NOTES ON D-MODULES (FOR TALBOT 2008)

ZHIWEI YUN

These are the notes prepared for an introductory lecture on D-modules presented
during the Talbot workshop (April 2008). The biblical reference is [4]. T would like
to thank D.Gaitsgory for answering a lot of my questions and other participants of
the Talbot for helpful feedbacks.

1. DEFINITION OF ALGEBRAIC D-MODULES

For any scheme X, D°(Ox) will denote the bounded derived category of quasi-
coherent complexes on X and qcoh(Ox) the abelian category of quasi-coherent
sheaves. The dualizing complex will be denoted by wx.

In this section, the ambient scheme X is smooth of equidimension n over an
algebraically closed field k of characteristic 0. The tangent sheaf and the sheaf of
i-forms will be denoted by ©x and QY% respectively. Note that wx = Q% [n].

1.1. The definitions. We only need to define the sheaf of differential operators
Dx and Dx-modules will be sheaves on the Zariski site of X with a left module
structure under Dy. We give several equivalent definitions
e This is a quasi-coherent Ox-module defined as the quotient of the tensor
algebra ®*(9x O©x be the two-sided ideal generated by {f — f¢ = Lie¢(f)
and &n —n& = [§,n] for &, € Ox and f € Ox. (Looks like a “universal
enveloping algebra”)
e For any Zariski open subset U C X, Dx(U) C Endi(Ox(U)) is the sub-
algebra generated by multiplication by functions Ox(U) and derivations

ox(U).
e For any Zariski open subset U C X, D;;(U) C End;(Ox(U)) consists of
those operators P such that [[P, fol,- -, fi] = 0 for any fo, -+, f1 € Ox(U)

(these are differential operators of degree < ). Dx(U) = UZ-D}S(i(U).

e Consider the formal completion X of the diagonal X C X x X, it has an
Ox-bimodule structure. We define Dx as Hom,,,,; o, (Ox,Ox) (using one
Ox to define Hom but the result is still an Ox-bimodule). Note that we
take continuous dual.

A Dx-module is quasi-coherent if its quasi-coherent as an Ox-module. They
form an abelian category qcoh(Dx). We will let Dgcoh (Dx) to denote the bounded
derived category of Dx-modules with quasi-coherent cohomologies. We have canon-
ically

Db(qCOh(DX)) = Dgcoh(DX)'
We suppress “qcoh” from the notation since we never need to consider larger cate-

gories.
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1.1.1. Example. Suppose X = A" and we are given an algebraic PDE: Pf = 0
where f = (fi,--- ,fm)t and P is a £ x m matrix of differential operators with
polynomial coefficients. We can form the Dx-module M associated to this PDE as

the cokernel of DY g D%. A Dx-module morphism M — Ox gives a solution to
the PDE. This also makes sense for analytic D-modules where we have more chance
to get solutions (cf section 4.2)
e Let X = A', the Dx-module Oxe®generated by e* is the cokernel of
d,—1
Dx = Dx.
o Let X = A, X € k, the Dx-module OXxAgenerated by 2> is the cokernel
TOp— A
of DX — Dx.

Here are some alternative ways to think of Dx-modules.

e As Ox-modules with flat connections. For a Dx-module M, the action of
Ox gives a map (which is not Ox-linear)

V:M— Q% ®0, M.

The defining relations of Dx ensures that V is a flat connection.

e As deformations of quasi-coherent sheaves on the cotangent bundle. If
we consider A-connections, A € A', we get a G,,-equivariant family of
filtered Ox-algebras over A! whose fiber at 1 is Dx and fiber at 0 is
Sym*(©x) = Or-x. Therefore the category of Dx-modules can be thought
of as a deformation of the category of Opsx-modules. In particular, the
associated graded of this family is canonically trivialized. The singular
support (support of the classical limit) makes sense as a conical cycle in
T X.

e As O-modules on the crystalline site (or D-crystals, cf [2]). A Dx-module
can be viewed as a quasi-coherent Ox-module M with the following data:
whenever two maps Spec R = X coincide on Spec R4, the pull-backs of
M to Spec R are canonically identified.

More precisely, we consider the crystalline site Xc,ys. Objects in this site
are pairs (U, U) consisting of a Zariski open set U C X with a thickening
U< U. For p : (U, U) — (V,V), we can define p' or p* : Db((’)‘;) —
Db(Op) and form the categories @(Oérys) or D(OF,) fibered over Xepys.
An Ol (resp. Of.,)-complex is a Cartesian section of D(OL,.,) (resp.

D(0%..)). For X smooth, it is enough to consider the hyper-covering

crys
p1

~-~3€3£§3€24>T>X.
2

where X,, is the formal completion of X™ along the small diagonal. There-
fore an Ocrys-module is a descent datum for this hyper-covering. Note that
by the last definition of Dx, we have Dx = py .piOx. We can use this to
identify Oérys (resp. Op,,s)-complexes with complexes of right (resp. left)
Dx-modules (see section 1.3). It is this point of view that generalizes to
singular and ind-schemes.

1.2. Finiteness conditions. A Dx-module is coherent if it is finitely generated
over Dx. They form an abelian category coh(Dx). As above, we have canonically

D"(coh(Dx)) = DY, (Dx).
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Remark. Although this seems to be a reasonable finiteness condition, it is not
stable under standard functors as we will see in example 2.1.1. We need a stronger
finiteness condition which is the following.

A coherent Dx-module is holonomic if its singular support has minimal dimen-
sion (=dim X). They form an abelian category hol(Dx). As above, we have canon-
ically (by J.Bernstein)

DP(hol(Dx)) = D (Dx).

1.2.1. Example. If dim X > 0, Dx is not holonomic. However, a coherent Ox-
module with a flat connection is holonomic.

1.3. The left-right issue and Verdier duality. We write “D-modules” for
right Dx-modules. We have an equivalence of categories given by
6 O
Db(DX) <~ Db(D;)
Q

where
— — 1
Q :wX®Ox7 Q - ®OXWX .
Remark. The sheaf wx has a natural D-module structure given by Lie derivative.
The action of £ € ©x on w ®p, M is given by — Lie ®1 —1® .

* !

From the crystalline point of view, the transition from O, -complexes to O,
complexes (view as Cartesian sections of fibered categories over X,y ) are given
by wp ® (=) for each (U, U) € Xerys. As we will see in the case of singular and
ind-schemes (section 3.2), it is more natural to identify left and right Dx-modules
and view the left-right issue as different forgetful functors D*(Dx) — D*(Ox). We
usually prefer working with right D-modules since the Riemann-Hilbert correspon-
dence (see section 4) works better for them.

We define Verdier duality for coherent left Dx-modules by

HomDX (—=,Dx)

Dy : D*(Dy) X, DY (DY) % DY(Dx).

1.3.1. Proposition. Verdier duality is a contravariant auto-equivalence ofDi’oh(DX).
It is t-exact under the natural t-structure.

2. THE SIX-FUNCTOR FORMALISM FOR D-MODULES

All functors are derived. For a continuous map f, push-forward and pull-back
of plain sheaves are denoted by f, and f®. Suppose f : X — Y is a morphism
between two smooth equidimensional schemes over k.

2.1. f-pullback. We define
(2.1.1) ft:D¥Dy) — DU(Dy)
(2.1.2) M — f*M.

(pull-back as Ox-complexes) The O x-action on f*M is induced by the tangent
map Ox — f*Oy.
Similarly, we define
(2.1.3) DDy — DYDY
(2.1.4) M — f'M.
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It is easy to check that the two definitions are compatible with the identification in
section 1.3.

2.1.1. Example. Suppose f : X = {0} — A" =Y. Then fIDy is k[01,--- ,0n],
which is not a coherent D x-module.

2.1.2. Example. Suppose Y is a point, then ffwy = wx as right Dx-modules.
2.2. f-pushforward. We define

(2.2.1) fi : D'(D¥) — DU(DYP)
(2.2.2) M — foM®p, Dx_y).

where Dx_y = fIDy is naturally a (Dx, f*Dy)-bimodule.

2.2.1. Example. Suppose f : X = {0} — A" =Y. Then f;Ox is k[01,--- , On]
(the Dirac distribution supported at the origin), which is a holonomic Dy-module.

2.2.2. Example. Suppose f is an open immersion. Then fiM = f.,M as Oy-
complexes.

Remark. We see from definition that f; is a composite of a left exact functor and
right exact functor, hence it is neither left nor right exact. When f is an affine
morphism, f, is exact, hence f; is right exact; when f is a closed embedding, f; is
t-exact (see theorem 3.1).

2.2.3. Example. Suppose X is affine and Y is a point. Then f; is the left derived
functor of M — M/M®©x (de-Rham cohomology). Therefore f;Dx = I'(X,Ox),
which is not coherent in general. However, coherence is preserved by f; if f is
proper.

2.3. Other functors. For right D-modules, we define f' = fT and f. = f;. Asin
the topological situation, we define f* :=Dx o ff oDy and f, := Dy o fioDx. We
have

2.3.1. Proposition. D{’lol is preserved by these functors, and the usual adjunctions
hold.

2.4. Tensor and inner Hom. Exterior tensor product X is easy to define. We
can define tensor product for right D-modules to be:

®': D'DP) x D'DY) — DHDY)
(M,N) — A(MXN).
This endows D’(D$) with a monoidal structure with unit object wx.
We can define ®* for left D-modules by using * restriction of M X N to the
diagonal. The underlying Ox-complex is the same as the usual tensor product over
Ox. The unit object is Ox.

Inner Hom is defined as a right adjoint of ®' or ®*. For left D-modules, the
underlying Ox-complex is the same as the usual Hom, .

3. KASHIWARA’S THEOREM AND APPLICATIONS

Suppose i : Z — X is a closed embedding and j : U — X is the complement. Let
D% (D) c D*(DF) be the full triangulated subcategory consisting of complexes
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with set-theoretical support in Z (or only require this cohomologically). In other
words, we have an exact sequence of triangulated categories
it
c J
DbZ(Dg(?) 'F% Db(’Dg(p) <]7 Db(Dgp)
12| t

3.1. Theorem (Kashiwara). We have an equivalence of categories given by

i

b ——>1b

YD) === D (DY)
7

which is also t-exact with respect to the natural t-structures.

3.2. D-modules on singular and ind-schemes.

3.2.1. Example. For X singular, Dy is bad behaved. Take X C A2 to be the cusp
curve y? = 3. Then the global sections of Dx is not a Noetherian ring.

To remedy, we define right Dx-modules instead using Kashiwara’s theorem: tak-
ing (local) embedding of X into a smooth X', and let

D'(D) = D% (D).

where now the LHS is merely a symbol, but it coincides with the old notion for X
smooth. One checks that D?(D$) is canonically independent of the choice of X’
and Verdier duality and six functors still make sense and work well.

For a strict ind-scheme X of ind-finite type X = |J X,,, we can define

D(DY) = lim D"(DY ).

A more intrinsic way to define right D-modules on singular or ind-schemes is to
define them as Cartesian sections of @(O!Crys)—modules on the crystalline site (see
the last paragraph of section 1.1). To work with ind-schemes, we have to modify
the crystalline site by considering (X LU — U) where j can be any locally closed
embedding into some X,,. In particular, by forgetting all the sections except the
section over X, we get

Forget® : D*(DY¥) — D*(Ox)

If X is a singular scheme with an embedding 7 : X < X’ into a smooth one, it is
easy to see that Forget(M) = i'M where i' is taken in the O-module sense (right
derived functor of sections scheme-theoretically supported on X).

If X is an ind-scheme, we have to make sense of Ox-modules first. This is
defined as a Cartesian section of the category D (0}, ) fibered over the Zariski site
X7ar- Concretely, an Ox-module M is a collection of M,, on X, with isomorphisms
it M, = M, ;. The global section can be defined as I'(X, M) := lim (X, My,).

tn-1
Similarly, we can define left Dx-modules as Cartesian sections of D(Of,)-

3.2.2. Example. For the affine Grassmannian X = Grg = G(F)/G(OF) (where
F =k((z)) and O = k][2]]), let & be the Dirac distribution at the base point. Then
the global sections of § as a quasi-coherent Ox-module is I'(Grg,0) = U(g®F)/(the
right ideal generated by g ® OF).

4. THE RIEMANN-HILBERT CORRESPONDENCE

In this section, X is a smooth equidimensional scheme over C.
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4.1. Regularity. A holonomic Dx-module is reqular (or has regular singularity) if
its I-pullback to any smooth curve is. For X a smooth curve, let X be a compacti-
fication and Z = X — X. A Dx-module M (viewed as a quasi-coherent O x-module
with connection V) is regular if there exists an extension (M, V) of (M, V) to X
such that V(M) C Qly(log Z) ®o+ M.

Remark. Unlike holonomicity, regularity is an algebraic notion, which does not pass
to analytic Dxan-modules. Consider the case X = A! and the left Dx-modules M
generated by e®. Then M is not regular at co. We have M*" = Oxan but M 22 Ox.

As in section 1.2, we define th(Dx) and D% (Dx).

4.2. De-Rham functor. We define the de-Rham functor
dR: D"(Dx) — DX C)
M — (wX ®DX M)an

dR: D*(D¥) — D’(X";C)
M ~ (M®p, Ox)™"

Using the Koszul resolution of wx by locally free Dx-modules, we recover the usual
de-Rham complex for left Dx-modules:

dR(M) 2 (% ®oy M[dim X])*", 5).
where the differential on Q% ® M is &' =d® 1+ (1)1 A V.

Another useful functor is the solution functor

(4.2.1) Sol: D*(Dx) — DX C)
(4.2.2) M +— Homgp . (M, Oxan).

It is easy to show that when restricted to coherent left Dx-modules
Sol[dim X] = dRoDx.

Remark. In the definition of Sol, it is important to first analytify and then take
Hom, otherwise there will not be enough “solutions”.

4.3. Theorem (R-H correspondence).
(1) The functor dRy, induces an exact functor

dRpol : DYy (DY) — DL, (X C)

con

which is t-exact with respect to the natural t-structure on the LHS and the
perverse t-structure on the RHS;
(2) The functor dR induces an equivalence

dRy, : DY, (DY) = DS, (X C).

con

which is compatible with Verdier dualities and siz functors.

Remark. By the first definition of section 3.2, the above theorem also holds for
singular schemes.

4.3.1. Corollary.
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(1) The functor dR induces an equivalence of abelian categories:
dRgp : th(Dx) = Perv(X*"; C)
which further specializes to the well known equivalence:
{Vector bundles with flat regular connection on X} «<» {Local systems on X"}

(2) (A.Beilinson [1])The functor dRy, oD(dR,,}) gives a realization functor
which is an equivalence
Beilinson

DP(Perv(X°",C)) = D’(th(Dx)) = D (Dx)= D, (X, C).
Remark. The de-Rham functor behaves well for holonomic Dx-modules, but it is
not an equivalence. The reason is when we pass to analytic Dxan-modules, we
already lose information. Consider the case X = A! and the right Dx-modules M
generated by e*. We have M%" = Oxan but M 2 Ox.

The same example shows that dRy, does not commute with f.
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