
NOTES ON D-MODULES (FOR TALBOT 2008)

ZHIWEI YUN

These are the notes prepared for an introductory lecture on D-modules presented
during the Talbot workshop (April 2008). The biblical reference is [4]. I would like
to thank D.Gaitsgory for answering a lot of my questions and other participants of
the Talbot for helpful feedbacks.

1. Definition of algebraic D-modules

For any scheme X, Db(OX) will denote the bounded derived category of quasi-
coherent complexes on X and qcoh(OX) the abelian category of quasi-coherent
sheaves. The dualizing complex will be denoted by ωX .

In this section, the ambient scheme X is smooth of equidimension n over an
algebraically closed field k of characteristic 0. The tangent sheaf and the sheaf of
i-forms will be denoted by ΘX and Ωi

X respectively. Note that ωX = Ωn
X [n].

1.1. The definitions. We only need to define the sheaf of differential operators
DX and DX -modules will be sheaves on the Zariski site of X with a left module
structure under DX . We give several equivalent definitions

• This is a quasi-coherent OX -module defined as the quotient of the tensor
algebra

⊗∗
OX

ΘX be the two-sided ideal generated by ξf − fξ = Lieξ(f)
and ξη − ηξ = [ξ, η] for ξ, η ∈ ΘX and f ∈ OX . (Looks like a “universal
enveloping algebra”)

• For any Zariski open subset U ⊂ X, DX(U) ⊂ Endk(OX(U)) is the sub-
algebra generated by multiplication by functions OX(U) and derivations
ΘX(U).

• For any Zariski open subset U ⊂ X, D≤i
X (U) ⊂ Endk(OX(U)) consists of

those operators P such that [[P, f0], · · · , fi] = 0 for any f0, · · · , f1 ∈ OX(U)
(these are differential operators of degree ≤ i). DX(U) = ∪iD≤i

X (U).
• Consider the formal completion X of the diagonal X ⊂ X × X, it has an
OX -bimodule structure. We define DX as Homcont,OX

(OX,OX) (using one
OX to define Hom but the result is still an OX -bimodule). Note that we
take continuous dual.

A DX -module is quasi-coherent if its quasi-coherent as an OX -module. They
form an abelian category qcoh(DX). We will let Db

qcoh(DX) to denote the bounded
derived category of DX -modules with quasi-coherent cohomologies. We have canon-
ically

Db(qcoh(DX)) ∼= Db
qcoh(DX).

We suppress “qcoh” from the notation since we never need to consider larger cate-
gories.
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1.1.1. Example. Suppose X = An and we are given an algebraic PDE: Pf = 0
where f = (f1, · · · , fm)t and P is a ` × m matrix of differential operators with
polynomial coefficients. We can form the DX -module M associated to this PDE as

the cokernel of D`
X

P t

→ Dm
X . A DX -module morphism M → OX gives a solution to

the PDE. This also makes sense for analytic D-modules where we have more chance
to get solutions (cf section 4.2)

• Let X = A1, the DX -module OXexgenerated by ex is the cokernel of
DX

∂x−1−→ DX .
• Let X = A1, λ ∈ k, the DX -module OXxλgenerated by xλ is the cokernel

of DX
x∂x−λ−→ DX .

Here are some alternative ways to think of DX -modules.
• As OX -modules with flat connections. For a DX -module M , the action of

ΘX gives a map (which is not OX -linear)

∇ : M → Ω1
X ⊗OX

M.

The defining relations of DX ensures that ∇ is a flat connection.
• As deformations of quasi-coherent sheaves on the cotangent bundle. If

we consider λ-connections, λ ∈ A1, we get a Gm-equivariant family of
filtered OX -algebras over A1 whose fiber at 1 is DX and fiber at 0 is
Sym∗(ΘX) = OT∗X . Therefore the category of DX -modules can be thought
of as a deformation of the category of OT∗X -modules. In particular, the
associated graded of this family is canonically trivialized. The singular
support (support of the classical limit) makes sense as a conical cycle in
T ∗X.

• As O-modules on the crystalline site (or D-crystals, cf [2]). A DX -module
can be viewed as a quasi-coherent OX -module M with the following data:
whenever two maps Spec R ⇒ X coincide on Spec Rred, the pull-backs of
M to Spec R are canonically identified.

More precisely, we consider the crystalline site Xcrys. Objects in this site
are pairs (U, Û) consisting of a Zariski open set U ⊂ X with a thickening
U ↪→ Û . For p : (U, Û) → (V, V̂ ), we can define p! or p∗ : Db(OV̂ ) →
Db(OÛ ) and form the categories D(O!

crys) or D(O∗crys) fibered over Xcrys.
An O!

crys (resp. O∗crys)-complex is a Cartesian section of D(O!
crys) (resp.

D(O∗crys)). For X smooth, it is enough to consider the hyper-covering

· · ·X3
// //// X2

p1 //
p2

// X .

where Xn is the formal completion of Xn along the small diagonal. There-
fore an Ocrys-module is a descent datum for this hyper-covering. Note that
by the last definition of DX , we have DX = p2,∗p

!
1OX . We can use this to

identify O!
crys (resp. O∗crys)-complexes with complexes of right (resp. left)

DX -modules (see section 1.3). It is this point of view that generalizes to
singular and ind-schemes.

1.2. Finiteness conditions. A DX -module is coherent if it is finitely generated
over DX . They form an abelian category coh(DX). As above, we have canonically

Db(coh(DX)) ∼= Db
coh(DX).
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Remark. Although this seems to be a reasonable finiteness condition, it is not
stable under standard functors as we will see in example 2.1.1. We need a stronger
finiteness condition which is the following.

A coherent DX -module is holonomic if its singular support has minimal dimen-
sion (=dim X). They form an abelian category hol(DX). As above, we have canon-
ically (by J.Bernstein)

Db(hol(DX)) ∼= Db
hol(DX).

1.2.1. Example. If dim X > 0, DX is not holonomic. However, a coherent OX -
module with a flat connection is holonomic.

1.3. The left-right issue and Verdier duality. We write “Dop
X -modules” for

right DX -modules. We have an equivalence of categories given by

Db(DX)
−→
Ω // Db(Dop

X )
←−
Ω

oo

where −→
Ω = ωX⊗OX

;
←−
Ω = ⊗OX

ω−1
X .

Remark. The sheaf ωX has a natural Dop
X -module structure given by Lie derivative.

The action of ξ ∈ ΘX on ω ⊗OX
M is given by −Lieξ ⊗1− 1⊗ ξ.

From the crystalline point of view, the transition from O∗crys-complexes to O!
crys-

complexes (view as Cartesian sections of fibered categories over Xcrys) are given
by ωÛ ⊗ (−) for each (U, Û) ∈ Xcrys. As we will see in the case of singular and
ind-schemes (section 3.2), it is more natural to identify left and right DX -modules
and view the left-right issue as different forgetful functors Db(DX)→ Db(OX). We
usually prefer working with right D-modules since the Riemann-Hilbert correspon-
dence (see section 4) works better for them.

We define Verdier duality for coherent left DX -modules by

DX : Db(DX)
HomDX

(−,DX)
−→ Db(Dop

X )
←−
Ω−→ Db(DX).

1.3.1. Proposition. Verdier duality is a contravariant auto-equivalence of Db
coh(DX).

It is t-exact under the natural t-structure.

2. The six-functor formalism for D-modules

All functors are derived. For a continuous map f , push-forward and pull-back
of plain sheaves are denoted by f• and f•. Suppose f : X → Y is a morphism
between two smooth equidimensional schemes over k.

2.1. †-pullback. We define

f† : Db(DY ) → Db(DX)(2.1.1)
M 7→ f∗M.(2.1.2)

(pull-back as OX -complexes) The ΘX -action on f∗M is induced by the tangent
map ΘX → f•ΘY .

Similarly, we define

f† : Db(Dop
Y ) → Db(Dop

X )(2.1.3)

M 7→ f !M.(2.1.4)
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It is easy to check that the two definitions are compatible with the identification in
section 1.3.

2.1.1. Example. Suppose f : X = {0} ↪→ An = Y . Then f†DY is k[∂1, · · · , ∂n],
which is not a coherent DX -module.

2.1.2. Example. Suppose Y is a point, then f†ωY = ωX as right DX -modules.

2.2. †-pushforward. We define

f† : Db(Dop
X ) → Db(Dop

Y )(2.2.1)
M 7→ f•(M ⊗DX

DX→Y ).(2.2.2)

where DX→Y = f†DY is naturally a (DX , f•DY )-bimodule.

2.2.1. Example. Suppose f : X = {0} ↪→ An = Y . Then f†OX is k[∂1, · · · , ∂n]
(the Dirac distribution supported at the origin), which is a holonomic DY -module.

2.2.2. Example. Suppose f is an open immersion. Then f†M = f∗M as OY -
complexes.

Remark. We see from definition that f† is a composite of a left exact functor and
right exact functor, hence it is neither left nor right exact. When f is an affine
morphism, f• is exact, hence f† is right exact; when f is a closed embedding, f† is
t-exact (see theorem 3.1).

2.2.3. Example. Suppose X is affine and Y is a point. Then f† is the left derived
functor of M 7→ M/MΘX (de-Rham cohomology). Therefore f†DX = Γ(X,OX),
which is not coherent in general. However, coherence is preserved by f† if f is
proper.

2.3. Other functors. For right D-modules, we define f ! = f† and f∗ = f†. As in
the topological situation, we define f∗ := DX ◦ f† ◦DY and f! := DY ◦ f† ◦DX . We
have

2.3.1. Proposition. Db
hol is preserved by these functors, and the usual adjunctions

hold.

2.4. Tensor and inner Hom. Exterior tensor product � is easy to define. We
can define tensor product for right D-modules to be:

⊗! : Db(Dop
X )×Db(Dop

X ) → Db(Dop
X )

(M,N) → ∆!(M � N).

This endows Db(Dop
X ) with a monoidal structure with unit object ωX .

We can define ⊗∗ for left D-modules by using ∗ restriction of M � N to the
diagonal. The underlying OX -complex is the same as the usual tensor product over
OX . The unit object is OX .

Inner Hom is defined as a right adjoint of ⊗! or ⊗∗. For left D-modules, the
underlying OX -complex is the same as the usual HomOX

.

3. Kashiwara’s theorem and applications

Suppose i : Z ↪→ X is a closed embedding and j : U ↪→ X is the complement. Let
Db

Z(Dop
X ) ⊂ Db(Dop

X ) be the full triangulated subcategory consisting of complexes
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with set-theoretical support in Z (or only require this cohomologically). In other
words, we have an exact sequence of triangulated categories

Db
Z(Dop

X )
� � // Db(Dop

X )
j† //

Γ|Z|

oo Db(Dop
U )

j†
oo

3.1. Theorem (Kashiwara). We have an equivalence of categories given by

Db(Dop
Z )

i† // Db
Z(Dop

X )
i†

oo .

which is also t-exact with respect to the natural t-structures.

3.2. D-modules on singular and ind-schemes.

3.2.1. Example. For X singular, DX is bad behaved. Take X ⊂ A2 to be the cusp
curve y2 = x3. Then the global sections of DX is not a Noetherian ring.

To remedy, we define right DX -modules instead using Kashiwara’s theorem: tak-
ing (local) embedding of X into a smooth X ′, and let

Db(Dop
X ) := Db

X(Dop
X′).

where now the LHS is merely a symbol, but it coincides with the old notion for X
smooth. One checks that Db(Dop

X ) is canonically independent of the choice of X ′

and Verdier duality and six functors still make sense and work well.
For a strict ind-scheme X of ind-finite type X =

⋃
Xn, we can define

Db(Dop
X ) := lim−→Db(Dop

Xn
).

A more intrinsic way to define right D-modules on singular or ind-schemes is to
define them as Cartesian sections of D(O!

crys)-modules on the crystalline site (see
the last paragraph of section 1.1). To work with ind-schemes, we have to modify

the crystalline site by considering (X
j
←↩ U ↪→ Û) where j can be any locally closed

embedding into some Xn. In particular, by forgetting all the sections except the
section over X, we get

Forgetop : Db(Dop
X )→ Db(OX)

If X is a singular scheme with an embedding i : X ↪→ X ′ into a smooth one, it is
easy to see that Forget(M) = i!M where i! is taken in the O-module sense (right
derived functor of sections scheme-theoretically supported on X).

If X is an ind-scheme, we have to make sense of OX -modules first. This is
defined as a Cartesian section of the category D(O!

Zar) fibered over the Zariski site
XZar. Concretely, an OX -module M is a collection of Mn on Xn with isomorphisms
i!n−1Mn

∼= Mn−1. The global section can be defined as Γ(X, M) := lim−→Γ(Xn,Mn).
Similarly, we can define left DX -modules as Cartesian sections of D(O∗crys).

3.2.2. Example. For the affine Grassmannian X = GrG = G(F )/G(OF ) (where
F = k((z)) and OF = k[[z]]), let δ be the Dirac distribution at the base point. Then
the global sections of δ as a quasi-coherent OX -module is Γ(GrG, δ) = U(g⊗F )/(the
right ideal generated by g⊗OF ).

4. The Riemann-Hilbert correspondence

In this section, X is a smooth equidimensional scheme over C.
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4.1. Regularity. A holonomic DX -module is regular (or has regular singularity) if
its !-pullback to any smooth curve is. For X a smooth curve, let X be a compacti-
fication and Z = X−X. A DX -module M (viewed as a quasi-coherent OX -module
with connection ∇) is regular if there exists an extension (M̃, ∇̃) of (M,∇) to X

such that ∇̃(M̃) ⊂ Ω1
X

(log Z)⊗OX
M̃ .

Remark. Unlike holonomicity, regularity is an algebraic notion, which does not pass
to analytic DXan -modules. Consider the case X = A1 and the left DX -modules M
generated by ex. Then M is not regular at∞. We have Man ∼= OXan but M � OX .

As in section 1.2, we define rh(DX) and Db
rh(DX).

4.2. De-Rham functor. We define the de-Rham functor

dR : Db(DX) → Db(Xan; C)
M 7→ (ωX ⊗DX

M)an

dR : Db(Dop
X ) → Db(Xan; C)
M 7→ (M ⊗DX

OX)an

Using the Koszul resolution of ωX by locally free DX -modules, we recover the usual
de-Rham complex for left DX -modules:

dR(M)
qis−→ ((Ω∗X ⊗OX

M [dim X])an, δ).

where the differential on Ωi
X ⊗M is δi = d⊗ 1 + (−1)i1 ∧∇.

Another useful functor is the solution functor

Sol : Db(DX) → Db(Xan; C)(4.2.1)
M 7→ HomDXan (Man,OXan).(4.2.2)

It is easy to show that when restricted to coherent left DX -modules

Sol[dim X] = dR ◦DX .

Remark. In the definition of Sol, it is important to first analytify and then take
Hom, otherwise there will not be enough “solutions”.

4.3. Theorem (R-H correspondence).
(1) The functor dRrh induces an exact functor

dRhol : Db
hol(D

op
X )→ Db

con(Xan; C)

which is t-exact with respect to the natural t-structure on the LHS and the
perverse t-structure on the RHS;

(2) The functor dR induces an equivalence

dRrh : Db
rh(Dop

X ) ∼= Db
con(Xan; C).

which is compatible with Verdier dualities and six functors.

Remark. By the first definition of section 3.2, the above theorem also holds for
singular schemes.

4.3.1. Corollary.
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(1) The functor dR induces an equivalence of abelian categories:

dRab : rh(DX) ∼= Perv(Xan; C)

which further specializes to the well known equivalence:

{Vector bundles with flat regular connection on X} ↔ {Local systems on Xan}
(2) (A.Beilinson [1])The functor dRrh ◦Db(dR−1

ab ) gives a realization functor
which is an equivalence

Db(Perv(Xan, C)) ∼= Db(rh(DX))
Beilinson∼= Db

rh(DX) ∼= Db
con(Xan, C).

Remark. The de-Rham functor behaves well for holonomic DX -modules, but it is
not an equivalence. The reason is when we pass to analytic DXan -modules, we
already lose information. Consider the case X = A1 and the right DX -modules M
generated by ex. We have Man ∼= OXan but M � OX .

The same example shows that dRhol does not commute with f∗.
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