, · · · , λm} of (σ − id)−1(S)/Λγ . Let Z =
(∪m

i=1λi · Z ′) ∩ Spγ , which is a closed subscheme of Fl of finite type hence projective. 
Since Sp′μe

γ ⊂ (σ− id)−1(S) ·Z ′ = Λγ · (∪m
i=1λi ·Z ′). We conclude that Spγ = Λγ ·Z. �

5.2.4. Symmetry on affine Springer fibers
Let γ ∈ grs(F ) with a = χ(γ) ∈ c(OF ). Let a = χ(γ) be viewed as a morphism 

Spec OF → c. We define Ja := a∗J where J is the regular centralizer group scheme 
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defined in Section 2.4. There is a canonical isomorphism jγ : Ja,F
∼→ Gγ over F . The 

group scheme Ja gives a smooth model of Gγ over OF . Let Pa = Ja(F )/Ja(OF ), viewed 
as a fppf quotient in the category of group ind-schemes over C. As an ind-scheme over C, 
Pa is the moduli space of Ja-torsors over Spec OF together with a trivialization over 
Spec F .

Lemma 5.2.5. The action of Gγ(F ) on SpP,γ factors through Pa.

Proof. We first prove the statement for P = I. The proof is the same as the argument 
in [26, p. 42]. Let us give the reason on the level of C-points. Let jγ : Ja(F ) ∼→ Gγ(F )
be the canonical isomorphism. To show that Ja(OF ) acts trivially on Spγ , it suffices to 
show that for any g ∈ G(F ) such that Ad(g−1)γ ∈ Lie I, and any x ∈ Ja(OF ), we have 
jγ(x)gI = gI, or Ad(g−1)jγ(x) ∈ I. Let δ = Ad(g−1)γ ∈ Lie I. Then by Lemma 2.4.2, the 
canonical isomorphism jδ = Ad(g−1) ◦ jγ : Ja(F ) ∼→ Gδ(F ) = Ad(g−1)Gγ(F ) extends 
to Ja → II,δ over OF . Therefore, jδ sends Ja(OF ) to Gδ(F ) ∩ I, i.e., jδ(x) ∈ I, or 
Ad(g−1)jγ(x) ∈ I.

For general P, the morphism Spγ → SpP,γ is surjective. Therefore, the fact that 
Ja(OF ) acts trivially on Spγ implies that it also acts trivially on SpP,γ . �

We may introduce an open subset Spreg
G,γ consisting of those gG ∈ SpG,γ such 

that Ad(g)−1(γ) ∈ greg. The following result can be proved in a similar way as [26, 
Lemme 3.3.1], using Lemma 2.4.1.

Lemma 5.2.6. The open subset Spreg
G,γ is a torsor under Pa.

5.3. Homogeneous affine Springer fibers

Let a ∈ c(F )rsν be homogeneous of slope ν > 0, and let γ = κ(a) ∈ g. We will study 
the affine Springer fiber SpP,γ . We denote SpP,γ by SpP,a. We call such affine Springer 
fibers homogeneous. Applying the dimension formula (A.1) to this situation, we have

Corollary 5.3.1. 

(1) The dimension of the homogeneous affine Springer fiber is given by 

dim SpP,a = 1
2(ν#φ− r + dim tΠ(μm)) (5.7)

where Π : μm ↪→ W′ is the θ-regular homomorphism with a regular eigenvalue ν as 
in Theorem 3.2.5. Recall r = rank H is the F -rank of G.

(2) If a is moreover elliptic, then 

dim SpP,a = (hθν − 1)r/2. (5.8)

Here we recall hθ is the twisted Coxeter number of (G, θ).
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Proof. (1) By Lemma 3.1.3(3), we may choose γ′ in formula (A.1) to be Xtν for some 
X ∈ trs. Therefore val(α(γ′)) = ν for any root α ∈ φ. Plugging this into (A.1) we get 
(5.7). Note that the homomorphism Πa is W-conjugate to Π.

(2) By ellipticity, tΠ(μm) = 0. We also have #φ = hθr in the twisted situation. �
5.3.2. Families of homogeneous affine Springer fibers

We may put homogeneous affine Springer fibers of a given slope in families. Recall 
the Kostant section gives an embedding κ : c(F )ν ↪→ g(F )ν , which can also be viewed 
as a section of the GIT quotient of the Lν-action on g(F )ν . Let 

q̃P,ν : S̃pP,ν → g(F )rsν

be the family of affine Springer fibers (in FlP) over g(F )rsν . This morphism is clearly 
Lν-equivariant. Let 

qP,ν : SpP,ν → c(F )rsν

be the restriction of S̃pP,ν via the Kostant section κ. For a ∈ c(F )rsν , SpP,a is simply the 
fiber of qν at a.

5.3.3. Symmetry on homogeneous affine Springer fibers
Recall the one-dimensional torus Gm(ν) ⊂ G̃ad := (Gad(F ) � Grot,[e]

m ) × Gdil
m from 

§3.3.1. The group (Gad(F ) � Grot,[e]
m ) × Gdil

m acts on FlP (where Gad(F ) acts by left 
translation). By (3.14), Gm(ν) fixes κ(a), and therefore acts on SpP,a. In §3.3.7 we 
have defined a group ind-scheme Pν over c(F )rsν whose fibers are Pa that acts on SpP,a

by Lemma 5.2.5. The torus Gm(ν) also acts on Pν . Therefore we have an action of 
Pν �Gm(ν) on SpP,ν .

5.3.4. Fixed points of the Gm(ν)-action on the affine flag variety
Recall from §3.3.2 that ν determines a parahoric subgroup Pν ⊂ G(F ) with Levi 

factor Lν . Let Wν ⊂ W̃ be the Weyl group of Lν with respect to A.

Lemma 5.3.5. The fixed points of the Gm(ν)-action on FlP given in (3.13) are exactly 

�w̃ Lνw̃P/P, where w̃ runs over representatives of all double cosets Wν\W̃/WP.

Proof. The affine Bruhat decomposition expresses FlP as a disjoint union of Pνw̃P/P, 
where w̃ runs over the double coset Wν\W̃/WP. Each Pνw̃P can further be written as 
P+

ν,w̃ × Lνw̃P/P, where P+
ν,w̃ ⊂ P+

ν = ker(Pν → Lν) is the product of finitely many 
affine root subgroups. By the discussion in §3.3.2, the torus Gm(ν) acts on affine root 
subgroups in P+

ν with positive weights and fixes Lν pointwise. Therefore the Gm(ν)-fixed 
points contained in Pνw̃P/P are exactly Lνw̃P/P. �
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Remark 5.3.6. In the special case when νρ∨ lies in the interior of an alcove, Pν is an 
Iwahori subgroup and Lν = A. In this case, the Gm(ν)-fixed points on FlP are discrete.

5.4. Hessenberg paving

In [18], when e = 1, it is shown that for a class of elements γ ∈ grs(F ) called equival-
ued, the corresponding affine Springer fiber admits a paving by affine space bundles over 
Hessenberg varieties that are smooth and projective, and in particular they have pure co-
homology. Homogeneous elements are equivalued, therefore they admit pavings by affine 
space bundles over Hessenberg varieties. We shall indicate briefly how the Hessenberg 
paving extends to the quasi-split case for homogeneous affine Springer fibers.

5.4.1. Hessenberg varieties
Let L be a reductive group over C and V be a linear representation of L. Let P ⊂ L

be a parabolic subgroup and V + ⊂ V be a P -stable subspace. For v ∈ V , we define the 
Hessenberg variety Hessv(L/P, V ⊃ V +) to be the following subvariety of the partial flag 
variety L/P : 

Hessv(L/P, V ⊃ V +) = {gP ∈ L/P : g−1v ∈ V +}.

Observe that StabL(v) acts on Hessv(L/P, V ⊃ V +). As v varies in V , the Hessenberg 
varieties form a projective family 

Hess(L/P, V ⊃ V +) → V.

Let P be a standard parahoric. For each w̃ ∈ W̃ , let g(F )w̃P,ν := g(F )ν ∩Ad(w̃)Lie P, 
which is stable under the parabolic Lν ∩ Ad(w̃)P of Lν . For γ ∈ g(F )ν , we may define 
the Hessenberg variety 

Hessw̃P,γ := Hessγ(Lν/Lν ∩ Ad(w̃)P, g(F )ν ⊃ g(F )w̃P,ν)

as a closed subvariety of the partial flag variety f�w̃P,ν := Lν/Lν ∩Ad(w̃)P of Lν . It only 

depends on the class of w̃ in Wν\W̃/WP. As γ varies in g(F )ν the Hessenberg varieties 
form a projective family 

π̃w̃
P,ν : H̃ess

w̃

P,ν → g(F )ν . (5.9)

Similarly, let 

πw̃
P,ν : Hessw̃P,ν → c(F )ν

be the pullback of the map (5.9) via the Kostant section κ.
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When P = I, we often drop the P from subscripts. For γ ∈ g(F )ν , Hessw̃P,γ is just the 
fiber of π̃w̃

P,ν ; for a ∈ c(F )ν , we shall denote the fiber of πw̃
ν over a by Hessw̃P,a. In the 

case P = I, Hessw̃a is a closed subvariety of the flag variety f�w̃ν of Lν .

Theorem 5.4.2 (Goresky–Kottwitz–MacPherson). Let ν > 0 be an admissible slope.

(1) The Gm(ν)-fixed points of S̃pP,ν is the disjoint union 

S̃p
Gm(ν)
P,ν = �

w̃∈Wν\W̃/WP

H̃ess
w̃

P,ν |g(F )rsν .

(2) For a ∈ c(F )rsν , the homogeneous affine Springer fiber SpP,a admits a pavement 
by intersecting with Pν-orbits indexed by w̃ ∈ Wν\W̃/WP, and each intersection 
(Pνw̃P/P) ∩ SpP,a is an affine space bundle over Hessw̃P,ν,a which contracts to 
Hessw̃P,ν,a under the Gm(ν)-action.

(3) The projective morphism π̃w̃
P,ν : H̃ess

w̃

P,ν → g(F )ν is smooth over g(F )rsν .
(4) The cohomology of SpP,a (a ∈ c(F )rsν ) is pure.

Proof. (1) and (2) follows from Lemma 5.3.5. (3) By definition, H̃ess
w̃

P,ν is the zero loci of 

the family of sections of the vector bundle V := Lν

Lν∩Ad(w̃)P
× g(F )ν/g(F )w̃ν give by the 

elements in gν ∼= g(F )ν . For v ∈ grs
ν , the corresponding section is transversal to the zero 

section of the vector bundle V and therefore π̃w̃
ν is proper and smooth over g(F )rsν . For 

details see [18, §2.5]. The smoothness of the Hessenberg varieties in question is proved as 
in [18], using the fact that γ(1) is a “good vector” in gν under the Lν-action. (4) follows 
from (1) and (2). �
Example 5.4.3. Suppose νρ∨ lies in the interior of an alcove. Then SpP,γ admits a pave-
ment by affine spaces (by intersecting with Schubert cells in FlP). In particular, if the 
denominator of ν is equal to the θ-twisted Coxeter number hθ, then SpP,γ admits a 
pavement by affine spaces.

Next we draw some consequences from the existence of a Hessenberg paving on ho-
mogeneous affine Springer fibers.

Corollary 5.4.4. Let ν > 0 be elliptic and a ∈ c(F )rsν . Then the restriction map 

H∗
Gm(ν)(SpP,a) →

⊕
w̃∈Wν\W̃/WP

H∗(Hessw̃P,a) ⊗Q[ε] (5.10)

is an isomorphism after inverting ε (or equivalently specializing ε to 1). Note that only 
finitely many terms on the right hand side are nonzero, by the ellipticity of γ.
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Proof. Since a is elliptic, SpP,a is of finite type by Lemma 5.2.3. Since the cohomol-
ogy of SpP,a is pure by Theorem 5.4.2(4), it is Gm(ν)-equivariantly formal, hence the 
localization theorem applies. �
Corollary 5.4.5. Let ν > 0 be an admissible slope.

(1) The complexes π̃w̃
P,ν,∗Q and πw̃

P,ν,∗Q, when restricted to g(F )rsν and c(F )rsν respec-
tively, are direct sums of shifted semisimple local systems.

(2) Suppose ν is elliptic. Then the complexes q̃P,ν,∗Q and qP,ν,∗Q are direct sums of 
shifted semisimple local systems.

Proof. To save notation, we only prove the case P = I.
(1) By Theorem 5.4.2(3), π̃w̃

ν,∗Q|g(F )rsν is a direct sum of shifted local systems. By 
proper base change, πw̃

ν,∗Q is the pullback of π̃w̃
ν,∗Q to c(F )ν , hence also a direct sum of 

shifted local systems. The semisimplicity of these local systems follows from the decom-
position theorem.

(2) We give the argument for qν,∗Q, and the argument for q̃ν,∗Q is the same. The em-
bedding �w̃Hessw̃ν ↪→ Spν induces a morphism qν,∗Q → πw̃

ν,∗Q|c(F )rsν in Db
Gm(ν)(c(F )rsν ). 

Note that the Gm(ν)-action on c(F )ν is trivial. Further push-forward to Db(c(F )rsν ) and 
taking cohomology sheaves we obtain ι∗ : ⊕iRi

Gm(ν)qν,∗Q → Q[ε] ⊗ (⊕iRiπw̃
ν,∗Q|c(F )rsν )

between sheaves in Q[ε]-modules on c(F )rsν . By Corollary 5.4.4, ι∗ becomes an isomor-
phism after inverting ε. By (1), both Riπw̃

ν,∗Q|c(F )rsν are local systems, therefore so are 
Ri

Gm(ν)qν,∗Q. By the purity of the fibers of qν from Theorem 5.4.2(3), ⊕iRi
Gm(ν)qν,∗Q is 

non-canonically isomorphic to Q[ε] ⊗ (⊕iRiqν,∗Q), therefore Riq̃ν,∗Q is also a local sys-
tem. Semisimplicity of local systems again follows from the decomposition theorem. �
5.4.6. Symmetries on the cohomology of Hessenberg varieties

Let a ∈ c(F )rsν . We consider two symmetries on Hi(Hessw̃P,a).
First, recall that S̃a (resp. Sa) is the stabilizer of γ = κ(a) under L̃ν (resp. Lν). Since 

Sa acts on Hessw̃P,a, π0(Sa) acts on Hi(Hessw̃P,a).
On the other hand, let 

Ba := π1(c(F )rsν , a).

Here π1 means the topological fundamental group. The notation suggests that it is a 
braid group. In fact, it is the braid group attached to the little Weyl group WΠ(μm)

introduced in §3.3.6. By Lemma 5.4.5(1), Hi(Hessw̃P,a) is the stalk of a local system on 
c(F )rsν . Therefore Hi(Hessw̃P,a) also carries an action of Ba.

Now we combine the two actions. By the description of S̃ given in §3.3.8, the group 
of connected components π0(S̃a) also form a local system of finite abelian groups over 
c(F )rsν , which we denote by π0(S̃/c(F )rsν ). In particular, π0(S̃a) carries an action of Ba. 
We form the semidirect product π0(S̃a) �Ba using this action. Again by the description 
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of S̃ in §3.3.8, we may identify S̃a with TΠ(μm), and the action of Ba on π0(S̃a) factors 
through its quotient Ba � WΠ(μm) which acts on TΠ(μm). Similarly, by the description 
of S given in §3.3.8, π0(S/c(F )rsν ) = ker(π0(S̃/c(F )rsν ) → Ω) is also a local system over 
c(F )rsν , hence its fiber π0(Sa) carries an action of Ba, and we have a subgroup π0(Sa) �Ba

of π0(S̃a) �Ba.
We summarize the above discussion as

Lemma 5.4.7. Let For a ∈ c(F )rsν .

(1) For each w̃ ∈ Wν\W̃/WP, there is a natural action of π0(Sa) �Ba on the cohomology 
H∗(Hessw̃P,a).

(2) If ν > 0 is elliptic, then π0(S̃a) �Ba = S̃a �Ba also naturally acts on Hε=1(SpP,a).

Proof. (1) follows from the discussion in §5.4.6.
(2) When ν is elliptic, S̃a is a finite group hence π0(S̃a) = S̃a. Since S̃a acts on SpP,a, 

it also acts on Hε=1(SpP,a). On the other hand, by Corollary 5.4.4, Hε=1(SpP,a) is the 

direct sum of Hε=1(Hessw̃P,a) for w̃ ∈ Wν\W̃/WP. Therefore Ba acts on Hε=1(SpP,a) by 
acting on each direct summand Hε=1(Hessw̃P,a). It is easy to see that they together give 

an action of S̃a �Ba on Hε=1(SpP,a). �
5.5. Cohomology of homogeneous affine Springer fibers

In this subsection we will give a combinatorial formula for computing part of the 
cohomology of homogeneous affine Springer fibers. We will use the notation introduced 
in §1.2.3 on Gm(ν)-equivariant cohomology with the equivariant parameter ε specialized 
to 1.

Theorem 5.5.1. Let ν > 0 be a θ-admissible slope and a ∈ c(F )rsν .

(1) Let f�w̃P,ν be the partial flag variety Lν/Lν ∩ Ad(w̃)P of Lν . The image of the re-
striction map 

H∗(f�w̃P,ν) → H∗(Hessw̃P,a) (5.11)

is exactly the π0(Sa) �Ba-invariant part of the target.
(2) Suppose further that ν is elliptic, then the image of the restriction map 

Hε=1(FlP) → Hε=1(SpP,a)

is exactly the Sa �Ba-invariant part of the target.

Proof. Again we only prove the P = I case to save notation. (2) is a consequence of (1) 
by Corollary 5.4.4. Therefore it suffices to prove (1).
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(1) By the decomposition theorem, we may fix a decomposition π̃w̃
ν,∗Q = ⊕iKi

where Ki is a shifted simple perverse sheaf. Also note that H∗(f�w̃ν ) ∼= H∗(H̃ess
w̃

ν ) ∼=
H∗(g(F )ν ,⊕Ki) since the family H̃ess

w̃

ν contracts to its central fiber. We may rewrite 
(5.11) as ⊕

i

H∗(g(F )ν ,Ki) →
⊕
i

Ki,κ(a). (5.12)

By Corollary 5.4.5, each Ki|g(F )rsν is a shifted local system. Therefore the restriction map 
H∗(g(F )ν ,Ki) → Ki,κ(a) is nonzero if and only if Ki|g(F )rsν is a shifted constant sheaf, in 
which case it is an isomorphism.

Restricting to the Kostant section, Ki gives rise to a shifted local system K ′
i on c(F )rsν

equipped with an action of the group scheme π0(S/c(F )rsν ) over c(F )rsν , whose stalk at 
a carries an action of π0(Sa) � Ba. The decomposition H∗(Hessw̃ν,a) ∼= ⊕iK

′
i,a respects 

the π0(Sa) � Ba-action. The representation K ′
i,a is trivial if and only if K ′

i is a shifted 
constant sheaf on c(F )rsν with the trivial π0(S/c(F )rsν )-action, if and only if Ki|g(F )rsν is 
a shifted constant sheaf Lν-equivariantly because [c(F )rsν /S] ∼= [g(F )rsν /Lν ]. Since Lν is 
connected, there is only one Lν-equivariant structure on the constant sheaf on g(F )rsν , 
hence K ′

i,a is trivial as a π0(Sa) �Ba-module if and only if Ki|g(F )rsν is a shifted constant 
sheaf. Combined with the argument in the previous paragraph, we see that the image of 
(5.12) can be identified with the sum of those K ′

i,a which are trivial π0(Sa) �Ba-modules, 
i.e., the π0(Sa) �Ba-invariants of H∗(Hessw̃ν,a). �
Remark 5.5.2. The finite abelian group Ω acts on Fl and permutes its connected compo-
nents simply transitively. Let Fl◦ be the neutral component of Fl. Then Theorem 5.5.1(2) 
implies that when ν > 0 is elliptic, there is a natural surjective map 

Hε=1(Fl◦P) ∼= Hε=1(FlP)Ω � Hε=1(SpP,a)π0(S̃a)�Ba .

In fact, this follows from the exact sequence in Lemma 3.3.5(4) and taking Ω-invariants 
to the statement of Theorem 5.5.1(2).

In Section 9 we shall compute explicitly the action of Sa � Ba on H∗(Hessw̃a ) in all 
the cases where G has rank two and ν elliptic. In particular, we will see that the action 
of the braid group Ba does not necessarily factor through the little Weyl group WΠ(μm). 
The examples also show that the part of H∗

Gm(ν)(Spa)Sa that is not invariant under Ba

may contain odd degree classes.

Example 5.5.3. We consider the case G = SL3 (e = 1) and ν = d/3 for a positive 
integer d prime to 3. The regular homomorphism μ3 ↪→ W = S3 contains the Coxeter 
elements in the image, and Lν = T. The space g(F )ν is spanned by the affine root spaces 
of {α1, α2, −α1 − α2 + dδ}. The open subset g(F )rsν consists of those γ with nonzero 
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component in each of the three affine root spaces. For a ∈ c(F )rsν , the variety Hessw̃a is 
nonempty if and only if g(F )ν ⊂ Ad(w̃)Lie I, in which case it is a point. Clearly Sa�Ba

acts trivially on H∗(Hessw̃a ). The condition that Hessw̃a is nonempty is equivalent to the 
condition that the alcove of Ad(w̃)I is contained in the triangle defined by 

〈α1, x〉 ≥ 0, 〈α2, x〉 ≥ 0, 〈α1 + α2, x〉 ≤ d. (5.13)

There are d2 alcoves in this area. We conclude that 

dim H∗(Spa) = dim H∗(Spa)Sa�Ba = d2.

Below we will define the analog of the triangle (5.13) in general, and see that the homo-
geneity of dim H∗(Spa) in d is a general phenomenon.

5.5.4. Clans
In notations of the §3.3.2, the building A contains the point νρ∨. The walls of the 

apartment A that pass through νρ∨ are the reflection hyperplanes of the Weyl group 
Wν ⊂ W̃ of the group Lν (the Levi factor of the parahoric Pν corresponding to the facet 
containing νρ∨), and these correspond to the affine roots α such that α(νρ∨) = 0.

The affine roots that appear in the graded piece g(F )ν are those satisfying the equation 
α(νρ∨) = ν. The reflection hyperplanes of these affine roots are called ν-walls, and they 
are oriented with a normal vector pointing to νρ∨.

In [35] connected components of A −
⋃

(ν-walls) are called clans. A clan is a union of 
alcoves w̃Δ where Δ is the fundamental alcove. Each alcove w̃Δ contributes a Hessenberg 
variety Hessw̃a = Hessa(Lν/Lν ∩ Ad(w̃)I, g(F )ν ⊃ g(F )w̃ν ). This variety only depends on 
the coset of w̃ in Wν\W̃ . Thus we only need to study clans in the dominant chamber of 
Wν which is a cone with the vertex νρ∨.

Lemma 5.5.5. If the alcoves w̃Δ and w̃′Δ are in the same clan, then there is canonical 
isomorphism Hessw̃ν ∼= Hessw̃

′

ν over g(F )ν . Moreover, if Hessw̃a is nonempty for some 
a ∈ c(F )rsν , then its codimension in the partial flag variety f�w̃ν is equal to the number of 
ν-walls that separate the alcove w̃Δ from νρ.

Proof. Indeed, we have identities Lν ∩ Ad(w̃)I = Lν ∩ Ad(w̃′)I and g(F )w̃ν = g(F )w̃′
ν by 

identifying the affine root spaces appearing on both sides of the equalities.

Since Hessw̃a is the zero locus of a generic section of the vector bundle Lν

Lν∩Ad(w̃)I
×

(g(F )ν/g(F )w̃ν ), we have dim Hessw̃a = dim(Lν/Lν ∩Ad(w̃)I) − dim(g(F )ν/g(F )w̃ν ). Now 
observe that g(F )ν/g(F )w̃ν is the direct sum of affine roots spaces of those α such that 
α(νρ∨) = ν and α(w̃Δ◦) < 0 (Δ◦ is the interior of Δ). �
Remark 5.5.6. The expected dimension of the Hessw̃a can be calculated by the above 
lemma. If the expected dimension is negative then the corresponding Hessenberg variety 
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is empty. The converse is not true: there are w̃ such that dim(Lν/Lν ∩ Ad(w̃)I) ≥
dim(g(F )ν/g(F )w̃ν ) yet Hessw̃a is still empty for all a ∈ c(F )rsν .

Corollary 5.5.7. For ν > 0 elliptic and a ∈ c(F )rsν , if Hessw̃a is nonempty, then w̃Δ lies 
in a bounded clan.

Proof. Since Spa is of finite type when γ is elliptic by Lemma 5.2.3, there can be only 
finitely many nonzero terms on the right side of (5.10). If w̃Δ lay in an unbounded clan, 
the same Hessw̃a would be appear infinitely many times on the right side of (5.10) by 
Lemma 5.5.5, which is a contradiction. �

The following proposition reduces the dimension calculation to the case ν = 1/m.

Proposition 5.5.8. (See also [35, Proposition 3.4.1, Corollary 3.4.2].) Let ν = d1/m1 > 0
be an elliptic slope in lowest terms. For a ∈ c(F )rsν and b ∈ c(F )rs1/m1

, we have an 

isomorphism S̃a �Ba
∼= S̃b �Bb, and an isomorphism 

Hε=1(Spa) ∼= Hε=1(Spb)⊕dr
1 (5.14)

compatible with the actions of S̃a � Ba
∼= S̃b � Bb. Here r is the F -rank of the G. In 

particular, 

dim Hε=1(Spa)Sa�Ba = dr1 dim Hε=1(Spb)Sb�Bb . (5.15)

Proof. Let ν′ = 1/m1. Recall from Lemma 3.3.4 we have an isomorphism of pairs 
(L̃ν , g(F )ν) ∼= (L̃ν′ , g(F )ν′). This gives an isomorphism c(F )rsν ∼= c(F )rsν′ together with an 
isomorphism between their stabilizer group schemes S̃. Therefore we get an isomorphism 
S̃a �Ba

∼= S̃b �Bb, well-defined up to conjugation by either Ba or Bb.
The apartment A together with ν-walls is the d1-fold scale (with the center at the 

origin corresponding to the special parahoric G) of the same apartment A with ν′-walls. 
In particular we have a bijection between the ν-clans and the ν′-clans.

For w̃Δ in a ν-clan and w̃′Δ in the corresponding ν′-clan, the isomorphism g(F )ν ∼=
g(F )ν′ in Lemma 3.3.4 restricts to an isomorphism g(F )w̃ν ∼= g(F )w̃′

ν′ . Also the iso-
morphism Lν

∼= Lν′ there induces an isomorphism f�w̃ν ∼= f�w̃
′

ν′ . Therefore we have a 
Lν

∼= Lν′-equivariant isomorphism Hessw̃ν ∼= Hessw̃
′

ν′ over g(F )ν ∼= g(F )ν′ . This induces 
an isomorphism of Lν

∼= Lν′-equivariant local systems Riπ̃w̃
ν,∗Q|g(F )rsν

∼= Riπ̃w̃′

ν′,∗Q|g(F )rs
ν′ . 

Taking stalks at a and b we get a non-canonical isomorphism H∗(Hessw̃a ) ∼= H∗(Hessw̃
′

b )
equivariant under Sa �Ba

∼= Sb �Bb.
Applying Corollary 5.4.4 to Spa and Spb, the contribution of Hessenberg varieties to 

Hε=1(Spa) in a ν-clan is dr times the contribution of Hessenberg varieties to Hε=1(Spb)
in a ν′-clan because the ratio between sizes of the clans is dr1. The isomorphism (5.14)
follows. �
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5.5.9. Cohomology of Hessenberg varieties
When ν is elliptic, the equality (5.15) reduced the calculation of dim Hε=1(Spa)Sa�Ba

to the case where the slope is ν = 1/m1 (m1 is a regular elliptic number). Corol-
lary 5.4.4 reduces the calculation to the calculation of dim H∗(Hessw̃a )Sa�Ba for w̃ in 
various 1/m1-clans. We will give a formula for this dimension.

It is well-known that the cohomology ring of the flag variety f�w̃ν of Lν is 

HWν
= Sym(a∗)/(Sym(a∗)Wν

+ )

where (Sym(a∗)Wν
+ ) denotes the ideal generated by the positive degree Wν-invariants on 

Sym(a∗). Let 

λw̃
ν =

∏
α(νρ∨)=ν,w̃−1α<0

α ∈ Sym(a∗)

where α ∈ Φaff runs over the affine roots satisfying the conditions specified under the 
product symbol, and α ∈ Φ denote the finite part of α.

More generally, fix a standard parahoric subgroup P ⊂ G and let WP ⊂ Waff be the 
Weyl group of its Levi factor. The group Lν ∩ Ad(w̃)Lie P is a parabolic subgroup of 
Lν that contains the maximal torus A. Let W w̃

P,ν ⊂ Wν be the Weyl group of the Levi 
factor of Lν ∩ Ad(w̃)Lie P. Note that W w̃

ν,I = {1} for all w̃. The cohomology ring of the 

partial flag variety f�w̃P,ν = Lν/(Lν ∩ Ad(w̃)Lie P) of Lν can be identified with HW w̃
P,ν

Wν
. 

For w̃ ∈ W̃ , we define λw̃
P,ν ∈ Sym(a∗) to be the product 

∏
α where α runs over affine 

roots of such that α(νρ∨) = ν and w̃−1α ∈ Φ−
aff − Φ(LP) (where Φ(LP) ⊂ Φaff is the 

root system of LP with respect to A). Such affine roots are permuted by W w̃
P,ν, so that 

λw̃
P,ν ∈ Sym(a∗)W

w̃
P,ν , and we can talk about the image of λw̃

P,ν in HW w̃
P,ν

Wν
.

Theorem 5.5.10. Let P be a standard parahoric subgroup of G, and ν > 0 be a 
θ-admissible slope (not necessarily elliptic), and let a ∈ c(F )rsν .

(1) The restriction map H∗(f�w̃P,ν) ∼= HW w̃
P,ν

Wν
� H∗(Hessw̃P,a)π0(Sa)�Ba induces an iso-

morphism of Q-algebras 

H∗(Hessw̃P,a)π0(Sa)�Ba = HW w̃
P,ν

Wν
/Ann(λw̃

P,ν)

where Ann(λw̃
P,ν) ⊂ HW w̃

P,ν

Wν
is the ideal annihilating λw̃

P,ν .
(2) If ν is elliptic, then there is a Q-algebra isomorphism 

Hε=1(SpP,a)Sa�Ba =
⊕

˜ HW w̃
P,ν

Wν
/Ann(λw̃

P,ν).

w̃∈Wν\W/WP
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Here the sum is over double coset representatives (right multiplication by WP does 
not change the summand but left multiplication by Wν changes it).

(3) If ν = d1/m1 in lowest terms and is elliptic, then 

dim Hε=1(SpP,a)Sa�Ba = dr1
∑

w̃∈W1/m1\W̃/WP

dim(λw̃
P,1/m1

· HW w̃
P,1/m1

W1/m1
). (5.16)

Here λw̃
P,1/m1

·HW w̃
P,1/m1

W1/m1
denotes the image of multiplication by λw̃

P,1/m1
on HW w̃

P,1/m1
W1/m1

.

Proof. (1) Let E = Lν

Lν∩Ad(w̃)Lie P
× (g(F )ν/g(F )w̃P,ν) be the vector bundle over Y =

f�w̃P,ν . Let n be its rank and cn(E) ∈ H2n(f�w̃P,ν) be its top Chern class. The Hessenberg 

variety Z = Hessw̃P,a is the zero locus of a section of E which is transversal to the 
zero section. Let i : Z ↪→ Y be the closed embedding. Then we have an isomorphism 
i!Q[2n] ∼= Q. The composition 

QY
α−→ i∗QZ

∼→ i∗i
!QZ [2n] β−→ QY [2n]

is given by the cup product with cn(E). Moreover, the natural maps α and β are Verdier 
dual to each other. Taking cohomology, and taking π0(Sa) �Ba-invariants we get 

∪cn(E) : Hk(Y ) αk

−−→ Hk(Z)π0(Sa)�Ba
βk

−−→ Hk+2n(Y ), (5.17)

where βk and αk are adjoints of each other under Poincaré duality. Since αk is surjective 
by Theorem 5.5.1(1), βk must be injective by duality. Since the composition of the maps 
in (5.17) is the cup product with cn(E), we conclude that 

H∗(Z)π0(Sa)�Ba ∼= H∗(Y )/Ann(cn(E)) ∼→ Im(cn(E) ∪ H∗(Y )) ⊂ H∗+2n(Y ).

To identify cn(E) with λw̃
P,ν , we first consider the case P = I. In this case E is a 

successive extension of Lν-equivariant line bundles L(α) on f�w̃ν attached to characters 
Lν ∩ Ad(w̃)Lie I � A α−→ Gm where α runs over the weights of A on g(F )ν/g(F )w̃ν
(counted with multiplicities). The nonzero weights of A on g(F )ν/g(F )w̃ν are given by 
the finite parts of affine roots α such that α(νρ∨) = ν and w̃−1α < 0. Therefore cn(E) =∏

c1(L(α)) corresponds to the image of λw̃
ν =

∏
α ∈ Sym(a∗) in the quotient HWν

.
For general P, we pullback E to a vector bundle E ′ the flag variety f�w̃ν and use the 

above argument to show that cn(E ′) is the image of λw̃
P,ν in HWν

. Since the pullback 
map H∗(f�w̃P,ν) → H∗(f�w̃ν ) is injective, cn(E) is also the image of λw̃

P,ν .
(2) follows from (1) and Corollary 5.4.4.
(3) follows from (2) and Proposition 5.5.8, together with the fact that HW w̃

P,ν

Wν
/

Ann(λw̃
P,ν) ∼= λw̃ · HW w̃

P,1/m1
W . �
P,1/m1 1/m1
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By Theorem 8.2.3 and Corollary 8.2.4 that we will prove later, the formula (5.16)
(for P = I, and at least for G split) also gives the dimension of the irreducible spherical 
representations of the graded and rational Cherednik algebras with central charge ν.

6. Homogeneous Hitchin fibers

In this section, we study the geometric properties of global analogs of homogeneous 
affine Springer fibers, namely homogeneous Hitchin fibers. The connection between affine 
Springer fibers and Hitchin fibers was discovered by B.C. Ngô [25]. We will need a 
generalization of Hitchin moduli stacks, namely we need to consider the moduli stack of 
Higgs bundles over an orbifold curve (the weighted projective line) with structure group 
a quasi-split group scheme over the curve.

6.1. Weighted projective line

Fix a natural number m such that e|m.
Let Gm act on A2 by weights (m, 1). Let X be the quotient stack [(A2−{(0, 0)})/Gm]. 

This is an orbifold (Deligne–Mumford stack) with coarse moduli space a weighted pro-
jective line P(m, 1). We denote a point in X by its weighted homogeneous coordinates 
[ξ, η], i.e., by exhibiting a preimage of it in A2 − {(0, 0)}. The point 0 = [0, 1] ∈ X

does not have nontrivial automorphisms the point ∞ = [1, 0] ∈ X has automorphism 
group μm.

Let X ′ be the similar quotient with weights (m/e, 1). We denote the weighted ho-
mogeneous coordinates of X ′ by [ξ′, η′]. Let π : X ′ → X be the natural morphism 
[ξ′, η′] �→ [ξ′e, η′], which is a branched μe-cover. The only branch point is 0, whose 
preimage consists only one point 0′ ∈ X ′. The preimage of ∞ in X ′ is denoted by ∞′, 
which has automorphism μm/e.

The Picard group of X is a free abelian group which we identify with 1
mZ. This defines 

a degree map 

deg : Pic(X) ∼→ 1
m
Z,

whose inverse is denoted by ν �→ OX(ν). For degL ≥ 0, the global sections of L is 
identified with C[ξ, η]m deg L, homogeneous polynomials in ξ, η of total weight m degL. 
Each line bundle L on X also admits a trivialization on U = X − {∞}: it is given by 
the rational section ηm deg L of L which is non-vanishing on U . Such a trivialization is 
unique up to a scalar.

Similarly, the Picard group of X ′ is identified with 1
m/eZ and we have deg π∗L =

e degL.
The one-dimensional torus Grot

m acts on X via Grot
m � t : [ξ, η] �→ [tξ, η]. We will fix a 

Grot
m -equivariant structure on each line bundles L on X such that the action of Grot,[e]

m
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on the stalk L(0) is trivial. Concretely, if degL > 0, the Grot
m -action on Γ(X, L) ∼=

C[ξ, η]m deg L is given by Grot
m � s : f(ξ, η) �→ f(sξ, η).

For a closed point x ∈ X(C) − {∞} (which is not stacky), we use Ôx and K̂x to 
denote the completed local ring and its field of fractions at x. The notation K̂∞ still 
makes sense, and we often identify with F .

The orbifold X ′ contains an open subscheme U ′ = X ′−{∞′} ∼= A1. On the other hand 
V ′ = X ′−{0′} is isomorphic to Ṽ ′/μm/e where Ṽ ′ ∼= A1. Denote the preimage of ∞′ in Ṽ ′

by ∞̃′. Similarly, the orbifold X is covered by U = X−{∞} and V = X−{0} = Ṽ ′/μm.
To summarize, we have a diagram 

Ṽ ′

/μm/e

∞̃′

0′ U ′ X ′ V ′

/μe

∞′/μm/e

0 U X V ∞/μm

The dualizing sheaf ωX is obtained by gluing the dualizing sheaves ωU and ωV , the 
latter being the descent of the dualizing sheaf ωṼ ′ . We may identify ωX with the graded 
C[ξ, η]-submodule M of C[ξ, η]dξ⊕C[ξ, η]dη given by the kernel of the map fdξ+gdη �→
mξf + ηg. Therefore M is the free C[ξ, η]-module generated by ηdξ − mξdη. Hence 
degωX = −1/m − 1.

6.2. The moduli of G-torsors

6.2.1. The group scheme G
We define a group scheme G over X by gluing GU and GV . The group scheme GU is 

defined as the fiberwise neutral component of (ResU
′

U (G ×U ′))μe , where μe acts on both 

U ′ and on G via θ composed with the inverse of Out(G). The group scheme GV = G 
μe× V ′, 

where μe acts on G via θ and on Ṽ ′ via multiplication on coordinates. Both GU |U∩V and 
GV |U∩V are canonically isomorphic to the group scheme (ResU

′∩V ′

U∩V (G × (U ′ ∩ V ′)))μe , 
therefore we can glue GU and GV together to get a group scheme G over X. Upon choosing 
an isomorphism Ô0 ∼= OF , we may identify G|Spec Ô0

with G, as group schemes over OF .
Alternatively, we may view G as glued from G × V and G (viewed as a group scheme 

over OF = Ô0) along Spec K̂0. This point of view allows us to define a group scheme GP

for any parahoric P ⊂ G(F ). In fact, GP is the group scheme over X defined by gluing 
G × V and P (viewed as a group scheme over Ô0 = OF ) along Spec K̂0.

The Lie algebra Lie G is the vector bundle over X obtained by gluing g (over Ô0 = OF ) 
and g 

μe× V ′. We may similarly define Lie GP.
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We may also define a global version cX of c. This is obtained by gluing c (over 
Spec Ô0 = Spec OF ) and cV := c 

μe× Ṽ ′ together.

6.2.2. The moduli of G-torsors over X
A G-torsor over X is the following data (EU , EV , τ). Here EU is a GU -torsor over U ; 

EV is a μm-equivariant G-torsor over Ṽ ′ (the μm-action on G is given by the natural 
surjection μm � μe followed by θ and the inversion of Out(G)). Note that EV |U∩V

descends to a GU∩V -torsor E�
U∩V over U∩V . Finally τ is an isomorphism of GU∩V -torsors 

τ : EU |U∩V
∼→ E�

U∩V .
In particular, a vector bundle V over X is the data (VU , VV , τ) where VU is a vector 

bundle over U , VV is a μm-equivariant vector bundle on Ṽ ′ (which descends to V�
U∩V

over U ∩ V ) and τ is an isomorphism VU |U∩V
∼→ V�

U∩V .
Alternatively, a G-torsor is also a triple (E0, EV , τ) where E0 is a G-torsor over Spec Ô0, 

EV is a μm-equivariant G-torsor over Ṽ ′ and τ is an isomorphism between the two over 
Spec K̂0.

For a parahoric P ⊂ G(F ), we may define the notion of a G-torsor over X with P-level 
structure at 0: this simply means a GP-torsor over X. Concretely, it is a triple (E0, EV , τ)
where E0 is a P-torsor over Spec Ô0 and the rest of the data is the same as in the triple 
for a G-torsor.

We denote by BunG the moduli stack of G-torsors over X. For a parahoric P ⊂ G(F ), 
let BunP denote the moduli stack of G-torsor over X with P-level structure at 0; in 
particular, BunG = BunG.

6.3. The Hitchin moduli stack

Fix a line bundle L on X. Let L′ = π∗L.

6.3.1. G-Higgs bundles and their moduli
We define a G-Higgs bundle over X valued in L to be a pair (E , ϕ), where E =

(EU , EV , τ) is a G-torsor over X and ϕ is a global section of the vector bundle Ad(E) ⊗L
over X. Here Ad(E) = E

G
× Lie G is the adjoint bundle of E . Let MHit be the moduli 

stack of G-Higgs bundles over X valued in L.
For a parahoric subgroup P ⊂ G(F ), we may define the notion of a G-Higgs bundle 

valued in L with P-level structure at 0. This is a pair (E , ϕ) where E is a GP-torsor 

over X, and ϕ ∈ Γ(X, AdP(E) ⊗ L), where AdP(E) = E
GP× Lie GP is the adjoint vector 

bundle for the GP-torsor E . The moduli stack of G-Higgs bundles valued in L with P-level 
structure at 0 is denoted by MP. In particular, for P = G, we have MHit = MG. When 
P = I, we often omit the subscript I and write MI as M.

We may also replace the triple (X, G, L) by (X ′, G × X ′, L′), and define the moduli 
stack M′

P′ for L′-valued G-Higgs bundles on X ′ with P′-structure at 0′. Here P′ can be 
any parahoric subgroup of G(Fe). Suppose we choose P′ to be a standard parahoric of 
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G(Fe) that is invariant under the action of μe on G(Fe), then it corresponds to a unique 
standard parahoric P ⊂ G(F ). Moreover, M′

P′ carries a natural μe-action. We have a 
natural morphism MP → M′μe

P′ .

6.3.2. Hitchin base
Recall we have defined a global space of invariant polynomials cX over X. The weighted 

action of Gdil
m on c induces an action on cX . We can then twist cX by L to obtain 

cL := ρ(L) 
Gdil

m× X cX . Here ρ(−) is the total space of the Gm-torsor associated to a 
line bundle. The Hitchin base A for the triple (X, G, L) is the scheme of sections of the 
fibration cL → X.

We may also understand A using the curve X ′ and global sections of L′ on it. Let A′

be the Hitchin base for the triple (X ′, G, L′). The fundamental invariants f1, · · · , fr give 
an isomorphism 

A′ =
r⊕

i=1
H0(X ′,L′di) =

r⊕
i=1

C[ξ′, η]dim deg L. (6.1)

The fibration cL′ → X ′ is μe-equivariant, hence μe acts on the space of sections, i.e., A′. 
The Hitchin base A can be identified with the μe-fixed subscheme of A′, consisting of 
μe-equivariant sections a : X ′ → cL′ . Using the description in (6.1) and (2.1), we have 

A =
r⊕

i=1
ξ′εiC[ξ, η]m(di deg L−εi/e).

6.3.3. The cameral curve
Let A♥ ⊂ A be the locus where a : X → cL generically lies in the regular semisimple 

locus. Fix an element a ∈ A♥, we can define a branched W′-cover πa : X ′
a → X called 

the cameral curve. In fact, a determines a μe-equivariant section a′ : X ′ → cL. Then X ′
a

is defined as the Cartesian product 

X ′
a

π′
a

tL′

X ′ a′

cL′

(6.2)

The morphism πa : X ′
a → X is the composition π◦π′

a. The μe-equivariance of a′ allows us 
to define a W′-action on X ′

a extending the W-action coming from the Cartesian diagram 
(6.2), and πa is a branched W′-cover.

6.3.4. The elliptic locus
For a ∈ A♥, the restriction of the cameral curve to the generic point of X gives a 

homomorphism Πa : Gal(K/K) → W′ defined up to conjugacy, where K is the function 
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field of X. The point a is called elliptic if the Πa(Gal(K/K))-invariants on t is zero. The 
elliptic locus of A♥ forms an open subscheme Aell.

6.3.5. The Hitchin fibration
For each parahoric P of G(F ), we can define the Hitchin fibration 

fP : MP → A.

To define this, we first define the Hitchin fibration f ′
P′ : M′

P′ → A′ where the level 
P′ is the μe-invariant parahoric of G(Fe) corresponding to P. For (E ′, ϕ′) ∈ M′

P′ , 
f ′
P′ is the collection of invariants fi(ϕ) ∈ Γ(X ′, L′di) for i = 1, · · · , r. This morphism is 
μe-equivariant. Therefore we can define fP as the composition 

fP : MP → M′μe

P′
f ′
P′−−→ A′μe = A.

We denote the restriction of fP to A♥ by fP.

6.3.6. Picard stack action
For a ∈ A(C), we can define the regular centralizer group scheme Ja over X. In fact, 

we define Ja,V over V as the μm-descent from the regular centralizer group scheme J̃ ′
a

over Ṽ ′ (with respect to the section Ṽ ′ → V ′ → cL′). In Section 2.4, the local definition 
of the regular centralizer allows to define Ja over Spec Ô0. Finally we glue Ja,V and 
Ja,Spec Ô0

together along Spec K̂0.
Alternatively, we may define a universal version JX → cX as follows. This is glued 

from J0 over c (over Spec Ô0) and J 
μe× V ′ along Spec K̂0, here J is the universal regular 

centralizer over c. Let JL = JX
Gdil

m× X ρ(L), then we have JL → cL. For a ∈ A(C) viewed 
as a section X → cL, Ja may also be defined using the Cartesian diagram 

Ja JL

X
a

cL

(6.3)

Having defined Ja, we define Pa to be the moduli stack of Ja-torsors over X. Here, 
a Ja-torsor means a triple (QU , QV , τ) where QU is a Ja|U -torsor over U ; QV is a 
μm-equivariant J̃ ′

a-torsor over Ṽ ′, giving rise to a Ja|U∩V -torsor Q�
U∩V over U ∩ V via 

descent; τ is an isomorphism of Ja|U∩V -torsors QU |U∩V
∼→ Q�

U∩V .
We also have a local analog of Pa. For x ∈ X −{∞}, we define Pa,x to be the moduli 

space of Ja-torsors over Spec Ôx together with a trivialization over Spec K̂x. This is a 
group ind-scheme over C. We have Pa,x(C) = Ja(K̂x)/Ja(Ôx).

For x = 0, let a0 be the restriction of a to Spec Ô0 = Spec OF (fixing a trivialization 
of L over Spec Ô0). Then Pa,0 is the same as the Pa0 defined in Section 2.4.
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For x = ∞, Pa,∞ classifies μm-equivariant J̃ ′
a-torsors over the formal neighborhood 

Spec Ô∞̃′ of ∞̃′ together with a μe-invariant trivialization over Spec K̂∞̃′ . Identifying 
Ô∞̃′ with OFm

(in a μm-equivariant way), we have Pa,∞ = (Ja(Fm)/Ja(OFm
))μm . Note 

that it is important that we take invariants after taking quotients.
Many properties of the usual Hitchin moduli stacks generalize to the orbifold setting.

Proposition 6.3.7. Suppose degL ≥ 0. Then

(1) The moduli stack M♥
P = MP|A♥ is a smooth Artin stack. Its restriction over Aell

is a Deligne–Mumford stack.
(2) The morphism f ell

P : MP|Aell → Aell is proper.

Proof. The give the proofs for the Hitchin moduli stack M = MI without Iwahori level 
structure. The general case is similar.

(1) A C-point of M is a pair (E , ϕ) where E is a GI-torsor and ϕ ∈ Γ(X, AdI(E) ⊗L). 
The tangent space of M at (E , ϕ) is H0(X,K) where K is the two term complex 

AdI(E) [ϕ,−]−−−→ AdI(E) ⊗ L placed in degrees −1 and 0. By a variant of Biswas and 
Ramanan [7], the obstruction to infinitesimal deformation of the Higgs bundle (E , ϕ) lies 
in H1(X,K). By duality, H1(X,K) is dual to H0(X,K∨ ⊗ ωX), where K∨ is the two term 

complex AdI(E) ⊗ L−1 [ϕ,−]−−−→ AdI(E), placed in degrees 0 and 1. Let K′ = H0(K∨ ⊗ L)
be the kernel of AdI(E) [ϕ,−]−−−→ AdI(E) ⊗ L. Then H0(X,K∨ ⊗ ω) = H0(K′ ⊗ L−1 ⊗ ω). 
The argument of [26, 4.11.2] shows that K′ is a subsheaf of Lie J�

a, where a = f(E , ϕ)
(argue over U and V separately).

We can still describe Lie J�
a using the cameral curve (see §6.3.3) as for usual Hitchin 

fibers. Let X ′�
a be the normalization of the cameral curve X ′

a, and let π�
a : X ′�

a → X

be the projection. Then Lie J�
a = π�

a,∗(OX′�
a

⊗ t)W′ . Therefore H0(X,K∨ ⊗ ωX) ↪→
H0(X,Lie J�

a ⊗ L−1 ⊗ ωX) = H0(X ′�
a , t ⊗ π�,∗

a (L−1 ⊗ ωX))W′ . Since deg(L−1 ⊗ ωX) ≤
degωX < 0, we have H0(X ′�

a , t ⊗ π�,∗
a (L−1 ⊗ ωX)) = 0, hence the vanishing of the ob-

struction.
We have Aut(E , ϕ) ⊂ H0(X, J�

a) = H0(X ′�
a ,T)W′ . Choose a component X†

a of X ′
a

whose stabilizer we denote by W†
a. Then W†

a is the image of Πa : Gal(K/K) → W′ up to 
conjugacy. We have H0(X ′�

a ,T)W′ = TW†
a . When a is elliptic, tW†

a = tΠa(Gal(K/K)) = 0, 
hence TW†

a is finite, and therefore Aut(E , ϕ) is finite (and certainly reduced), and M|Aell

is Deligne–Mumford.
(2) Let X̃ ′ = P1 and let p : X̃ ′ → X be the morphism given by [ξ, η] �→ [ξm, η]. 

Any G-Higgs bundle on X with P-level structure at 0 pullbacks to a G-Higgs bundle 
on X̃ ′ with certain Q-level structure at 0̃′ = [0, 1] ∈ X̃ ′ (where Q ⊂ G(F ) is a para-
horic stable under μe whose μe-invariants give P up to a finite index), equipped with a 
μm-equivariant structure. Note that μm also acts on G and Q by pinned automorphisms 
via its quotient μe. Let M̃Q be the moduli stack of G-Higgs bundles (twisted by the line 
bundle p∗L) over X̃ ′ with a Q-levels structure at 0̃′. There is an action of μm on M̃Q. 
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The pullback map gives a morphism MP → M̃μm

Q compatible with the isomorphism 

Hitchin bases A ∼= Ã′μm (where Ã′ is the Hitchin base for G-Higgs bundles over X̃ ′

with respect to the line bundle p∗L). Restricting the μm-equivariant structure of a point 
(E , ϕ) ∈ M̃Q to 0̃′, we get a cohomology class [E ]0 ∈ H1(μm, LQ) (where LQ is the 
reductive quotient of Q on which μm acts via the quotient μe). A local calculation of 
shows that (E , ϕ) comes from a Higgs bundle on X with P-level structure via pullback if 
and only if [E ]0 is the trivial class. Therefore MP can be identified with the fiber of the 
trivial class under the map M̃μm

Q → H1(μm, LQ), hence a closed substack of M̃μm

Q . For 
the morphism M̃μm

Q |Aell → Aell, one can adapt the argument in [16, II.4] to show it is 
proper. Because MP|Aell is a closed substack of M̃μm

Q |Aell , it is also proper over Aell. �
6.4. Homogeneous points in the Hitchin base

The Grot,[e]
m -action on X ′ induces an action on the parabolic Hitchin stack M′ =

M(X ′, G, L′) as well as the Hitchin base A′. Recall L is equipped with the Grot
m -equivar-

iant structure, which induces a Grot,[e]
m -equivariant structure on L′. For any integer n, 

we may identify H0(X ′,L′⊗n) with C[ξ′, η]nm deg L, with t ∈ Grot,[e]
m acting as f(ξ′, η) �→

f(tξ′, η).
On the other hand, let Gdil

m be the one-dimensional torus which acts on M′ by dilation 
of the Higgs fields, and it also acts on A′ with weights d1, · · · , dr.

Similarly, there is an action of Grot,[e]
m ×Gdil

m on both M and A such that the Hitchin 
fibration f : M → A is Grot,[e]

m ×Gdil
m -equivariant. The action of Grot,[e]

m ×Gdil
m on A = A′μe

is the restriction of its action on A′.
Recall we defined a torus Ĝm(ν) ⊂ Ĝrot

m ×Gdil
m in Section 3.1, and its image Gm(ν) in 

Grot,[e]
m ×Gdil

m (see §5.3.3).

Definition 6.4.1. A nonzero element a ∈ A′ is called homogeneous of slope ν, if it is fixed 
by Gm(ν) ⊂ Grot,[e]

m ×Gdil
m .

Lemma 6.4.2. Let ν ∈ Q ∩ [0, degL]. A point a ∈ A′♥ is homogeneous of slope ν if and 
only if it is of the form 

r∑
i=1

ciξ
′eνdiη(deg L−ν)mdi ∈

r⊕
i=1

C[ξ′, η]dim deg L,

for some ci ∈ C. Note that the i-th term is nonzero only if eνdi ∈ Z.
If ν < 0 or ν > degL, then there is no homogeneous element in A′ of slope ν.

Proof. We only need to note that Gm(ν) fixes the monomial ξ′jη� in the ith factor of A′

if and only if j/di = eν. �
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Let A♥
ν (resp. Aν) denote the subscheme of homogeneous elements in A♥ (resp. A) 

of slope ν. We denote the restriction of the Hitchin fibration fP to A♥
ν by 

fP,ν : M♥
P,ν → A♥

ν .

Fixing a Grot
m -equivariant trivialization of L over U , for any a ∈ A we may view 

a|Spec K̂0
as an element in c(F )rs (upon identifying F with K̂0). This defines a map 

e0 : Aν → c(F )ν (6.4)

sending A♥
ν to c(F )rsν . In particular, if A♥

ν �= ∅, then ν is a θ-admissible slope (see 
Definition 3.2.6).

6.4.3. Symmetry on homogeneous Hitchin fibers
By construction, Ja fits into the Cartesian diagram (6.3). Note that the projection 

JL → cL is Grot,[e]
m × Gdil

m -equivariant. Since a is homogeneous of slope ν, the section 
X → cL is Gm(ν)-equivariant, where Gm(ν) acts on X via the projection Gm(ν) →
Grot,[e]

m → Grot
m . Therefore Ja also admits an action of Gm(ν) making Ja → X equivariant 

under Gm(ν). Therefore Gm(ν) also acts on Pa. As a varies in A♥
ν , we get a Picard 

stack Pν over A♥
ν whose fiber over a is Pa. The group stack Pν � Gm(ν) acts on the 

family M♥
P,ν .

6.5. The case L = OX(ν)

Fix a positive θ-admissible slope ν = d/m written in the normal form (see §3.2.9). We 
use m to define the weighted projective line X = P(m, 1). From now on, we will concen-
trate on the special case where L = OX(ν), and we fix a Grot

m -equivariant trivialization 
of LU . Let Π : μm ↪→ W′ be the θ-regular homomorphism of order m.

The following lemma follows directly from Lemma 6.4.2.

Lemma 6.5.1. The map e0 in (6.4) is an isomorphism. Moreover, with one choice of an 
isomorphism Gm(ν) ∼= Gm, the action of Gm(ν) on A is contracting to Aν.

Proposition 6.5.2. For a ∈ A♥
ν we have 

dimMa = dimPa = 1
2(ν#ΦG − r − dim tΠ(μm)). (6.5)

Proof. By considering the regular locus of MG,a, which is a torsor under Pa, we may 
reduce to the calculation of dimPa.

We first work with the curve X ′ instead of X, over which we consider the constant 
group G ×X ′ and the regular centralizer group scheme J ′

a therein. In [26, 4.13.2], Ngô 
gives a formula for Lie J ′

a (as a vector bundle over X ′) 
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Lie J ′
a
∼= c∨L′ ⊗ L′.

Here L′ = π∗L. By construction, we have Lie Ja = (π∗Lie J ′
a)μe . On the other hand we 

have dimPa = −χ(X, Lie Ja), therefore we have 

dimPa = −χ(X,π∗(c∨L′ ⊗ L′)μe).

By projection formula, 

π∗(c∨L′ ⊗ L′)μe = (c∨L ⊗ L⊗ π∗OX′)μe =
r⊕

i=1
OX(−diν + ν − εi/e).

Recall that εi ∈ {0, 1, · · · , e − 1} is the unique number such that μe acts on the ith

fundamental invariant fi via the εth
i power of the tautological character (see §2.3). The 

Riemann–Roch formula for X says that for any line bundle L′′ on X we have 

χ(X,L′′) = [degL′′] + 1.

Then

dimPa =
r∑

i=1
−χ(X,OX(−diν + ν − εi

e
))

=
r∑

i=1
−[−ν(di − 1) − εi

e
] − 1 =

r∑
i=1

[ν(di − 1) + εi
e
− 1

m
].

The integers {d1 − 1, · · · , dr − 1} are the exponents of the W-action on t. By [33, 
Theorem 6.4(v)], the action of μm on t via Π decomposes t into r lines where μm

acts through the characters ζ �→ ζν(di−1)+εi/e, i = 1, · · · , r. Therefore if we write t =
⊕j∈Z/mZtj according to this action of μm. Therefore, 

r∑
i=1

(ν(di − 1) + εi
e

) − [ν(di − 1) + εi
e
− 1

m
] =

m∑
j=1

j

m
dim tj . (6.6)

Since the Killing form restricts to a perfect pairing between tj and t−j , we see that 

m∑
j=1

j

m
dim tj = 1

2
∑
j �=0

dim tj + dim t0 = dim t + dim tΠ(μm)

2 . (6.7)

On the other hand, applying the same reasoning as above to the μe-action on t via θ (in 
place of the μm-action on t), we conclude that 

r∑ εi
e

= dim t − dim tθ(μe)

2 . (6.8)

i=1
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Plugging (6.7) and (6.8) into (6.6), we get

dimPa =
r∑

i=1
[ν(di − 1) + εi

e
− 1

m
]

= ν
r∑

i=1
(di − 1) + dim t − dim tθ(μe)

2 − dim t + dim tΠ(μm)

2

= 1
2(ν#ΦG − r − dim tΠ(μm)). �

Remark 6.5.3. Comparing (6.5) with (5.7), we get 

dim Spa − dimMa = dim tμm ,

which is consistent with Proposition 6.6.3 below: Ma is a disjoint union of copies of 
[Spa/S̃a] and S̃a

∼= Tμm .

6.6. Homogeneous Hitchin fibers and homogeneous affine Springer fibers

In this subsection, we would like to link the family of homogeneous affine Springer 
fibers SpP,ν and the family of homogeneous Hitchin fibers MP,ν over A♥

ν , through a 
formula analogous to the product formula in [26, Proposition 4.15.1].

6.6.1. Kostant section over V
Let a ∈ A♥

ν . We would like to construct a GV -Higgs bundle (EV , ϕV ) with invariant aV , 
the restriction of a to V . For this we need to make an extra assumption 

The cocharacter dρ∨ ∈ X∗(Aad) lifts to X∗(A). (6.9)

Over V , L represents a line bundle over Ṽ ′ with a μm-equivariant structure. Such a 
μm-equivariant line bundle is classified up to isomorphism by a class in H1(μm,Gm) =
Hom(μm, Gm) = Z/mZ. The class of L|V is d mod m, which means there is a 
μm-equivariant isomorphism L|Ṽ ′

∼→ Ṽ ′ × A1 with μm acting on the A1-factor via dth

power.
The point aV can be viewed as a μm-equivariant morphism aV : Ṽ ′ → c, where μm

acts on Ṽ ′ as usual, and ζ ∈ μm acts on c ∈ c by ζ : c �→ ζd ·θ(ζm/e)(c) (here · denotes the 
weighted action of Gm on c with weights {d1, · · · , dr}). Consider the trivial GV -torsor 
Etriv
V = GV over V . A Higgs field on Etriv

V is a map b : Ṽ ′ → g together with a 1-cocycle 
ε : μm → G (with μm acts on G via ζ �→ θ(ζm/e)), such that for any ζ ∈ μm, 

b(ζv) = ζdAd(ε(ζ))θ(ζm/e)b(v). (6.10)

We take b to be the composition 
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b : Ṽ ′ ã′
V−−→ c

κ−→ s ⊂ g.

Under the assumption (6.9), let λ ∈ X∗(A) lift dρ∨, and we take ε(ζ) = ζ−λ. Then (6.10)
holds by (3.6) and the fact that κ commutes with pinned automorphisms. We denote 
the GV -Higgs bundle corresponding to b by (Etriv

V , ϕa
V ).

We would like to equip (Etriv
V , ϕa

V ) with a Gm(ν)-equivariant structure. By (3.6), we 
have 

κ(ã′V (sm/ex)) = κ(sd · ã′V (x)) = sdAd(s−dρ∨
)(κ(ã′V (x))), s ∈ Gm, x ∈ Ṽ ′. (6.11)

Fix a lifting λ ∈ X∗(A) of dρ∨, the above formula shows that left translation by sλ on 
the trivial GV -torsor extends to an isomorphism of GV -Higgs bundles s∗(Etriv

V , ϕa
V ) ∼→

(Etriv
V , sdϕa

V ), hence giving (Etriv
V , ϕa

V ) a Gm(ν)-equivariant structure.
The above construction clearly works in families as a moves over the base A♥

ν . 
We therefore get a family of GV -Higgs bundles (Etriv

V × A♥
ν , ϕV ) over A♥

ν carrying a 
Gm(ν)-equivariant structure.

6.6.2. The local-to-global morphism
We would like to define a morphism 

βP,ν : SpP,ν → MP,ν (6.12)

over A♥
ν respecting the symmetries on the affine Springer fibers and the Hitchin fibers. By 

Lemma 6.5.1, a point a ∈ A♥
ν corresponds to a point in c(F )rsν by restricting to the formal 

neighborhood of 0, which we still denote by a. Every point gP ∈ SpP,a gives a P-Higgs 
bundle (E0, ϕ0) over Spec Ô0: E0 = P is the trivial P-torsor and ϕ0 = Ad(g−1)(κ(a)) ∈
E0

P
× Lie P and Ad(g) is an isomorphism (E0, ϕ0)|Spec K̂0

∼→ (G, κ(a)). Since the restric-
tion of (Etriv

V , ϕa
V ) on Spec K̂0 is (G, κ(a)), Ad(g) glues (E0, ϕ0) with (Etriv

V , ϕa
V ) along 

Spec K̂0 and we get a morphism βP,a : SpP,a → MP,a. This construction works in 
families over A♥

ν and gives the desired morphism βP,ν .
In §5.3.3 we have defined an action of the group ind-scheme Pν � Gm(ν) on SpP,ν

over c(F )rsν . In §6.4.3 we have defined an action of Pν � Gm(ν) on MP,ν over A♥
ν . 

By the construction of Pν and Pν , there is a Gm(ν)-equivariant homomorphism over 
c(F )rsν ∼= A♥

ν

Pν → Pν (6.13)

such that βP,ν is equivariant with respect to the Pν-action on SpP,ν and the Pν-action on 
M♥

P,ν via (6.13). Moreover, the morphism βP,ν is also equivariant under Gm(ν) by the 
construction of the Gm(ν)-equivariant structure on (GV , ϕV ). In summary, the morphism 
βP,ν is equivariant under the Pν � Gm(ν)-action on SpP,ν and the Pν � Gm(ν)-action 
on M♥

P,ν .
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Recall from Section 5.3.2 the family of homogeneous affine Springer fibers SpP,ν over 
c(F )rsν with the action of the group scheme S̃ over c(F )rsν .

Proposition 6.6.3. Let ν > 0 be a θ-admissible slope. Fix a lifting λ ∈ X∗(A) of dρ∨.

(1) There is a surjective morphism M♥
P,ν := MP|A♥

ν
→ H1(μm,T) whose fibers are 

homeomorphic to [SpP,ν/S̃].
(2) If moreover ν is elliptic, then we have a homeomorphism over c(F )rsν ∼= A♥

ν

[SpP,ν/S̃] ∼= M♥
P,ν (6.14)

which is fiberwise equivariant under the actions of Pν � Gm(ν) and Pν � Gm(ν). 
Moreover, Pν has connected fibers.

Proof. To save notation, we only treat the case P = I. The general case is the same.
(1) The local–global morphism βP,ν together with its equivariance with respect to Pν

gives a morphism of stacks 

Spν

Pν× Pν
∼→ M♥

ν . (6.15)

We claim that this is a homeomorphism. To check this, we only need to work fiberwise, 
therefore we fix a ∈ A♥

ν . The product formula [37, 2.4.2] holds in the case where X is 
a Deligne–Mumford curve. Note that the point ∞ does not contribute to the product 
formula: since ν = d/m, by Lemma 6.4.2, we see that aV , viewed a μe-equivariant map 
V ′ → c, lies entirely in crs. The equivariance under Gm(ν) is already observed in §6.6.2.

It remains to examine how far the morphism (6.13) is from being an isomorphism. 
For a ∈ A♥

ν , we have the regular centralizer group scheme Ja over X. Since a is regular 
semisimple over V , Ja,V is a torus over V . When a varies over A♥

ν , the torus JV over 
A♥

ν × V is the automorphism group scheme of (GV , ϕ).
The morphism (6.13) over a is obtained by gluing a Ja-torsor over Spec Ô0 with the 

trivial Ja,V -torsor over V . As in §3.3.6, the morphism V → [crs/μe] can also be lifted to 

Ṽ ′ → trsν

where tν ⊂ t is the Cartan space defined in §3.3.6. The regular centralizer Ja,V can be 
calculated using this lifting as in §3.3.7, i.e., 

Ja,V ∼= Ṽ ′ μm× T,

where μm acts on T via the homomorphism Π : μm ↪→ W′ and the action of W′ on T. In 
particular, Ja,V -torsors over V are the same as μm-equivariant T-torsors over Ṽ ′. Any 
T-torsor over Ṽ ′ ∼= A1 is trivial, and the μm-equivariant structure on the trivial T-torsor 
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amounts to a class in H1(μm,T) (obtained by looking at the μm action on the fiber of the 
torsor at ∞̃′). This class gives the homomorphism Pν → H1(μm,T). If a Ja-torsor over 
X has the trivial class in H1(μm,T), then it comes from gluing a Ja-torsor over Spec Ô0
with the trivial Ja,V -torsor, and hence in the image of Pa. The kernel of Pa → Pa is the 
automorphism group of such a Ja-torsor, which is TΠ(μm) = S̃a. Therefore we have an 
exact sequence of stacks 

1 → S̃ → Pν → Pν → H1(μm,T) → 1, (6.16)

where the first map is S̃a → G�
γ(OF )/Ja(OF ) ⊂ Pa (see Lemma 3.3.5). This sequence 

together with (6.15) gives the first statement of the proposition.
(2) When a is elliptic, H1(μm,T) = 0 by Tate-complex calculation (or part (2) of the 

proof of Proposition 6.3.7). Therefore the second statement follows.
Finally we need to show that Pa is connected when a is elliptic. In this case, Ja

is an anisotropic torus over F , hence Pa is a quotient of Ja(F ) = G�,red
γ (OF ) whose 

reductive quotient is S̃a by Lemma 3.3.5(4). Therefore S̃a → Pa,0 induces a surjection 
on component groups, hence Pa is connected by the exact sequence (6.16). �

Example 6.6.4. We give an example when G = PGL2. We may take γ =
(

0 1
td 0

)
where 

d > 0 is an odd integer, and let a = χ(γ), which is homogeneous of slope ν = d/2. The 
affine Grassmannian FlG = G(F )/G(OF ) as well as the affine Springer fiber SpG,a

have two components (that are permuted by ΩI ∼= Z/2Z). The regular centralizer 
group scheme Ja is simply the centralizer of γ in G = G(OF ). We have Ja(F ) ={(

x y

tdy x

)
;x, y ∈ F, x2 − tdy2 �= 0

}
/F×. The inclusion S̃a

∼= Tμ2 ∼= {±1} → Ja(F )

sends −1 to the class of 
(

0 1
td 0

)
modulo scalar matrices (which is the unique element 

of order two in Ja(F )). The left multiplication action of S̃a on SpG,a permutes the two 

components. Therefore SpG,a/S̃a can be identified with one component of SpG,a.
One the other hand, we shall describe the geometric structure of MG,a, where a =

−ξd ∈ Γ(X, O(d/2)2) = A. A point of MG,a is the quotient Ma/Pic(X). Here Ma

classifies equivalent classes of pairs (V, ϕ) where V is a vector bundle of rank two on X, 
ϕ : V → V(d/2) satisfying ϕ2 = ξdid as a map V → V(d). The action of N ∈ Pic(X) on 
Ma sends (V, ϕ) to (N ⊗ V, idN ⊗ ϕ).

Any vector bundle on X is a direct sum of line bundles. By tensoring with Pic(X), 
we may assume V = O ⊕ O(n/2) for n ∈ Z≥0. The map ϕ : O ⊕ O(n/2) → O(d/2) ⊕

O((n + d)/2) can be written as a matrix 

(
x y

z −x

)
, where x ∈ C[ξ, η]d, y ∈ C[ξ, η]d−n, 

z ∈ C[ξ, η]d+n and x2 + yz = ξd. This equation forces n to be odd, for otherwise all 
x, y, z will be divisible by η. Also 1 ≤ n ≤ d. Let Sn be the space of such matrices. Once 
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we fix x, there is a finite number of choices for y and z up to scalar, hence dimSn =
1 + dimC[ξ, η]d = (d + 3)/2. Let Hn = Aut(O ⊕ O(n/2))/Gm, which acts on Sn by 

conjugation. Every matrix in Hn can be represented uniquely by 

(
x 0
y 1

)
with x ∈ C×, 

y ∈ C[ξ, η]n. Therefore dimHn = (n + 3)/2. By our discussion above, Ma admits a 
stratification �1≤n≤d,n oddSn/Hn with dimSn/Hn = (d − n)/2. The top dimensional 
stratum is S1/H1, which has dimension (d − 1)/2. One can check for small values of d
that S1 is irreducible, therefore Ma only has one top-dimensional component.

Remark 6.6.5. If we consider G = SL2 instead of PGL2, and take the same a as in 
Example 6.6.4, the affine Springer fiber SpG,a is isomorphic to a connected component 
of its PGL2 counterpart. However, the Hitchin fiber MG,a in this case is empty! In fact, 
suppose (V, ϕ) ∈ MG,a, then V ∼= O(−n/2) ⊕O(n/2) for some integer n ≥ 0, and ϕ can 

be written as a matrix 

(
x y

z −x

)
, where x ∈ C[ξ, η]d, y ∈ C[ξ, η]d−2n, z ∈ C[ξ, η]d+2n

and x2 + yz = ξd. Since d is odd and ξ has degree 2, the degrees of x2 and yz in ξ are 
both strictly smaller than d, and x2 + yz = ξd has no solution. This does not contradict 
Proposition 6.6.3 because in this case the assumption (6.9) fails.

Part 3. Representations

7. Geometric modules of the graded Cherednik algebra

In this section, we construct an action of the graded Cherednik algebra with central 
charge ν on the Gm(ν)-equivariant cohomology of both homogeneous affine Springer 
fibers and homogeneous Hitchin fibers.

Since affine Springer fibers and Hitchin fibers are only locally of finite type, we make 
some remarks on the definition of their (co)homology. Let f : M → S be a morphism of 
Deligne–Mumford stacks over C. Suppose M can be written as a union of locally closed 
substacks M = ∪i∈IMi (for some filtered set I) such that each fi : Mi → S is of finite 
type. In this case f!DM/S is defined to be an ind-object lim−−→i

fi,!DMi/S of Db(S). If Mi

are open in M , we may define f!Q to be the ind-object lim−−→i
fi,!Q. When S = Spec C

we denote f!DM by H∗(M) and denote f!Q by H∗
c(M) (when defined), which are usual 

graded vector spaces. Similar notation applies to the equivariant situation. For details, 
see [39, Appendix A]. Affine Springer fibers and Hitchin fibration both can be covered by 
finite-type open substacks, and the above notion makes sense. In the following we shall 
work with compactly supported cohomology, although similar statements for homology 
also hold with the same proof.
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7.1. The Hgr-action on the cohomology of homogeneous affine Springer fibers

Recall the family of homogeneous affine Springer fibers qν : Spν → c(F )rsν . We will 
construct an action of Hgr

ν on the ind-complex q!Q. We will construct the actions of 
a∗KM, si and ΩI separately, and then check these actions satisfy the relations in Hgr

ν .

Construction 7.1.1. The action of ε is via m times the generator of X∗(Gm(ν)), viewed 
as an element in H2

Gm(ν)(pt).

Construction 7.1.2. We shall construct the action of a∗KM. In §5.1.1 we have assigned for 
each ξ ∈ X∗(AKM) a line bundle L(ξ) on Fl carrying a canonical GKM-equivariant struc-
ture. By (3.13), the action of Gm(ν) on Fl is obtained by restricting the left translation 
action of GKM on Fl via the homomorphism Gm(ν) ↪→ A × Grot,[e]

m ⊂ GKM given by 
the cocharacter dρ∨ + m∂. Therefore, each L(ξ) carries a canonical Gm(ν)-equivariant 
structure. The action of ξ on qν,!Q is given by the cup product with the equivariant 
Chern class cGm(ν)

1 (L(ξ)) : qν,!Q → qν,!Q[2](1).

Construction 7.1.3. We shall construct the action of a simple reflection si on qν,!Q, 
following Lusztig [24]. Before doing this we need some more notation. For a standard 
parahoric P, let LP be its Levi factor and let πLP

: P → LP be the projection. Let 
lP = Lie LP. Let πlP : Lie P → lP be the projection map on the level of Lie algebras.

There is an evaluation map evP : SpP,γ → [lP/LP] given by gP �→ πlP(Ad(g−1)γ)
mod LP. Let bI

P (resp. BI
P) be the image of Lie I (resp. I) under the projection πlP

(resp. πLP
), which is a Borel subalgebra of lP (resp. Borel subgroup of LP). We also 

have an evaluation map evI
P : Spγ → [bI

P/B
I
P] given by gI �→ πlP(Ad(g−1)γ) mod BI

P. 
The two evaluation maps fit into a Cartesian diagram 

Spν

evI

P

πP,ν

[bI
P/B

I
P]

pl
P

SpP,ν

evP [lP/LP]

(7.1)

The morphism plP is in fact the Grothendieck simultaneous resolution of lP (quotient 
by the adjoint action of LP). Let Pi be the standard parahoric whose Levi factor Li has 
root system ±αi. Applying proper base change to the Cartesian diagram (7.1), we get 
an isomorphism in the equivariant derived category Db

Gm(ν)(SpPi,ν): 

πP,ν,∗Q ∼= ev∗
Ppli,∗Q.

By the Springer theory for the reductive Lie algebra li, the complex pli,∗Q ∈ Db
Li

(li)
admits an action of an involution si. Therefore qν,!Q ∼= qPi,ν,!ev∗

PπP,ν,∗Q also admits an 
action of si.
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Construction 7.1.4. We construct the action of ΩI on Spν commuting with the 
Gm(ν)-action, which then induces an action on qν,!Q. In fact, for each ω ∈ ΩI = NG(I)/I, 
pick a representative ω̇ ∈ G. Then right multiplication by ω̇ : gI �→ gω̇I is an automor-
phism on Fl which preserves the family Spν fiberwise. This automorphism is independent 
of the choice of ω̇ in the coset of ω, and defines an action of ΩI on Spν .

Theorem 7.1.5. Constructions 7.1.1–7.1.4 define an action of Hgr
ν on qν,!Q ∈

Db
Gm(ν)(c(F )rsν ). Moreover, the element ε ∈ Hgr

ν acts as m times the equivariant pa-
rameter from H2

Gm(ν)(pt); the action of BKM on qν,!Q is through the multiplication by 
ν2B(ρ∨, ρ∨)ε2 ∈ H4

Gm(ν)(pt).

Proof. First, we check (GC-2): the Constructions 7.1.3 and 7.1.4 give an action of W̃ on 
qν,!Q. This is done in the same way as in [39], using the diagram (7.1).

Next, we check (GC-3) for ξ ∈ a∗. Using the diagram (7.1) for P = Pi, we reduce to 
a calculation for groups of semisimple rank one, and can be checked in the same way as 
in [37].

Next, we check (GC-3) for ξ = Λcan. The idea is similar to that of [37, §6.5]. Recall 
from §5.1.3 that each FlP carries a determinant line bundle detP. In view of (5.3), we 
define 

ΛP = Λcan + 2ρG − 2ρP + 〈νρ∨ + ∂, 2ρP − 2ρG〉ε.

Then we have L(ΛP) ∼= π∗
P detP as Gm(ν)-equivariant line bundles. Since we have already 

checked that (GC-3) for ξ ∈ a∗ ⊕ Qε, by the linearity of the relation (GC-3), it suffices 
to check for each affine simple reflection si and the particular element Λi := ΛPi

that 

siΛi − siΛisi = 〈Λi, α
∨
i 〉u. (7.2)

By Proposition 5.1.5, 

〈Λi, α
∨
i 〉 = − deg(L(Λi)|Ci) = − deg(π∗

Pi
detPi

|Ci
) = 0,

hence the right side of (7.2) is zero. This also implies that siΛi = Λi. On the other hand, 
from the construction of the si action in (7.1.3), cupping with any class pulled back 
from SpPi,ν (and in particular cGm(ν)

1 (detPi
)) commutes with the action of si on qν,!Q. 

Therefore we have siΛi = Λisi = siΛi, and (7.2) is proved. This finishes the verification 
for (GC-3).

We check (GC-4). Using the construction of L(ξ) in Construction 7.1.2, the desired 
relation follows from the commutation relation between NGKM(IKM) and AKM.

Finally, we show that BKM ∈ Sym2(a∗KM)W̃ ⊂ Hgr
ν acts as ν2B(ρ∨, ρ∨)ε2 ∈ H4

Gm(ν)(pt). 
By Lemma 5.1.6, we know that the action of BKM on qν,!Q is the same as the cup product 
with the image of BKM under the restriction map H4

AKM
(pt) → H2

Gm(ν)(pt). By (3.13), 
the embedding Gm(ν) ↪→ AKM is given by the cocharacter dρ∨ + m∂ = m(νρ∨ + ∂). 
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Therefore, the action of BKM on qν,!Q is via BKM(νρ∨ +∂, νρ∨ +∂)ε2 = ν2B(ρ∨, ρ∨)ε2 ∈
H4

Gm(ν)(pt). �
Taking stalks at a ∈ c(F )rsν , we get the following corollary.

Corollary 7.1.6. For a ∈ c(F )rsν , there is a graded action of Hgr
ν /(BKM − ν2B(ρ∨, ρ∨)ε2)

on H∗
c,Gm(ν)(Spa) that commutes with the action of π0(S̃a) � Ba. Specializing to ε = 1, 

there is an action of Hgr
ν,ε=1 on Hc,ε=1(Spa), commuting with the action of π0(S̃a) � Ba

and compatible with the cohomological filtrations on Hgr
ν,ε=1 and Hc,ε=1(Spa).

7.2. The polynomial representation of Hgr

In this subsection, we shall show that the equivariant cohomology of the whole affine 
flag variety Fl gives a geometric model for the polynomial representation of Hgr.

The construction of the Hgr-action on the equivariant cohomology of homogeneous 
affine Springer fibers in §7.1 in fact works line by line for Fl as well. We thus get

Proposition 7.2.1. Suppose ν > 0 is an elliptic slope. There is an action of Hgr
ν /(BKM −

ν2B(ρ∨, ρ∨)ε2) on H∗
Gm(ν)(Fl) such that the restriction map H∗

Gm(ν)(Fl) → H∗
Gm(ν)(Spa) =

H∗
c,Gm(ν)(Spa) is Hgr

ν -equivariant for any a ∈ c(F )rsν .

Let Hgr
ν = Hgr

ν /(BKM − ν2B(ρ∨, ρ∨)ε2). The connected components of Fl is indexed 
by ΩI. Let Fl◦ be the “neutral” component (containing the coset I). The class 1 ∈
H0

Gm(ν)(Fl◦) is invariant under Waff . We therefore get a natural map of Hgr
ν -modules 

IndH
gr
ν

Q[ε]⊗Q[Waff ](Q[ε]) → H∗
Gm(ν)(Fl). (7.3)

The induced module on the left side is called the polynomial representation of Hgr
ν .

Lemma 7.2.2. The map (7.3) is an isomorphism after inverting ε (or equivalently, it is 
an isomorphism after specializing ε to 1).

Proof. We abuse notation to use a to mean aQ. Ignoring the Hgr
ν -module structure, 

the left side of (7.3) is isomorphic to Q[ε] ⊗ Sym(a∗) ⊗ Q[ΩI]. Since ΩI permutes the 
components of Fl simply-transitively, it suffices to show that Q[ε, ε−1] ⊗ Sym(a∗) →
H∗

Gm(ν)(Fl◦)[ε−1] is an isomorphism, where Fl◦ is the identity component of Fl. This 
map is induced from the map a∗ → H2

Gm(ν)(Fl) by sending ξ ∈ X∗(A) to the equivariant 
Chern class cGm(ν)

1 (L(ξ)). Since we only consider one component of Fl, we may assume 
G is simply-connected and hence Fl is connected.

We first recall the ring structure of H∗
A×G

rot,[e]
m

(Fl). We have H∗
A×G

rot,[e]
m

(pt) ∼= Q[δ] ⊗
Sym(a∗). The equivariant Chern classes of the line bundles L(ξ) for ξ ∈ X∗(A) give a
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map of H∗
A×G

rot,[e]
m

(pt)-algebras 

H∗
A×G

rot,[e]
m

(pt) ⊗ Sym(a∗) ∼= Q[δ] ⊗ Sym(a∗) ⊗ Sym(a∗) → H∗
A×G

rot,[e]
m

(Fl).

Let f1, · · · , fr be the generators of the invariant ring Sym(a∗)W , then �(fi) − r(fi) are 
divisible by δ in H∗

A×G
rot,[e]
m

(Fl). (Here we follow the notation preceding Lemma 5.1.6 to 

distinguish the left and right copies of Sym(a∗)). Write �(fi) − r(fi) = δei for a unique 
ei ∈ H2di−2

A×G
rot,[e]
m

(Fl). Then we have a H∗
A×G

rot,[e]
m

(pt)-algebra isomorphism 

H∗
A×G

rot,[e]
m

(Fl) ∼= Q[δ]⊗Sym(a∗)⊗Sym(a∗)⊗Q[e1, · · · , er]/(�(fi)−r(fi)−δei; i = 1, · · · , r).

If we invert δ, the generators ei become redundant, and we get an isomorphism of 
H∗

A×G
rot,[e]
m

(pt)[δ−1]-module 

H∗
A×G

rot,[e]
m

(pt)[δ−1] ⊗ Sym(a∗) ∼→ H∗
A×G

rot,[e]
m

(Fl)[δ−1]. (7.4)

Restricting to the subtorus Gm(ν) ⊂ A × Grot,[e]
m , we get an algebra homomorphism 

H∗
A×G

rot,[e]
m

(pt)[δ−1] → H∗
Gm(ν)(pt)[ε−1] (because Gm(ν) has a nontrivial projection 

to Grot
m ). Base change (7.4) using this algebra homomorphism, we get an isomorphism 

H∗
Gm(ν)(pt)[ε−1] ⊗ Sym(a∗) ∼→ H∗

Gm(ν)(Fl)[ε−1]. �
7.3. The global sheaf-theoretic action of Hgr

In [37, Construction 6.1.4], we defined an action of the graded Cherednik algebra 
Hgr on the derived image of the constant sheaf along the parabolic Hitchin fibration. 
In this subsection, we will extend this construction to the situation where the curve is 
the weighted projective line X and we shall keep track of the Grot,[e]

m ×Gdil
m -equivariant 

structures.
We first describe the actions of the generators u, δ, a∗, Λcan, si and ΩI of Hgr act on f!Q, 

viewed as an ind-object in the equivariant derived category Db

G
rot,[e]
m ×Gdil

m

(A♥).

Construction 7.3.1. The equivariant cohomology H∗
G

rot,[e]
m ×Gdil

m

(pt) acts on every object 

in the category Db

G
rot,[e]
m ×Gdil

m

(A♥). In particular, every element in X∗(Grot,[e]
m × Gdil

m ) ⊂

H2
G

rot,[e]
m ×Gdil

m

(pt) gives a map f!Q → f!Q[2](1). This gives the action of δ ∈ X∗(Grot,[e]
m )

and u ∈ X∗(Gdil
m ).

Construction 7.3.2. The action of ξ ∈ X∗(AKM). Let BunI be the moduli stack of 
GI-torsors over X. As in [37], we may write BunI as a fppf quotient B̂un/IKM, where B̂un
classifies (E , t, τ, α): E is a G-torsor over X; t is a coordinate at 0 ∈ X which is a constant 
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multiple of the canonical coordinate ξ/ηm; τ is a trivialization of E|Spec Ô0
and α is a 

trivialization of detRΓ(X, Ad(E)). The moduli space B̂un admits a right action of GKM. 
Therefore it makes sense to quotient by IKM. Hence, for each ξ ∈ X∗(AKM), we have a 

Grot,[e]
m -equivariant line bundle L(ξ) = B̂un

IKM,ξ
× A1 over BunI. Pulling back to M, we 

get a Grot,[e]
m × Gdil

m -equivariant line bundle over M which we still denote by L(ξ). The 
action of ξ on f!Q is the cup product with the equivariant Chern class of Lξ: 

f!(∪cG
rot,[e]
m ×Gdil

m
1 (Lξ)) : f!Q → f!Q[2](1). (7.5)

Remark 7.3.3. The line bundle L(δ) constructed above is the trivial line bundle over M
on which Grot,[e]

m × Gdil
m act via the character δ. Therefore, the actions of δ constructed 

in Constructions 7.3.1 and 7.3.2 are the same.

Remark 7.3.4. When ξ = Λcan ∈ X∗(AKM), the fiber of the line bundle L(Λcan) at 
(EI, ϕ) ∈ M is the determinant line detRΓ(X, Ad(EG)), where EG is the G-torsor induced 
from the GI-torsor EI. Since the cotangent complex of BunG at E is given by the dual of 
RΓ(X, Ad(E))[1], we see that L(Λcan) is the pull back of the canonical bundle ωBunG of 
BunG .

Construction 7.3.5. The construction of the action of si is based on the evaluation dia-
gram (cf. [37, Diagram (4.6)]). The maps evI

P and evP are the evaluation of Higgs fields 
at 0. 

M
evI

P

πI

P

[bI
P/B

I
P]

pl
P

MP
evP [lP/LP]

(7.6)

Here the evaluation maps uses the Grot,[e]
m -equivariant trivialization of L|Spec Ô0

. The 

morphisms evI
P and evP are Grot,[e]

m × Gdil
m -equivariant (the action of Gdil

m on lP and 
bI
P are via the inverse of the scaling action). The rest of the construction is the same 

as Construction 7.1.3 for affine Springer fibers. The Grot,[e]
m × Gdil

m -equivariance of the 
diagram ensures that the si-action takes place in Db

G
rot,[e]
m ×Gdil

m

(A♥).

Construction 7.3.6. There is an action of ΩI on M. In fact, writing BunI as B̂un/IKM, 
we see that ΩI = NGKM(IKM) acts from the right. This action preserves the formation 
of Γ(X, AdI(E)), and hence lifts to an action of ΩI on M. This action commutes with 
action of Grot,[e]

m ×Gdil
m and preserves the Hitchin fibration. Therefore this action induces 

an action of ΩI on f!Q in the category Db
rot,[e] dil(A♥).
Gm ×Gm
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Theorem 7.3.7. 

(1) Constructions 7.3.1–7.3.6 define an action of Hgr on the ind-complex f!Q in 
Db

G
rot,[e]
m ×Gdil

m

(A♥).
(2) Restricting the above construction to A♥

ν defines an action of Hgr on the ind-
complexes fν,!Q in Db

Gm(ν)(A♥
ν ). This action factors through Hgr

ν .

Proof. The proof of (1) is almost the same as Theorem 7.1.5. The only difference is 
that the determinant line bundle detP in the proof there should be replaced by its 
global analogue: the line bundle detBunP

over BunP whose fiber over the GP-torsor E
is detRΓ(X, AdP(E)). For (2) we only need to check that both δ/m and −u/d act as 
the canonical equivariant parameter in H2

Gm(ν)(pt). This is true because the embedding 

Gm(ν) ↪→ Grot,[e]
m ×Gdil

m is given by the cocharacter (m/e, −d). �
7.4. Local–global compatibility

We have constructed actions of Hgr
ν on both the equivariant cohomology of homoge-

neous affine Springer fibers and homogeneous Hitchin fibers in the previous subsections. 
The two fibers are related by the local–global morphism (6.12), and the two actions are 
compatible in the following sense.

Proposition 7.4.1. Let ν > 0 be an admissible slope and assume (6.9) holds. The mor-
phism of ind-complexes over A♥

ν
∼= c(F )rsν

fν,!Q → qν,!Q (7.7)

induced by the local–global morphism βI in (6.12) is a morphism of Hgr
ν -modules. If ν is 

elliptic, the morphism (7.7) identifies fν,!Q with the S-invariants of qν,!Q.

Proof. We only need to check that the actions of ε, a∗, Λcan, si and ΩI in both 
H∗

Gm(ν)(Ma) and H∗
Gm(ν)(Spγ) are respected by the map (7.7).

The action of ε in both cases are via m times the equivariant parameter in H2
Gm(ν)(pt). 

The action of si is defined by the diagrams (7.1) and (7.6). The required statement follows 
from the commutative of the diagram 

Spν

βI

πP

Mν

evI

P

πP,ν

[bI
P/B

I
P]

pl
P

SpP,ν

βP MP,ν

evP [lP/LP]

The rest of the argument requires a study of the local–global morphism 
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β : Fl → BunI (7.8)

which we define now. Recall we can write BunI = B̂un/IKM, and B̂un admits a right ac-
tion by GKM. The trivial GI-torsor together with the standard trivialization on Spec Ô0, 
the standard local coordinate at 0 and a choice of a trivialization of detRΓ(X, Lie G)
gives a point pt ↪→ B̂un. Taking the GKM-orbit gives GKM → B̂un, and, passing to the 
quotient by IKM we get β : Fl → BunI. Concretely, β(gI) is the G-torsor obtained by glu-
ing the trivial I-torsor over Spec Ô0 and the trivial GV -torsor over V via the isomorphism 
G(F ) = I(F ) ∼→ GV (F ) = G(F ) given by left multiplication by g. From this description, 
we see that β is invariant under the left translation by the automorphism group of the 
trivial GV -torsor, namely G(OV ) = G(OṼ ′)μm . Hence β descends to a morphism 

β : G(OV )\Fl → BunI.

The morphism β is clearly Grot,[e]
m -equivariant. Since A ⊂ G(OV ), β descends to 

A\Fl → BunI. Since the Gm(ν)-action on Fl is given by the embedding dρ∨ + m∂ ∈
A × Grot,[e]

m , we conclude that β is in fact Gm(ν)-equivariant, where Gm(ν) acts on Fl
via (3.13) and acts on BunI through its projection to Grot,[e]

m . Since the construction of 
βI,a in Section 6.6.2 is by gluing with the trivial G-torsor over V , we have a commutative 
diagram 

Spν

βI Mν

Fl
β

BunI

For ξ ∈ X∗(AKM), the action of ξ in both cases are via the Chern class L(ξ) on Fl
and LBun(ξ) on BunI. By the definition of the morphism β, we have β∗LBun(ξ) ∼= L(ξ)
in a Gm(ν)-equivariant way (note that the definition of a base point pt ∈ B̂un involves a 
choice of the determinant line detRΓ(X, Lie G), which is unique up to a scalar, therefore 
the isomorphism β∗LBun(Λcan) ∼= L(Λcan) depends on this choice, and is canonical only 
up to a scalar). This implies that (7.7) respects the ξ-action.

Finally the morphism βI is equivariant under ΩI by construction. Therefore the 
ΩI-action is also respected by (7.7). �
Remark 7.4.2. When ν is elliptic, by Proposition 7.4.1 and Theorem 7.1.5, BKM acts on 
fν,!Q as ν2B(ρ∨, ρ∨)ε2. We expect the same to be true without the assuming ν is elliptic.

8. Geometric modules of the rational Cherednik algebra

In this section, we fix a θ-admissible elliptic slope ν > 0. We will construct an ac-
tion of the rational Cherednik algebra Hrat

ν on a modification of the Gm(ν)-equivariant 
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cohomology of homogeneous affine Springer fibers. When G is split, we will show that 
such a construction gives the irreducible spherical module Lν(triv) of Hrat

ν,ε=1 using the 
geometry of homogeneous Hitchin fibers.

One notational change is that we will identify S̃a with π0(S̃a), because when m is an 
elliptic number, S̃a is itself a finite abelian group.

In §8.1–8.2, we work in the generality of quasi-split groups as in §2.2.2. From §8.3 we 
will assume that e = 1, i.e., G is split over F .

8.1. The polynomial representation of Hrat

Let Fl◦ be the neutral component of the affine flag variety of G (which is the same 
as the affine fiber variety of the simply-connected cover of G). Lemma 7.2.2 gives a 
canonical algebra isomorphism 

Q[ε, ε−1] ⊗Q Sym(a∗) ∼→ H∗
Gm(ν)(Fl◦)[ε−1] (8.1)

given be sending ξ ∈ X∗(A) to the Gm(ν)-equivariant Chern classes of L(ξ).

Definition 8.1.1. The Chern filtration C≤iH∗
Gm(ν)(Fl◦)[ε−1] on H∗

Gm(ν)(Fl◦)[ε−1] is the 
image of polynomials of degree ≤ i (in a∗) under the map (8.1). The Chern filtration
C≤iH∗

Gm(ν)(Fl◦) of H∗
Gm(ν)(Fl◦) is defined as the saturation of the Chern filtration on 

H∗
Gm(ν)(Fl◦)[ε−1], i.e., C≤iH∗

Gm(ν)(Fl◦) = H∗
Gm(ν)(Fl◦) ∩ C≤iH∗

Gm(ν)(Fl◦)[ε−1].

Proposition 8.1.2. 

(1) There is a bigraded action of Hrat
ν on GrC∗ H∗

Gm(ν)(Fl◦).
(2) There is a map of Hrat

ν -modules 

IndH
rat
ν

Q[ε]⊗Sym(a)⊗Q[W ](Q[ε]) → GrC∗ H∗
Gm(ν)(Fl◦), (8.2)

that is an isomorphism after inverting ε.
(3) Let N = 1

2r(hθν − 1), which is the dimension of Spa for any a ∈ c(F )rsν (see 
Corollary 5.3.1(2)). The operator h in the almost sl2-triple defined in §4.2.3 acts by 
(i −N)ε on GrCi H∗

Gm(ν)(Fl◦).

Proof. Since Fl◦ is the affine flag variety of the simply-connected cover of G, and that 
Hrat

ν is invariant under isogeny of G, we may assume that G is simply-connected.
(1) We already have an action of Hgr

ν /(BKM − ν2B(ρ∨, ρ∨)ε2) on H∗
Gm(ν)(Fl) from 

Proposition 7.2.1. To define the Hrat
ν -action on GrP∗ H∗

Gm(ν)(Fl), we only need to check 
the conditions in Proposition 4.3.1 are satisfied.

Using (GC-4) and (GC-5) we see that for w̃ ∈ W̃ with image w ∈ W and ξ ∈ a∗, 
w̃ξ − wξw̃ ∈ Q[u, δ]. By induction on n, we see that for f(ξ) ∈ Symn(a∗), w̃f(ξ) −



672 A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601–706
f(wξ)w̃ ∈ Q[u, δ] ⊗ Sym≤n−1(a∗). In particular, for w̃ in the lattice part of W̃ (so 
w = 1), the commutator [w̃, f(ξ)] lies in Q[u, δ] ⊗ Sym≤n−1(a∗). Let 1 ∈ H0

Gm(ν)(Fl) be 
the unit class. Then (w̃ − id) · f(ξ) · 1 = w̃f(ξ) · 1 − f(ξ)w̃ · 1 ∈ C≤n−1H∗

Gm(ν)(Fl).
An element ξ ∈ a∗ sends C≤n to C≤n+1 by definition. Finally the action of εΛcan, 

a multiple of BKM − B, sends C≤n to C≤n+2 (because degB = 2 and BKM acts as 
a multiple of ε2). Since the Chern filtration on H∗

Gm(ν)(Fl) is given by saturating the 
degree filtration on H∗

Gm(ν)(Fl)[ε−1], Λcan also sends C≤n to C≤n+2. This checks all the 
condition in Proposition 4.3.1 and finishes the proof.

(2) follows from the isomorphism (8.1).
(3) We only need to show that h acts on 1 ∈ H0

Gm(ν)(Fl) ⊂ GrC0 H∗
Gm(ν)(Fl) by 

multiplication by −Nε. Let {ξi} and {ηi} be dual bases of a∗ and a respectively. 
Since ηi · 1 = 0, we have h · 1 = 1

2
∑

i ξiηi · 1 + ηiξi · 1 = 1
2
∑

i[ηi, ξi] · 1 =
1
2ε(

∑
i〈ξi, ηi〉 − ν

2
∑

α∈Φ cα
∑

i〈ξi, α∨〉〈α, ηi〉) · 1 = 1
2ε(r − ν

∑
α∈Φ cα) · 1. Since cα is 

defined as the cardinality of the preimages of φ → Φ, the above is further equal to 
1
2ε(r − ν#φ) · 1 = 1

2ε(r − νhθr) · 1 = −Nε · 1. �
8.2. The Hrat-action on the cohomology of homogeneous affine Springer fibers

Let a ∈ c(F )rsν . Recall from Theorem 5.5.1 and Remark 5.5.2 that we have the restric-
tion map 

ι∗a : H∗
Gm(ν)(Fl◦) ∼= H∗

Gm(ν)(Fl)Ω → H∗
Gm(ν)(Spa)S̃a�Ba

which is surjective after inverting ε.

Definition 8.2.1. The Chern filtration C≤iH∗
Gm(ν)(Spa)S̃a�Ba [ε−1] on H∗

Gm(ν) ×
(Spa)S̃a�Ba [ε−1] is the image of C≤iH∗

Gm(ν)(Fl◦)[ε−1] under ι∗a. The Chern filtration
C≤iH∗

Gm(ν)(Spa)S̃a�Ba on H∗
Gm(ν)(Spa)S̃a�Ba is the saturation of the Chern filtration on 

H∗
Gm(ν)(Spa)S̃a�Ba [ε−1].

The same argument of Proposition 8.1.2(1) gives the following result.

Proposition 8.2.2. Let a ∈ c(F )rsν . There is a bigraded action of Hrat
ν on GrC∗ H∗

Gm(ν) ×
(Spa)S̃a�Ba such that the map GrC∗ ι∗a : GrC∗ H∗

Gm(ν)(Fl◦) → GrC∗ H∗
Gm(ν)(Spa)S̃a�Ba is a 

map of Hrat
ν -modules (which is surjective after inverting ε).

The main result of this section is the following theorem.

Theorem 8.2.3. Assume G is split (i.e., e = 1) and let a ∈ c(F )rsν .

(1) There is a geometrically defined filtration P≤iH∗
Gm(ν)(Spa)S̃a on H∗

Gm(ν)(Spa)S̃a , sta-
ble under the Ba-action and extending the Chern filtration on H∗ (Spa)S̃a�Ba , 
Gm(ν)
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such that the bigraded Hrat
ν -action on GrC∗ H∗

Gm(ν)(Spa)S̃a�Ba extends to
GrP∗ H∗

Gm(ν)(Spa)S̃a and commutes with the Ba-action.
(2) Specializing ε to 1, the Hrat

ν,ε=1-module GrC∗ Hε=1(Spa)S̃a�Ba is isomorphic to the ir-
reducible finite-dimensional spherical module Lν(triv) of Hrat

ν,ε=1.

We have an immediate corollary.

Corollary 8.2.4. Assume G is split and simply-connected, and let a ∈ c(F )rsν . Then the 
H

gr
ν,ε=1-module Hε=1(Spa)Sa�Ba is also irreducible.

Proof. By [35, Proposition 2.3.1 (b)] the dimensions of the finite dimensional irre-
ducible spherical modules for Hgr

ν,ε=1 and Hrat
ν,ε=1 are equal. Thus by Theorem 8.2.3(2), 

Hε=1(Spa)Sa�Ba has the same dimension as the spherical irreducible Hgr
ν,ε=1-module. 

On the other hand Hgr
ν,ε=1-module Hε=1(Spa)Sa�Ba is a quotient of the polynomial 

representation of Hgr
ν,ε=1. Since the analog of Corollary 4.4.2 holds for Hgr

ν,ε=1 by [35, 
Proposition 2.3.1(a)], we conclude that Hε=1(Spa)Sa�Ba is the irreducible spherical mod-
ule for Hgr

ν,ε=1. �
The proof of Theorem 8.2.3 occupies §8.3–8.6. It uses the geometry of Hitchin fibra-

tion, especially a variant of Ngô’s support theorem in an essential way. Currently we are 
unable to generalize certain technical results needed in this global geometric argument 
to the quasi-split groups. However, the quasi-split examples in §9 suggest the following 
conjecture.

Conjecture 8.2.5. The statements of Theorem 8.2.3 hold for quasi-split groups G (in the 
generality of §2.2.2).

Example 8.2.6. When ν = d/hθ with (d, hθ) = 1 (recall hθ is the twisted Coxeter number 
of (G, θ)), we may compute the dimension of Hε=1(Spa) using Proposition 5.5.8. In the 
case ν = 1/hθ there is only one bounded clan and it consists of a single alcove. Therefore 
for ν = d/hθ, dim Hε=1(Spa) = dr for any a ∈ c(F )rsν . It is easy to see directly that Sa�Ba

acts trivially on Hε=1(Spa). On the other hand, the irreducible Hrat
1/m,ε=1-module Lν(triv)

also has dimension dr, see [2, Theorem 1.11]. Therefore GrC∗ Hε=1(Spa) ∼= Lν(triv) as 
Hrat

ν,ε=1-modules. Moreover, [2, Proposition 1.20] shows that Lν(triv) is a Frobenius alge-
bra. Therefore, we have checked Conjecture 8.2.5 in the case the denominator of ν is the 
twisted Coxeter number.

Combining Theorem 8.2.3 with Theorem 5.5.10(3) we get a dimension formula for 
Lν(triv) as in (1.2). More generally, we have

Corollary 8.2.7. Let G be split and ν = d/m > 0 be an elliptic slope in lowest terms (which 
is also the normal form since e = 1). Then for any standard parahoric subgroup P of G, 
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we have 

dimLν(triv)WP = dr
∑

w̃∈Wν\W̃/WP

dim(λw̃
P,1/m · HW w̃

P,1/m
W1/m

).

8.3. The perverse filtration

For the rest of the section we assume G is split.
For the construction of the rational Cherednik algebra action, we need to consider 

the version of Hitchin moduli stacks in which we also allow the point of the parahoric 
reduction to move on X. Indeed, this is the version considered in the papers [37] and [38]. 
We use MP,U to denote the moduli stack classifying (x, E , ϕ) where x ∈ U , (E , ϕ) an 
L-valued G-Higgs bundle over X with P-reduction at x. For details of the construction, 
see [37].

The Hitchin fibration now reads fP,U : MP,U → A × U , which sends (x, E , ϕ) to 
(f1(ϕ), · · · , fr(ϕ), x). In the sequel we shall exclusively work over the open subset A♥×U , 
so we abuse the notation to denote the restriction of fP,U to A♥ × U again by fP,U . 
Let f ell

P,U be the restriction of fP,U to Aell ×U . Again, when P = I, we suppress it from 
subscripts.

Construction 8.3.1. The construction of [37, Construction 6.1.4], as recalled in §7.3, gives 
an action of Hgr on fU,!Q as an ind-complex Db(A♥ × U). We would like to upgrade 
this into an action in the equivariant derived category Db

Grot
m ×Gdil

m
(A♥ × U). In fact, the 

constructions given in [37] gives the action of si, ΩI and X∗(TKM) also in the Grot
m ×

Gdil
m -setting. Only the action of u needs a little extra care. In [37] we make u act as the 

Chern class of L (pull-back along A♥×X → X). Now we are working with U instead of X, 
so the Grot

m -equivariant Chern class of L|U is trivial (since we have fixed the equivariant 
structure of L so this holds). Instead, u should act as the equivariant parameter of Gdil

m

as in Construction 7.3.1. Also note that δ acts by the equivariant parameter of Grot
m , and 

Λcan acts by the pullback of the equivariant Chern class cG
rot
m

1 (ωBunG
).

The same argument as in Theorem 7.3.7 shows that

Theorem 8.3.2. Construction 8.3.1 gives an action of Hgr on the ind-complex fU,∗Q in 
the equivariant derived category Db

Grot
m ×Gdil

m
(A♥ × U).

Let f ell
U,∗Q = fU,∗Q|Aell×U . According to the action of X∗(T) ⊂ W̃ ⊂ Hgr, we may 

decompose fU,∗Q into generalized eigen-complexes (see [38, §2.2]) 

f ell
U,∗Q =

⊕
κ∈T̂Q)

(f ell
U,∗Q)κ

where κ runs over finite order elements in T̂(Q) = Hom(X∗(T), Q×).
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Definition 8.3.3. 

(1) The stable part (f ell
U,!Q)st of f ell

U,∗Q is the direct summand (f ell
U,∗Q)1. Equivalently, it 

is the maximal direct summand of f ell
U,∗Q on which X∗(T) acts unipotently.

(2) For a ∈ Aell, the stable part H∗
Gm(ν)(Ma)st of H∗

Gm(ν)(Ma) is the stalk of (f ell
U,!Q)st

at (a, 0). This is also the maximal direct summand of H∗
Gm(ν)(Ma) on which X∗(T)

acts unipotently.

For the Hitchin moduli stack without Iwahori level structures, the stable part is first 
defined by Ngô [25] as the geometric incarnation of stable orbital integrals, hence the 
namesake. Ngô’s original definition uses the action of π0(Pa) instead of X∗(T), and is in 
fact equivalent to our definition because of the following lemma.

Lemma 8.3.4. The stable part H∗
Gm(ν)(Ma)st is also the direct summand of H∗

Gm(ν)(Ma)
on which π0(Pa) acts trivially.

Proof. In [39, Theorem 1.5], we have shown that the action of Q[X∗(T)]W on H∗(Ma)
factors through the action of π0(Pa) via a canonical algebra homomorphism 

Q[X∗(T)]W → Q[π0(Pa)]. (8.3)

The proof works as well in the Gm(ν)-equivariant situation. On the level of spectra, (8.3)
gives a natural morphism ι : π̂0(Pa) → T̂ � W (where π̂0(Pa) is the diagonalizable group 
Spec Q[π0(Pa)]). Let 

H∗
Gm(ν)(Ma) =

⊕
κ∈T̂

H∗
Gm(ν)(Ma)κ

be the decomposition of H∗
Gm(ν)(Ma) into generalized eigenspaces under the X∗(T)-ac-

tion. We also let 

H∗
Gm(ν)(Ma) =

⊕
ψ∈π̂0(Pa)

H∗
Gm(ν)(Ma)ψ

be the decomposition according to the action of π0(Pa), which is a finite abelian group 
since γ is elliptic. Then the global main result of [39] in our situation says that for any 
W-orbit Ξ ⊂ T̂ (viewed as a point in T̂ � W), we have ⊕

κ∈Ξ
H∗

Gm(ν)(Ma)κ = H∗
Gm(ν)(Ma)ι−1(Ξ). (8.4)

It is shown in [26] that ι can be lifted to an embedding of groups π̂0(Pa) ↪→ T̂. Therefore, 
the preimage ι−1(1) is set-theoretically supported at 1 ∈ π̂0(Pa). Applying (8.4) to 
Ξ = 1 ∈ T̂ � W we get the desired statement. �
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Corollary 8.3.5. For a ∈ A♥
ν and a elliptic, we have H∗

Gm(ν)(Ma)st = H∗
Gm(ν)(Ma).

Proof. By Proposition 6.6.3(2), Pa is connected. Therefore the equality follows from 
Lemma 8.3.4. �
8.3.6. The perverse filtration

The perverse t-structure on Db
Grot

m ×Gdil
m

(Aell × U) gives the truncations pτ≤i(f ell
U,!Q)st

of the complex (f ell
U,!Q)st. We shift the degrees of the truncation by setting 

P≤i(f ell
U,!Q)st := pτ≤i+dim(A×U)(f ell

U,!Q)st.

Let GrPi (f ell
U,!Q)st be the associated graded of this filtration. In other words, 

GrPi (f ell
U,!Q)st =

(
pHi+dim(A×U)(f ell

U,!Q)st
)

[−i− dim(A× U)].

Our convention makes sure that GrPi (f ell
U,!Q)st is a shifted perverse sheaf in perverse 

degree i + dim(Aell × U), and that GrPi (f ell
U,!Q)st = 0 unless 0 ≤ i ≤ 2 dim f ell

U .
The Deligne–Mumford stack Mell

U is smooth and the morphism f ell
U is proper. The 

decomposition theorem implies that there is a non-canonical isomorphism 

2 dim fell
U⊕

i=0
GrPi (f ell

U,!Q)st
∼→ (f ell

U,!Q)st.

The above decomposition in fact holds in the equivariant derived category
Db

Grot
m ×Gdil

m
(Aell × U). This is a consequence of the decomposition theorem for proper 

morphisms between Artin stacks with affine stabilizers, proved by S. Sun in [34, Theo-
rems 1.2, 3.15].

A key property of GrPi (f ell
U,!Q)st is the following support theorem. Recall we have the 

evaluation map A × U → c (using the trivialization of L over U). Let (A × U)rs be the 
preimage of crs.

Theorem 8.3.7. The support of each simple constituent of the shifted perverse sheaf 
GrPi (f ell

U,!Q)st is the whole Aell × U .

The proof of this support theorem is the same as [38, Corollary 2.2.4], which is based 
on [38, Theorem 2.1.1], provided the codimension estimate codimA≥δ holds (see [26]). 
We give detailed argument for this codimension estimate in Appendix B.

Let a ∈ Aell be homogeneous of slope ν. The inclusion ia,0 : {(a, 0)} ↪→ Aell × U is 
Gm(ν)-equivariant, therefore the stalk i∗(a,0)(f ell

U,!Q)st ∈ Db
Gm(ν)(pt) calculates the part 

H∗
Gm(ν)(Ma)st of the Gm(ν)-equivariant cohomology of Ma on which X∗(T ) acts unipo-

tently. Moreover, the natural map P≤i(f ell
U,!Q)st → (f ell

U,!Q)st induces a map on stalks 
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i∗(a,0)P≤i(f ell
U,!Q)st → i∗(a,0)(f ell

U,!Q)st = H∗
Gm(ν)(Ma)st (8.5)

which is also a direct summand since P≤i(f ell
U,!Q)st → (f ell

U,!Q)st is.

8.4. The global sheaf-theoretic action of Hrat

A bigraded action of Hrat on GrP∗ (f ell
U,!Q)st is a bigraded algebra homomorphism 

Hrat →
⊕
j∈Z

End2j(
⊕
i∈Z

GrPi (f ell
U,!Q)st)(j)

where the grading of the RHS is given by assigning 

Hom(GrPi1(f
ell
U,!Q)st,GrPi2(f

ell
U,!Q)st[2j](j))

the bidegree (j, i2 − i1). We shall construct such an action by first specifying the actions 
of the generators of Hrat.

Construction 8.4.1. The action of u and δ are given by the equivariant parameters of 
Gdil

m and Grot
m respectively, viewed as maps GrPi (f ell

U,!Q)st → GrPi (f ell
U,!Q)st[2](1).

Construction 8.4.2. The action of the finite Weyl group W. Since W̃ acts on fU,∗Q, the 
stable part (f ell

U,!Q)st is therefore stable under the finite Weyl group W ⊂ W̃ . Passing to 
the associated graded pieces under the perverse filtration, we get an action of W on each 
GrPi (f ell

U,!Q)st.

Construction 8.4.3. The action of X∗(T). By [38, 3.2.1], the action of λ ∈ X∗(T ) on 
GrPi (f ell

U,!Q)st is the identity. Note that [38, 3.2.1] is applicable here because of the validity 
of Theorem 8.3.7 in our situation. Therefore λ − id sends P≤i(f ell

U,!Q)st to P≤i−1(f ell
U,!Q)st. 

The action of λ ∈ X∗(T ) on GrP∗ (f ell
U,!Q)st is given by 

λrat := λ− id : GrPi (f ell
U,!Q)st → GrPi−1(f ell

U,!Q)st.

Construction 8.4.4. The action of X∗(T). Let L(ξ) be the tautological line bundle on MU

indexed by ξ ∈ X∗(T ). As in [38, 3.2.2], we consider the map 

(∪c1(L(ξ)))st : (f ell
U,!Q)st ↪→ f ell

U,∗Q
∪c1(L(ξ))−−−−−−→ f ell

U,∗Q[2](1) � (fell
U,!Q)st

where the first and the last arrow are the natural inclusion and projection of the direct 
summand (f ell

U,!Q)st of f ell
U,∗Q. By [38, Lemma 3.2.3], the map (∪c1(Lξ)st induces the zero 

map GrPi (f ell
U,!Q)st → GrPi+2(f ell

U,!Q)st[2](1). Again, [38, 3.2.1] is applicable here because 
of the validity of Theorem 8.3.7 in our situation. Therefore it sends P≤i(f ell

U,!Q)st to 
P≤i+1(f ell

U,!Q)st[2](1), and hence induces 
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ξrat = GrPi (∪c1(L(ξ)))st : GrPi (f ell
U,!Q)st → GrPi+1(f ell

U,!Q)st[2](1).

This is the action of ξ ∈ X∗(T).

Construction 8.4.5. The action of Λcan is given by the cup product with cG
rot
m

1 (ωBunG
), 

viewed as a map GrPi (f ell
U,!Q)st → GrPi+2(f ell

U,!Q)st[2](1).

Applying Proposition 4.3.1 to (f ell
U,!Q)st with the perverse filtration, we get

Theorem 8.4.6. Constructions 8.4.1–8.4.5 defines a bigraded action of Hrat on
GrP∗ (f ell

U,!Q)st in the equivariant derived category Db
Grot

m ×Gdil
m

(Aell ×U) (in the sense as in 
the beginning of this subsection).

8.4.7. The homogeneous case
Now let ν > 0 be an elliptic slope, then A♥

ν ↪→ Aell. By Corollary 8.3.5, the stalks 
of fν,!Q along A♥

ν are always stable in the sense of Definition 8.3.3. In other words, 
fν,!Q = i∗ν(f ell

! Q)st, where iν : A♥
ν ↪→ Aell is the inclusion. We define the perverse 

filtration on fν,!Q by 

P≤ifν,!Q := i∗νP≤i(f!Q)st.

For a ∈ A♥
ν , we have an induced perverse filtration P≤iH∗

Gm(ν)(Ma) on H∗
Gm(ν)(Ma) by 

taking the stalk of P≤ifν,!Q at a.

Corollary 8.4.8. Let ν > 0 be an elliptic slope. There is a bigraded action of Hrat
ν on the 

graded complex GrP∗ fν,!Q on A♥
ν (in the sense as in the beginning of this subsection). In 

particular, for a ∈ A♥
ν , there is a bigraded action of Hrat

ν on GrP∗ H∗
Gm(ν)(Ma).

Proof. Most parts follow directly from Theorem 8.4.6 by restricting to A♥
ν . The only 

thing we need to check is that the degree (4, 2)-element BKM gives the zero map 
GrPi (fν,!Q)st → GrPi+2(fν,!Q)st. From Remark 7.4.2 we know that BKM ∈ Hgr

ν acts on 
fν,!Q as a multiple of ε2. Since ε2 preserves the perverse filtration, BKM gives the zero 
map GrPi (fν,!Q)st → GrPi+2(fν,!Q)st. �
8.5. Proof of Theorem 8.2.3(1)

First note that if we change G to a group isogenous to it, neither Hrat
ν nor (qν,!Q)S̃

change (the latter uses the fact that S̃a surjects onto Ω, proved in Lemma 3.3.5(4)). 
Therefore, to prove Theorem 8.2.3, it suffices to prove it for any group isogenous to G. 
Therefore, we may assume that Assumption (6.9) holds for G (for example, we may take 
G to be adjoint).

Recall ν > 0 is elliptic and a ∈ c(F )rsν . As in §6.6, we use the line bundle L = OX(ν)
to define the Hitchin moduli stack M and the Hitchin fibration f : M → A. In this 
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case c(F )rsν = A♥
ν and the Hitchin fiber Ma is defined. By Proposition 6.6.3(2) (which 

is applicable since (6.9) holds), we have a canonical isomorphism between complexes on 
c(F )rsν = A♥

ν

fν,!Q
∼→ (qν,!Q)S̃ . (8.6)

Taking stalks at a ∈ c(F )rsν we get 

H∗
Gm(ν)(Ma) = H∗

Gm(ν)(Ma)st
∼→ H∗

Gm(ν)(Spa)S̃a . (8.7)

Definition 8.5.1. Let ν > 0 be an elliptic admissible slope and a ∈ c(F )rsν .

(1) The perverse filtration P≤i(qν,!Q)S̃ is the transport of the perverse filtration P≤ifν,!Q
under the isomorphism (8.6).

(2) The perverse filtration P≤iH∗
Gm(ν)(Spa)S̃a is the filtration on H∗

Gm(ν)(Spa) given by 

talking the stalk at a of P≤i(qν,!Q)S̃ . This is also the transport of P≤iH∗
Gm(ν)(Ma)

under the isomorphism (8.7).

Lemma 8.5.2. For a ∈ c(F )rsν and all i, P≤iH∗
Gm(ν)(Spa)S̃a is stable under the action of 

the braid group Ba.

Proof. By the decomposition theorem, each P≤ifν,!Q is a direct summand of fν,!Q, there-
fore P≤i(qν,!Q)S̃ is a direct summand of qν,!Q. By Corollary 5.4.5(2), qν,!Q is a direct sum 
of shifted semisimple local systems on c(F )rsν , therefore so is P≤i(qν,!Q)S̃ . Taking stalk 
at a then gives the action of Ba = π1(c(F )rsν , a) on each degree P≤iHj

Gm(ν)(Spa)S̃a . �
Corollary 8.4.8 and (8.7) then imply

Corollary 8.5.3. Let ν > 0 be an elliptic slope and a ∈ c(F )rsν . Then there is a bigraded 
action of Hrat

ν on GrP∗ H∗
Gm(ν)(Spa)S̃a commuting with the action of Ba.

To finish the proof of Theorem 8.2.3(1), it remains to show that the perverse filtration 
coincides with the Chern filtration on H∗

Gm(ν)(Spa)S̃a�Ba and the actions of Hrat
ν also 

coincide there.

Proposition 8.5.4. Let a ∈ c(F )rsν .

(1) The Chern filtration (Definition 8.2.1) and the perverse filtration (Definition 8.5.1) 
on H∗

Gm(ν)(Spa)S̃a�Ba coincide.
(2) The Hrat

ν -module structures defined on GrC∗ H∗
Gm(ν)(Spa)S̃a�Ba (in Proposition 8.2.2) 

and on GrP∗ H∗
Gm(ν)(Spa)S̃a�Ba (Corollary 8.5.3) are the same under the identifica-

tion of the two filtrations.
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Proof. (1) Let ḣ = 1
2
∑

i ξi(w̃i−1) +(w̃i−1)ξi, w̃i ∈ X∗(Tsc) is a basis (viewed as elements 
in Waff), and {ξi} is the dual basis for a∗. This is a lifting of h ∈ Hrat

ν into Hgr
ν . Let M =

Hε=1(Spa)S̃a�Ba . We only need to show that both C≤iM and P≤iM are the direct sum of 
generalized eigenspaces of ḣ with eigenvalues ≤ i −N , where N = dim Spa = 1

2r(νh −1).
For C≤iM , this follows from Proposition 8.1.2(3). For P≤i, since GrP∗ M is an 

Hrat
ν,ε=1-modules, the action of h on GrPi M is i − N ′ for some integer N ′. We can de-

termine N ′ by computing the action of ḣ on the class 1 ∈ GrP0 M . The same calculation 
in Proposition 8.1.2(3) shows that N ′ = N , and therefore P≤iM is also the direct sum 
of generalized eigenspaces of ḣ with eigenvalues ≤ i −N .

(2) follows from the uniqueness part of Proposition 4.3.1. �
8.6. Frobenius algebra structure and proof of Theorem 8.2.3(2)

Definition 8.6.1. A Frobenius Q-algebra is a finite-dimensional Q-algebra A equipped 
with a perfect pairing 〈·, ·〉A : A ⊗ A → Q such that 〈ab, c〉A = 〈a, bc〉 for all a, b, c ∈ A. 
The pairing is necessarily given by 〈a, b〉A = �(ab) for some Q-linear map � : A → Q.

Let N = dim Spγ = 1
2r(νh − 1). The finite flat commutative Q[ε]-algebra 

H∗
Gm(ν)(Spa)S̃a is equipped with a Q[ε]-linear quotient map �ε : H∗

Gm(ν)(Spa)S̃a →
GrP2NH∗

Gm(ν)(Spa)S̃a . Now GrP2NH∗
Gm(ν)(Spa)S̃a is a free Q[ε]-module of rank one on 

which Ba also acts trivially. We fix a generator [Spa]Gm(ν) ∈ GrP2NH∗
Gm(ν)(Spa)S̃a , hence 

identifies GrP2NH∗
Gm(ν)(Spa)S̃a with Q[ε]. Specializing ε = 1, we get a linear map 

� : Hε=1(Spa)S̃a → GrP2NHε=1(Spa)S̃a ∼= Q.

Clearly GrC∗ Hε=1(Spa)S̃a�Ba has an algebra structure induced from the cup product. 
By Proposition 8.5.4(1), GrP∗ Hε=1(Spa)S̃a�Ba also carries an algebra structure induced 
by the cup product. Projecting to GrP2N gives a linear function on GrP∗ Hε=1(Spa)S̃a�Ba

that we also denote by �.

Lemma 8.6.2. The pairing (x, y) := �(xy) on GrP∗ Hε=1(Spa)S̃a�Ba satisfies the following 
relations: 

(ξx, y) = (x, ξy),∀ξ ∈ a∗; (ηx, y) = −(x, ηy),∀η ∈ a and (wx,wy) = (x, y),∀w ∈ W.

Proof. We need to show that three equations defining the contravariance are satisfied. 
The first equality is immediate since both sides are the degree 2N part of ξxy.

For the second equality, since GrP∗ Hε=1(Spa)S̃a�Ba is generated by the images of the 
Chern polynomials, it suffices to prove it for x = x1 · · ·xi · 1 and y = y1 · · · y2N−i+1 · 1, 
where xj , yj ∈ a∗ and 1 means the generator in GrP0 Hε=1(Spa)S̃a�Ba . Since xy · 1 = 0
and η · 1 = 0 for degree reasons, we have 
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i∑
j=1

x1 · · ·xj−1[η, xj ]xj+1 · · ·xiy +
2N−i+1∑

j=1
xy1 · · · yj−1[η, yj ]yj+1 · · · y2N−i+1 = 0.

Now the first sum is (ηx)y and the second is x(ηy). Therefore (ηx)y + x(ηy) = 0, and 
the second equality holds.

The last equality follows from the fact that W acts trivially on the one-dimensional 
space GrP2NHε=1(Spa)S̃a . In fact, GrP2NHε=1(Spa)S̃a is spanned by eN ·1, and W commutes 
with e. �
Proposition 8.6.3. Let ν be elliptic and a ∈ c(F )rsν .

(1) The algebra Hε=1(Spa)S̃a is a Frobenius algebra under the linear map �.
(2) The algebra GrP∗ Hε=1(Spa)S̃a�Ba is a Frobenius algebra under the same linear map.

Proof. As in the first paragraph of §8.5, we may assume that (6.9) holds for G and apply 
the local–global isomorphism in Proposition 6.6.3.

(1) We switch to the global point of view and prove that Hε=1(Ma) is a Frobenius 
algebra. Let D be the dualizing complex of MU , and D′ be the dualizing complex of 
Aell × U . Let i : A♥

ν × {0} ↪→ Aell × U be the inclusion of the fixed point locus of the 
Gm(ν)-action. We have a commutative diagram coming from the functoriality of Verdier 
duality pairings h0 and h (note f ell

U is proper) 

i∗i!f ell
U,∗D⊗ i∗i∗f ell

U,∗Q
i∗h0

i∗i!D′ = i∗DA♥
ν

f ell
U,∗D⊗ f ell

U,∗Q
h

D′

This implies that the composition i!f ell
U,∗D ⊗i∗f ell

U,∗Q → i!(f ell
U,∗D ⊗f ell

U,∗Q) i!h−−→ i!D′ = DA♥
ν

is the Verdier duality pairing h0. We have another commutative diagram 

i!f ell
U,∗D⊗ i∗f ell

U,∗Q i!(f ell
U,∗D⊗ f ell

U,∗Q) i!h
i!D′

i∗f ell
U,∗D⊗ i∗f ell

U,∗Q i∗(f ell
U,∗D⊗ f ell

U,∗Q) i∗h
i∗D′

(8.8)

where the first row is the duality pairing h0 and all vertical maps are induced from 
the natural transformation i! → i∗. By Lemma 8.6.4 below, inverting ε (or specializing 
ε = 1) makes all vertical maps isomorphisms. In particular, the second row above is also 
a Verdier duality pairing after inverting ε. Choosing a fundamental class of MU allows 
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us to identify D with Q[2 dimMU ](dimMU ). Then the second row above, up to a shift, 
factors through the cup product 

fν,∗Q⊗ fν,∗Q
∪−→ fν,∗Q

�̃−→ Q[−2N ](−N) (8.9)

for some map �̃ : fν,∗Q �̃−→ Q[−2N ](−N). Since Q[−2N ](−N) lies in perverse degree 
dimA♥

ν + 2N while P≤jfν,∗Q := i∗P≤jf
ell
∗ Q lies in perverse degrees ≤ dimA♥

ν + j, 
the map �̃ has to factor through the projection to GrP2Nfν,∗Q, which is isomorphic to 
Q[−2N ](−N) (note that the whole complex fν,∗Q is stable). Therefore, taking stalk at 
a ∈ A♥

ν , and specializing to ε = 1, the pairing (8.9) is exactly the pairing (u, v) �→ �(u ∪v)
we defined on Hε=1(Spa)Sa . Since the second row of (8.8) is a duality pairing after setting 
ε = 1, and all the complexes involved there are direct sums of shifted local systems 
over A♥

ν , taking stalk at a also gives a perfect pairing on Hε=1(Ma) = Hε=1(Spa)Sa . 
This proves (1).

(2) Taking Ba-invariants on Hε=1(Spa)S̃a and restricting the pairing there we still 
get a perfect pairing since Ba acts semisimply on Hε=1(Spa)S̃a by Corollary 5.4.5, and 
acts trivially on GrP2NHε=1(Spa)S̃a . Therefore V = Hε=1(Spa)S̃a�Ba is also a Frobenius 
algebra under �. The pairing on V gives an isomorphism ι : V → V ∗ that sends P≤iV

to (P≤2N−1−iV )⊥. Verdier self-duality of Hε=1(Spa)S̃a , when restricted to Ba, gives the 
dimension equality dimP≤iV = dimV −dimP≤2N−1−i = dim(P≤2N−1−iV )⊥. Therefore 
ι restricts to an isomorphism P≤iV

∼→ (P≤2N−1−iV )⊥ for all i. Taking associated graded 
we conclude that the pairing is also perfect on GrP∗ V . This proves (2). �
Lemma 8.6.4. Let i : A♥

ν ×{0} ↪→ Aell ×U be the inclusion of the fixed point locus of the 
Gm(ν)-action. Suppose F ∈ Db

Gm(ν)(Aell × U) then the natural map i!F → i∗F , viewed 

as a map in the Q[ε]-linear category Db
Gm(ν)(A♥

ν ) (where Gm(ν) acts trivially), becomes 
an isomorphism after inverting ε.

Proof. By Lemma 6.5.1, the action of Gm(ν) on A × U is contracting to the fixed 
point locus Aν × {0}. The contraction map cA : A × U → Aν × {0} sends (a, x) to 
limGm(ν)�s→0 s · (a, x). Let B×U ⊂ Aell ×U be the preimage of A♥

ν ×{0} under cA. Let 
c : B×U → A♥

ν be the restriction of cA, and still denote the inclusion A♥
ν ×{0} ↪→ B×U

by i. Then it suffices to show that i!(F |B×U ) → i∗(F |B×U ) becomes an isomorphism after 
inverting ε.

Now let F ∈ Db
Gm(ν)(B × U) and consider the map i!F → i∗F . Since F is 

Gm(ν)-equivariant, we have i!F ∼= c!F , and the natural map i!F → i∗F can be identified 
with the composition i!F ∼= c!F → c!i∗i

∗F ∼= i∗F . The cone of the map c!F → c!i∗i
∗F is 

c!j!j
∗F [1] where j is the open inclusion of the complement of A♥

ν ×U . Since Gm(ν) acts on 
B×U−A♥

ν ×{0} with finite stabilizers, the complex (c ◦j)!F ′ ∈ Db
Gm(ν)(A♥

ν ) is ε-torsion 

for any constructible Gm(ν)-equivariant complex F ′ on B × U − A♥
ν × {0}. Therefore 

after inverting ε, c!F → c!i∗i∗F becomes an isomorphism, hence so is i!F → i∗F . �
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Remark 8.6.5. The usual cohomology groups H∗(Spa)S̃a and GrP∗ H∗(Spa)S̃a�Ba are not 
necessarily Frobenius algebras under �, as one can see from the example G = PGL2 and 
ν = 3/2.

Proof of Theorem 8.2.3(2). (Compare [2, Proposition 1.20].) The sl2-triple action on 
the finite-dimensional vector space GrP∗ Hε=1(Spa)S̃a�Ba integrates to an action of 

SL2. Let F =
(

0 1
−1 0

)
∈ SL2 and consider the pairing J : GrP∗ Hε=1(Spa)S̃a�Ba ×

GrP∗ Hε=1(Spa)S̃a�Ba → Q defined by J(a, b) := �(a · F (b)). Let Mν(triv) ∼= Hε=1(Fl◦)
be the polynomial representation of Hrat

ν,ε=1 and let J̃ be the pullback of J to Mν(triv). 
By Lemma 8.6.2, this pairing is contravariant in the sense of [12, Section 11.3], hence 
coincides with the pairing on Mν(triv) constructed in [12] up to a scalar. Since 
J̃ factors through the perfect pairing J on GrP∗ Hε=1(Spa)S̃a�Ba , we conclude that 
GrP∗ Hε=1(Spa)S̃a�Ba ∼= Lν(triv) by [12, Lemma 11.6]. �
8.7. Langlands duality and Fourier transform

In this subsection we show that the cohomology of homogeneous affine Springer fibers 
for the group G and its Langlands dual G∨ are in a certain sense Fourier transform of 
each other. The results in this subsection will not be used elsewhere in this paper.

8.7.1. Fourier transform on Hrat

Let Hrat,� ⊂ Hrat be the subalgebra generated by u, δ, W, a and a∗. In other words, we 
suppress Λcan from the generators. The relations (RC-1) through (RC-4) still hold. In the 
following we will consider the rational Cherednik algebras for both G and its Langlands 
dual G∨. We denote them by Hrat,�

G and Hrat,�
G∨ respectively. For η ∈ a, let us use ηG

(resp. ηG∨) to denote the corresponding element in Hrat,�
G (resp. Hrat,�

G∨ ). Similarly we 
define ξG and ξG∨ for ξ ∈ a∗. Then the relation (RC-4) for Hrat,�

G∨ reads 

[ξG∨ , ηG∨ ] = 〈ξ, λ〉δ + 1
2

(∑
α∈Φ

cα〈ξ, α∨〉〈α, λ〉rα

)
u.

There is an isomorphism ιG→G∨ : Hrat,�
G

∼→ H
rat,�
G∨ called the Fourier transform. It is 

determined by 

u �→ u, δ �→ δ, w �→ w(w ∈ W ), ηG �→ −ηG∨(λ ∈ a), ξG �→ ξG∨(ξ ∈ a).

The minus sign put in front of ηG∨ makes sure that (RC-4) for Hrat,�
G is equivalent to 

(RC-4) for Hrat,�
G∨ .

For Langlands dual groups G and G∨, we may identify their Cartan subalgebras 
t ∼= t∨ using the Killing form, and hence their invariant quotients c ∼= c∨. We define the 
parabolic Hitchin moduli stacks M and M∨ for G and G∨ using the same curve X and 
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the same line bundle L = OX(d). Under the identification c ∼= c∨, the Hitchin bases in 
the two situations are the same, which we still denote by A.

Similarly we have the version where the point of Borel reduction varies in U . We 
denote the parabolic Hitchin fibrations for G and G∨ by 

fU : MU → A× U ; f∨
U : M∨

U → A× U.

Let f ell
U and f∨,ell

U be the restrictions of f ell and f∨,ell over Aell × U .
We have a Gm(ν)-equivariant version of the main result of [38].

Proposition 8.7.2. (See [38].) There is a canonical isomorphism of shifted perverse 
sheaves in Db

Grot
m ×Gdil

m
(Aell × U): 

Di
G→G∨ : GrPi (f ell

U,!Q)st
∼→ GrP2N−i(f

∨,ell
U,∗ Q)st[2N − 2i](N − i)

which intertwines the action of Hrat,�
G and Hrat,�

G∨ through the Fourier transform ιG→G∨ . 
Here i = 0, 1, · · · , 2N and N is the relative dimension of f ell

U and f∨,ell
U .

Proof. To save notation, we write4

Ki := GrPi (f ell
U,!Q)st; Li := GrPi (f∨,ell

U,∗ Q)st.

In [38], where we worked without Grot
m ×Gdil

m -equivariance, we have defined the isomor-
phism Di

G→G∨ : Ki
∼→ L2N−i(N − i) and proved that Di

G→G∨ intertwines the action of 
ηG and −ηG∨ for η ∈ a. The proof there extends to the Grot

m × Gdil
m -equivariant setting 

as well. It is also easy to verify that Di
G→G∨ commutes with the action of u, δ and W . It 

remains to show that Di
G→G∨ intertwines ξG with ξG∨ . Switching the roles of G and G∨, 

it suffices to show that Di
G∨→G intertwines ηG∨ with ηG for all i.

Consider the following diagram 

Ki

Di
G→G∨

ηG

L2N−i[2N − 2i](N − i)
D2N−i

G∨→G

−η
G∨

Ki

ηG

Ki−1
Di−1

G→G∨
L2N−i+1[2N − 2i + 2](N − i + 1)

D2N−i+1
G∨→G

Ki−1

(8.10)

Tracing through the definition of Di
G→G∨ in [38], we find that the composition 

D2N−i
G∨→G ◦Di

G→G∨ : Ki
∼→ L2N−i[2N − 2i](N − i) ∼→ Ki

4 Note the difference from notations in [38], where Ki and Li are perverse sheaves; here Ki and Li are 
shifted perverse sheaves in perverse degree i + dim(A × U).
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is not the identity but the multiplication by (−1)i. Therefore the outer square of diagram 
(8.10) commutes up to −1. Since the left square is commutative, the right square also 
commutes up to −1. This means that D2N−i

G∨→G intertwines ηG∨ with ηG. This finishes the 
proof. �
8.7.3. Homogeneous affine Springer fiber for the dual group

Let ν > 0 be an elliptic slope for G and hence for G∨. Identifying c(F )ν and c∨(F )ν
using a Killing form on t. This also allows us to identify the braid group Ba without its 
counterpart for G∨. Let a ∈ c(F )rsν . Let Sp∨

a be the homogeneous affine Springer fiber 
for G∨ associated with κ∨(a) (where κ∨ : c∨ → g∨ is the Kostant section for g∨). The 
counterpart of S̃a for G∨ is denoted by S̃∨

a . Applying the Proposition 8.7.2 to the stalk 
at (a, 0) ∈ A♥

ν × U , and using the isomorphism (8.7), we get

Corollary 8.7.4. Let N = dim Spa. There is a canonical isomorphism for 0 ≤ i ≤ 2N , 
j ≥ 0

Di,j
G→G∨,a : GrPi Hj

Gm(ν)(Spa)S̃a
∼→ GrP2N−iH

j−2(N−i)
Gm(ν) (Sp∨

a )S̃
∨
a

that is equivariant under Ba, such that the sum of these isomorphisms (for various i, j) 
intertwines the actions of Hrat

G,ν and Hrat
G∨,ν through the Fourier transform ιG→G∨ .

9. Examples

For quasi-split groups G of rank two, the Cherednik algebra Hrat
ν is the one attached to 

a dihedral Weyl group with possibly unequal parameters. We will review the algebraic 
representation theory of such Cherednik algebras in §9.1. After that, for each almost 
simple, simply-connected quasi-split group G over F of rank at most two, we study 
the cohomology of its homogeneous affine Springer fibers and the relevant Hessenberg 
varieties of various slopes ν = 1/m1, where m1 is a θ-regular elliptic number.

The general slopes ν = d1/m1 can be reduced to the case ν = 1/m1 by Propo-
sition 5.5.8. The case m1 = hθ, the twisted Coxeter number, is treat for all G in 
Example 8.2.6. Therefore we only look at cases where m1 is not the twisted Coxeter 
number. For each ν = 1/m1, we describe the Lν-module g(F )ν in terms of simple linear 
algebra such as quadratic forms, cubic forms, etc. Following the discussion in §5.5.4, we 
will show in pictures how to decompose the apartment A into clans, and describe the 
Hessenberg varieties Hessw̃a (γ ∈ c(F )rsν ) corresponding to each bounded clan. These Hes-
senberg varieties turn out to be familiar objects in classical projective geometry. Finally 
we compute the dimension of H∗(Spa)Sa�Ba , and verify that it is consistent with the 
dimension of irreducible Hrat

ν,ε=1-modules known from the algebraic theory.
In the final subsection we give computational and conjectural results on the dimension 

of Lν(triv) in general.
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9.1. Algebraic theory

The Weyl groups of rank two quasisplit simple groups are dihedral groups I2(d) of 
order 2d for d = 3, 4 or 6. The representation theory of the rational Cherednik algebras 
of dihedral type was studied by Chmutova in [9]. Below we use the classification of the 
finite-dimensional representations from [9] and for convenience of reader we explain how 
to match our notations for the Cherednik algebras with the notations from [9].

We shall concentrate on the case d is even because d = 3 only appears in the case 
of type A2 and m is the Coxeter number. The group I2(d) acts on R2 = C and the 
set S of reflections in the group I2(d) consists of elements sj , 1 ≤ j ≤ d, sj(z) = ωj z̄, 
ω = exp(2πi/d), z = x + iy. The dihedral group I2(d) acts on S with two orbits: 
S1 = {s2j+1}, S2 = {s2j}. The algebra Hrat

k1,k2
(I2(d)) over R is generated by the elements 

g ∈ I2(d) and x, y ∈ C defined by the relation:

wxw−1 = w(x), wyw−1 = w(y), [x, y] = 1 −
2∑

i=1
ki

∑
s∈Si

〈αs, x〉〈y, α∨
s 〉s. (9.1)

The group I2(d) has four one-dimensional representations χε1,ε2 defined by χε1,ε2(s) = εi
if s ∈ Si. Results of Chmutova [9, Theorem 3.2.3] provide formulae for the dimensions 
of the simple modules Lν(χε1,ε2). Below we decompose the cohomology of the affine 
Springer fibers into Hrat

k1,k2
(I2(d))-isotypical components and compare the dimensions of 

these components with the results of [9].

9.2. Type 2A2, m1 = 2

The only regular elliptic number besides the twisted Coxeter number m1 = 6 is 
m1 = 2. Let ν = 1/2. Let G = SL(V ) where V is a 3-dimensional vector space C
equipped with a quadratic form q0. Denote the associated symmetric bilinear form by 
(·, ·). The vector space V ⊗CC((t1/2)) is equipped with a C((t1/2))-valued Hermitian form 
h(x + t1/2y, z + t1/2w) = (x, z) − t(y, w) + t1/2(y, z) − t1/2(x, w), for x, y, z, w ∈ V ⊗C F . 
Let G be the special unitary group SU(V ⊗C C((t1/2)), h).

9.2.1. Lν and g(F )ν
Let α be the simple root of H = Gθ. The real affine roots of G(F ) are: 

±α + Zδ/2, ±2α + δ/2 + Zδ.

We have Lν
∼= PGL2 with roots ±(α− δ/2). The affine roots appearing in g(F )ν are 

α, −α + δ, 2α− δ/2, −2α + 3δ/2 and δ/2. We write Lν = PGL(U) for a 2-dimensional 
vector space U , then g(F )ν ∼= Sym4(U∨) ⊗ det(U)⊗2. To each γ ∈ g(F )rsν , viewed as 
a binary quartic form, one can attach a curve Cγ of genus one as the double cover of 
P1 = P(U) ramified above the four zeros of γ. The pair (Lν , g(F )ν) has been used by 
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Fig. 1. The apartment A for 2A2, ν = 1/2. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

Bhargava and Shankar to compute the average size of 2-Selmer groups of elliptic curves 
over Q, see [5] and [19].

9.2.2. The Hessenberg varieties
Fig. 1 shows the apartment for 2A2 with the alcoves marked with the expected di-

mensions of the Hessenberg varieties. We use gray to mark the fundamental alcove and 
the red numbers to mark the alcoves that represent the Wν-orbits. The 1-dimensional 
Hessenberg variety is P(U) ∼= P1. The 0-dimensional Hessenberg variety consists of four 
points which are zeros of the binary quartic form γ, or equivalently the Weierstrass points 
of Cγ . One can identify the stabilizer Sγ with J(Cγ)[2] where J(Cγ) is the Jacobian of Cγ . 
Then Sγ acts simply transitively on the 0-dimensional Hessenberg variety.

9.2.3. Irreducible modules
From the above discussion we conclude that for a ∈ c(F )rsν , 

Hε=1(Spa)Sa = Hε=1(Spa)Sa�Ba ∼= H∗(P1) ⊕ H∗(pt)

is 3-dimensional. On the other hand, Hrat
ν,ε=1 in this case is isomorphic to the rational 

Cherednik algebra of type A1 with parameter 3/2, which has a unique finite-dimensional 
irreducible module Lν(triv), and dimLν(triv) = 3. Hence GrC∗ Hε=1(Spa)Sa ∼= Lν(triv).

9.3. Type C2, m = 2

In type C2, the only regular elliptic number besides the Coxeter number m = 4 is 
m = 2. Let ν = 1/2 (Fig. 2). Let G be the split group Sp(V, ω) over C, where (V, ω) is a 
symplectic vector space over C of dimension four. Let G = G ⊗C F .

9.3.1. Lν and g(F )ν
The real affine roots of G(F ) are: 

±2εi + Zδ, ±ε1 ± ε2 + Zδ.

The roots of Lν are ±(ε1 + ε2 − δ). The affine roots appearing in g(F )ν are: 

2ε1 − δ, ε1 − ε2, −2ε2 + δ, 2ε2, ε2 − ε1 + δ, −2ε1 + 2δ.

The Levi factor Lν can be identified with GL(U) where V = U⊕U∨ is a decomposition 
of V into two Lagrangian subspaces. As an Lν-representation, g(F )ν ∼= Sym2(U) ⊕
Sym2(U∨), i.e., the space of pairs of quadratic forms q1 and q2 on U and U∨ respectively.
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Fig. 2. The apartment A for C2, ν = 1/2.

Choose a basis e1, e2 for U and let f1 and f2 be the dual basis for U∨. Up to 
Lν-conjugation an element γ ∈ g(F )rsν takes the form q1 = f2

1 + f2
2 and q2 = λ1e

2
1 +λ2e

2
2

for some λ1, λ2 ∈ C×, λ1 �= λ2. The centralizer group Sγ of the regular element γ is 
μ2 × μ2, and it acts by changing signs of the basis vectors of U and U∨.

9.3.2. The Hessenberg varieties
The picture with ν-wall is given above and it indicates that there are only three classes 

in Wν\W̃ such that the corresponding Hessenberg variety is non-empty.
The one-dimensional Hessenberg variety is P(U) ∼= P1, the flag variety of Lν . There are 

two kinds of zero-dimensional Hessenberg varieties, each consisting of lines � ⊂ U which 
are isotropic with respect to one of the forms q1 and q2. In either case the zero-dimensional 
Hessenberg variety consists of two points that are permuted transitively by Sγ .

9.3.3. Irreducible modules
From the above discussion we conclude that for a ∈ c(F )rsν , 

H∗
ε=1(Spa)Sa = H∗

ε=1(Spa)Sa�Ba ∼= H∗(P1) ⊕ H∗(pt) ⊕ H∗(pt)

has dimension 4. On the other hand, by [9, Theorem 3.2.3(vi)], the algebra
Hrat

1/2,1/2(I2(4)) has a unique finite-dimensional representation Lν(triv) and it is of di-
mension 4. Hence GrP∗ Hε=1(Spa)Sa ∼= Lν(triv).

9.4. Type 2A3, m1 = 2

Besides the twisted Coxeter number m1 = 6, the only regular elliptic number in this 
case is m1 = 2. Let ν = 1/2. Let G = SL(V ) where V is a 4-dimensional vector space C
equipped with a quadratic form q0. As in the case of type 2A2, we have the associated 
symmetric bilinear form (·, ·), which extends to a Hermitian form h on V ⊗C C((t1/2)). 
Let G be the special unitary group SU(V ⊗C C((t1/2)), h).
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Fig. 3. The apartment A for 2A3, ν = 1/2.

9.4.1. Lν and g(F )ν
The real affine roots of G(F ) are: 

2εi + Zδ, ±ε1 ± ε2 + Zδ/2, i = 1, 2,

and νρ∨ = (3/4, 1/4) under the coordinates (ε1, ε2).
The roots of Lν are ±(ε1 + ε2 − δ) and ±(ε1 − ε2 − δ/2). The affine roots in g(F )ν are:

δ/2, ±(2ε1 − 3δ/2) + δ/2, ±(2ε2 − δ/2) + δ/2,

±(ε1 + ε2 − δ) + δ/2, ±(ε1 − ε2 − δ/2) + δ/2.

The group Lν may be identified with SO(V, q0), and g(F )ν may be identified with the 
vector space of self-adjoint traceless endomorphisms of V with respect to (·, ·).

Choose an orthonormal basis e1, · · · , e4 for V , we may take the Cartan subspace s
to consist of diagonal matrices diag(a1, a2, a3, a4) with respect to this basis, with small 
Weyl group S4 acting by permutations of ai. The regular semisimple locus srs consists of 
the diagonal matrices with distinct eigenvalues. For γ ∈ srs, the group Sγ ⊂ μ4

2 consists 
of diagonal elements of determinant 1.

9.4.2. The Hessenberg varieties
Fig. 3 contains marking by the expected dimensions of the Hessenberg varieties and 

the fundamental alcove is shaded grey. There are four alcoves with nonnegative expected 
dimension in the dominant chamber with respect to Wν, and study the relevant Hessen-
berg varieties below.

Thus the two-dimensional Hessenberg variety is the flag variety of Lν, hence isomor-
phic to P1×P1. Indeed, the flag variety of Lν consisting of flags 0 ⊂ V1 ⊂ V3 = V ⊥

1 ⊂ V , 
hence is isomorphic to the quadric Q1 ⊂ P(V ) defined by (v, v) = 0, which is isomorphic 
to P1 × P1. The space of isotropic 2-planes V2 ⊂ V consists of two one-dimensional fam-
ilies of rulings of the quadric Q1 ∼= P1 × P1. For each flag 0 ⊂ V1 ⊂ V3 = V ⊥

1 ⊂ V , there 
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are exactly two isotropic 2-planes V2 satisfying V1 ⊂ V2 ⊂ V3, one from each ruling. We 
denote the two isotropic 2-planes by V ′

2 and V ′′
2 .

The one-dimensional Hessenberg variety parametrizes flags 0 ⊂ V1 ⊂ V3 = V ⊥
1 ⊂ V

such that γ(V1) ⊂ V3. A nonzero isotropic vector v ∈ V1 determines a flag V1 =
〈v〉 ⊂ 〈v〉⊥ = V3, and the condition γ(V1) ⊂ V3 is equivalent to saying that (v, γv) = 0. 
Define another quadric Qγ ⊂ P(V ) to be the locus (v, γv) = 0, then the one-dimensional 
Hessenberg variety is isomorphic to the intersection of two quadrics Σγ := Q1 ∩ Qγ ⊂
P(V ), which is a curve of genus one.

There are two kinds of zero-dimensional Hessenberg varieties each consisting of flags 
satisfying the condition γV1 ⊂ V ′

2 or γV1 ⊂ V ′′
2 . The union of these two zero-dimensional 

varieties is the intersection of three quadrics (v, v) = (v, γv) = (γv, γv) = 0, which 
consists of eight points. However only four of these points belong to each zero-dimensional 
Hessenberg variety. In fact, let π1 and π2 be the projections Σγ ⊂ Q1 ∼= P1 × P1 → P1

onto either factor P1. Then the four ramification points of π1 constitute one Hessenberg 
variety and the four ramification points of π2 constitute the other.

9.4.3. The genus one curve
The curve Σγ is closely related to another curve Cγ which we now define. Consider 

the pencil of quadrics spanned by Q1 and Qγ . Each non-singular member of the pencil 
contains two rulings, we can then form the moduli space of rulings in this pencil which 
gives a double cover Cγ → P1 ramified at the points where the quadric is singular (there 
are 4 such points). The curve Cγ has genus one. It is equipped with an involution σ
over P1.

There is a map a : Cγ × Σγ → Σγ defined as follows. A point on c ∈ Cγ is a quadric 
Q′ in the pencil together with a ruling on Q′. Choosing p ∈ Σγ . On the ruling of Q′ there 
is a unique projective line � passing through p. The pair p ∈ � corresponds to a line and 
plane V1 ⊂ V2 ⊂ V both isotropic under Q′. Since V2 contains exactly two lines that are 
isotropic for the whole pencil, let V ′

1 be the other line. The map a then sends (c, p) to 
the point V ′

1 ∈ Σγ . It is easy to see that for fixed c ∈ Cγ , a(c, −) is an automorphism 
of Σγ (with inverse given by σ(c)). Therefore Σγ is isomorphic to Cγ but not canonically 
so.

The action of Sγ on Σγ factors through the quotient Sγ := Sγ/Δ(μ2) where Δ(μ2)
is the subgroup of scalar matrices in Lν . We claim that the action of Sγ on Σγ is fixed 
point free. In fact, the fixed point locus of an involution from Sγ on P(V ) consists of the 
union of two lines {xi = xj = 0} ∪ {xī = xj̄ = 0}, where {1, 2, 3, 4} = {i, j, ̄i, ̄j}. The 
condition that a1, · · · , a4 are distinct implies that the intersection of Σγ with these lines 
is empty. The Jacobian J(Σγ) of Σγ is an elliptic curve and Σγ

∼= Pic1(Σγ) is a torsor 
under J(Σγ). Since Sγ acts freely on Σγ , it can only acts via translation by J(Σγ)[2], 
and we have a natural isomorphism Sγ

∼= J(Σγ)[2] ∼= J(Cγ)[2]. In particular, Sγ acts 
trivially on H∗(Σγ).



A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601–706 691
Since the ramification points of both projections π1, π2 : Σγ → P1 are torsors under 
J(Σγ)[2] and Sγ acts on Σγ via an isomorphism Sγ

∼= J(Σγ)[2], it acts simply transitively 
on each of the zero dimensional Hessenberg varieties.

As a varies over c(F )rsν , we get a family of genus one curves πC : C → c(F )rsν whose 
fiber over a is Ca := Cγ for γ = κ(a). We have local systems RiπC

∗ Q on c(F )rsν for 
i = 0, 1, 2. Clearly R0πC

∗ Q and R2πC
∗ Q are trivial local systems. As a varies over c(F )rsν , 

the ramification locus of Ca → P1 runs over all possible configuration of 4 distinct ordered 
points on A1, as we have already seen as γ runs over srs. Therefore the braid group Ba

acts on H1(Ca) ∼= H1(Σκ(a)) via a surjective homomorphism Ba � Γ(2) = ker(SL2(Z) →
SL2(Z/2Z)). In particular, R1πC

∗ Q is an irreducible local system over c(F )rsν .

9.4.4. Irreducible modules
From the above discussion we get that for a ∈ c(F )rsν , 

Hε=1(Spa)Sa ∼= H∗(P1 × P1) ⊕ H∗(Ca) ⊕ H∗(pt) ⊕ H∗(pt).

Only the direct summands H1(Ca) form an irreducible nontrivial local system as a varies, 
and the other direct summands vary in a constant local system. Therefore 

Hε=1(Spa)Sa = Hε=1(Spa)Sa�Ba ⊕ H1(Ca).

We have dim Hε=1(Spa)Sa×Ba = 8. By [9, Theorem 3.2.3], the simple modules Lν(triv)
and Lν(χ+−) are the only finite dimensional irreducible representations of Hrat

1,1/2(I2(4)), 
and they have dimensions 8 and 1 respectively. Hence GrC∗ Hε=1(Spa)Sa×Ba ∼= Lν(triv)
as Hrat

1,1/2(I2(4))-modules. We expect to have an action of Hrat
1,1/2(I2(4)) on GrP∗ H∗(Spa)Sa

(for some filtration P≤i on Hε=1(Spa)Sa extending the Chern filtration) commuting with 
the action of Ba. If this is true, the multiplicity space of the irreducible local system 
R1πCQ should be the 1-dimensional module Lν(χ+−), and we should have an isomor-
phism of Hrat

1,1/2(I2(4)) ×Ba-modules 

GrP∗ H∗(Spa)Sa
?= Lν(triv) ⊕ Lν(χ+−) ⊗ H1(Ca).

9.5. Type 2A4, m1 = 2

Besides the Coxeter case m1 = 10, the only regular elliptic number in this case is 
m1 = 2. Let ν = 1/2. As in the case of type 2A3, we fix a five dimensional quadratic 
space (V, q0) over C, define G = SL(V ) and G = SU(V ⊗CC((t1/2)), h) for the Hermitian 
form h on V ⊗C C((t1/2)) extending q0.

9.5.1. The pair Lν and g(F )ν
The real affine roots of G(F ) are 

±εi + δZ/2, ±ε1 ± ε2 + δZ/2, ±2εi + δ/2 + δZ, i = 1, 2
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Fig. 4. The apartment A for 2A4, ν = 1/2. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

and νρ∨ = (1, 1/2). The roots of Lν are: 

±(ε1 − δ), ±(ε2 − δ/2), ±(ε1 − ε2 − δ/2), ±(ε1 + ε2 − 3δ/2).

The affine roots appearing in g(F )ν are:

δ/2, ±(ε1 − δ) + δ/2, ±(ε2 − δ/2) + δ/2, ±(ε1 + ε2 − 3δ/2) + δ/2,

±(ε1 − ε2 − δ/2) + δ/2, ±(2ε1 − 2δ) + δ/2, ±(2ε2 − δ) + δ/2.

In Fig. 4 the fundamental alcove is shaded gray and alcoves are labeled by the expected 
dimensions of the corresponding Hessenberg varieties. The ν-walls are blue and the walls 
of the Weyl group Wν are red.

The group Lν = SO(V, q0) and g(F )rsν consists of the traceless self-adjoint endo-
morphisms of V . Choose an orthonormal basis e1, · · · , e5 of V , and a Cartan subspace 
s ⊂ g(F )rsν can be chosen to consist of the diagonal matrices under this basis. The small 
Weyl group is S5. The regular semisimple locus srs consists of diagonal matrices with 
distinct eigenvalues. For γ ∈ srs, the centralizer Sγ ⊂ μ5

2 consists of diagonal matrices 
in Lν .

9.5.2. The Hessenberg varieties
The four-dimensional Hessenberg variety is the flag variety of SO(V, q0) consisting of 

flags 0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ V with V1 = V ⊥
4 , V2 = V ⊥

3 .
The three-dimensional Hessenberg variety Hess3γ is defined by the condition γV1 ⊂ V4. 

The point V1 ∈ P(V ) then lies on the intersection of two quadrics Q1 : (v, v) = 0
and Qγ : (v, γv) = 0. The fibers of Hess3γ → Q1 ∩ Qγ =: Σγ are isomorphic to P1, 
which parametrizes choices of an isotropic line V2/V1 ⊂ V ⊥

1 /V1, where V ⊥
1 /V1 is a three 

dimension space with a symmetric bilinear pairing induced from the restriction of (·, ·)
to V ⊥

1 .
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The two-dimensional Hessenberg variety Hess2γ is defined by the condition γV1 ⊂ V3
which is equivalent to the condition γV2 ⊂ V4. The projection η : Hess2γ → Σγ (by 
remembering V1 only) is a 2-to-1 branched cover. The fiber of η over V1 = 〈v1〉 consists 
of isotropic lines 〈v2〉 = V2/V1 ⊂ V ⊥

1 /V1 such that (γv2, v1) = 0. In other words, the fiber 
of η at 〈v1〉 is the intersection of the projective line (v2, γv1) = 0 (where 〈v2〉 ∈ P(V ⊥

1 /V1)) 
with the conic (v2, v2) = 0 (again 〈v2〉 ∈ P(V ⊥

1 /V1)).
There two alcoves in the fundamental chamber of Wν with expected dimension of 

the Hessenberg variety equal to 1. The alcove that has one red side corresponds to 
the Hessenberg variety Hess1,line

γ parametrizing flags satisfying {γV2 ⊂ V3} which is 
equivalent to the vanishing of the restriction of the symmetric bilinear forms (·, ·) and 
(·, γ·) on V2. That is Hess1,line

γ is a P1 fibration over the finite set of lines in Σγ. There 
are 16 lines in Σγ .

The alcove that has no red sides corresponds to the Hessenberg variety Hess1,brγ

parametrizing flags satisfying γV1 ⊂ V2. Therefore Hess1,brγ is the branch locus Bγ of 
the double cover Hess2γ → Σγ . In fact, Bγ consists of flags such that V1 = 〈v1〉 such 
that the projective line PSpan(v1, γv1) is the tangent line to the conic Q1 ⊂ P(V ⊥

1 /V1)
defined by the restriction of (·, ·), and that happens if and only if (γv1, γv1) = 0. On the 
other hand, Bγ is an intersection of three quadrics Q1, Qγ and Qγ2 , and the adjunction 
formula implies that the genus of Bγ is 5.

Finally the zero dimensional Hessenberg varieties Hess0γ parametrizes flags satisfying 
γV1 ⊂ V2 and γV2 ⊂ V3. It consists of 16 points corresponding to the 16 lines on the 
surface Σγ .

9.5.3. The Kummer surface
The surface Σγ is a del Pezzo surface anti-canonically embedded in P4. Since Bγ is 

the intersection of Σγ with another quadric, we have Bγ ∼ −2KΣγ
as divisor classes 

on Σγ . Therefore, Hess2γ is a surface with trivial canonical class and Euler characteristics 
2χ(Σγ) −χ(Bγ) = 24, i.e., Hess2γ is a K3 surface. Below we shall see that this K3 surface 
comes from the well-known construction of Kummer K3 surfaces from a torsor of the 
Jacobian of a genus two curve Cγ . Our presentation is strongly influenced by [4].

Let Ṽ = V ⊕ C and introduce two quadrics in P(Ṽ ) given by Q̃1 : (v, v) = 0 (this is 
degenerate) and Q̃γ : (v, γv) +a2 = 0 where (v, a) ∈ Ṽ . Let Cγ → P1 be the double cover 
ramified at the singular locus of the pencil of quadrics spanned by Q̃1 and Q̃γ together 
with ∞ (there are 6 singular points). Then Cγ classifies rulings on this pencil, and is a 
curve of genus two. The involution σ = idV ⊕ (−1) : Ṽ → Ṽ fixes each member of the 
pencil, and induces the hyperelliptic involution on Cγ .

Let Fγ be the Fano variety of projective lines in the base locus Σ̃γ := Q̃1 ∩ Q̃γ . This 
is a torsor under J(Cγ). The involution σ acts on Fγ compatible with the inversion on 
J(Cγ). The fixed point locus Fσ

γ consists of 16 points which corresponding to the 16 

lines in Σγ = Σ̃γ ∩ P(V ).
The moduli space of isotropic planes V2 ⊂ V under (·, ·) is isomorphic to P3 (a partial 

flag variety of SO(V )). Let Pγ ⊂ P3 be the subvariety classifying those V2 on which (·, γ·)
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is degenerate. This is a singular quartic with 16 ordinary double points corresponding 
to the 16 projective lines in Σγ (i.e., those V2 that are also isotropic under (·, γ·)). We 
have the following diagram 

Hess2γ
f

Fγ

g

Pγ
∼= Fγ/σ

Here f sends a flag V1 ⊂ V2 ⊂ · · · ⊂ V to V2. The morphism f is birational with 
16 exceptional divisors (∼= P1) over the 16 singular points on Pγ . The map g sends a 
projective line, corresponding to a plane Ṽ2 ⊂ Ṽ to the plane V2 := Im(Ṽ2 → V ). It is 
easy to see that g realizes Pγ as the GIT quotient Fγ/σ. Therefore Hess2γ is the Kummer 
K3 surface coming from the J(Cγ)-torsor Fγ together with the involution σ.

The group Sγ acts on the Hessenberg varieties by the diagonal matrices with entries ±1
and of determinant 1. Hence Σγ/Sγ = P2 and H∗(Hess3γ)Sγ = H∗(P1) ⊗H∗(P2). Similarly, 
Bγ/Sγ = P1, and hence H∗(Hess1,brγ )Sγ = H∗(P1). There is a natural identification 
Sγ

∼= J(Cγ)[2] and the action of Sγ on Fγ is via the translation by J(Cγ)[2]. Therefore 
Sγ permutes the lines on Σγ (i.e., Fσ

γ ) simply transitively, hence it permutes simply 
transitively the connected components of Hess1,line

γ and Hess0γ , giving H∗(Hess1,line
γ )Sγ ∼=

H∗(P1) and H∗(Hess0γ)Sγ ∼= H∗(pt). For the same reason, Sγ permutes the 16 exceptional 
divisors of f : Hess2γ → Pγ simply transitively, and its action on H∗(Pγ) ∼= H∗(Fγ)σ

is trivial (because it extends to an action of the connected group J(Cγ)). Therefore 
H∗(Hess2γ)Sγ ∼= H2(P1) ⊕ H∗(Fγ)σ. Choosing an isomorphism J(Cγ) ∼= Fγ , we may 
identify σ with the inversion on J(Cγ), therefore H∗(Fγ)σ = ⊕i=0,2,4 ∧i H1(Cγ).

Let πC : C → c(F )rsν be the family of genus two curves Ca := Cκ(a). Using the 
S5-cover s → c(F )ν , we may identify c(F )rsν with the space of monic polynomials f(x)
of degree 5 in C[x] with distinct roots, and πC the family of curves y2 = f(x). By [21, 
Theorem 10.1.18.3] (in fact its obvious characteristic zero analog), the monodromy of 
R1πC

∗ Q is Zariski dense. The upshot of the above discussion is that ∧2R1πC
∗ Q can be 

decomposed as a direct sum of irreducible local systems Q(−1) ⊕ (∧2R1πC
∗ Q)prim where 

Q(−1) restricts to the polarization class in ∧2H1(Ca) for each a and (∧2R1πC
∗ Q)prim is 

its complement under the cup product.

9.5.4. Irreducible modules
From the above discussion we get for all a ∈ c(F )rsν ,

Hε=1(Spa)Sa = H∗(f�ν) ⊕ H∗(P2) ⊗ H∗(P1) ⊕ H2(P1) ⊕ (⊕i=0,2,4 ∧i H1(Ca))

⊕ H∗(P1) ⊕ H∗(P1) ⊕ H∗(pt)⊕3.
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Adding up dimensions we get dim H∗(Spa)Sa = 30. By the above discussion, only the 
5-dimensional spaces (∧2H1(Ca)))prim form an irreducible local system, and other pieces 
are invariant under Ba. We have 

Hε=1(Spa)Sa = Hε=1(Spa)Sa�Ba ⊕ (∧2H1(Ca)))prim,

hence dim Hε=1(Spa)Sa�Ba = 30 − 5 = 25.
On the other hand [9, Theorem 3.2.3] implies that the algebra Hrat

1,3/2(I2(4)) has only 
two finite dimensional irreducible representations Lν(triv) and Lν(χ−+), the first one 
of dimension 25 and the last one is one-dimensional. Therefore GrC∗ Hε=1(Spa)Sa�Ba ∼=
Lν(triv). We expect that Hrat

1,3/2(I2(4)) acts on GrP∗ Hε=1(Spa)Sa (for some filtration P≤i

on Hε=1(Spa)Sa extending the Chern filtration), commuting with Ba, such that we would 
have an isomorphism of Hrat

1,3/2(I2(4)) ×Ba-modules 

GrP∗ Hε=1(Spa)Sa
?= Lν(triv) ⊕ Lν(χ−+) ⊗ (∧2H1(Ca)))prim.

9.6. Type G2, m = 3

For type G2, the only regular elliptic numbers besides the Coxeter number m = 6 are 
m = 3 and m = 2. We first consider the case m = 3 and ν = 1/3.

9.6.1. Lν and g(F )ν
Let α1 (resp. α2) be the long (resp. short) simple root of G2. Thus real affine roots of 

G(F ) are

±α1 + Zδ, ±α2 + Zδ, ±(α1 + α2) + Zδ, ±(α1 + 2α2) + Zδ,

±(α1 + 3α2) + Zδ, ±(2α1 + 3α2) + Zδ,

and ρ∨ = 5α∨
1 + 3α∨

2 .
We have νρ∨ = 5

3α
∨
1 + α∨

2 . The roots of Lν are ±(α1 + 2α2 − δ) and the affine roots 
appearing in g(F )ν are: 

α1 + 3α2 − δ, α2, −α1 − α2 + δ, −2α1 − 3α2 + 2δ, α1.

The group Lν is isomorphic to GL2, and g(F )ν ∼= Sym3(V ∨) ⊗det(V ) ⊕det(V ), where 
V is the standard representation of GL2. An element γ ∈ g(F )rsν can be written as a pair 
(γ′, γ′′) where γ′ is a nondegenerate binary cubic form on V and γ′′ ∈ det(V ) is nonzero.

9.6.2. The Hessenberg varieties
In Fig. 5 we mark the alcoves with the expected dimensions of the Hessenberg varieties. 

We use green numbers for the alcoves with empty Hessenberg varieties despite having 
non-negative expected dimension. The one-dimensional Hessenberg variety is P1 = P(V ). 
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Fig. 5. The apartment A for G2, ν = 1/3. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

The zero-dimensional Hessenberg varieties consist of three points in P(V ) corresponding 
to the three zeros of γ′, and they are permuted simply transitively by the stabilizer 
Sγ

∼= μ3.

9.6.3. Irreducible modules
From the above discussion we conclude that for a ∈ c(F )rsν , 

Hε=1(Spa)Sa = Hε=1(Spa)Sa�Ba = H∗(P1) ⊕ H∗(pt)⊕2

has dimension 4. On the other hand, by [9, Theorem 3.2.3(i)], Hrat
1/3,1/3(I2(6)) has only 

one finite dimensional irreducible representation Lν(triv), and it is of dimension 4. Hence 
GrP∗ Hε=1(Spa)Sa ∼= Lν(triv).

9.7. Type G2, m = 2

Next we consider the case ν = 1/2. We keep the notation from §9.6.1.

9.7.1. Lν and g(F )ν
We have νρ∨ = 5

2α
∨
1 + 3

2α
∨
2 . The roots of Lν are ±(α1 +α2 − δ) and ±(α1 +3α2 − 2δ)

and the affine roots appearing in g(F )ν are:

±(α1 − δ/2) + δ/2, ±(α2 − δ/2) + δ/2, ±(α1 + 2α2 − 3δ/2) + δ/2,

±(2α1 + 3α2 − 5δ/2) + δ/2.

The group Lν is SL2 × SL2/Δ(μ2) and g(F )ν is V ⊗ Sym3(W ) where V and W are the 
standard representations of the first and the second copy of SL2 in Lν .
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Fig. 6. The apartment A for G2, ν = 1/2.

9.7.2. The Hessenberg varieties
The two-dimensional Hessenberg variety is f�ν ∼= P1 × P1. The regular element γ

defines form Fγ on V ⊗ W of the homogeneous bidegree (1, 3). The one-dimensional 
Hessenberg variety Hess1γ consists of pairs (L, M) of one-dimensional subspaces of V , W
which are isotropic with respect to Fγ . Other words the Hessenberg variety is P1 realized 
as the smooth (3, 1) curve in P1 × P1.

The zero-dimensional Hessenberg varieties corresponding to the alcoves in three alcove 
cluster are the branch points of the degree 3 projection from Hess1γ to second P1 in P1. 
The degree 3 map from P1 has four branch points and there are permuted by the stabilizer 
Sγ

∼= μ2
2. Finally, the clan with only one alcove corresponds to the empty Hessenberg 

variety even though we expect a zero-dimensional variety. We use green numbers to mark 
these alcoves (Fig. 6).

9.7.3. Irreducible modules
From the above discussion we conclude that for a ∈ c(F )rsν , 

Hε=1(Spa)Sa = Hε=1(Spa)Sa�Ba ∼= H∗(P1 × P1) ⊕ H∗(P1) ⊕ H∗(pt)⊕3

has dimension 9. On the other hand [9, Theorem 3.2.3(vi)] states that Hrat
1/2,1/2(I2(6)) has 

only one finite dimensional irreducible representation Lν(triv), and it is of dimension 9. 
Hence GrP∗ Hε=1(Spa)Sa ∼= Lν(triv).

9.8. Type 3D4, m1 = 6

Besides the twisted Coxeter number m1 = 12, the regular elliptic numbers are m1 = 6
and m1 = 3. We first consider the case m1 = 6 and ν = 1/6.

9.8.1. Lν and g(F )ν
The finite part of the affine root system 3D4 is the G2 root system. The real affine 

roots of 3D4 are:
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Fig. 7. The apartment A for 3D4, ν = 1/6.

±α1 + Zδ, ±α2 + Zδ/3, ±(α1 + α2) + Zδ/3, ±(α1 + 2α2) + Zδ/3,

±(α1 + 3α2) + Zδ, ±(2α1 + 3α2) + Zδ,

and ρ∨ = 5α∨
1 + 3α∨

2 .
The roots of Lν are ±(α1 + α2 − δ/3) and the affine roots appearing in g(F )ν are 

α2, −α2 + δ/3, α1 + 2α2 − δ/3, −(α1 + 2α2) + 2δ/3, −(2α1 + 3α2) + δ, α1.

The group Lν is GL2 and g(F )ν = V ⊕ Sym3(V ∨) ⊗ det(V ) where V is the standard 
representation of GL2. The element γ = (γ1, γ2) ∈ V ⊕ Sym3(V ∨) ⊗ det(V ) is regular 
semisimple if and only if the zeros of the linear form γ1 and the binary cubic form γ2
are distinct points on P1. In this case, the stabilizer Sγ is trivial.

9.8.2. The Hessenberg varieties
The dimensions of the Hessenberg varieties appearing in this case are marked in Fig. 7. 

The one-dimensional Hessenberg variety is P1 = P(V ). The zero-dimensional Hessenberg 
varieties are of two types. The first type is the zero locus of γ1 (one point) and the second 
is the zero locus of γ2 (three points). Each type occurs only once in Spγ .

As a runs over c(F )rsν and considering the corresponding Hessenberg varieties for 
γ = κ(a), Ba permutes the three points of the zero-dimensional Hessenberg variety of 
second type transitively. Thus the local system ⊕iRiqν,∗Q is the sum of local system of 
two types: the trivial one and an irreducible local system M of rank two (with monodromy 
S3 acting as the standard 2-dimensional representation on its fibers).

9.8.3. Irreducible modules
By the above discussion, we have that for a ∈ c(F )rsν , 

Hε=1(Spa) = Hε=1(Spa)Sa = Hε=1(Spa)Sa�Ba ⊕Ma,

where 
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Hε=1(Spa)Sa�Ba ∼= H∗(P1) ⊕ H∗(pt)⊕2

has dimension 4. By [9, Theorem 3.2.3], Hrat
1/2,1/6(I2(6)) has only two finite dimen-

sional irreducible representations: the 4-dimensional Lν(triv) and the 1-dimensional 
Lν(χ+−). Thus GrC∗ Hε=1(Spa)Sa�Ba ∼= Lν(triv). We expect that Hrat

1/2,1/6(I2(6)) acts on 

GrP∗ Hε=1(Spa) (for some filtration P≤i on Hε=1(Spa)Sa extending the Chern filtration), 
such that we would have an isomorphism of Hrat

1/2,1/6(I2(6)) ×Ba-modules: 

GrP∗ Hε=1(Spa)
?= Lν(triv) ⊕ Lν(χ+−) ⊗Ma.

9.9. Type 3D4, m1 = 3

Next we consider the case m1 = 3 and let ν = 1/3. We keep the notation from §9.8.1.

9.9.1. Lν and g(F )ν
The roots of Lν are 

±(α2 − δ/3), ±(α1 + α2 − 2δ/3), ±(α1 + 2α2 − δ).

The affine roots that appear in g(F )ν are

δ/3, α1, α1 + 3α2 − δ, −2α1 − 3α2 + 2δ, ±(α2 − δ/3) + δ/3,

±(α1 + α2 − 2δ/3) + δ/3, ±(α1 + 2α2 − δ) + δ/3.

The group Lν
∼= PGL3 and g(F )ν ∼= Sym3(V ∨) ⊗ det(V ) where V is the standard 

representation of GL3.

9.9.2. The Hessenberg varieties
Fig. 8 presents the picture of the apartment with alcoves marked by the expected 

dimensions.
The three dimensional Hessenberg variety is the flag variety f�ν of Lν , which classifies 

pairs p ∈ � ⊂ P(V ) where � is a projective line in P(V ) and p is a point on �.
Each γ ∈ g(F )rsν ⊂ Sym3(V ∨) ⊗ det(V ), viewed as a ternary cubic form, defines a 

smooth planar curve of genus one Cγ ⊂ P(V ). The two-dimensional Hessenberg variety 
Hessw̃γ classifies triples p ∈ � ⊂ P(V ) where p ∈ Cγ . We conclude that Hessw̃γ is a 
P1-bundle over Cγ .

The one dimensional Hessenberg varieties Hessw̃γ classify those p ∈ � ⊂ P(V ) where �
is tangent to Cγ at p. Thus Hessw̃γ is isomorphic to the curve Cγ .

The zero dimensional Hessenberg varieties Hessw̃γ classify those p ∈ � ⊂ P(V ) where p
is a flex point of Cγ (there are 9 of them) and � is the tangent line to Cγ at p.

The action of PGL(V ) on Sym3(V ∨) ⊗ det(V ) is used by Bhargava and Shanker to 
calculate the average size of the 3-Selmer groups of elliptic curves over Q, see [6] and 
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Fig. 8. The apartment A for 3D4, ν = 1/3.

also [19] for details. In particular, it is known that when γ ∈ g(F )rsν , the stabilizer group 
Sγ acts on Cγ by translation by 3-torsion elements of the elliptic curve J(Cγ). Hence 
Sγ acts transitively on the zero-dimensional Hessenberg varieties and trivially on the 
cohomology of the Hessenberg varieties of positive dimension.

9.9.3. Irreducible modules
From the above discussion we conclude that for a ∈ c(F )rsν , 

Hε=1(Spa)Sa = H∗(f�ν) ⊕ H∗(Ca) ⊗ H∗(P1) ⊕ H∗(Ca)⊕2 ⊕ H∗(pt)⊕2.

Here Ca = Cκ(a) form a family of curves πC : C → c(F )rsν . In particular the lo-
cal system ⊕i(Riqν,∗Q)S over c(F )rsν is a sum of irreducible local systems of two 
types: the trivial one and R1πC

∗ Q. The multiplicity space of the trivial local system 
is the 16-dimensional irreducible representation Lν(triv) of Hrat

1,1/3(I2(6)). The multi-
plicity space of R1πC

∗ Q is 4-dimensional. On the other hand, by [9, Theorem 3.2.3], 
the algebra Hrat

1,1/3(I2(6)) has only two irreducible finite-dimensional representation: the 

16-dimensional Lν(triv) and the 4-dimensional Lν(χ+−). Thus GrC∗ Hε=1(Spa)Sa�Ba ∼=
Lν(triv). We expect Hrat

1,1/3(I2(6)) acts on GrP∗ Hε=1(Spa)Sa (for some filtration P≤i on 
Hε=1(Spa)Sa extending the Chern filtration), such that we would have an isomorphism 
of Hrat

1,1/3(I2(6)) ×Ba-modules 

GrP∗ Hε=1(Spa)Sa
?= Lν(triv) ⊕ Lν(χ+−) ⊗ H1(Ca).

9.10. Dimensions of Lν(triv): tables and conjectures

For a simple root system R, let Lν(R) be the irreducible spherical representation 
Lν(triv) of Hrat

ν,ε=1 attached to the root system R. Using the formula (1.2) and computer 
we have calculated the dimension of Lν(R) in the following cases. 
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m dimL1/m(F4)
12 1
8 6
6 20
4 96
3 256
2 1620

m dimL1/m(E6)
12 1
9 8
6 92
3 4152

m dimL1/m(E7)
18 1
14 9
6 3894
2 ?

m dimL1/m(E8)
30 1
24 10
20 54
15 576
12 3380
10 14769
8 62640

≤6 ?

Computations also suggest the following conjecture.

Conjecture 9.10.1.

(1) 1 +
∑

n>0 dimL1/2n(D2n)xn = (1 − 4x)−3/2.
(2) 1 +

∑
n>0 dimL1/2n(C2n)xn = (1 − 4x)−3/2(1 +

√
1 − 4x)2/4.
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Appendix A. Dimension of affine Springer fibers for quasi-split groups

We keep the notation from §2 and §5. The dimension of affine Springer fibers for split 
groups over F = C((t)) were conjectured by Kazhdan and Lusztig [22] and proved by 
Bezrukavnikov [3]. In this appendix we generalize this formula to quasi-split groups G
in the generality considered in §2.2.2.

Proposition A.1. The ind-scheme SpP,γ is equidimensional. Its dimension is given by 

dim SpP,γ = 1
2(

∑
α∈φ

val(α(γ′)) − r + dim tΠa(Ẑ(1))). (A.1)

Here γ′ ∈ t(F∞) is conjugate to γ, Πa : Ẑ(1) → W′ is defined in §2.3.1 (for a = χ(γ)), 
val : F×

∞ → Q is normalized so that val(t) = 1 and recall that φ is the root system of G
respect to T.

Proof. Kazhdan and Lusztig [22] prove that when e = 1, Spγ is equidimensional and 
has the same dimension as SpG,γ . The proof there generalizes to the quasi-split case 
and other parahorics P. It remains to calculate the dimension of SpG,γ . According to 
Lemma 5.2.6, it suffices to calculate the dimension of Pa = Ja(F )/Ja(OF ). Let J�

a be 
the finite-type Neron model of Ja over OF . We may take γ = κ(a), then Lie J�

a is an 
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OF -lattice g�γ ⊂ gγ(F ) containing gγ(OF ). We need to calculate dimPa, which is the 
same as dim J�

a(OF )/Ja(OF ) = [g�γ : gγ ]. Here, for two OF -lattice Λ1 and Λ2 in an 
F -vector space, the notation [Λ1 : Λ2] means dimC Λ1/Λ1 ∩ Λ2 − dimC Λ2/Λ1 ∩ Λ2.

We use the strategy in [3] by considering the F -valued Killing form (·, ·) on gγ(F )
(given as the restriction of the Fe-valued Killing form on g(Fe), which is induced from 
the Killing form on g). For an OF -lattice L in gγ(F ) we denote its dual under the Killing 
form by L∨ = {x ∈ gγ(F )|(x, L) ⊂ OF }, another OF -lattice in gγ(F ). Similar notation 
applies to lattices in g(F ). We have 

gγ ⊂ g�γ ⊂ g�,∨γ ⊂ g∨γ .

Therefore 

dimPa = [g�γ : gγ ] =
[g∨γ : gγ ] − [g�,∨γ : g�γ ]

2 . (A.2)

We first calculate [g�,∨γ : g�γ ]. Let m be the order of the homomorphism Πa, then 
g�γ is conjugate to t(OFm

)μm inside G(Fm) (where μm is identified with the image of 
Πa : Ẑ(1) → W′). Calculating the Killing form on t(OFm

)μm , we see that 

[g�,∨γ : g�γ ] = dim t/tμm . (A.3)

Next we calculate [g∨γ : gγ ]. Note that p(F ) := [γ, g(F )] is the orthogonal complement 
of gγ(F ) in g(F ) under the Killing form. We have 

g∨γ /gγ
∼= g∨/(gγ ⊕ p(F ) ∩ g∨). (A.4)

We observe that the quotient 

g∨/ (gγ(F ) ∩ g∨ ⊕ [γ, g∨]) (A.5)

is the cokernel of the endomorphism [γ, −] of g∨/gγ(F ) ∩ g∨, hence 

[g∨ : gγ(F ) ∩ g∨ ⊕ [γ, g∨]] = val det([γ,−]|g(F )/gγ(F )) =
∑
α∈φ

val(α(γ′)).

Comparing the quotient in (A.5) with the right side of (A.4), the difference between their 
lengths is the difference between [gγ(F ) ∩ g∨ : gγ ] and [p(F ) ∩ g∨ : [γ, g∨]]. Hence 

[g∨γ : gγ ] =
∑
α∈φ

val(α(γ′)) + [gγ(F ) ∩ g∨ : gγ ] − [p(F ) ∩ g∨ : [γ, g∨]]. (A.6)

We need to calculate the two extra terms in the above formula. Write g = ⊕e−1
i=0 gi

under the action of μe. Then g = g0(OF ) ⊕ t1/ege−1(OF ) ⊕ · · · ⊕ t(e−1)/eg1(OF ), g∨ =
g0(OF ) ⊕ t−1/eg1(OF ) ⊕ · · · ⊕ t−(e−1)/ege−1(OF ). We have a filtration 
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g = g(0) ⊂ g(1) ⊂ g(2) ⊂ · · · ⊂ g(e−1) = g∨

such that g(i)/g(i−1) = t−i/egi, i = 1, · · · , e − 1. Let g(i)
γ = gγ(F ) ∩ g(i). The map [γ, −]

preserves each g(i) and induces the map [γ0, −] : gi → gi on the associated graded. Here 
γ0 is the image of γ mod t in h = gμe . We consider the exact sequence 0 → g(i−1) →
g(i) → t−i/egi → 0 and its endomorphism given by [γ, −]. The snake lemma then gives 
an exact sequence 

0 → g(i−1)
γ → g(i)

γ → t−i/e ker([γ0,−]|gi) → g(i−1)/[γ, g(i−1)] → g(i)/[γ, g(i)]. (A.7)

Claim. For i = 0, · · · , e − 1, the lattice [γ, g(i)] is saturated in g(i).

Proof of Claim. To show that the image of the map [γ, −] : g(i) → g(i) is saturated, 
it suffices to show that the kernel of its reduction modulo t has dimension at most r
(because it is at least r, the F -dimension of the kernel of [γ, −] on g(F )). The filtration 
tg(i) ⊂ tg(i+1) ⊂ · · · ⊂ tg∨ ⊂ g(0) ⊂ · · · ⊂ g(i) is stable under [γ−, ]. It induces a filtration 
on g(i)/tg(i) = g(i) ⊗OF

C with associated graded g = ⊕e−1
i=0 gi, on which the action [γ, −]

becomes [γ0, −]. Since γ0 lies in the Kostant section of g by construction, it is regular, 
and hence dim ker([γ0, −]|g) = r. Since the kernel dimension does not decrease when 
passing to the associated graded, ker([γ, −]|g(i) ⊗OF

C) ≤ r. This proves the claim. �
Since [γ, g∨] is saturated in g∨, hence [p(F ) ∩g∨ : [γ, g∨]] = 0. Also, by the Claim, the 

last arrow in (A.7) is injective, and the first three terms form a short exact sequence. 
We thus get a filtration of gγ(F ) ∩ g∨/gγ = g

(e−1)
γ /g

(0)
γ with associated graded equal 

to ⊕e−1
i=1 t

−i/e ker([γ0, −]|gi). The dimension of the latter is dim ker([γ0, −]| ⊕e−1
i=1 gi) =

dim ker([γ0, −]|g) − dim ker([γ0, −]|h) = r − r, again by the regularity of γ0. Therefore 
[gγ(F ) ∩ g∨ : gγ ] = dim t/tμe = r − r. These facts and (A.6) imply that 

[g∨γ : gγ ] =
∑
α∈φ

val(α(γ′)) + r − r. (A.8)

Plugging (A.8) and (A.3) into (A.2), we get the desired dimension formula (A.1). �
Appendix B. Codimension estimate on the Hitchin base

We work in the following generality. Let X be an irreducible smooth Deligne–Mumford
curve over an algebraically closed field k, of which the weighted projective line in §6.1 is 
an example. Let G be a semisimple group. Let L be a line bundle on X. We define MHit

to be the moduli stack of L-valued G-Higgs bundles over X, and let f : MHit → A be 
the Hitchin fibration.

Recall from [26] that we have an upper semi-continuous function δ : A → Z≥0 which 
measures how far (in terms of dimensions) Pa is from an abelian variety. Let Aδ ⊂ A be 
the locally closed subscheme consisting of a ∈ A with δ(a) = δ. The goal of this section 
is to show
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Proposition B.1. Suppose char(k) = 0 and degL > degωX (where ωX is the canonical 
bundle of X). Then codimAAδ ≥ δ.

The argument is in fact sketched in [27]. We give a detailed proof for completeness.
We shall first study the tangent map of the Hitchin fibration f : MHit → A. Let 

(E , ϕ) ∈ MHit(k) with image a ∈ Aell(k). Let 

TfHit|(E,ϕ) : T(E,ϕ)MHit → TaA

be the tangent map of fHit at (E , ϕ). On the other hand, the action of Pa on MHit
a

induces a map 

act(E,ϕ) : Lie Pa → T(E,ϕ)MHit.

Lemma B.1.1. We have 

dimk coker(TfHit|(E,ϕ)) = dim ker(act(E,ϕ)). (B.1)

Proof. We have T(E,ϕ)MHit = H0(X,K) where K = [Ad(E) [ϕ,−]−−−→ Ad(E) ⊗ L] placed in 
degrees −1 and 0. The tangent space TaA can be identified with A itself, hence equal to 
H0(X, cL). The tangent map is obtained by taking H0(X,−) of the map of complexes 

Ad(E)
[ϕ,−]

Ad(E) ⊗ L

∂ϕ

0 cL

(B.2)

Note that cL = ⊕r
i=1Ldi given by the fundamental invariants f1, · · · , fr on g. The map 

∂ϕ sends α ∈ Ad(E) ⊗ L to { d
dtfi(ϕ + tα)|t=0}i=1,··· ,r. Since degL > degωX , we have 

H1(X,K) = 0 by [26, Théorème 4.14.1]. Therefore the cokernel of the tangent map 
T(E,ϕ)MHit → TaA is the same as H0(X, C) where C is the cone of the map (B.2), which 
is represented by the three term complex (in degrees −2, −1 and 0) 

C = [Ad(E) [ϕ,−]−−−→ Ad(E) ⊗ L ∂ϕ

−−→ cL].

By calculation at the generic point of X, using the fact that ϕ is generically regular 
semisimple, we see that H−1C and H0C are both torsion. A simple spectral sequence 
argument shows that H0(X, C) = H0(X,H0C). In other words, we have 

dimk coker(T(E,ϕ)MHit → TaA) = lengkcoker(∂ϕ). (B.3)

Recall we have a natural embedding Lie Ja) ↪→ ker([ϕ, −]). Next we would like to relate 
coker(∂ϕ) and Q := ker([ϕ, −])/Lie Ja. We have an isomorphism Lie (Ja) ∼= c∨L ⊗L (see 
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[26, Proposition 4.13.2]). The Killing form on g induces a self-duality on Ad(E). Under 
this duality, the natural map Lie Ja → Ad(E) is dual to ∂ϕ : Ad(E) → cL ⊗ L−1, as 
can be checked at the generic point of X. Therefore coker(∂ϕ) ∼= Ext1OX

(Q, L), and in 
particular, 

lengkQ = lengkcoker(∂ϕ). (B.4)

The long exact sequence associated with the exact sequence 0 → Lie Ja → ker([ϕ, −]) →
Q → 0 looks like

· · · → H0(X, ker([ϕ,−])) → H0(X,Q) → H1(X,Lie Ja) → H1(X, ker([ϕ,−])) → · · · .

(B.5)

Since a ∈ Aell, Lie Aut(E , ϕ) = H0(X, ker([ϕ,−])) = 0. From this we also know 
that H1(X, ker([ϕ,−])) ↪→ H0(X,K) = T(E,ϕ)MHit. Moreover, the composition 
H1(X,Lie Ja) → H1(X, ker([ϕ,−])) ↪→ T(E,ϕ)MHit is the map act(E,ϕ). Therefore, 
by (B.5), H0(X,Q) is exactly the kernel of the map act(E,ϕ). Combining with (B.4)
and (B.3), we get (B.1). �
Proof of Proposition B.1. Let Z ⊂ Aδ be an irreducible component. We have an diago-
nalizable group scheme R over Z whose fiber Ra is the affine part of Pa. Fiberwise the 
fixed points of Ra on MHit

a is nonempty. Therefore the fixed point locus of R on MHit
Z is 

a closed substack Y mapping surjectively to Z. For any (E , ϕ) ∈ Y over a ∈ Z, we have 
dim ker(act(E,ϕ)) ≥ dimRa = δ, therefore, by Lemma B.1.1, we have 

dim coker(TfHit|(E,ϕ)) ≥ δ. (B.6)

However, since Y → Z is surjective, its tangent map (at the smooth points of Y ) must 
be surjective at some point (E0, ϕ0) (since we are in characteristic zero). At this point 
the rank of TfHit|(E0,ϕ0) is at least dimZ, hence we have dim coker(TfHit|(E0,ϕ0)) ≤
codimZ(A). Combined with (B.6) we get codimZ(A) ≥ δ. �
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