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Abstract. Let F be a local non-archimedean field. We prove a formula relating orbital
integrals in GL(n, F) (for the unit Hecke function) and the generating series counting
ideals of a certain ring. Using this formula, we give an explicit estimate for such orbital
integrals. We also derive an analogous formula for global fields, proving analytic proper-
ties of the Dedekind zeta function for orders in global fields.
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1. Introduction

The goal of this note is two-fold. First, we give an explicit estimate of orbital integrals
for the unit Hecke function on GL(n, F) where F is a local non-archimedean field.
Second, we study analytic properties of the Dedekind zeta function of an order in a
global field. Though at first glance the two goals seem to be unrelated to each other,
there is a key formula on which both of them rely. The key formula relates the cardi-
nality of the “compactified class group” of some order R in a local field to a local zeta
function defined in terms of R.

1.1 Dedekind zeta function for orders

Let E be a number field and R ⊂ OE be an order. Define the completed Dedekind
zeta function of R to be

!R(s) := Ds/2
R "E,∞(s)

∑

M⊂R∨
(#R∨/M)−s . (1.1)

Here R∨ = HomZ(R, Z) viewed as an R-module. The sum is over all nonzero
R-submodules M ⊂ R∨. The number DR is the absolute discriminant of R (see §3.2)
and "E,∞(s) is the usual Gamma-factor attached to the archimedean places of E
(see [11]). When R = OE , R∨ is an invertible R-module, and !OE (s) is the usual
completed Dedekind zeta function of the number field E . One of the main results of
this note says that !R(s) shares many analytic properties with the usual Dedekind
zeta function.
∗Supported by the NSF grants DMS-0969470 and DMS-1261660.
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Theorem 1.2. Let R ⊂ E be an order, then

(1) The function !R(s) admits a meromorphic continuation to all s ∈ C. The only
poles of !R(s) are simple poles at s = 0, 1 with residues

−Ress=0!R(s) = Ress=1!R(s)

= 2r1(2π)r2#Cl(R)RegE

#O×
E,tors

∑

{M}∈Cl(R)\Cl(R)

#(O×
E /Aut(M))

#StabCl(R)([M])
.

(1.2)

Here, as usual, r1, r2 are the number of real and complex places of E, and RegE
is the regulator of E. The finite set Cl(R) is the set of E×-homothety classes of
fractional R-ideals, on which the class group Cl(R) acts. For other notations, see
§3.3.

(2) The function !R(s) satisfies the functional equation

!R(s) = !R(1 − s).

In fact, more general zeta functions (with E replaced by a semisimple Q-algebra,
R an order in E and R∨ replaced by an arbitrary finitely generated R-submodule of
E) were introduced by Solomon [10] and studied in depth in a series of papers by
Bushnell and Reiner [2], [3] and [4]. However, the fact that the functional equation
holds for our specific zeta function !R(s) does not seem to be found in the literature.
The residue formula above is a special case of a result of Bushnell and Reiner [3].

Moreover, the meromorphic continuation and the same residue formula at s = 0 is
valid for more general zeta functions, with R∨ replaced by any fractional R-ideal in
(1.1).

We also have a function field analog of Theorem 1.2, see Theorem 3.7.

1.3 Orbital integrals

Another main result of this note concerns with estimates of orbital integrals. Let F
be a local non-archimedean field with ring of integers OF and residue field k = Fq .
Let G = GL(n), viewed as a split reductive group over OF . Let g = gl(n) be its Lie
algebra.

Let γ ∈ g(F) be a regular semisimple element. Let Tγ be the centralizer of γ
in G, which is a maximal torus in G. Let dg be the Haar measure on G(F) with
vol(dg, G(OF)) = 1. Let Tc be the maximal compact subgroup of Tγ (F). Let dt be
the Haar measure on Tγ with vol(dt, Tc) = 1. The two measures dg and dt together
induce a measure dµ = dg

dt on the coset space Tγ (F)\G(F) that is right invariant
under G(F). The orbital integral of γ is

Oγ =
∫

Tγ (F)\G(F)
1g(OF )(g−1γg)dµ(g),

where 1g(OF ) is the characteristic function of g(OF ) ⊂ g(F).
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1.4 The polynomials Mδ,r and Nδ,r

For each pair of integers δ ≥ 0, r ≥ 1, we introduce a monic polynomial of degree δ:

Mδ,r (x) =
∑

|λ|≤δ,m1(λ)<r

xδ−ℓ(λ) +
∑

δ−r≤|λ|<δ
x |λ|−ℓ(λ). (1.3)

Here the summations are over partitions λ (including the empty partition). For a parti-
tion λ = λ1 ≥ λ2 ≥ · · · , we use |λ| = ∑

i λi to denote its size, ℓ(λ) for the number
of (nonzero) parts and m1(λ) for the number of times one appears as a part of λ. For
example, the first summation in (1.3) is over all partitions λ with size ≤ δ in which 1
appears less than r times.

We list the first few values of the polynomial Mδ,r :

M0,r (x) = 1; M1,1(x) = x + 1; M1,r (x) = x + 2 for r ≥ 2;
M2,1(x) = x2 + x + 1; M2,2(x) = x2 + 2x + 2; M2,r (x) = x2 + 2x + 3 for r ≥ 3;
M3,1(x) = x3 + 2x2 + x + 1; M3,2(x) = x3 + 3x2 + 2x + 2;
M3,3(x) = x3 + 3x2 + 3x + 3; M3,r (x) = x3 + 3x2 + 3x + 4 for r ≥ 4; . . . .

We also define a polynomial Nδ,r ∈ Z≥0[x], monic of degree δ:

Nδ,r (x) =
{

xδ + xδ−1 + · · · + xδ−r+1 + r if r ≤ δ;
xδ + xδ−1 + · · · + x + δ + 1 if r > δ.

Another main result of this note is

Theorem 1.5. For a regular semisimple γ ∈ g(F) whose characteristic polynomial
f (X) has coefficients in OF , we have

qρ(γ )
∏

i∈B(γ )

Nδi ,ri (q
di ) ≤ Oγ ≤ qρ(γ )

∏

i∈B(γ )

Mδi ,ri (q
di ).

Here the products are over the set B(γ ) of irreducible factors fi (X) of f (X), the
integers δi , ri , di and ρ(γ ) are certain invariants determined by the fi (X)’s, see §4.1.
Both the upper bound and the lower bound are monic polynomials of degree δ in q
with positive integer coefficients.

We spell out the special case when γ is elliptic and that the field extension F[γ ]/F
is totally ramified. In this case, we have

qδ + 1 ≤ Oγ ≤
∑

|λ|≤δ, with all parts ≥2

qδ−ℓ(λ) +
∑

|λ|=δ−1

qδ−1−ℓ(λ).

1.6 Potential applications

In the recent work of S-W. Shin and N. Templier [9], estimates of orbital integrals
(for a general reductive group G and test function in the unramified Hecke algebra)
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are used as an essential technical tool to prove their Sato-Tate theorem for families of
automorphic representations, see [9, Proposition 7.1, Appendices A and B]. For their
purposes, an upper bound in terms of |D(γ )|−1/2

F suffices. When G = GLn, D(γ ) is
essentially the discriminant of the characteristic polynomial of γ , and |D(γ )|−1/2

F is
comparable to qδ(γ ). Theorem 1.5 gives a much finer upper and lower bound for the
orbital integrals in the case G = GLn and the test function being the unit element
in the Hecke algebra, and the leading terms qδ(γ ) of the upper and lower bounds are
optimal. It would be interesting to generalize our result to other groups G and more
general test functions in the Hecke algebra. We expect that such fine estimates for
orbital integrals should have further applications in analytic number theory.

1.7 Method of proof

The proofs of both theorems are based on a local statement, Theorem 2.5, whose
proof is a simple exercise following Tate’s thesis [11]. To get the estimate in
Theorem 1.5, one needs a formula for the number of ideals of a given colength in the
two-dimensional ring OF [[X ]], which is worked out in Proposition 4.13.

2. Local study of zeta functions for orders

2.1 The setup

Let F be a local non-archimedean field with ring of integers OF and residue field
k = Fq . Let | · | : F× → qZ be the standard absolute value: |π | = q−1 for any
uniformizer π in F .

Let E be a finite-dimensional separable F-algebra. We extend the absolute value
| · | to E× by pre-composing with the norm NE/F . Write E as a product of fields
E = ∏

i∈B Ei where B is some finite index set. Let k̃i be the residue field of Ei and
ni = [̃ki : k] for i ∈ B. The rings of integers of E (resp. Ei ) is OE (resp. OEi ).

An order in E is finitely generated OF -algebra R ⊂ E with R ⊗OF F = E .
A fractional R-ideal is a finitely generated R-submodule M ⊂ E such that M ⊗OF

F = E .
Let X R be the set of fractional R-ideals, on which E× acts via multiplication.

An E×-orbit in X R is called an ideal class, and we denote by Cl(R) = E×\X R
the set of ideal classes of R. The usual ideal class group is the quotient Cl(R) =
E×\X◦

R where X◦
R is the set of invertible fractional ideals. We may view Cl(R) as a

“compactification” of the group Cl(R).
Choose a finite free Z-module ! ⊂ E× complementary to O×

E , for example ! =∏
i π

Z
i for uniformizers πi ∈ Ei . Then ! acts freely on X R with finitely many orbits.

The cardinality of the orbit set !\X R is independent of the choice of ! complemen-
tary to OE .

For any two fractional ideals M1 and M2, their relative (OF -)length [M1 : M2] is
defines as

[M1 : M2] := lengOF
(M1/M1 ∩ M2) − lengOF

(M2/M1 ∩ M2). (2.1)
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The normalization of R is OE . The Serre invariant for R is δR = [OE : R], which
we often abbreviate as δ.

2.2 Duality

Let dE/F be the different ideal of E/F (which is an ideal in OE ). Choose an
OE -generator of c ∈ dE/F . On E we define a modified trace paring (·, ·) : E×E → F
defined by

(x, y) = TrE/F (c−1xy). (2.2)

For any fractional R-ideal M , let M∨ = {x ∈ E|(x, M) ⊂ OF }, which is also a
fractional ideal of R.

The operation M .→ M∨ is an involution on the set of fractional R-ideals. The
insertion of c−1 in the definition of the modified trace pairing ensures that O∨

E = OE .
For any two fractional ideals M1, M2 ⊂ E , we have

[M1 : M2] = [M∨
2 : M∨

1 ].

We have R ⊂ OE ⊂ R∨ with [OE : R] = [R∨ : OE ] = δ.

2.3 Local zeta function

For each j ≥ 0, let Quot j
R∨ be the set of fractional R-ideals M ⊂ R∨ with

[R∨ : M] = j . Let
JR(s) =

∑

j≥0

#Quot j
R∨ · q− j s. (2.3)

We define

VR(s) := qδs
∏

i∈B

(1 − q−ni s), (2.4)

J̃R(s) := VR(s)JR(s). (2.5)

Remark 2.4. Let Hilb j
R be the set of ideals I ⊂ R such that [R : I ] = j . If R is

Gorenstein, i.e., R∨ is an invertible R-module, then Quot j
R∨ is naturally in bijection

with Hilb j
R . Therefore, in the Gorenstein case, JR(s) is the generating series made by

counting points on the “Hilbert schemes of R”.

Theorem 2.5. We have

(1) The function J̃R(s) is of the form

J̃R(s) = qδs PR(q−s) (2.6)

for some polynomial PR(t) ∈ 1 + tZ[t] of degree 2δR.
(2) J̃R(0) = J̃R(1) = #(!\X R). Equivalently, PR(1) = qδPR(q−1) = #(!\X R).
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(3) There is a functional equation

J̃R(s) = J̃R(1 − s). (2.7)

Or equivalently PR(t) = (qt2)δPR(q−1t−1).

Remark 2.6. Let M be a fractional R-ideal. We may define the function JR(s) using
M instead of R∨, i.e., setting

J M
R (s) :=

∑

j≥0

#Quot j
M · q− j s,

and J̃ M
R (s) := VR(s)J M

R (s). Then J̃ M
R (s) is still of the form qδs P M

R (q−s) for some
polynomial P M

R (t) and

J̃ M
R (0) = P M

R (1) = #(!\X R)

still holds. However, in general, P M
R (t) will not be of degree 2δR , and it will not satisfy

the functional equation as in Theorem 2.5(3).

Before proving the theorem, we give some examples.

Example 2.7. Let n ≥ 2, E = Fn and R ⊂ On
F consist of (x1, . . . , xn) such that

x1 ≡ x2 ≡ · · · ≡ xn mod π . Then δ = n − 1. The dual R∨ consists of triples
(y1, . . . , yn) ∈ (π−1OF )n such that y1+· · ·+ yn ∈ OF . Note that R is not Gorenstein
when n ≥ 3. We have a formula for PR(t) by direct calculation:

PR(t) =
n∑

r=0

(
n
r

)
(1 − t)r tn−r

n−1∑

c=0

tc

(

coeff. of tn−c−1 in
(1 − t)n−r

∏c+ϵ
j=0(1 − q j t)

)

. (2.8)

Here ϵ = 0 if r > 0 and ϵ = 1 if r = 0. It is an interesting combinatorial
problem to show directly that this polynomial satisfies the functional equation
qn−1t2n−2 PR(q−1t−1) = PR(t).

For a geometric description of !\X R when F is a function field, see Remark 4.14.

Example 2.8. Continuing the above example and taking n = 3, a direct calculation
shows

PR(t) = 1 + (q − 2)t + t2 + (q2 − 2q)t3 + q2t4.

We try with other definitions of the zeta function by replacing R∨ in the definition by
other R-modules. For example, if we define

J ♯R(s) :=
∑

j≥0

#Quot j
O3

F
· q− j s .

Then the corresponding polynomial P♯R(t) is

P♯R(t) = 1 + (q2 + q − 2)t + (q2 − 2q + 1)t2.
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which does not satisfy the functional equation. If we define

J ♭R(s) :=
∑

j≥0

#Hilb j
R · q− j s .

Then the corresponding polynomial P♭R(t) is

P♭R(t) = 1 − 2t + (q2 + q + 1)t2 + (q2 − 2q)t3,

which again does not satisfy the functional equation. However, all these polynomials
PR, P♯R and P♭R have the same special value 2q2 − q at t = 1, which is the number of
fractional R-ideals up to multiplication by the three uniformizers.

The rest of the section is devoted to the proof of Theorem 2.5. We first need some
preparation.

2.9 Contribution of an ideal class

For a fractional R-ideal M , the ideal class containing it is the set [M] = {x M,

x ∈ E×}. Let c j ([M]) be the cardinality of Quot j
R∨ ∩ [M]. The contribution of the

ideal class [M] to JR(s) is

JR([M], s) :=
∑

j

c j ([M])q− j s .

The contribution of [M] to J̃R(s) is J̃R([M], s) := VR(s)JR([M], s).
Fix a Haar measure dx on the additive group E such that vol(dx,OE ) = 1. So for

any fractional ideal M we have vol(dx, M) = q[M:OE ]. We also get a Haar measure
d×x = dx/|x | on the multiplicative group E×.

For a fractional R-ideal M , let Aut(M) = {x ∈ E×|x M = M}. Then Aut(M) is a
compact open subgroup of E× and hence has a nonzero finite volume under the Haar
measure d×x .

Lemma 2.10. We have

JR([M], s) = q−[R∨:M]svol(d×x, Aut(M))−1
∫

E×
1M∨(x)|x |sd×x . (2.9)

Note the right side is independent of the choice of the representative M in the class
[M] and the choice of the measure d×x.

Proof. Let M∨
j ⊂ M∨ consist of elements x ∈ M∨ with |x | = q− j . Then M∨

j admits
a free action of Aut(M) via multiplication. The right side of (2.9) breaks up into a sum

q−[R∨ :M]s
∑

j∈Z
#(M∨

j /Aut(M))q− j s .

The map M∨
j ∋ x .→ x M ∈ Quot j+[R∨:M]

R∨ gives a bijection between M∨
j /Aut(M)

and Quot j+[R∨:M]
R∨ ∩ [M]. Therefore the right side of (2.9) can be further written as

q−[R∨:M]s
∑

j∈Z
#(M∨

j /Aut(M))q− j s =
∑

j∈Z
c j+[R∨:M]([M])q−( j+[R∨:M])s = JR([M], s).

✷
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Summing up the contributions from all ideal classes, we get

JR(s) :=
∑

[M]∈Cl(R)

q−[R∨:M]svol(d×x, Aut(M))−1
∫

E×
1M∨(x)|x |sd×x . (2.10)

2.11 Proof of Theorem 2.5(1)

In view of Lemma 4.5, we set

PR(t) :=
∏

i∈B

(1 − tni )
∑

j≥0

#Quot j
R∨ · t j . (2.11)

This is clearly in 1 + tZ[[t]]. To show this is a polynomial, it suffices to show that
J̃R([M], s) ∈ Q[qs, q−s ] for each ideal class [M].

Using (2.10), we have

J̃R([M], s) = q(δ−[R∨:M])s

vol(d×x, Aut(M))

∫

E×
1M∨(x)|x |s

∏

i∈B

(1 − q−ni s)d×x .

Note that

vol(d×x,O×
E )

∏

i∈B

(1 − q−ni s)−1 =
∫

E×
1OE (x)|x |sd×x . (2.12)

Therefore

J̃R([M], s) = q(δ−[R∨:M])s

vol(d×x, Aut(M))

·
(

vol(d×x,O×
E ) +

∫

E×
(1M∨(x) − 1OE (x))|x |s

∏

i∈B

(1 − q−ni s)d×x

)

.

(2.13)

The integral above now only involves finitely many possible valuations of x , hence
belongs to Q[qs , q−s], and therefore J̃R([M], s) ∈ Q[qs , q−s]. This shows that P(t)
is a polynomial. The fact that deg PR(t) = 2δ will follow once we prove the functional
equation below.

2.12 Proof of Theorem 2.5(3)

We will in fact prove the following refinement of the functional equation, which
implies (2.7) by summing up the contributions from all ideal classes.

Lemma 2.13. For each ideal class [M] ∈ Cl(R), we have

J̃R([M], s) = J̃R([M∨], 1 − s).
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Proof. Using notation from Tate’s thesis [11, §2.4], we write the local zeta function

ζ( f, ||s) :=
∫

E×
f (x)|x |sd×x,

for compactly supported locally constant functions f : E → C. Using Lemma 2.10
and (2.12), we can then write

J̃R([M], s) = q(δ−[R∨:M])s vol(d×x,O×
E )

vol(d×x, Aut(M))

ζ(1M∨ , ||s)
ζ(1OE , ||s) . (2.14)

Fix an additive character ψ : F → C× which is trivial on OF but nontrivial on
π−1OF , we can define the Fourier transform f .→ f̂ for functions f on E:

f̂ (y) =
∫

E
f (x)ψ((x, y))dx .

Here (x, y) is the modified trace pairing in (2.2). By [11, Theorem 2.4.1] (local
functional equation), we have

ζ(1M∨, ||s)
ζ(1OE , ||s) = ζ (̂1M∨ , ||1−s)

ζ (̂1OE , ||1−s)
. (2.15)

A straightforward calculation shows that for any fractional R-ideal M ⊂ E , we have

1̂M∨ = q[OE :M]1M .

Since OE is self-dual, we have 1̂OE = 1OE . Therefore (2.15) and (2.14) together
imply

J̃R([M], s) = q(δ−[R∨:M])s vol(d×x,O×
E )

vol(d×x, Aut(M))

ζ(1M∨ , ||s)
ζ(1OE , ||s)

= q(δ−[R∨:M])s vol(d×x,O×
E )

vol(d×x, Aut(M∨))

q[OE :M]ζ(1M , ||1−s)

ζ(1OE , ||1−s)
. (2.16)

The exponent of q on the right side is

(δ − [R∨ : M])s + [OE : M] = (δ − [R∨ : M] + [OE : M])s + [OE : M](1 − s)

= [OE : M](1 − s) = (δ − [R∨ : M∨])(1 − s).

Also Aut(M) = Aut(M∨), therefore the right side of (2.16) is exactly J̃R([M∨],
1 − s). ✷

2.14 Proof of Theorem 2.5(2)

Plugging in s = 0 in (2.13) (which is now legitimate because it only involves finitely
many powers of q−s), and then sum over all ideal classes [M], we get

J̃R(0) =
∑

[M]∈Cl(R)

vol(d×x,O×
E )

vol(d×x, Aut(M))
=

∑

[M]∈Cl(R)

#(O×
E /Aut(M)). (2.17)
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Now we claim that the right side is #(!\X R). In fact, consider the quotient map
p : !\X R → E×\X R = Cl(R). We have

#p−1([M]) = #(E×/!Aut(M)) = #(O×
E /Aut(M)).

Therefore (2.17) implies J̃R(0) = #(!\X R). Using the functional equation (2.7),
we get also J̃R(1) = #(!\X R).

This finishes the proof of Theorem 2.5.

3. Dedekind zeta function for orders

We would like to study the global field analog of the function J̃R(s), i.e., the Dedekind
zeta function of orders. We will treat number fields and function fields separately, and
prove an analog of Theorem 2.5 in both situations.

3.1 The number field setting

Let E now be a number field and R ⊂ E be an order (i.e., a finitely generated
Z-algebra whose fraction field is E). Let |R| be the set of maximal ideals of R. For
each v ∈ |R|, let Rv denote the v-adic completion of R with residue field kv and ring
of total fractions Ev . Let qv = #kv .

We recall the completed Dedekind zeta function !R(s) defined in (1.1):

!R(s) = Ds/2
R (π−s/2"(s/2))r1((2π)1−s"(s))r2

∑

M⊂R∨
(#R∨/M)−s

where r1 (resp. r2) are the number of real (resp. complex) places of E , and the sum
is over all nonzero R-submodules M ⊂ R∨. The absolute discriminant DR is defined
below.

3.2 Discriminant

The trace pairing (x, y) .→ TrE/Q(xy) allows to identify E and the Q-linear dual
of E . In particular, the dual R∨ = HomZ(R, Z) can also be viewed as a fractional
ideal in E which contains R. We define the absolute discriminant DR to be #(R∨/R).
We have

DR = #(OE/R)2|.E/Q|. (3.1)

3.3 Global ideal classes

Let A×
E, f be the finite part of the idèle group of E . The class group Cl(R) of R is the

group
Cl(R) = E×\A×

E, f /
∏

v∈|R|
R×

v .
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For v ∈ |R|, let Xv be the set of fractional Rv -ideals. The orbit space

Cl(R) := E×\
∏ ′

v∈|R|Xv

classifies fractional R-ideals up to multiplication by E×, or, equivalently, isomor-
phism classes of torsion-free R-modules of rank one. Here the restricted product

∏′

requires that almost all factors be equal to the standard lattice Rv . For each fractional
ideal M ⊂ E , we define Aut(M) := {x ∈ E×|x M = M}, which only depends on the
ideal class [M].

The class group Cl(R) acts on Cl(R) and Cl(R) can be viewed as a “compactifi-
cation” of Cl(R). The orbit space Cl(R)\Cl(R) is the set of genera of R, i.e., the
equivalence classes of fractional R-ideals under local isomorphism. For a frac-
tional R-ideal M , we denote the Cl(R)-orbit containing [M] by {M} ⊂ Cl(R).
Let StabCl(R)([M]) be the stabilizer of [M] under Cl(R), which only depends on
the Cl(R)-orbit of [M]. Now we have explained all notations in the statement of
Theorem 1.2.

3.4 Proof of Theorem 1.2

For each v ∈ |R|, we apply the discussion in §2 to the order Rv ⊂ Ev . We can then
define the functions Jv(s), J̃v(s) and the polynomial Pv(t). We also have the set Xv

of fractional Rv -ideals and choose a free abelian group !v ⊂ E×
v complementary to

O×
Ev

, as in 2.1.
Both!R(s) and!E(s) (the usual completed Dedekind zeta function for the number

field E) admit Euler products over v ∈ |R| (which is a partition of finite places of E).
We can express the ratio !R(s)/!E (s) as a product of ratios of local zeta functions

!R(s)
!E(s)

= (#OE/R)s
∏

v∈|R|
Jv(q−s

v )
∏

u∈|OE |,u .→v

(1 − q−s
u )

=
∏

v∈|R|
qδv s
v Pv(q−s

v ) =
∏

v∈|R|
J̃v(s). (3.2)

Here we used (3.1) to compute the ratio of the discriminant terms. By Theorem 2.5(1),
this ratio is an entire function in s. Since !E(s) has a meromorphic continuation to C
with simple poles at s = 0, 1, !R(s) also has a meromorphic continuation to C with
at most simple poles at s = 0, 1.

The functional equation in Theorem 1.2(2) follows from (3.2) and the local
functional equation (2.7).

Let us compute the residue of !R(s) at s = 1. The residue at s = 0 follows from
the functional equation. Using (3.2) and Theorem 2.5(2), we have

Ress=1!R(s) = Ress=1!E (s) ·
∏

v∈|R|
#(!v\Xv). (3.3)
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The residue formula for !E(s) in [11, Main Theorem 4.4.1] says (note the factor
|.E/Q|1/2 disappears because of our definition of !E (s))

Ress=1!E (s) = 2r1(2π)r2#Cl(OE )RegE

#O×
E,tors

.

Multiplying the above two formulae, we see that in order to prove (1.2), we only need
to show that

#Cl(OE )
∏

v∈|R|
#(!v\Xv) = #Cl(R)

∑

{M}∈Cl(R)\Cl(R)

#(O×
E /Aut(M))

#StabCl(R)([M])
. (3.4)

We first break the left side into a sum over the genera. Note that Cl(R)\Cl(R) =∏
(E×

v \Xv) and we have a natural map c :
∏

(!v\Xv) → ∏
(E×

v \Xv) =
Cl(R)\Cl(R). For each genus {M}, we may represent it by (Mv )v∈|R| with
Mv ∈ Xv . The preimage c−1({M}) is identified with

∏
(E×

v /!vStab(Mv )) =∏
(O×

Ev
/Stab(Mv )), where Stab(Mv ) is the stabilizer of Mv ∈ Xv under the action

of E×
v . Hence we have

∏

v∈|R|
#(!v\Xv) =

∑

{M}∈Cl(R)\Cl(R)

#
∏

(O×
Ev

/Stab(Mv )).

On the other hand, the term #Cl(R)#StabCl(R)([M])−1 on the right side of (3.4) is the
cardinality of {M} = E×\∏′(E×

v /Stab(Mv)). Therefore, to prove (3.4), we only need
to show for each genus {M} that

#
∏

(O×
Ev

/Stabv )

#(O×
E /Aut(M))

= #(E×\∏′(E×
v /Stabv))

#Cl(OE )
. (3.5)

Here we have abbreviated Stab(Mv ) to Stabv . Indeed, (3.5) follows from the exact
sequence

1 → O×
E /Aut(M) →

∏
(O×

Ev
/Stabv ) → E×\

∏′
(E×

v /Stabv) → Cl(OE ) → 1,

where the last homomorphism is the natural projection E×\∏′(E×
v /Stabv) →

E×\∏′(E×
v /O×

Ev
) = Cl(OE ). This finishes the proof of Theorem 1.2.

3.5 The function field setting

In the function field case, we will use geometric language. Let C be a projective curve
over a finite field k = Fq which is geometrically integral (i.e., C⊗k k is irreducible and
reduced). Let E = k(C) be the function field of C . Let |C| be the set of closed points
of C . For each v ∈ |C|, let Rv be the completed local ring at v with ring of fractions Ev

and residue field kv = Fqv . We again use Xv to denote the set of fractional Rv -ideals.
The arithmetic genus of C is defined as ga = ga(C) = dimk H1(C,OC). Let

ν : C̃ → C be the normalization, then the Serre invariant of C is δC = dimk(OC̃/OC ).
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The quantity qga−1 is the analog of D1/2
R for an order R in a number field, and the

relation ga(C) = g(C̃) + δC is the analog of (3.1).
Let ω = ωC be the dualizing sheaf of C . This is a coherent sheaf which is generi-

cally a line bundle. Let Quot j
ω be the Quot-scheme of length j quotients of ω. Define

the completed Dedekind zeta function for C to be

!C(s) = q(ga−1)s
∑

j≥0

#Quot j
ω(k)q− j s.

When C is a smooth projective curve, we have

!C(s) = q(ga−1)s Z(C/Fq, s) := q(ga−1)s exp

⎛

⎝
∑

i≥1

#C(Fqi )
q−is

i

⎞

⎠ ,

which is essentially the usual zeta function of C introduced by E.Artin. Hence we
view !C(s) as a generalization of the zeta function for a possibly singular curve.

3.6 The compactified Jacobian

In [1], Altman and Kleiman defined the compactified Picard scheme PicC of C
classifying torsion-free coherent sheaves on C of generic rank one. The compactified
Jacobian JacC is the component of PicC consisting of coherent sheaves with the same
degree as the structure sheaf OC . We have a natural bijection

JacC(k) = E×\
(∏′

v∈|C| Xv

)1
. (3.6)

Here, (−)1 again means the norm one part. The norm is given by the product of local
norms Xv → qZ

v sending a fractional Rv -ideal M to q[M:Rv ]
v . To see the bijection,

consider a coherent sheaf F ∈ JacC (k) together with a trivialization of it at the generic
point ι : F |SpecE ∼= E . Then this datum determines a fractional Rv -ideal F ⊗ Rv ⊂
F ⊗ Ev

ιv−→ Ev , hence a point (F ⊗ Rv )v∈|C| ∈ ∏
Xv . Since F has the same degree

as OC , we have (F ⊗ Rv ) ∈ (
∏

v Xv )1. Changing the trivialization ι amounts to
translating (F ⊗ Rv ) by an element in E×, hence the bijection (3.6).

The following theorem is a global analog of Theorem 2.5 for function fields.

Theorem 3.7. We have

(1) The function !C (s) is of the form

!C(s) = q(ga−1)s PC(q−s)

(1 − q−s)(1 − q1−s)
,

where PC(t) ∈ 1 + tZ[t] is a polynomial of degree 2ga with special values

PC(1) = qga PC(q−1) = #JacC (k).
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(2) The function !C (s) satisfies the functional equation

!C (s) = !C (1 − s).

Equivalently, PC(t) = (qt2)ga PC(q−1t−1).

The proof is similar to that of Theorem 1.2 using the local results in Theorem 2.5.
We omit the proof here. In [8], in the case C has only planar singularities, we gave
a cohomological interpretation of the coefficients of PC(t), which does not seem to
have a number field analog.

4. Orbital integrals and local zeta functions

Throughout this section, F is a local non-archimedean field. We continue to use the
notation set up in §1.3.

4.1 Invariants attached to γ

Let γ ∈ g(F) be a regular semisimple element as in §1.3. Let f (X) ∈ F[X ] be the
characteristic polynomial of γ . Note that Oγ ̸= 0 only if f (X) ∈ OF [X ].

Let R = OF [X ]/( f (X)). This is an OF -algebra with ring of fractions
E = F[X ]/( f (X)). The pair (R ⊂ E) is considered in §2.1, and we shall use the
notation from there. In particular, E is a product of fields

∏
i∈B(γ ) Ei where B(γ )

is an index set in bijection with the irreducible factors fi (X) of f (X). We have the
Serre invariant δ = δR .

Set Ri = OF [X ]/( fi (X)) then Ei = F[X ]/( fi (X)) is the field of fractions of Ri .
Let k̃i and ki be the residue fields of OEi and Ri respectively. Summarizing

OF !!

""

Ri !!

""

OEi

""
k

di !! ki
ri !! k̃i

where the integers di and ri stand for the degrees of the respective field extensions,
and we let ni = diri = [̃ki : k].

The normalization OE = ∏
i OEi of R is also the maximal compact subgroup Tc

of Tγ (F). We also define the Serre invariant of Ri to be δi = lengRi
(OEi /Ri ). Let

ρ(γ ) := δ −
∑

i∈B(γ )

diδi

Then we have
ρ(γ ) =

∑

{i, j}⊂B(γ ),i ̸= j

valF (Res( fi , f j )),

where Res(·, ·) is the resultant of two polynomials.
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4.2 Orbital integrals and lattices

Let Xγ = {g ∈ G(F)/G(OF )|g−1γg ∈ g(OF)}. Then Tγ (F) acts on Xγ by left
translation. Choose a free abelian group !γ ∈ E× = Tγ (F) complementary to the
maximal compact Tc. For example, we may fix a uniformizer πi for each Ei , and let
!γ = ∏

i π
Z
i . Then !γ acts freely on Xγ . We have

Oγ = #(!γ \Xγ ). (4.1)

Let V = Fn be an n-dimensional vector space over F . We identify g(F) with
EndF (V ), and thus view γ ∈ g(F) as an F-linear endomorphism γ : V → V . The
action of γ on V extends to an action of E = F[X ]/( f (X)) on V , with X acting as γ .
Since γ is regular semisimple, V is a free E-module of rank one.

A lattice in V is an OF -submodule M of V of rank n. For example L0 = On
F ⊂ Fn

is a lattice. For two OF -lattices L1, L2 ⊂ V , we define their relative OF -length using
formula (2.1).

The map G(F)/G(OF ) ∋ g .→ gL0 gives a bijection between G(F)/G(OF)
and the set of lattices in V . The subset Xγ ⊂ G(F)/G(OF ) corresponds bijectively
to lattices L which are stable under γ (i.e., γ L ⊂ L), or equivalently, stable under
R ⊂ E .

4.3 Another orbital integral

Let V ∗ be the dual vector space of V . It also contains a standard lattice L∗
0 spanned

by the standard dual basis over OF . The algebra E acts on V ∗ on the right (using
the adjoint of its action on V ), under which V ∗ becomes a rank one free E-module
(since V is). Let e∗ ∈ V ∗ be a basis of this free E-module of rank one. The
R-translation of e∗ inside of V ∗ gives another lattice e∗ R.

Inspired by Jacquet [6], we consider the following orbital integral with a complex
parameter s:

Jγ (s) := q[e∗ R:L∗
0]s

∫

G(F)
1g(OF )(g−1γg)1L∗

0
(e∗g)| det(g)|sdg.

Note that a priori Jγ (s) depends on the choice of e∗ ∈ V ∗.

4.4 Relation with local zeta function

We may relate Jγ (s) to the local zeta function JR(s) defined in §2.3. Using the vector
e∗ we may identify V ∗ with E: E ∋ x .→ e∗x ∈ V ∗. Transporting the modified trace
pairing (2.2) to V ∗ using this identification, we can also identify V with E , such that
under these identifications, the usual pairing between V ∗ and V becomes the modified
trace pairing on E itself.

Lemma 4.5. We have
Jγ (s) = JR(s), (4.2)

where JR(s) is defined in (2.3). In particular, Jγ (s) is independent of the choice of
e∗ ∈ V ∗.
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Proof. For each g ∈ G(F)/G(OF), the condition that g−1γg ∈ g(OF ) and
e∗g ∈ L∗

0 is the same as saying that the OF -lattice L = gL0 is stable under γ and
that ⟨e∗ R, gL0⟩ ⊂ OF (here ⟨·, ·⟩ means the pairing between V ∗ and V ). Under
the identification of V ∼= E ∼= V ∗ given above, this is the same as saying that
gL0 is a fractional R-ideal contained in R∨. Moreover [R∨ : gL0] = [R∨ : L0] +
[L0 : gL0] = −[e∗R : L∗

0] + valF (det(g)). Therefore

Jγ (s) = q[e∗ R:L∗
0]s

∑

j∈Z
#Quot j

R∨ · q(− j−[e∗R:L∗
0])s =

∑

j≥0

#Quot j
R∨ · q− j s. ✷

Now we define J̃γ (s) using the same formula (2.5), using the invariants δ = δR and
ni = [̃ki : k].

Theorem 2.5 then implies

Corollary 4.6 (of Theorem 2.5). We have

(1) The function J̃γ (s) is of the form

J̃γ (s) = qδs Pγ (q−s)

for some polynomial Pγ (t) ∈ 1 + tZ[t] of degree 2δ.
(2) J̃γ (0) = J̃γ (1) = Oγ .
(3) There is a functional equation

J̃γ (s) = J̃γ (1 − s).

Or equivalently Pγ (t) = (qt2)δPγ (q−1t−1).

Corollary 4.7. Suppose γ is elliptic (i.e., f (X) is irreducible) and the residue field of
R is k, then

Oγ =
δ−r−1∑

j=0

(qδ− j−qδ−r− j )#Hilb j
R+qr #Hilbδ−r

R +
δ−1∑

j=δ−r+1

(qδ− j+1)#Hilb j
R+#HilbδR .

(4.3)

Proof. As noticed in Remark 2.4, in the situation R is Gorenstein, which it is now, one
can replace Quot j

R∨ by Hilb j
R . Direct calculation using the definition of Pγ (t) gives

Pγ (t) =
2δ∑

j=0

(#Hilb j
R − #Hilb j−r

R )t j .

The functional equation Pγ (t) = (qt2)δPγ (q−1t−1) in Corollary 4.6(3) implies that
for j = 0, . . . , δ, we have

qδ− j (#Hilb j
R − #Hilb j−r

R ) = #Hilb2δ− j
R − #Hilb2δ− j−r

R .
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Therefore,

Pγ (1) = #HilbδR − #Hilbδ−r
R +

δ−1∑

j=0

(#Hilb j
R − #Hilb j−r

R )(1 + qδ− j ). (4.4)

Switching the order of summation, the right side above transforms to the right side
of (4.3). By Corollary 4.6(2), Oγ = Pγ (1), therefore (4.3) holds. ✷

The rest of the note is devoted to the proof of Theorem 1.5.

4.8 Reduction of Levi subgroups

Let L = ∏
i∈B Li ⊂ GL(n) = G be a Levi subgroup (so Li ∼= GL(ni ) with∑

i∈B ni = n). Let γ = (γi ) ∈ L(F) with γi ∈ Li . One can similarly define
X L
γ = ∏

i X Li
γi , on which Tγ (F) = ∏

i Tγi (F) acts. We may fix a choice of
!i ⊂ Tγi (F) (complementary to the maximal compact in Tγi (F)) and let
!γ = ∏

i !i ⊂ Tγ (F). It is clear that !γ \X L
γ is a product of !i\X Li

γi . Hence by the
analog of (4.1) for L and Li , we have

O L
γ =

∏

i∈B

O Li
γi

.

Choosing a parabolic subgroup P ⊂ G with Levi subgroup L and unipotent radical
NP , we have a Cartan decomposition G(F) = P(F)G(OF ) = NP (F)L(F)G(OF).
The assignment g = nlG(OF ) ∈ G(F)/G(OF ) .→ l ∈ L(F)/L(OF) gives
a well-defined map p : G(F)/G(OF) → L(F)/L(OF) and restricts to a map
pγ : Xγ → X L

γ .
Let ρL

G(γ ) = ∑
{i, j}⊂B,i ̸= j valF(Res( fi , f j )), where fi is the characteristic

polynomial of γi .

Lemma 4.9. The fibers of the map pγ : Xγ → X L
γ all have cardinality qρ

L
G (γ ).

Proof. The choice of the parabolic P is the same as an ordering of the set B(γ ), which
thus allows us to identify B(γ ) with the set {1, 2, . . . , b} for some integer b ≥ 1. This
parabolic P also gives a flag of the vector space V = Fn:

V≤1 ⊂ V≤2 ⊂ · · · V≤b = V

such that Gri V := V≤i/V≤i−1 is a free Ei -module of rank one. A point x ∈ X L
γ is

the same as a choice of lattices Ui ⊂ Gri V , one for each i , such that Ui is stable
under γi . The fiber of pγ over x = (Ui) is in bijection with the set of lattices
U ⊂ V , stable under γ , such that U≤i/U≤i−1 = Ui (where U≤i = U ∩ V≤i ) for each
i = 1, 2, . . . , b.

By induction on b = #B, one reduces to the case where B = {1, 2}. For each
OF -linear map φ : U2 → V1/U1 which satisfies φγ2 = γ1φ, we get a lattice U ⊂ V
spanned by U1 and {u2 + φ(u2) mod U1|u2 ∈ U2}. It is easy to see that such φ’s
are in bijection with the fiber p−1

γ (U1, U2). Therefore we only need to compute the
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number of such φ’s. However, such a φ is the same as an element ψ ∈ U∨
2 ⊗OF

(V1/U1) = (V ∨
2 ⊗F V1)/(U∨

2 ⊗OF U1) which is killed by the operator ϵ = γ∨
2 ⊗

id − id ⊗ γ1 ∈ End(V ∨
1 ⊗ V2), i.e., ψ ∈ ϵ−1(U∨

2 ⊗OF U1)/(U∨
2 ⊗OF U1). The

definition of the resultant implies that ρL
G(γ ) = valF det(ϵ), which is also the length

of ϵ−1(U∨
2 ⊗OF U1)/(U∨

2 ⊗OF U1) as an OF -module. Therefore, the number of ψ’s,

which is the same as the cardinality of p−1
γ (U1, U2), is qρ

L
G (γ ). ✷

When F is a local function field, one can appeal to (an positive characteristic analogue
of) a geometric result of Kazhdan and Lusztig [7, §5, Proposition 1] for affine Springer
fibers.

Applying Lemma 4.9 to the Levi L ⊂ G which corresponds to the factorization of
f (X) into irreducible polynomials, we get

Corollary 4.10. We have

Oγ = qρ(γ )
∏

i∈B(γ )

O Li
γi

.

Moreover, each O Li
γi may be computed by changing F to Fi = F ⊗k ki and work

with GL(ni/di , Fi) (to which γi belongs after conjugation) instead of GL(ni , F).
Therefore we have reduced the proof of Theorem 1.5 to the case γ is elliptic and the
residue field of R is the same as that of OF . From now on we will restrict ourselves
to this situation. We denote the residue field of E by k̃ and let r = [̃k : k].

4.11 The lower bound

We have a very coarse lower bound

#Hilbi
R ≥ 1.

Therefore, when r ≤ δ, by (4.3), we have

Oγ ≥
δ−r−1∑

i=0

(qδ−i −qδ−r−i )+qr +
δ−1∑

i=δ−r+1

(qδ−i +1)+1 = qδ−r+1(qr−1+· · ·+1)+r.

When r > δ, a similar calculation shows that Oγ ≥ qδ + · · · + q + δ+ 1. This shows
the lower bound Oγ ≥ Nδ,r (q).

4.12 The upper bound

To obtain an upper bound for Oγ , we only need to give an upper bound for #Hilbi
R for

each 0 ≤ i ≤ δ because all coefficients in (4.3) are positive. Since R is a quotient of a
formal power series ring OF [[X ]], we have the naive estimate

#Hilb j
R ≤ #Hilb j

OF [[X ]].
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Proposition 4.13. We have

#Hilb j
OF [[X ]] =

∑

|λ|= j

q j−ℓ(λ).

Here the sum is over partitions λ of size j , and ℓ(λ) is the number of parts of λ.

Proof. The leading term of an element f (X) ∈ OF [[X ]] is the monomial appearing in
f (X) with lowest degree (together with its coefficient). For each ideal I ⊂ OF [[X ]],
let I ♮ be the ideal generated by the leading terms of elements in I .

Each I ♮ is of the form Iµ = (πµ0,πµ1 X,πµ2 X2, . . . ) for a sequence
µ0 ≥ µ1 ≥ · · · . We view this sequence as a partition µ = (µi )i≥0. The size of the
partition is |µ| = ∑

µi , which is the length of OF [[X ]]/Iµ.
We first show that I ♮ has the same length as I , provided that the latter is finite.

In fact, let Im = (I, Xm) ⊂ OF [[X ]] (with the convention that I0 = OF [[X ]]), then
we have

leng(OF [[X ]]/I ) =
∑

m≥0

leng(Im/Im+1). (4.5)

We also have isomorphisms OF/πµmOF
∼→ I ♮m/I ♮m+1 and OF/πµmOF

∼→ Im/Im+1

both given by a .→ aXm . Therefore (4.5) applied to both I ♮ and I confirms that I ♮

and I have the same colength.
Now we count how many I satisfies I ♮ = Iµ for a fixed partition µ. Suppose

I ∩ (Xm+1) is determined and we would like to determine I ∩ (Xm). Clearly, I ∩ (Xm)
is generated by I ∩ (Xm+1) and an element fm(X) ∈ OF [[X ]] of the form

fm(X) = πµm Xm +
∑

i>m

ai Xi

where ai ∈ OF/πµiOF . There are constraints on the coefficients ai . Since I ♮ = Iµ,
there is an element fm+1(X) ∈ I ∩ (Xm+1) of the form fm+1(X) ≡ πµm+1 Xm+1

mod Xm+2. Then X fm(X) − πµm−µm+1 fm+1(X) ∈ I ∩ (Xm+2). Comparing the
coefficient of Xm+2, we find that am+1 is already determined modulo πµm+2 .
Hence the number of choices for am+1 is qµm+1−µm+2 . Continuing like this, once
am+1, . . . , ai−1 is determined, the number of choices for ai is qµi −µi+1 . Therefore,
the number of choices for fm(X), hence I ∩ (Xm) is

∏

i>m

qµi −µi+1 = qµm+1 .

Continuing this argument inductively for m, we see that the total number of I with
the same I ♮ = Iµ is

∏

m≥0

qµm+1 = qµ1+µ2+··· = q |µ|−µ0 .

If we take the transposition λ of µ, then |µ| − µ0 = |λ| − ℓ(λ). Summing over all
possible partitions λ, we get the desired formula. ✷
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When F is a local function field, Proposition 4.13 can also be deduced from the
cellular decomposition of the punctual Hilbert scheme for A2, see [5, Theorem 1.1(iv)].

We can now finish the proof of the upper bound in Theorem 1.5. Since Oγ is
less than or equal to the quantity on the right side of (4.3) if Hilb j

R is replaced by
Hilb j

OF [[X ]], we get from (4.4) that

Oγ ≤ #HilbδOF [[X ]] − #Hilbδ−r
OF [[X ]] +

δ−1∑

j=0

(#Hilb j
OF [[X ]] − #Hilb j−r

OF [[X ]])(1 + qδ− j )

=
δ∑

j=0

qδ− j (#Hilb j
OF [[X ]] − #Hilb j−r

OF [[X ]]) +
δ−1∑

j=δ−r

#Hilb j
OF [[X ]]. (4.6)

Using Proposition 4.13 we have

#Hilb j
OF [[X ]] − #Hilb j−r

OF [[X ]] =
∑

|λ|= j

q |λ|−ℓ(λ) −
∑

|λ|= j−r

q |λ|−ℓ(λ). (4.7)

For a partition λ, we assign a new partition µ by adding r 1’s to λ, so that m1(µ) ≥ r
and |µ| − ℓ(µ) = |λ| − ℓ(λ). This sets up a bijection between {λ||λ| = j − r} and
{µ||µ| = j, m1(µ) ≥ r} preserving the function λ .→ |λ| − ℓ(λ). We can then rewrite
(4.7) as

#Hilb j
OF [[X ]] − #Hilb j−r

OF [[X ]] =
∑

|λ|= j,m1( j)<r

q j−ℓ(λ).

Plugging this into (4.6) and use Proposition 4.13 again we get the desired upper bound
Oγ ≤ Mδ,r (q).

Remark 4.14. In Example 2.7, the order R is not generated by one element over OF
when n ≥ 3, so our estimate in Theorem 1.5 does not apply. By (2.8) we have

PR(1) =
n−1∑

c=0

coeff. of tn−c−1 in
(1 − t)n

(1 − t)(1 − qt) · · · (1 − qc+1t)
.

It is easy to see that the leading term is qn2/4 for n even and 2q(n2−1)/4 for n odd,
which has much bigger degree than δ = n − 1.

Now suppose F is a local function field. We give a geometric description of X R in
this case. For each subset I ⊂ {1, 2, . . . , n} and a number 0 ≤ m ≤ #I − 1 (m = 0 if
I = ∅), we call a cell of type (I, m) with center λ ∈ Zn the subset C(I, m, λ) ⊂ Zn

consisting of all n-tuples (µ1, . . . , µn) ∈ Zn such that

• µi = λi if i /∈ I ;
• µi = λi or µi = λi + 1 if i ∈ I ;
• ∑

i µi = ∑
i λi + m.

This is a finite subset of Zn of cardinality
(#I

m

)
. Let C be the set of all such triples

(I, m, λ). We introduce a partial ordering on C by declaring (I, m, λ) ≤ (I ′, m ′, λ′)
if and only if C(I, m, λ) ⊂ C(I ′, m ′, λ′). Equivalently, (I, m, λ) ≤ (I ′, m ′, λ′) if and
only if

• I ⊂ I ′, m ≤ m ′;
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• λ− λ′ consists of 0’s and 1’s, the 1’s only occur in coordinates I ′ − I and there are
exactly m ′ − m of them.

For each (I, m, λ), we assign to it the variety Gr(k I , m), the Grassmannian of
m-planes in the vector space k I . For (I, m, λ) ≤ (I ′, m ′, λ′), we have a natural embed-
ding Gr(k I , m) ↪→ Gr(k I ′

, m ′) given by V .→ V ⊕ k J where J ⊂ I ′ − I is the subset
of i such that λi = λ′

i + 1. Then, on the level of the reduced (ind-)schemes, we have

X R = lim−→
(I,m,λ)∈C

Gr(k I , m).

The action of ! = Zn on X R is induced from its action on the index set C by µ ·
(I, m, λ) = (I, m, λ + µ). In particular, there are n − 1 irreducible components of
!\X R , isomorphic to Gr(kn, m) where 1 ≤ m ≤ n − 1.

We may visualize!\X R in the following way. Draw a cube [0, 1]n−1 and subdivide
it into n − 1 polytopes using the slices Si = {(x1, . . . , xn−1) ∈ [0, 1]n−1| ∑ j x j = i},
for i = 1, . . . , n − 1. Fill in the polytope between Si−1 and Si by the Grassmannian
Gr(kn, i). Then glue each pair of opposite faces of the cube together.

For example, when n = 3, we may draw !\X R as

❅
❅

❅
❅

❅
❅

a a

b

b

Here, each triangle stands for a copy of P2, and each segment stands for P1. The
segments with the same labels are identified. Therefore, !\X R can be stratified into
a union of two copies of G2

m , three copies of Gm and a point, totaling 2(q − 1)2 +
3(q − 1) + 1 = 2q2 − q points, which coincides with PR(1).
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