Semi-classical analysis

Victor Guillemin and Shlomo Sternberg

September 2, 2004

Contents

1 Introduction. 9
1.1 The problem. 10
1.2 The eikonal equation. 10
1.2.1 The principal symbol. 10
1.2.2 Hyperbolicity. 11
1.2.3 The canonical one form on the cotangent bundle. 11
1.2.4 The canonical two form on the cotangent bundle. 12
1.2.5 Symplectic manifolds. 12
1.2.6 Hamiltonian vector fields. 13
1.2.7 Isotropic submanifolds. 13
1.2.8 Lagrangian submanifolds 15
1.2.9 Lagrangian submanifolds of the cotangent bundle. 15
1.2.10 Local solution of the eikonal equation. 16
1.2.11 Caustics. 16
1.3 The transport equations. 16
1.3.1 A formula for the Lie derivative of a $\frac{1}{2}$-density. 18
1.3.2 The total symbol, locally. 20
1.3.3 The transpose of P. 20
1.3.4 The formula for the sub-principal symbol. 21
1.3.5 The local expression for the transport operator R. 22
1.3.6 Putting it together locally. 24
1.3.7 Differential operators on manifolds. 25
1.4 The plan. 27
2 Symplectic geometry. 29
2.1 Symplectic vector spaces. 29
2.1.1 Special kinds of subspaces. 29
2.1.2 Normal forms. 30
2.1.3 Existence of Lagrangian subspaces. 30
2.1.4 Consistent Hermitian structures. 30
2.1.5 Choosing Lagrangian complements. 31
2.2 Equivariant symplectic vector spaces. 34
2.2.1 Invariant Hermitian structures. 35
2.2.2 The space of fixed vectors for a compact group is sym- plectic. 35
2.2.3 Toral symplectic actions 36
2.3 Symplectic manifolds. 36
2.4 Darboux style theorems 37
2.4.1 Compact manifolds. 37
2.4.2 Compact submanifolds. 38
2.4.3 The isotropic embedding theorem. 40
3 The language of category theory. 43
3.1 Categories. 43
3.2 Functors and morphisms. 44
3.2.1 Involutory functors and involutive functors. 45
3.3 Example: Sets, maps and relations. 45
3.3.1 The category of finite relations. 46
3.3.2 Categorical "points" 47
3.3.3 The transpose 48
3.3.4 The finite Radon transform. 49
3.3.5 Enhancing the category of finite sets and relations. 49
3.4 The linear symplectic category. 50
3.4.1 Linear Lagrangian squares. 50
3.4.2 The category of symplectic vector spaces and linear Lagrangians. 52
4 The Symplectic "Category". 55
4.1 Clean intersection. 56
4.2 Composable canonical relations 58
4.3 Transverse composition. 59
4.4 Lagrangian submanifolds as canonical relations 59
4.5 The involutive structure on \mathcal{S} 60
4.6 Canonical relations between cotangent bundles. 61
4.7 The canonical relation associated to a map 61
4.8 Pushforward of Lagrangian submanifolds of the cotangent bun- dle. 63
4.8.1 Envelopes 64
4.9 Pullback of Lagrangian submanifolds of the cotangent bundle. 66
5 Generating functions. 69
5.1 Fibrations 69
5.1.1 Transverse vs. clean generating functions 71
5.2 The generating function in local coordinates. 72
5.3 Example. The generating function of a geodesic flow. 74
5.4 The generating function for the transpose 77
5.5 Transverse composition of canonical relations between cotan- gent bundles. 78
5.6 Clean composition of canonical relations between cotangent bundles. 80
5.7 Reducing the number of fiber variables. 81
5.8 The existence of generating functions. 85
5.9 Generating functions for canonical relations 87
5.10 The Legendre transformation. 89
5.11 The Hörmander-Morse lemma. 90
5.12 Changing the generating function. 98
5.13 The phase bundle of a Lagrangian submanifold of $T^{*} X$. 98
5.14 The Maslov bundle. 99
5.15 Examples. 100
5.15.1 The image of a Lagrangian submanifold under geodesic flow. 100
5.15.2 The billiard map and its iterates. 101
5.15.3 The classical analogue of the Fourier transform. 103
6 The calculus of $\frac{1}{2}$ densities. 105
6.1 The linear algebra of densities. 105
6.1.1 The definition of a density on a vector space. 105
6.1.2 Multiplication. 107
6.1.3 Complex conjugation. 107
6.1.4 Elementary consequences of the definition. 107
6.1.5 Pullback and pushforward under isomorphism. 109
6.1.6 Lefschetz symplectic linear transformations. 110
6.2 Densities on manifolds. 112
6.3 Pull-back of a density under a diffeomorphism. 114
6.4 Densities of order 1. 115
6.5 The principal series representation of $\operatorname{Diff}(X)$ 116
6.6 The push-forward of a density of order one by a fibration. 116
7 The enhanced symplectic "category". 119
7.1 The underlying linear algebra. 119
7.2 Half densities and clean canonical compositions. 121
7.3 Rewriting the composition law. 122
7.4 Enhancing the category of smooth manifolds and maps. 123
7.4.1 Enhancing an immersion 123
7.4.2 Enhancing a fibration. 124
7.4.3 The pushforward via an enhanced fibration. 124
7.5 Enhancing a map enhances the corresponding canonical relation. 12 125
7.6 The involutive structure of the enhanced symplectic "category". 126
7.6.1 Computing the pairing $\left\langle\left(\Lambda_{1}, \rho_{1}\right),\left(\Lambda_{2}, \rho_{2}\right)\right\rangle$. 127
7.6.2 \dagger and the adjoint under the pairing. 127
7.7 The moment Lagrangian. 128
7.7.1 The derivative of the moment map 132
7.8 Families of symplectomorphisms. 132
7.8.1 Hamiltonian group actions. 133
7.8.2 The derivative of the moment map. 133
7.9 The symbolic distributional trace. 134
7.9.1 The $\frac{1}{2}$-density on Γ. 134
7.9.2 Example: The symbolic trace. 135
7.9.3 General transverse trace. 135
7.9.4 Example: Periodic Hamiltonian trajectories. 137
8 Oscillatory $\frac{1}{2}$-densities. 139
8.1 Definition of $I^{k}(X, \Lambda)$ in terms of a generating function. 140
8.1.1 Local description of $I^{k}(X, \Lambda, \phi)$. 140
8.1.2 Independence of the generating function. 140
8.1.3 The global definition of $I^{k}(X, \Lambda)$ 142
8.2 Semi-classical Fourier integral operators 142
8.3 The symbol of an element of $I^{k}(X, \Lambda)$. 144
8.3.1 A local description of $I^{k}(X, \Lambda) / I^{k+1}(X, \Lambda)$. 144
8.3.2 The global definition of the symbol. 148
8.4 Symbols of semi-classical Fourier integral operators. 156
8.5 Differential operators on oscillatory $\frac{1}{2}$-densities. 157
8.6 The transport equations redux. 159
8.7 Semi-classical pseudo-differential operators 162
8.7.1 The right handed symbol calculus of Kohn and Niren- berg. 163
8.8 $I(X, \Lambda)$ as a module over $\Psi_{0}(X)$. 165
8.9 The trace of a semiclassical Fourier integral operator 167
8.9.1 Examples. 170
8.9.2 The period spectrum of a symplectomorphism. 171
8.10 The mapping torus of a symplectic mapping. 173
9 Differential calculus of forms, Weil's identity and the Moser trick. 177
9.1 Superalgebras. 177
9.2 Differential forms. 178
9.3 The d operator. 178
9.4 Derivations 179
9.5 Pullback. 180
9.6 Chain rule. 181
9.7 Lie derivative. 181
9.8 Weil's formula. 182
9.9 Integration. 184
9.10 Stokes theorem. 185
9.11 Lie derivatives of vector fields. 185
9.12 Jacobi's identity. 187
9.13 A general version of Weil's formula. 187
9.14 The Moser trick. 190
9.14.1 Volume forms 191
9.14.2 Variants of the Darboux theorem. 192
9.14.3 The classical Morse lemma.
192

Chapter 1

Introduction.

Let $\mathbb{R}^{n+1}=\mathbb{R}^{n} \times \mathbb{R}$ with coordinates $\left(x^{1}, \ldots, x^{n}, t\right)$. Let

$$
P=P\left(x, t, \frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right)
$$

be a k-th order partial differential operator. Suppose that we want to solve the partial differential equation

$$
P u=0
$$

with initial conditions

$$
u(x, 0)=\delta_{0}, \quad \frac{\partial^{i}}{\partial t^{i}} u(x, 0)=0, \quad i=1, \ldots, k-1
$$

Let ρ be a C^{∞} function of x of compact support which is identically one near the origin. We can write

$$
\delta_{0}(x)=\frac{1}{(2 \pi)^{n}} \rho(x) \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} d \xi
$$

Let us introduce polar coordinates in ξ space:

$$
\xi=\omega \cdot r, \quad\|\omega\|=1, \quad r=\|\xi\|
$$

so we can rewrite the above expression as

$$
\delta_{0}(x)=\frac{1}{(2 \pi)^{n}} \rho(x) \int_{\mathbb{R}_{+}} \int_{S^{n-1}} e^{i(x \cdot \omega) r} r^{n-1} d r d \omega
$$

where $d \omega$ is the measure on the unit sphere S^{n-1}. This shows that we are interested in solving the partial differential equation $P u=0$ with the initial conditions

$$
u(x, 0)=\rho(x) e^{i(x \cdot \omega) r} r^{n-1}, \quad \frac{\partial^{i}}{\partial t^{i}} u(x, 0)=0, \quad i=1, \ldots, k-1 .
$$

1.1 The problem.

More generally, set

$$
r=\hbar^{-1}
$$

and let

$$
\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

We look for solutions of the partial differential equation with initial conditions

$$
\begin{equation*}
P u(x, t)=0, \quad u(x, 0)=\rho(x) e^{i \frac{\psi(x)}{\hbar}} \hbar^{-\ell} \quad \frac{\partial^{i}}{\partial t^{i}} u(x, 0)=0, \quad i=1, \ldots, k-1 \tag{1.1}
\end{equation*}
$$

1.2 The eikonal equation.

Look for solutions of (1.1) of the form

$$
\begin{equation*}
u(x, t)=a(x, t, \hbar) e^{i \phi(x, t) / \hbar} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
a(x, t, \hbar)=\hbar^{-\ell} \sum_{i=0}^{\infty} a_{i}(x, t) \hbar^{i} \tag{1.3}
\end{equation*}
$$

1.2.1 The principal symbol.

Define the principal symbol $H(x, t, \xi, \tau)$ of the differential operator P by

$$
\begin{equation*}
\hbar^{k} e^{-i \frac{x \cdot \xi+t \tau}{\hbar}} P e^{i \frac{x \cdot \xi+t \tau}{\hbar}}=H(x, t, \xi, \tau)+O(\hbar) \tag{1.4}
\end{equation*}
$$

We think of H as a function on $T^{*} \mathbb{R}^{n+1}$.
If we apply P to $u(x, t)=a(x, t, \hbar) e^{i \phi(x, t) / \hbar}$, then the term of degree \hbar^{-k} is obtained by applying all the differentiations to $e^{i \phi(x, t) / \hbar}$. In other words,

$$
\begin{equation*}
\hbar^{k} e^{-i \phi / \hbar} P a(x, t) e^{i \phi / \hbar}=H\left(x, t, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial t}\right) a(x, t)+O(\hbar) \tag{1.5}
\end{equation*}
$$

So as a first step we must solve the first order non-linear partial differential equation

$$
\begin{equation*}
H\left(x, t, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial t}\right)=0 \tag{1.6}
\end{equation*}
$$

for ϕ. Equation (1.6) is known as the eikonal equation and a solution ϕ to (1.6) is called an eikonal. The Greek word eikona $\epsilon \iota \kappa \omega \nu \alpha$ means image.

1.2.2 Hyperbolicity.

For all (x, t, ξ) the function

$$
\tau \mapsto H(x, t, \xi, \tau)
$$

is a polynomial of degree (at most) k in τ. We say that P is hyperbolic if this polynomial has k distinct real roots

$$
\tau_{i}=\tau_{i}(x, t, \xi)
$$

These are then smooth functions of (x, t, ξ).
We assume from now on that P is hyperbolic. For each $i=1, \ldots, k$ let

$$
\Sigma_{i} \subset T^{*} \mathbb{R}^{n+1}
$$

be defined by

$$
\begin{equation*}
\Sigma_{i}=\left\{(x, 0, \xi, \tau) \mid \xi=d_{x} \psi, \tau=\tau_{i}(x, 0, \xi)\right\} \tag{1.7}
\end{equation*}
$$

where ψ is the function occurring in the initial conditions in (1.1). The classical method for solving (1.6) is to reduce it to solving a system of ordinary differential equations with initial conditions given by (1.7). We recall the method:

1.2.3 The canonical one form on the cotangent bundle.

If X is a differentiable manifold, then its cotangent bundle $T^{*} X$ carries a canonical one form $\alpha=\alpha_{X}$ defined as follows: Let

$$
\pi: T^{*} X \rightarrow X
$$

be the projection sending any covector $p \in T_{x}^{*} X$ to its base point x. If $v \in T_{p}\left(T^{*} X\right)$ is a tangent vector to $T^{*} X$ at p, then

$$
d \pi_{p} v
$$

is a tangent vector to X at x. In other words, $d \pi_{p} v \in T_{x} X$. But $p \in T_{x}^{*} X$ is a linear function on $T_{x} X$, and so we can evaluate p on $d \pi_{p} v$. The canonical linear differential form α is defined by

$$
\begin{equation*}
\langle\alpha, v\rangle:=\left\langle p, d \pi_{p} v\right\rangle \quad \text { if } \quad v \in T_{p}\left(T^{*} X\right) . \tag{1.8}
\end{equation*}
$$

For example, if our manifold is \mathbb{R}^{n+1} as above, so that we have coordinates (x, t, ξ, τ) on $T^{*} \mathbb{R}^{n+1}$ the canonical one form is given in these coordinates by

$$
\begin{equation*}
\alpha=\xi \cdot d x+\tau d t=\xi_{1} d x^{1}+\cdots \xi_{n} d x^{n}+\tau d t \tag{1.9}
\end{equation*}
$$

1.2.4 The canonical two form on the cotangent bundle.

This is defined as

$$
\begin{equation*}
\omega_{X}=-d \alpha_{X} \tag{1.10}
\end{equation*}
$$

Let q^{1}, \ldots, q^{n} be local coordinates on X. Then $d q^{1}, \ldots, d q^{n}$ are differential forms which give a basis of $T_{x}^{*} X$ at each x in the coordinate neighborhood U. In other words, the most general element of $T_{x}^{*} X$ can be written as $p_{1}\left(d q^{1}\right)_{x}+\cdots+p_{n}\left(d q^{n}\right)_{x}$. Thus $q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}$ are local coordinates on

$$
\pi^{-1} U \subset T^{*} X
$$

In terms of these coordinates the canonical one form is given by

$$
\alpha=p \cdot d q=p_{1} d q^{1}+\cdots p_{n} d q^{n}
$$

Hence the canonical two form has the local expression

$$
\begin{equation*}
\omega=d q \wedge \cdot d p=d q^{1} \wedge d p_{1}+\cdots+d q^{n} \wedge d p_{n} \tag{1.11}
\end{equation*}
$$

The form ω is closed and is of maximal rank, i.e. ω defines an isomorphism between the tangent space and the cotangent space at every point of $T^{*} X$.

1.2.5 Symplectic manifolds.

A two form which is closed and is of maximal rank is called symplectic. A manifold M equipped with a symplectic form is called a symplectic manifold. We shall study some of the basic geometry of symplectic manifolds in Chapter 2. But here are some elementary notions which follow directly from the definitions: A diffeomorphism $f: M \rightarrow M$ is called a symplectomorphism if $f^{*} \omega=\omega$. More generally if (M, ω) and $\left(M^{\prime}, \omega^{\prime}\right)$ are symplectic manifolds then a diffeomorphism

$$
f: M \rightarrow M^{\prime}
$$

is called a symplectomorphism if

$$
f^{*} \omega^{\prime}=\omega
$$

If v is a vector field on M, then the general formula for the Lie derivative of a differential form Ω with respect to v is given by

$$
D_{v} \Omega=i(v) d \Omega+d i(v) \Omega
$$

This is known as Weil's identity. See (??) in Chapter ?? below. If we take Ω to be a symplectic form ω, so that $d \omega=0$, this becomes

$$
D_{\xi} \omega=d i(v) \omega
$$

So the flow $t \mapsto \exp t v$ generated by v consists of symplectomorphisms if and only if

$$
d i(v) \omega=0
$$

1.2.6 Hamiltonian vector fields.

In particular, if H is a function on a symplectic manifold M, then the Hamiltonian vector field v_{H} associated to H and defined by

$$
\begin{equation*}
i\left(v_{H}\right) \omega=-d H \tag{1.12}
\end{equation*}
$$

satisfies

$$
\left(\exp t v_{H}\right)^{*} \omega=\omega
$$

Also

$$
D_{v_{H}} H=i\left(v_{H}\right) d H=-i\left(v_{H}\right) i\left(v_{H}\right) \omega=\omega\left(v_{H} \cdot v_{H}\right)=0
$$

Thus

$$
\begin{equation*}
\left(\exp t v_{H}\right)^{*} H=H \tag{1.13}
\end{equation*}
$$

So the flow $\exp t v_{H}$ preserves the level sets of H. In particular, it carries the zero level set - the set $H=0$ - into itself.

1.2.7 Isotropic submanifolds.

A submanifold Y of a symplectic manifold is called isotropic if the restriction of the symplectic form ω to Y is zero. So if

$$
\iota_{Y}: Y \rightarrow M
$$

denotes the injection of Y as a submanifold of M, then the condition for Y to be isotropic is

$$
\iota_{Y}^{*} \omega=0
$$

where ω is the symplectic form of M.
For example, consider the submanifold Σ_{i} of $T^{*}\left(\mathbb{R}^{n+1}\right)$ defined by (1.7). According to (1.9), the restriction of $\alpha_{\mathbb{R}^{n+1}}$ to Σ_{i} is given by

$$
\frac{\partial \psi}{\partial x_{1}} d x_{1}+\cdots \frac{\partial \psi}{\partial x_{n}} d x_{n}=d_{x} \psi
$$

since $t \equiv 0$ on Σ_{i}. So

$$
\iota_{\Sigma_{i}}^{*} \omega_{\mathbb{R}^{n+1}}=-d_{x} d_{x} \psi=0
$$

and hence Σ_{i} is isotropic.
Let H be a smooth function on a symplectic manifold M and let Y be an isotropic submanifold of M contained in a level set of H. For example, suppose that

$$
\begin{equation*}
H_{\mid Y} \equiv 0 \tag{1.14}
\end{equation*}
$$

Consider the submanifold of M swept out by Y under the flow $\exp t v_{\xi}$. More precisely suppose that

- v_{H} is transverse to Y in the sense that for every $y \in Y$, the tangent vector $v_{H}(y)$ does not belong to $T_{y} Y$ and
- there exists an open interval I about 0 in \mathbb{R} such that $\exp t v_{H}(y)$ is defined for all $t \in I$ and $y \in Y$.

We then get a map

$$
j: Y \times I \rightarrow M, \quad j(y, t):=\exp t v_{H}(y)
$$

which allows us to realize $Y \times I$ as a submanifold Z of M. The tangent space to Z at a point (y, t) is spanned by

$$
\left(\exp t v_{H}\right)_{*} T Y_{y} \quad \text { and } \quad v_{H}\left(\exp t v_{H} y\right)
$$

and so the dimension of Z is $\operatorname{dim} Y+1$.
Proposition 1 With the above notation and hypotheses, Z is an isotropic submanifold of M.

Proof. We need to check that the form ω vanishes when evaluated on

1. two vectors belonging to $\left(\exp t v_{H}\right)_{*} T Y_{y}$ and
2. $v_{H}\left(\exp t v_{H} y\right)$ and a vector belonging to $\left(\exp t v_{H}\right)_{*} T Y_{y}$.

For the first case observe that if $w_{1}, w_{2} \in T_{y} Y$ then

$$
\omega\left(\left(\exp t v_{H}\right)_{*} w_{1},\left(\exp t v_{H}\right)_{*} w_{2}\right)=\left(\exp t v_{H}\right)^{*} \omega\left(w_{1}, w_{2}\right)=0
$$

since

$$
\left(\exp t v_{H}\right)^{*} \omega=\omega
$$

and Y is isotropic.
For the second case observe that $i\left(v_{H}\right) \omega=-d H$ and so for $w \in T_{y} Y$ we have

$$
\omega\left(\left(\exp t v_{H}\right)_{*} w, i\left(v_{H}\left(\exp t v_{H} y\right)\right)=d H(w)=0\right.
$$

since H is constant on Y.
If we consider the function H arising as the symbol of a hyperbolic equation, i.e. the function H given by (1.4) then H is a homogeneous polynomial in ξ and τ of the form $b(x, t, \xi) \prod_{i}\left(\tau-\tau_{i}\right)$, with $b \neq 0$ so

$$
\frac{\partial H}{\partial \tau} \neq 0 \quad \text { along } \quad \Sigma_{i}
$$

But the coefficient of $\partial / \partial t$ in v_{H} is $-\partial H / \partial \tau$. Now $t \equiv 0$ along Σ_{i} so v_{H} is transverse to Σ_{i}. Our transversality condition is satisfied. We can arrange that the second of our conditions, the existence of solutions for an interval I can be satisfied locally. (In fact, suitable compactness conditions that are frequently satisfied will guarantee the existence of global solutions.)

Thus, at least locally, the submanifold of $T^{*}\left(\mathbb{R}^{n+1}\right)$ swept out from Σ_{i} by $\exp t v_{H}$ is an $n+1$ dimensional isotropic submanifold.

1.2.8 Lagrangian submanifolds.

A submanifold of a symplectic manifold which is isotropic and whose dimension is one half the dimension of M is called Lagrangian. We shall study Lagrangian submanifolds in detail in Chapter 2. Here we shall show how they are related to our problem of solving the eikonal equation (1.6).

The submanifold Σ_{i} of $T^{*} \mathbb{R}^{n+1}$ is isotropic and of dimension n. It is transversal to v_{H}. Therefore the submanifold Λ_{i} swept out by Σ_{i} under $\exp t v_{H}$ is Lagrangian. Also, near $t=0$ the projection

$$
\pi: T^{*} \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}
$$

when restricted to Λ_{i} is (locally) a diffeomorphism. It is (locally) horizontal in the sense of the next section.

1.2.9 Lagrangian submanifolds of the cotangent bundle.

To say that a submanifold $\Lambda \subset T^{*} X$ is Lagrangian means that Λ has the same dimension as X and that the restriction to Λ of the canonical one form α_{X} is closed.

Suppose that Z is a submanifold of $T^{*} X$ and that the restriction of $\pi: T^{*} X \rightarrow X$ to Z is a diffeomorphism. This means that Z is the image of a section

$$
s: X \rightarrow T^{*} X
$$

Such a section is the same as assigning a covector at each point of X, in other words it is a linear differential form. For the purposes of the discussion we temporarily introduce a redundant notation and call the section s by the name β_{s} when we want to think of it as a linear differential form. We claim that

$$
s^{*} \alpha_{X}=\beta_{s}
$$

Indeed, if $w \in T_{x} X$ then $d \pi_{s(x)} \circ d s_{x}(w)=w$ and hence
$s^{*} \alpha_{X}(w)=\left\langle\left(\alpha_{X}\right)_{s(x)}, d s_{x}(w)\right\rangle=\left\langle s(x), d \pi_{s(x)} d s_{x}(w)\right\rangle=\langle s(x), w\rangle=\beta_{s}(x)(w)$.
Thus the submanifold Z is Lagrangian if and only if $d \beta_{s}=0$. Let us suppose that X is connected and simply connected. Then $d \beta=0$ implies that $\beta=d \phi$ where ϕ is determined up to an additive constant.

With some slight abuse of language, let us call a Lagrangian submanifold of $T^{*} X$ horizontal if the restriction of $\pi: T^{*} X \rightarrow X$ to Λ is a diffeomorphism. We have proved

Proposition 2 Suppose that X is connected and simply connected. Then every horizontal Lagrangian submanifold of $T^{*} X$ is given by a section γ_{ϕ} : $X \rightarrow T^{*} X$ where γ_{ϕ} is of the form

$$
\gamma_{\phi}(x)=d \phi(x)
$$

where ϕ is a smooth function determined up to an additive constant.

1.2.10 Local solution of the eikonal equation.

We have now found a local solution of the eikonal equation! Starting with the initial conditions Σ_{i} given by (1.7) at $t=0$, we obtain the Lagrangian submanifold Λ_{i}. Locally (in x and in t near zero) the manifold Λ_{i} is given as the image of $\gamma_{\phi_{i}}$ for some function ϕ_{i}. The fact that Λ_{i} is contained it the set $H=0$ then implies that ϕ_{i} is a solution of (1.6).

1.2.11 Caustics.

What can go wrong globally? One problem that might arise is with integrating the vector field v_{H}. As is well known, the existence theorem for non-linear ordinary differential equations is only local - solutions might "blow up" in a finite interval of time. In many applications this is not a problem because of compactness or boundedness conditions. A more serious problem - one which will be a major concern of this book - is the possibility that after some time the Lagrangian manifold is no longer horizontal.

If $\Lambda \subset T^{*} X$ is a Lagrangian submanifold, we say that a point $m \in \Lambda$ is a caustic if

$$
d \pi_{m} T_{m} \Lambda \rightarrow T_{x} X . \quad x=\pi(m)
$$

is not surjective. A key ingredient in what we will need to do is to describe how to choose convenient parametrizations of a Lagrangian manifolds near caustics. The first person to deal with this problem (through the introduction of so-called "angle characteristics") was Hamilton (1805-1865) in a paper he communicated to Dr. Brinkley in 1823, by whom, under the title "Caustics" it was presented in 1824 to the Royal Irish Academy.

We shall deal with caustics in a more general manner, after we have introduced some categorical language.

1.3 The transport equations.

Let us return to our project of looking for solutions of the form (1.2) to the partial differential equation and initial conditions (1.1). Our first step was to find the Lagrangian manifold $\Lambda=\Lambda_{\phi}$ which gave us, locally, a solution of the eikonal equation (1.6). This determines the "phase function" ϕ up to an overall additive constant, and also guarantees that no matter what $a_{i}^{\prime} s$ enter into the expression for u given by (1.2) and (1.3), we have

$$
P u=O\left(\hbar^{-k-\ell+1}\right)
$$

The next step is obviously to try to choose a_{0} in (1.3) such that

$$
P\left(a_{0} e^{i \phi(x, t) / \hbar}\right)=O\left(\hbar^{-k+2}\right)
$$

In other words, we want to choose a_{0} so that there are no terms of order \hbar^{-k+1} in $P\left(a_{0} e^{i \phi(x, t) / \hbar}\right)$. Such a term can arise from three sources:

1. We can take the terms of degree $k-1$ and apply all the differentiations to $e^{i \phi / \hbar}$ with none to a or to ϕ. We will obtain an expression C similar to the principal symbol but using the operator Q obtained from P by eliminating all terms of degree k. This expression C will then multiply a_{0}.
2. We can take the terms of degree k in P, apply all but one differentiation to $e^{i \phi / \hbar}$ and the remaining differentiation to a partial derivative of ϕ. The resulting expression B will involve the second partial derivatives of ϕ. This expression will also multiply a_{0}.
3. We can take the terms of degree k in P, apply all but one differentiation to $e^{i \phi / \hbar}$ and the remaining differentiation to a_{0}. So we get a first order differential operator

$$
\sum_{i=1}^{n+1} A_{i} \frac{\partial}{\partial x_{i}}
$$

applied to a_{0}. In the above formula we have set $t=x_{n+1}$ so as to write the differential operator in more symmetric form.

So the coefficient of \hbar^{-k+1} in $P\left(a_{0} e^{i \phi(x, t) / \hbar}\right)$ is

$$
\left(R a_{0}\right) e^{i \phi(x, t) / \hbar}
$$

where R is the first order differential operator

$$
R=\sum A_{i} \frac{\partial}{\partial x_{i}}+B+C
$$

We will derive the explicit expressions for the A_{i}, B and C below.
The strategy is the to look for solutions of the first order homogenous linear partial differential equation

$$
R a_{0}=0
$$

This is known as the first order transport equation.
Having found a_{0}, we next look for a_{1} so that

$$
P\left(\left(a_{0}+a_{1} \hbar\right) e^{i \phi / \hbar}\right)=O\left(h^{-k+3}\right)
$$

From the above discussion it is clear that this amounts to solving and inhomogeneous linear partial differential equation of the form

$$
R a_{1}=b_{0}
$$

where b_{0} is the coefficient of $\hbar^{-k+2} e^{i \phi / \hbar}$ in $P\left(a_{0} e^{i \phi / \hbar}\right)$ and where R is the same operator as above. Assuming that we can solve all the equations, we see that we have a recursive procedure involving the operator R for solving (1.1) to all orders, at least locally - up until we hit a caustic!

We will find that when we regard P as acting on $\frac{1}{2}$-densities (rather than on functions) then the operator R has an invariant (and beautiful) expression as a differential operator acting on $\frac{1}{2}$-densities on Λ. In fact, the differentiation part of the differential operator will be given by the vector field v_{H} which we know to be tangent to Λ. The differential operator on Λ will be defined even at caustics. This fact will be central in our study of global asymptotic solutions of hyperbolic equations.

In the next section we shall assume only the most elementary facts about $\frac{1}{2}$-densities - the fact that the product of two $\frac{1}{2}$-densities is a density and hence can be integrated if this product has compact support. Also that the concept of the Lie derivative of a $\frac{1}{2}$-density with respect to a vector field makes sense. If the reader is unfamiliar with these facts they can be found with many more details in Chapter 6.

1.3.1 A formula for the Lie derivative of a $\frac{1}{2}$-density.

We want to consider the following situation: H is a function on $T^{*} X$ and Λ is a Lagrangian submanifold of $T^{*} X$ on which $H=0$. This implies that the corresponding Hamiltonian vector field is tangent to Λ. Indeed, for any $w \in T_{m} \Lambda$ we have

$$
\omega_{X}\left(v_{H}, w\right)=-d H(w)=0
$$

since H is constant on Λ. Since Λ is Lagrangian, this implies that $v_{H}(m) \in$ $T_{m}(\Lambda)$.

If τ is a smooth $\frac{1}{2}$-density on Λ, we can consider its Lie derivative with respect to the vector field v_{H} restricted to Λ. We want an explicit formula for this Lie derivative in terms of local coordinates on X on a neighborhood over which Λ is horizontal.

Let

$$
\iota: \Lambda \rightarrow T^{*} X
$$

denote the embedding of Λ as submanifold of X so we are assuming that

$$
\pi \circ \iota: \Lambda \rightarrow X
$$

is a diffeomorphism. (We have replaced X by the appropriate neighborhood over which Λ is horizontal and on which we have coordinates x^{1}, \ldots, x^{m}.) We let $d x^{\frac{1}{2}}$ denote the standard $\frac{1}{2}$-density relative to these coordinates. Let a be a function on X, so that

$$
\tau:=(\pi \circ \iota)^{*}\left(a d x^{\frac{1}{2}}\right)
$$

is a $\frac{1}{2}$-density on Λ, and the most general $\frac{1}{2}$-density on Λ can be written in this form. Our goal in this section is to compute the Lie derivative $D_{v_{H}} \tau$ and express it in a similar form. We will prove:

Proposition 3 If $\Lambda=\Lambda_{\phi}=\gamma_{\phi}(X)$ then

$$
D_{v_{H} \mid \Lambda}(\pi \circ \iota)^{*}\left(a d x^{\frac{1}{2}}\right)=b(\pi \circ \iota)^{*}\left(d x^{\frac{1}{2}}\right)
$$

where

$$
\begin{equation*}
b=D_{v_{H}} a+\left[\frac{1}{2} \sum_{i, j} \frac{\partial^{2} H}{\partial \xi_{i} \partial \xi_{j}} \frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}+\frac{1}{2} \sum_{i} \frac{\partial^{2} H}{\partial \xi_{i} \partial x^{i}}\right] a \tag{1.15}
\end{equation*}
$$

Proof. Since $D_{v}(f \tau)=\left(D_{v} f\right) \tau+f D_{v} \tau$ for any vector field v, function f and any $\frac{1}{2}$-density τ, it suffices to prove (1.15) for the case the $a \equiv 1$ in which case the first term disappears. By Leibnitz's rule,

$$
D_{v_{H}}(\pi \circ \iota)^{*}\left(d x^{\frac{1}{2}}\right)=\frac{1}{2} c(\pi \circ \iota)^{*}\left(d x^{\frac{1}{2}}\right)
$$

where

$$
D_{v_{H}}(\pi \circ \iota)^{*}|d x|=c(\pi \circ \iota)^{*}|d x| .
$$

Here we are computing the Lie derivative of the density $(\pi \circ \iota)^{*}|d x|$, but we get the same function c if we compute the Lie derivative of the m-form

$$
D_{v_{H}}(\pi \circ \iota)^{*}\left(d x^{1} \wedge \cdots \wedge d x^{m}\right)=c(\pi \circ \iota)^{*}\left(d x^{1} \wedge \cdots \wedge d x^{m}\right)
$$

Now $\pi^{*}\left(d x^{1} \wedge \cdots \wedge d x^{m}\right)$ is a well defined m-form on $T^{*} X$ and

$$
D_{v_{H} \mid \Lambda}(\pi \circ \iota)^{*}\left(d x^{1} \wedge \cdots \wedge d x^{m}\right)=\iota^{*} D_{v_{H}} \pi^{*}\left(d x^{1} \wedge \cdots \wedge d x^{m}\right)
$$

We may write $d x^{j}$ instead of $\pi^{*} d x^{j}$ with no risk of confusion and we get

$$
\begin{aligned}
D_{v_{H}}\left(d x^{1} \wedge \cdots \wedge d x^{m}\right)= & \sum_{j} d x^{1} \wedge \cdots \wedge d\left(i\left(v_{H}\right) d x^{j} \wedge \cdots \wedge d x^{m}\right. \\
= & \sum_{j} d x^{1} \wedge \cdots \wedge d \frac{\partial H}{\partial \xi_{j}} \wedge \cdots \wedge d x^{m} \\
= & \sum_{j} \frac{\partial^{2} H}{\partial \xi_{j} \partial x^{j}} d x^{1} \wedge \cdots \wedge d x^{m}+ \\
& \sum_{j k} d x^{1} \wedge \cdots \wedge \frac{\partial^{2} H}{\partial \xi_{j} \partial \xi_{k}} d \xi_{k} \wedge \cdots \wedge d x^{m}
\end{aligned}
$$

We must apply ι^{*} which means that we must substitute $d \xi_{k}=d\left(\frac{\partial \phi}{\partial x^{k}}\right)$ into the last expression. We get

$$
c=\sum_{i, j} \frac{\partial^{2} H}{\partial \xi_{i} \partial \xi_{j}} \frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}+\sum_{i} \frac{\partial^{2} H}{\partial \xi_{i} \partial x^{i}}
$$

proving (1.15).

1.3.2 The total symbol, locally.

Let U be an open subset of \mathbb{R}^{m} and $x_{1}, \ldots x_{m}$ the standard coordinates. We will let D_{j} denote the differential operator

$$
D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}=\frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_{j}}
$$

For any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ where the α_{j} are non-negative integers, we let

$$
D^{\alpha}:=D_{1}^{\alpha_{1}} \cdots D_{m}^{\alpha_{m}}
$$

and

$$
|\alpha|:=\alpha_{1}+\cdots+\alpha_{m}
$$

So the most general k-th order linear differential operator P can be written as

$$
P=P(x, D)=\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha}
$$

The total symbol of P is defined as

$$
e^{-i \frac{x \cdot \xi}{\hbar}} P e^{i \frac{x \cdot \xi}{\hbar}}=\sum_{r=0}^{k} \hbar^{-k} p_{j}(x, \xi)
$$

so that

$$
\begin{equation*}
p_{j}(x, \xi)=\sum_{|\alpha|=j} a_{\alpha}(x) \xi^{\alpha} \tag{1.16}
\end{equation*}
$$

So p_{k} is exactly the principal symbol as defined in (1.4).
Since we will be dealing with operators of varying orders, we will denote the principal symbol of P by

$$
\sigma(P)
$$

We should emphasize that the definition of the total symbol is heavily coordinate dependent: If we make a non-linear change of coordinates, the expression for the total symbol in the new coordinates will not look like the expression in the old coordinates. However the principal symbol does have an invariant expression as a function on the cotangent bundle which a polynomial in the fiber variables.

1.3.3 The transpose of P.

We continue our study of linear differential operators on an open subset $U \subset \mathbb{R}^{n}$. If f and g are two smooth functions of compact support on U then

$$
\int_{U}(P f) g d x=\int_{U} f P^{t} g d x
$$

where, by integration by parts,

$$
P^{t} g=\sum(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha} g\right)
$$

(Notice that in this definition, following convention, we are using g and not \bar{g} in the definition of P^{t}.) Now

$$
D^{\alpha}\left(a_{\alpha} g\right)=a_{\alpha} D^{\alpha} g+\cdots
$$

where the \cdots denote terms with fewer differentiations in g. In particular, the principal symbol of P^{t} is

$$
\begin{equation*}
p_{k}^{t}(x, \xi)=(-1)^{k} p_{k}(x, \xi) \tag{1.17}
\end{equation*}
$$

Hence the operator

$$
\begin{equation*}
Q:=\frac{1}{2}\left(P-(-1)^{k} P^{t}\right) \tag{1.18}
\end{equation*}
$$

is of order $=k-1$ The sub-principal symbol is defined as the principal symbol of Q (considered as an operator of degree $(k-1)$). So

$$
\sigma_{\text {sub }}(P):=\sigma(Q)
$$

where Q is given by (1.18).

1.3.4 The formula for the sub-principal symbol.

We claim that

$$
\begin{equation*}
\sigma_{s u b}(P)(x, \xi)=p_{k-1}(x, \xi)+\frac{i}{2} \sum_{i} \frac{\partial^{2}}{\partial x_{i} \partial \xi_{i}} p_{k}(x, \xi) \tag{1.19}
\end{equation*}
$$

Proof. If $p_{k}(x, \xi) \equiv 0$, i.e. if P is actually an operator of degree $k-1$, then it follows from (1.18) that the principal symbol of Q is p_{k-1} which is the first term on the right in (1.19). So it suffices to prove (1.19) for operators which are strictly of order k. By linearity, it suffices to prove (1.19) for operators of the form

$$
a_{\alpha}(x) D^{\alpha}
$$

By polarization it suffices to prove (1.19) for operators of the form

$$
a(x) D^{k}, \quad D=\sum_{j=1}^{k} c_{j} D_{j}, \quad c_{i} \in \mathbb{R}
$$

and then, by making a linear change of coordinates, for an operator of the form

$$
a(x) D_{1}^{k}
$$

For this operator

$$
p_{k}(x, \xi)=a(x) \xi_{1}^{k}
$$

By Leibnitz's rule,

$$
\begin{aligned}
P^{t} f & =(-1)^{k} D_{1}^{k}(a f) \\
& =(-1)^{k} \sum_{j}\binom{k}{j} D_{1}^{j} a D_{1}^{k-j} f \\
& =(-1)^{k}\left(a D_{1}^{k} f+\frac{k}{i}\left(\frac{\partial a}{\partial x_{1}}\right) D^{k-1}+\cdots\right) \text { so } \\
Q & =\frac{1}{2}\left(P-(-1)^{k} P^{t}\right) \\
& =-\frac{k}{2 i}\left(\frac{\partial a}{\partial x_{1}} D^{k-1}+\cdots\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\sigma(Q) & =\frac{i k}{2} \frac{\partial a}{\partial x_{1}} \xi_{1}^{k-1} \\
& =\frac{i}{2} \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial \xi_{1}}\left(a \xi_{1}^{k}\right) \\
& =\frac{i}{2} \sum_{i} \frac{\partial^{2} p_{k}}{\partial x_{i} \partial \xi_{i}}(x, \xi)
\end{aligned}
$$

1.3.5 The local expression for the transport operator

 R.We claim that

$$
\hbar^{k} e^{-i \phi / \hbar} P\left(u e^{i \phi / \hbar}\right)=p_{k}(x, d \phi) u+\hbar R u+\cdots
$$

where R is the first order differential operator

$$
\begin{gather*}
R u= \\
\sum_{j} \frac{\partial p_{k}}{\partial \xi_{j}}(x, d \phi) D_{j} u+\left[\frac{1}{2 \sqrt{-1}} \sum_{i j} \frac{\partial^{2} p_{k}}{\partial \xi_{i} \partial \xi_{j}}(x, d \phi) \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} u+p_{k-1}(x, d \phi)\right] u \tag{1.20}
\end{gather*}
$$

Proof. The term coming from p_{k-1} is clearly the result of applying

$$
\sum_{|\alpha|=k-1} a_{\alpha} D^{\alpha}
$$

So we only need to deal with a homogeneous operator of order k. Since the coefficients a_{α} are not going to make any difference in this formula, we need only prove it for the differential operator

$$
P(x, D)=D^{\alpha}
$$

which we will do by induction on $|\alpha|$.
For $|\alpha|=1$ have an operator of the form D_{j} and Leibnitz's rule gives

$$
\hbar e^{-i \phi / \hbar} D_{j}\left(u e^{i \phi / \hbar}\right)=\frac{\partial \phi}{\partial x_{j}} u+\hbar D_{j} u
$$

which is exactly (1.20) as $p_{1}(\xi)=\xi_{j}$, and so the second and third terms in (1.20) do not occur.

Suppose we have verified (1.20) for D^{α} and we want to check it for

$$
D_{r} D^{\alpha}=D^{\alpha+\delta_{r}}
$$

So
$\left.\hbar^{|\alpha|+1} e^{-i \phi / \hbar}\left(D_{r} D^{\alpha}\left(u e^{i \phi / \hbar}\right)\right)=\hbar e^{-i \phi / \hbar} D_{r}\left[(d \phi)^{\alpha} u e^{i \phi / \hbar}\right)+\hbar\left(R_{\alpha} u\right) e^{i \phi / \hbar}\right]+\cdots$
where R_{α} denotes the operator in (1.20) corresponding to D^{α}. A term involving the zero'th power of \hbar can only come from applying the D_{r} to the exponential in the first expression and this will yield

$$
(d \phi)^{\alpha+\delta_{r}} u
$$

which $p_{|\alpha|+1}(d \phi) u$ as desired. In applying D_{r} to the second term in the square brackets we get

$$
\hbar^{2} D_{r}\left(R_{\alpha} u\right)+\hbar \frac{\partial \phi}{\partial x_{r}} R_{\alpha} u
$$

and we ignore the first term as we are ignoring all powers of \hbar higher than the first. So all have to do is collect coefficients:

We have
$D_{r}\left(\left(d \phi^{\alpha}\right) u\right)=(d \phi)^{\alpha} D_{r} u+\frac{1}{i}\left[\alpha_{1}(d \phi)^{\alpha-\delta_{1}} \frac{\partial^{2} \phi}{\partial x_{1} \partial x_{r}}+\cdots+\alpha_{m}(d \phi)^{\alpha-\delta_{m}} \frac{\partial^{2} \phi}{\partial x_{m} \partial x_{r}}\right] u$.

$$
\begin{aligned}
& \text { Also } \\
& \qquad \frac{\partial \phi}{\partial x_{r}} R_{\alpha} u= \\
& \sum \alpha_{i}(d \phi)^{\alpha-\delta_{i}+\delta_{r}} D_{i} u+\frac{1}{2 \sqrt{-1}} \sum_{i j} \alpha_{i}\left(\alpha_{j}-\delta_{i j}\right)(d \phi)^{\alpha-\delta_{i}-\delta_{j}+\delta_{r}} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} u .
\end{aligned}
$$

The coefficient of $D_{j} u, \quad j \neq r$ is

$$
\alpha_{j}(d \phi)^{\left(\alpha+\delta_{r}-\delta_{j}\right)}
$$

as desired. The coefficient of $D_{r} u$ is

$$
(d \phi)^{\alpha}+\alpha_{r}(d \phi)^{\alpha}=\left(\alpha+\delta_{r}\right)(d \phi)^{\left(\alpha+\delta_{r}\right)-\delta_{r}}
$$

as desired.
Let us now check the coefficient of $\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}$. If $i \neq r$ and $j \neq r$ then the desired result is immediate.

If $j=r$, there are two sub-cases to consider: 1) $j=r, j \neq i$ and 2) $i=j=r$.

If $j=r, j \neq i$ remember that the sum in R_{α} is over all i and j, so the coefficient of $\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}$ in

$$
\sqrt{-1} \frac{\partial \phi}{\partial x_{r}} R_{\alpha} u
$$

is

$$
\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)(d \phi)^{\alpha-\delta_{i}}=\alpha_{i} \alpha_{j}(d \phi)^{\alpha-\delta_{i}}
$$

to which we add

$$
\alpha_{i}(d \phi)^{\alpha-\delta_{i}}
$$

to get

$$
\alpha_{i}\left(\alpha_{j}+1\right)(d \phi)^{\alpha-\delta_{i}}=\left(\alpha+\delta_{r}\right)_{i}\left(\alpha+\delta_{r}\right)_{j}(d \phi)^{\alpha-\delta_{i}}
$$

as desired.
If $i=j=r$ then the coefficient of $\frac{\partial^{2} \phi}{\left(\partial x_{i}\right)^{2}}$ in

$$
\sqrt{-1} \frac{\partial \phi}{\partial x_{r}} R_{\alpha} u
$$

is

$$
\frac{1}{2} \alpha_{i}\left(\alpha_{i}-1\right)(d \phi)^{\alpha-\delta_{i}}
$$

to which we add

$$
\alpha_{i}(d \phi)^{\alpha-\delta_{i}}
$$

giving

$$
\frac{1}{2} \alpha_{i}\left(\alpha_{i}+1\right)(d \phi)^{\alpha-\delta_{i}}
$$

as desired.
This completes the proof of (1.20).

1.3.6 Putting it together locally.

We have the following three formulas, some of them rewritten with H instead of p_{k} so as to conform with our earlier notation: The formula for the transport operator R given by (1.20):

$$
\sum_{j} \frac{\partial H}{\partial \xi_{j}}(x, d \phi) D_{j} a+\left[\frac{1}{2 i} \sum_{i j} \frac{\partial^{2} H}{\partial \xi_{i} \partial \xi_{j}}(x, d \phi) \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}+p_{k-1}(x, d \phi)\right] a
$$

and the formula for the Lie derivative with respect to v_{H} of the pull back $(\pi \circ \iota)^{*}\left(a d x^{\frac{1}{2}}\right)$ given by $(\pi \circ \iota) * b d x^{\frac{1}{2}}$ where b is

$$
\sum_{j} \frac{\partial H}{\partial \xi_{j}}(x, d \phi) \frac{\partial a}{\partial x_{j}}+\left[\frac{1}{2} \sum_{i, j} \frac{\partial^{2} H}{\partial \xi_{i} \partial \xi_{j}} \frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}+\frac{1}{2} \sum_{i} \frac{\partial^{2} H}{\partial \xi_{i} \partial x^{i}}\right] a
$$

This is equation (1.15). Our third formula is the formula for the sub-principal symbol, equation (1.19) which says that

$$
\sigma_{s u b}(P)(x, \xi) a=\left[p_{k-1}(x, \xi)+\frac{i}{2} \sum_{i} \frac{\partial^{2} H}{\partial x_{i} \partial \xi_{i}}(x, \xi)\right] a .
$$

As first order partial differential operators on a, if we multiply the first expression above by i we get the second plus i times the third! So we can write the transport operator as

$$
\begin{equation*}
(\pi \circ \iota)^{*}\left[(R a) d x^{\frac{1}{2}}\right]=\frac{1}{i}\left[D_{v_{H}}+i \sigma_{s u b}(P)(x, d \phi)\right](\pi \circ \iota)^{*}\left(a d x^{\frac{1}{2}}\right) \tag{1.21}
\end{equation*}
$$

The operator inside the brackets on the right hand side of this equation is a perfectly good differential operator on $\frac{1}{2}$-densities on Λ. We thus have two questions to answer: Does this differential operator have invariant significance when Λ is horizontal - but in terms of a general coordinate transformation? Since the first term in the brackets comes from H and the symplectic form on the cotangent bundle, our question is one of attaching some invariant significance to the sub-principal symbol. We will deal briefly with this question in the next section and at more length in Chapter 6.

The second question is how to deal with the whole method - the eikonal equation, the transport equations, the meaning of the series in \hbar etc. when we pass through a caustic. The answer to this question will occupy us for the whole book.

1.3.7 Differential operators on manifolds.

Differential operators on functions.

Let X be an m-dimensional manifold. An operator

$$
P: C^{\infty}(X) \rightarrow C^{\infty}(X)
$$

is called a differential operator of order k if, for every coordinate patch (U, x_{1}, \ldots, x_{m}) the restriction of P to $C_{0}^{\infty}(U)$ is of the form

$$
P=\sum_{|\alpha| \leq k} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in C^{\infty}(U)
$$

As mentioned above, the total symbol of P is no longer well defined, but the principal symbol is well defined as a function on $T^{*} X$. Indeed, it is defined
as in Section 1.2.1: The value of the principal symbol H at a point $(x, d \phi(x))$ is determined by

$$
H(x, d \phi(x)) u(x)=\hbar^{k} e^{-i \frac{\phi}{\hbar}}\left(P\left(u e^{i \frac{\phi}{\hbar}}\right)(x)+O(\hbar)\right.
$$

What about the transpose and the sub-principal symbol?

Differential operators on vector bundles.

Let $E \rightarrow X$ and $F \rightarrow X$ be vector bundles. Let E be of dimension p and F be of dimension q. We can find open covers of X by coordinate patches $\left(U, x_{1}, \ldots, x_{m}\right)$ over which E and F are trivial. So we can find sections r_{1}, \ldots, r_{p} of E so that every smooth section of E over U can be written as

$$
f_{1} r_{1}+\cdots f_{p} r_{p}
$$

where the f_{i} are smooth functions on U and every smooth section of F over U can be written as

$$
g_{1} s_{1}+\cdots+g_{q} s_{q}
$$

over U. An operator

$$
P: C^{\infty}(X, E) \rightarrow C^{\infty}(X, F)
$$

is called a differential operator of order k if, for every such U the restriction of P to smooth sections of compact support supported in U is given by

$$
P\left(f_{1} r_{1}+\cdots f_{p} r_{p}\right)=\sum_{j=1}^{q} \sum_{i=1}^{p} P_{i j} f_{i} s_{j}
$$

where the $P_{i j}$ are differential operators of order k.
In particular if E and F are line bundles so that $p=q=1$ it makes sense to talk of differential operators of order k from smooth sections of E to smooth sections of F. In a local coordinate system with trivializations r of E and s of F a differential operator locally is given by

$$
f r \mapsto(P f) s
$$

If $E=F$ and $r=s$ it is easy to check that the principal symbol of P is independent of the trivialization. (More generally the matrix of principal symbols in the vector bundle case is well defined up to appropriate pre and post multiplication by change of bases matrices, i.e. is well defined as a section of $\operatorname{Hom}(E, F)$ pulled up to the cotangent bundle. See Chaper II of [?] for the general discussion.)

In particular it makes sense to talk about a differential operator of degree k on the space of smooth $\frac{1}{2}$-densities and the principal symbol of such an operator.

The transpose and sub-principal symbol of a differential operator on $\frac{1}{2}$-densities.

If μ and ν are $\frac{1}{2}$-densities on a manifold X, their product $\mu \cdot \nu$ is a density (of order one). If this product has compact support, for example if μ or ν has compact support then the integral

$$
\int_{X} \mu \cdot \nu
$$

is well defined. See Chapter 6 for details. So if P is a differential operator of degree k on $\frac{1}{2}$-densities, its transpose P^{t} is defined via

$$
\int_{X}(P \mu) \cdot \nu=\int_{X} \mu \cdot\left(P^{t} \nu\right)
$$

for all μ and ν one of which has compact support. Locally, in terms of a coordinate neighborhood $\left(U, x_{1}, \ldots, x_{m}\right)$, every $\frac{1}{2}$-density can be written as $f d x^{\frac{1}{2}}$ and then the local expression for P^{t} is given as in Section 1.3.3. We then define the operator Q as in equation (1.18) and the sub-principal symbol as the principal symbol of Q as an operator of degree $k-1$ just as in Section 1.3.3.

1.4 The plan.

Chapter 2

Symplectic geometry.

2.1 Symplectic vector spaces.

Let V be a (usually finite dimensional) vector space over the real numbers. A symplectic structure on V consists of an antisymmetric bilinear form

$$
\omega: V \times V \rightarrow \mathbf{R}
$$

which is non-degenerate. So we can think of ω as an element of $\wedge^{2} V^{*}$ when V is finite dimensional, as we shall assume until further notice. A vector space equipped with a symplectic structure is called a symplectic vector space.

A basic example is \mathbf{R}^{2} with

$$
\omega_{\mathbf{R}^{2}}\left(\binom{a}{b},\binom{c}{d}\right):=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c .
$$

We will call this the standard symplectic structure on \mathbf{R}^{2}.

2.1.1 Special kinds of subspaces.

If W is a subspace of symplectic vector space V then W^{\perp} denotes the symplectic orthocomplement of W :

$$
W^{\perp}:=\{v \in V \mid \omega(v, w)=0, \forall w \in W\}
$$

A subspace is called

1. symplectic if $W \cap W^{\perp}=\{0\}$,
2. isotropic if $W \subset W^{\perp}$,
3. coisotropic if $W^{\perp} \subset W$, and
4. Lagrangian if $W=W^{\perp}$.

Since $\left(W^{\perp}\right)^{\perp}=W$ by the non-degeneracy of ω, it follows that W is symplectic if and only if W^{\perp} is. Also, the restriction of ω to any symplectic subspace W is non-degenerate, making W into a symplectic vector space. Conversely, to say that the restriction of ω to W is non-degenerate means precisely that $W \cap W^{\perp}=\{0\}$.

2.1.2 Normal forms.

For any non-zero $e \in V$ we can find an $f \in V$ such that $\omega(e, f)=1$ and so the subspace W spanned by e and f is a two dimensional symplectic subspace. Furthermore the map

$$
e \mapsto\binom{1}{0}, \quad f \mapsto\binom{0}{1}
$$

gives a symplectic isomorphism of W with \mathbf{R}^{2} with its standard symplectic structure. We can apply this same construction to W^{\perp} if $W^{\perp} \neq 0$. Hence by induction, we can decompose any symplectic vector space into a direct sum of two dimensional symplectic subspaces:

$$
V=W_{1} \oplus \cdots W_{d}
$$

where $\operatorname{dim} V=2 d$ (proving that every symplectic vector space is even dimensional) and where the W_{i} are pairwise (symplectically) orthogonal and where each W_{i} is spanned by e_{i}, f_{i} with $\omega\left(e_{i}, f_{i}\right)=1$. In particular this shows that all $2 d$ dimensional symplectic vector spaces are isomorphic, and isomorphic to a direct sum of d copies of \mathbf{R}^{2} with its standard symplectic structure.

2.1.3 Existence of Lagrangian subspaces.

Let us collect the e_{1}, \ldots, e_{d} in the above construction and let L be the subspace they span. It is clearly isotropic. Also, $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{d}$ form a basis of V. If $v \in V$ has the expansion

$$
v=a_{1} e_{1}+\cdots a_{d} e_{d}+b_{1} f_{1}+\cdots+b_{d} f_{d}
$$

in terms of this basis, then $\omega\left(e_{i}, v\right)=b_{i}$. So $v \in L^{\perp} \Rightarrow v \in L$. Thus L is Lagrangian. So is the subspace M spanned by the f 's.

Conversely, if L is a Lagrangian subspace of V and if M is a complementary Lagrangian subspace, then ω induces a non-degenerate linear pairing of L with M and hence any basis $e_{1}, \cdots e_{d}$ picks out a dual basis $f_{1}, \cdots . f_{d}$ of M giving a basis of V of the above form.

2.1.4 Consistent Hermitian structures.

In terms of the basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{d}$ introduced above, consider the linear map

$$
J: \quad e_{i} \mapsto-f_{i}, \quad f_{i} \mapsto e_{i}
$$

It satisfies

$$
\begin{align*}
J^{2} & =-I \tag{2.1}\\
\omega(J u, J v) & =\omega(u, v), \quad \text { and } \tag{2.2}\\
\omega(J u, v) & =\omega(J v, u) \tag{2.3}
\end{align*}
$$

Notice that any J which satisfies two of the three conditions above automatically satisfies the third. Condition (2.1) says that J makes V into a d-dimensional complex vector space. Condition (2.2) says that J is a symplectic transformation, i.e acts so as to preserve the symplectic form ω. Condition (2.3) says that $\omega(J u, v)$ is a real symmetric bilinear form.

All three conditions (really any two out of the three) say that (,) = $(,)_{\omega, J}$ defined by

$$
(u, v)=\omega(J u, v)+i \omega(u, v)
$$

is a semi-Hermitian form whose imaginary part is ω. For the J chosen above this form is actually Hermitian, that is the real part of (,) is positive definite.

2.1.5 Choosing Lagrangian complements.

The results of this section are purely within the framework of symplectic linear algebra. Hence their logical place is here. However their main interest is that they serve as lemmas for more geometrical theorems, for example the Weinstein isotropic embedding theorem. The results here all have to do with making choices in a "consistent" way, so as to guarantee, for example, that the choices can be made to be invariant under the action of a group.

For any a Lagrangian subspace $L \subset V$ we will need to be able to choose a complementary Lagrangian subspace L^{\prime}, and do so in a consistent manner, depending, perhaps, on some auxiliary data. Here is one such way, depending on the datum of a symmetric positive definite bilinear form B on V. (Here B has nothing to do with with the symplectic form.)

Let L^{B} be the orthogonal complement of L relative to the form B. So

$$
\operatorname{dim} L^{B}=\operatorname{dim} L=\frac{1}{2} \operatorname{dim} V
$$

and any subspace $W \subset V$ with

$$
\operatorname{dim} W=\frac{1}{2} \operatorname{dim} V \quad \text { and } W \cap L=\{0\}
$$

can be written as

$$
\operatorname{graph}(A)
$$

where $A: L^{B} \rightarrow L$ is a linear map. That is, under the vector space identification

$$
V=L^{B} \oplus L
$$

the elements of W are all of the form

$$
w+A w, \quad w \in L^{B}
$$

We have

$$
\omega(u+A u, w+A w)=\omega(u, w)+\omega(A u, w)+\omega(u, A w)
$$

since $\omega(A u, A w)=0$ as L is Lagrangian. Let C be the bilinear form on L^{B} given by

$$
C(u, w):=\omega(A u, w)
$$

Thus W is Lagrangian if and only if

$$
C(u, w)-C(w, u)=-\omega(u, w)
$$

Now

$$
\operatorname{Hom}\left(L^{B}, L\right) \sim L \otimes L^{B *} \sim L^{B *} \otimes L^{B *}
$$

under the identification of L with $L^{B *}$ given by ω. Thus the assignment $A \leftrightarrow C$ is a bijection, and hence the space of all Lagrangian subspaces complementary to L is in one to one correspondence with the space of all bilinear forms C on L^{B} which satisfy $C(u, w)-C(w, u)=-\omega(u, w)$ for all $u, w \in L^{B}$. An obvious choice is to take C to be $-\frac{1}{2} \omega$ restricted to L^{B}. In short,

Proposition 4 Given a positive definite symmetric form on a symplectic vector space V, there is a consistent way of assigning a Lagrangian complement L^{\prime} to every Lagrangian subspace L.

Here the word "consistent" means that the choice depends only on B. This has the following implication: Suppose that T is a linear automorphism of V which preserves both the symplectic form ω and the positive definite symmetric form B. In other words, suppose that

$$
\omega(T u, T v)=\omega(u, v) \quad \text { and } \quad B(T u, T v)=B(u, v) \quad \forall u, v \in V
$$

Then if $L \mapsto L^{\prime}$ is the correspondence given by the proposition, then

$$
T L \mapsto T L^{\prime}
$$

More generally, if $T: V \rightarrow W$ is a symplectic isomorphism which is an isometry for a choice of positive definite symmetric bilinear forms on each, the above equation holds.

Given L and B (and hence $\left.L^{\prime}\right)$ we determined the complex structure J by

$$
J: L \rightarrow L^{\prime}, \quad \omega(u, J v)=B(u, v) \quad u, v \in L
$$

and then

$$
J:=-J^{-1}: L^{\prime} \rightarrow L
$$

and extending by linearity to all of V so that

$$
J^{2}=-I
$$

Then for $u, v \in L$ we have

$$
\omega(u, J v)=B(u, v)=B(v, u)=\omega(v, J u)
$$

while

$$
\omega(u, J J v)=-\omega(u, v)=0=\omega(J v, J u)
$$

and

$$
\omega(J u, J J v)=-\omega(J u, v)=-\omega(J v, u)=\omega(J v, J J u)
$$

so (2.3) holds for all $u, v \in V$. We should write $J_{B, L}$ for this complex structure, or J_{L} when B is understood

Suppose that T preserves ω and B as above. We claim that

$$
\begin{equation*}
J_{T L} \circ T=T \circ J_{L} \tag{2.4}
\end{equation*}
$$

so that T is complex linear for the complex structures J_{L} and $J_{T L}$. Indeed, for $u, v \in L$ we have

$$
\omega\left(T u, J_{T L} T v\right)=B(T u, T v)
$$

by the definition of $J_{T L}$. Since B is invariant under T the right hand side equals $B(u, v)=\omega\left(u, J_{L} v\right)=\omega\left(T u, T J_{L} v\right)$ since ω is invariant under T. Thus

$$
\omega\left(T u, J_{T L} T v\right)=\omega\left(T u, T J_{L} v\right)
$$

showing that

$$
T J_{L}=J_{T L} T
$$

when applied to elements of L. This also holds for elements of L^{\prime}. Indeed every element of L^{\prime} is of the form $J_{L} u$ where $u \in L$ and $T J_{L} u \in T L^{\prime}$ so

$$
J_{T L} T J_{L} u=-J_{T L}^{-1} T J_{L} u=-T u=T J_{L}\left(J_{L} u\right)
$$

Let I be an isotropic subspace of V and let I^{\perp} be its symplectic orthogonal subspace so that $I \subset I^{\perp}$. Let

$$
I_{B}=\left(I^{\perp}\right)^{B}
$$

be the B-orthogonal complement to I^{\perp}. Thus

$$
\operatorname{dim} I_{B}=\operatorname{dim} I
$$

and since $I_{B} \cap I^{\perp}=\{0\}$, the spaces I_{B} and I are non-singularly paired under ω. In other words, the restriction of ω to $I_{B} \oplus I$ is symplectic. The proof of the preceding proposition gives a Lagrangian complement (inside $I_{B} \oplus I$) to I which, as a subspace of V has zero intersection with I^{\perp}. We have thus proved:

Proposition 5 Given a positive definite symmetric form on a symplectic vector space V, there is a consistent way of assigning an isotropic complement I^{\prime} to every co-isotropic subspace I^{\perp}.

We can use the preceding proposition to prove the following:
Proposition 6 Let V_{1} and V_{2} be symplectic vector spaces of the same dimension, with $I_{1} \subset V_{1}$ and $I_{2} \subset V_{2}$ isotropic subspaces, also of the same dimension. Suppose we are given

- a linear isomorphism $\lambda: I_{1} \rightarrow I_{2}$ and
- a symplectic isomorphism $\ell: I_{1}^{\perp} / I_{1} \rightarrow I_{2}^{\perp} / I_{2}$.

Then there is a symplectic isomorphism

$$
\gamma: V_{1} \rightarrow V_{2}
$$

such that

1. $\gamma: I_{1}^{\perp} \rightarrow I_{2}^{\perp}$ and (hence) $\gamma: I_{1} \rightarrow I_{2}$,
2. The map induced by γ on I_{1}^{\perp} / I_{1} is ℓ and
3. The restriction of γ to I_{1} is λ.

Furthermore, in the presence of positive definite symmetric bilinear forms B_{1} on V_{1} and B_{2} on V_{2} the choice of γ can be made in a "canonical" fashion.
Indeed, choose isotropic complements $I_{1 B}$ to I_{1}^{\perp} and $I_{2 B}$ to I_{2}^{\perp} as given by the preceding proposition, and also choose B orthogonal complements Y_{1} to I_{1} inside I_{1}^{\perp} and Y_{2} to I_{2} inside I_{2}^{\perp}. Then $Y_{i}(i=1,2)$ is a symplectic subspace of V_{i} which can be identified as a symplectic vector space with I_{i}^{\perp} / I_{i}. We thus have

$$
V_{1}=\left(I_{1} \oplus I_{1 B}\right) \oplus Y_{1}
$$

as a direct sum decomposition into the sum of the two symplectic subspaces $\left(I_{1} \oplus I_{1 B}\right)$ and Y_{1} with a similar decomposition for V_{2}. Thus ℓ gives a symplectic isomorphism of $Y_{1} \rightarrow Y_{2}$. Also

$$
\lambda \oplus\left(\lambda^{*}\right)^{-1}: I_{1} \oplus I_{1 B} \rightarrow I_{2} \oplus I_{2 B}
$$

is a symplectic isomorphism which restricts to λ on I_{1}. QED

2.2 Equivariant symplectic vector spaces.

Let V be a symplectic vector space. We let $S p(V)$ denote the group of all all symplectic automorphisms of V, i.e all maps T which satisfy $\omega(T u, T v)=$ $\omega(u, v) \forall u, v \in V$.

A representation $\tau: G \rightarrow \operatorname{Aut}(V)$ of a group G is called symplectic if in fact $\tau: G \rightarrow S p(V)$. Our first task will be to show that if G is compact, and τ is symplectic, then we can find a J satisfying (2.1) and (2.2), which commutes with all the $\tau(a), a \in G$ and such that the associated Hermitian form is positive definite.

2.2.1 Invariant Hermitian structures.

Once again, let us start with a positive definite symmetric bilinear form B. By averaging over the group we may assume that B is G invariant. (Here is where we use the compactness of G.) Then there is a unique linear operator K such that

$$
B(K u, v)=\omega(u, v) \quad \forall u, v \in V
$$

Since both B and ω are G-invariant, we conclude that K commutes with all the $\tau(a), a \in G$. Since $\omega(v, u)=-\omega(u, v)$ we conclude that K is skew adjoint relative to B, i.e. that

$$
B(K u, v)=-B(u, K v)
$$

Also K is non-singular. Then K^{2} is symmetric and non-singular, and so V can be decomposed into a direct sum of eigenspaces of K^{2} corresponding to distinct eigenvalues, all non-zero. These subspaces are mutually orthogonal under B and invariant under G. If $K^{2} u=\mu u$ then

$$
\mu B(u, u)=B\left(K^{2} u, u\right)=-B(K u, K u)<0
$$

so all these eigenvalues are negative; we can write each μ as $\mu=-\lambda^{2}, \lambda>0$. Furthermore, if $K^{2} u=-\lambda^{2} u$ then

$$
K^{2}(K u)=K K^{2} u=-\lambda^{2} K u
$$

so each of these eigenspaces is invariant under K. Also, any two subspaces corresponding to different values of λ^{2} are orthogonal under ω. So we need only define J on each such subspace so as to commute with all the $\tau(a)$ and so as to satisfy (2.1) and (2.2), and then extend linearly. On each such subspace set

$$
J:=\lambda K^{-1}
$$

Then (on this subspace)

$$
J^{2}=\lambda^{2} K^{-2}=-I
$$

and

$$
\omega(J u, v)=\lambda \omega\left(K^{-1} u, v\right)=\lambda B(u, v)
$$

is symmetric in u and v. Furthermore $\omega(J u, u)=\lambda B(u, u)>0$. QED
Notice that if τ is irreducible, then the Hermitian form $()=,\omega(J \cdot, \cdot)+$ $i \omega(\cdot, \cdot)$ is uniquely determined by the property that its imaginary part is ω.

2.2.2 The space of fixed vectors for a compact group is symplectic.

If we choose J as above, if $\tau(a) u=u$ then $\tau(a) J u=J u$. So the space of fixed vectors is a complex subspace for the complex structure determined by J.

But the restriction of a positive definite Hermitian form to any (complex) subspace is again positive definite, in particular non-singular. Hence its imaginary part, the symplectic form ω, is also non-singular. QED

This result need not be true if the group is not compact. For example, the one parameter group of shear transformations

$$
\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

in the plane is symplectic as all of these matrices have determinant one. But the space of fixed vectors is the x-axis.

2.2.3 Toral symplectic actions.

Suppose that $G=\mathbf{T}^{n}$ is an n-dimensional torus, and that \mathbf{g} denotes its Lie algebra. Then exp:g $\rightarrow G$ is a surjective homomorphisms, whose kernel \mathbf{Z}_{G} is a lattice.

If $\tau: G \rightarrow U(V)$ as above, we can decompose V into a direct sum of one dimensional complex subspaces

$$
V=V_{1} \oplus \cdots \oplus V_{d}
$$

where the restriction of τ to each subspace is given by

$$
\tau_{\mid V_{k}}(\exp \xi) v=e^{2 \pi i \alpha_{k}(\xi)} v
$$

where

$$
\alpha_{k} \in \mathbf{Z}_{G}^{*}
$$

the dual lattice.

2.3 Symplectic manifolds.

A manifold M is called symplectic if it comes equipped with a closed nondegenerate two form ω. A diffeomorphism is called symplectic if it preserves ω and a vector field v is called symplectic if

$$
D_{v} \omega=0
$$

Since $D_{v} \omega=d \iota(v) \omega+\iota(v) d \omega=d \iota(v) \omega$ as $d \omega=0$, a vector field v is symplectic if and only if $\iota(v) \omega$ is closed.

A vector field v is called Hamiltonian if $\iota(v) \omega$ is exact. If θ is a closed one form, and v a vector field, then $D_{v} \theta=d \iota(v) \theta$ is exact. Hence if v_{1} and v_{2} are symplectic vector fields

$$
D_{v_{1}} \iota\left(v_{2}\right) \omega=\iota\left(\left[v_{1}, v_{2}\right]\right) \omega
$$

so $\left[v_{1}, v_{2}\right]$ is Hamiltonian with

$$
\iota\left(\left[v_{1}, v_{2}\right]\right) \omega=d \omega\left(v_{2}, v_{1}\right)
$$

2.4 Darboux style theorems.

These are theorems which state that two symplectic structures on a manifold are the same or give a normal form near a submanifold etc. via the MoserWeinstein method. This method hinges on the basic formula of differential calculus: If $f_{t}: X \rightarrow Y$ is a smooth family of maps and ω_{t} is a one parameter family of differential forms on Y then

$$
\begin{equation*}
\frac{d}{d t} f_{t}^{*} \omega_{t}=f_{t}^{*} \frac{d}{d t} \omega_{t}+Q_{t} d \omega_{t}+d Q_{t} \omega_{t} \tag{2.5}
\end{equation*}
$$

where

$$
Q_{t}: \Omega^{k}(Y) \rightarrow \Omega^{k-1}(X)
$$

is given by

$$
Q_{t} \tau\left(w_{1}, \ldots, w_{k-1}\right):=\tau\left(v_{t}, d f_{t}\left(w_{1}\right), \ldots, d f_{t}\left(w_{k-1}\right)\right)
$$

where

$$
v_{t}: X \rightarrow T(Y), \quad v_{t}(x):=\frac{d}{d t} f_{t}(x)
$$

If ω_{t} does not depend explicitly on t then the first term on the right of (2.5) vanishes, and integrating (2.5) with respect to t from 0 to 1 gives

$$
\begin{equation*}
f_{1}^{*}-f_{0}^{*}=d Q+Q d, \quad Q:=\int_{0}^{1} Q_{t} d t \tag{2.6}
\end{equation*}
$$

Here is the first Darboux type theorem:

2.4.1 Compact manifolds.

Theorem 1 Let M be a compact manifold, ω_{0} and ω_{1} two symplectic forms on M in the same cohomology class so that

$$
\omega_{1}-\omega_{0}=d \alpha
$$

for some one form α. Suppose in addition that

$$
\omega_{t}:=(1-t) \omega_{0}+t \omega_{1}
$$

is symplectic for all $0 \leq t \leq 1$. Then there exists a diffeomorphism $f: M \rightarrow$ M such that

$$
f^{*} \omega_{1}=\omega_{0}
$$

Proof. Solve the equation

$$
\iota\left(v_{t}\right) \omega_{t}=-\alpha
$$

which has a unique solution v_{t} since ω_{t} is symplectic. Then solve the time dependent differential equation

$$
\frac{d f_{t}}{d t}=v_{t}\left(f_{t}\right), \quad f_{0}=\mathrm{id}
$$

which is possible since M is compact. Since

$$
\frac{d \omega_{t}}{d t}=d \alpha
$$

the fundamental formula (2.5) gives

$$
\frac{d f_{t}^{*} \omega_{t}}{d t}=f_{t}^{*}[d \alpha+0-d \alpha]=0
$$

so

$$
f_{t}^{*} \omega_{t} \equiv \omega_{0}
$$

In particular, set $t=1$. QED
This style of argument was introduced by Moser and applied to Darboux type theorems by Weinstein.

Here is a modification of the above:
Theorem 2 Let M be a compact manifold, and $\omega_{t}, 0 \leq t \leq 1$ a family of symplectic forms on M in the same cohomology class.

Then there exists a diffeomorphism $f: M \rightarrow M$ such that

$$
f^{*} \omega_{1}=\omega_{0}
$$

Proof. Break the interval [0, 1] into subintervals by choosing $t_{0}=0<$ $t_{1}<t_{2}<\cdots<t_{N}=1$ and such that on each subinterval the "chord" $(1-s) \omega_{t_{i}}+s \omega_{t_{i+1}}$ is close enough to the curve $\omega_{(1-s) t_{i}+s t_{i+1}}$ so that the forms $(1-s) \omega_{t_{i}}+s \omega_{t_{i+1}}$ are symplectic. Then successively apply the preceding theorem. QED

2.4.2 Compact submanifolds.

The next version allows M to be non-compact but has to do with with behavior near a compact submanifold. We will want to use the following proposition:

Proposition 7 Let X be a compact submanifold of a manifold M and let

$$
i: X \rightarrow M
$$

denote the inclusion map. Let $\gamma \in \Omega^{k}(M)$ be a k-form on M which satisfies

$$
\begin{aligned}
d \gamma & =0 \\
i^{*} \gamma & =0
\end{aligned}
$$

Then there exists a neighborhood U of X and a $k-1$ form β defined on U such that

$$
\begin{aligned}
d \beta & =\gamma \\
\beta_{\mid X} & =0
\end{aligned}
$$

(This last equation means that at every point $p \in X$ we have

$$
\beta_{p}\left(w_{1}, \ldots, w_{k-1}\right)=0
$$

for all tangent vectors, not necessarily those tangent to X. So it is a much stronger condition than $i^{*} \beta=0$.)

Proof. By choice of a Riemann metric and its exponential map, we may find a neighborhood of W of X in M and a smooth retract of W onto X, that is a one parameter family of smooth maps

$$
r_{t}: W \rightarrow W
$$

and a smooth map $\pi: W \rightarrow X$ with

$$
r_{1}=\mathrm{id}, \quad r_{0}=i \circ \pi, \pi: W \rightarrow X, \quad r_{t} \circ i \equiv i
$$

Write

$$
\frac{d r_{t}}{d t}=w_{t} \circ r_{t}
$$

and notice that $w_{t} \equiv 0$ at all points of X. Hence the form

$$
\beta:=Q \gamma
$$

has all the desired properties where Q is as in (2.6). QED
Theorem 3 Let X, M and i be as above, and let ω_{0} and ω_{1} be symplectic forms on M such that

$$
i^{*} \omega_{1}=i^{*} \omega_{0}
$$

and such that

$$
(1-t) \omega_{0}+t \omega_{1}
$$

is symplectic for $0 \leq t \leq 1$. Then there exists a neighborhood U of M and a smooth map

$$
f: U \rightarrow M
$$

such that

$$
f_{\mid X}=i d \quad \text { and } \quad f^{*} \omega_{0}=\omega_{1}
$$

Proof. Use the proposition to find a neighborhood W of X and a one form α defined on W and vanishing on X such that

$$
\omega_{1}-\omega_{0}=d \alpha
$$

on W. Let v_{t} be the solution of

$$
\iota\left(v_{t}\right) \omega_{t}=-\alpha
$$

where $\omega_{t}=(1-t) \omega_{0}+t \omega_{1}$. Since v_{t} vanishes identically on X, we can find a smaller neighborhood of X if necessary on which we can integrate v_{t} for $0 \leq t \leq 1$ and then apply the Moser argument as above. QED

A variant of the above is to assume that we have a curve of symplectic forms ω_{t} with $i^{*} \omega_{t}$ independent of t.

Finally, a very useful variant is Weinstein's

Theorem $4 X, M, i$ as above, and ω_{0} and ω_{1} two symplectic forms on M such that $\omega_{1 \mid X}=\omega_{0 \mid X}$. Then there exists a neighborhood U of M and a smooth map

$$
f: U \rightarrow M
$$

such that

$$
f_{\mid X}=i d \quad \text { and } \quad f^{*} \omega_{0}=\omega_{1}
$$

Here we can find a neighborhood of X such that

$$
(1-t) \omega_{0}+t \omega_{1}
$$

is symplectic for $0 \leq t \leq 1$ since X is compact. QED
One application of the above is to take X to be a point. The theorem then asserts that all symplectic structures of the same dimension are locally symplectomorphic. This is the original theorem of Darboux.

2.4.3 The isotropic embedding theorem.

Another important application of the preceding theorem is Weinstein's isotropic embedding theorem: Let (M, ω) be a symplectic manifold, X a compact manifold, and $i: X \rightarrow M$ an isotropic embedding, which means that $d i_{x}(T X)_{x}$ is an isotropic subspace of $T M_{i(x)}$ for all $x \in X$. Thus

$$
d i_{x}(T X)_{x} \subset\left(d i_{x}(T X)_{x}\right)^{\perp}
$$

where $\left(d i_{x}(T X)_{x}\right)^{\perp}$ denotes the orthogonal complement of $d i_{x}(T X)_{x}$ in $T M_{i(x)}$ relative to $\omega_{i(x)}$. Hence

$$
\left(d i_{x}(T X)_{x}\right)^{\perp} / d i_{x}(T X)_{x}
$$

is a symplectic vector space, and these fit together into a symplectic vector bundle (i.e. a vector bundle with a symplectic structure on each fiber). We will call this the symplectic normal bundle of the embedding, and denote it by

$$
S N_{i}(X)
$$

or simply by $S N(X)$ when i is taken for granted.
Suppose that U is a neighborhood of $i(X)$ and $g: U \rightarrow N$ is a symplectomorphism of U into a second symplectic manifold N. Then $j=g \circ i$ is an isotropic embedding of X into N and f induces an isomorphism

$$
g_{*}: N S_{i}(X) \rightarrow N S_{j}(X)
$$

of symplectic vector bundles. Weinstein's isotropic embedding theorem asserts conversely, any isomorphism between symplectic normal bundles is in fact induced by a symplectomorphism of a neighborhood of the image:

Theorem 5 Let $\left(M, \omega_{M}, X, i\right)$ and $\left(N, \omega_{N}, X, j\right)$ be the data for isotropic embeddings of a compact manifold X. Suppose that

$$
\ell: S N_{i}(X) \rightarrow S N_{j}(X)
$$

is an isomorphism of symplectic vector bundles. Then there is a neighborhood U of $i(X)$ in M and a symplectomorphism g of U onto a neighborhood of $j(X)$ in N such that

$$
g_{*}=\ell
$$

For the proof, we will need the following extension lemma:
Proposition 8 Let

$$
i: X \rightarrow M, \quad j: Y \rightarrow N
$$

be embeddings of compact manifolds X and Y into manifolds M and N. suppose we are given the following data:

- A smooth map $f: X \rightarrow Y$ and, for each $x \in X$,
- A linear map $A_{x} T M_{i(x)} \rightarrow T N_{j(f(x))}$ such that the restriction of A_{x} to $T X_{x} \subset T M_{i(x)}$ coincides with $d f_{x}$.
Then there exists a neighborhood W of X and a smooth map $g: W \rightarrow N$ such that

$$
g \circ i=f \circ i
$$

and

$$
d g_{x}=A_{x} \quad \forall x \in X
$$

Proof. If we choose a Riemann metric on M, we may identify (via the exponential map) a neighborhood of $i(X)$ in M with a section of the zero section of X in its (ordinary) normal bundle. So we may assume that $M=$ $\mathcal{N}_{i} X$ is this normal bundle. Also choose a Riemann metric on N, and let

$$
\exp : \mathcal{N}_{j}(Y) \rightarrow N
$$

be the exponential map of this normal bundle relative to this Riemann metric. For $x \in X$ and $v \in N_{i}(i(x))$ set

$$
g(x, v):=\exp _{j(x)}\left(A_{x} v\right)
$$

Then the restriction of g to X coincides with f, so that, in particular, the restriction of $d g_{x}$ to the tangent space to T_{x} agrees with the restriction of A_{x} to this subspace, and also the restriction of $d g_{x}$ to the normal space to the zero section at x agrees A_{x} so g fits the bill. QED

Proof of the theorem. We are given linear maps $\ell_{x}:\left(I_{x}^{\perp} / I_{x}\right) \rightarrow J_{x}^{\perp} / J_{x}$ where $I_{x}=d i_{x}(T X)_{x}$ is an isotropic subspace of $V_{x}:=T M_{i(x)}$ with a similar notation involving j. We also have the identity map of

$$
I_{x}=T X_{x}=J_{x}
$$

So we may apply Proposition 6 to conclude the existence, for each x of a unique symplectic linear map

$$
A_{x}: T M_{i(x)} \rightarrow T N_{j(x)}
$$

for each $x \in X$. We may then extend this to an actual diffeomorphism, call it h on a neighborhood of $i(X)$, and since the linear maps A_{x} are symplectic, the forms

$$
h^{*} \omega_{N} \quad \text { and } \quad \omega_{M}
$$

agree at all points of X. We then apply Theorem 4 to get a map k such that $k^{*}\left(h^{*} \omega_{N}\right)=\omega_{M}$ and then $g=h \circ k$ does the job. QED

Notice that the constructions were all determined by the choice of a Riemann metric on M and of a Riemann metric on N. So if these metrics are invariant under a group G, the corresponding g will be a G-morphism. If G is compact, such invariant metrics can be constructed by averaging over the group, as will be recalled in the next section.

An important special case of the isotropic embedding theorem is where the embedding is not merely isotropic, but is Lagrangian. Then the symplectic normal bundle is trivial, and the theorem asserts that all Lagrangian embeddings of a compact manifold are locally equivalent, for example equivalent to the embedding of the manifold as the zero section of its cotangent bundle.

Chapter 3

The language of category theory.

3.1 Categories.

We briefly recall the basic definitions:
A category \mathbf{C} consists of the following data:
(i) A set, $\operatorname{Ob}(\mathbf{C})$, whose elements are called the objects of \mathbf{C},
(ii) For every pair (X, Y) of $\operatorname{Ob}(\mathbf{C})$ a set, $\operatorname{Morph}(X, Y)$, whose elements are called the morphisms or arrows from X to Y,
(iii) For every triple (X, Y, Z) of $\operatorname{Ob}(\mathbf{C})$ a map from $\operatorname{Morph}(X, Y) \times \operatorname{Morph}(Y, Z)$ to $\operatorname{Morph}(X, Z)$ called the composition map and denoted $(f, g) \leadsto g \circ f$.

These data are subject to the following conditions:
(iv) The composition of morphisms is associative
(v) For each $X \in \operatorname{Ob}(\mathbf{C})$ there is an $i d_{X} \in \operatorname{Morph}(X, X)$ such that

$$
f \circ i d_{X}=f, \forall f \in \operatorname{Morph}(X, Y)
$$

(for any Y) and

$$
i d_{X} \circ f=f, \forall f \in \operatorname{Morph}(Y, X)
$$

(for any Y).
It follows from the axioms that $i d_{X}$ is unique.

3.2 Functors and morphisms.

If \mathcal{C} and \mathcal{D} are categories, a functor F from \mathcal{C} to \mathcal{D} consists of the following data:
(vi) a map $F: O b(\mathcal{C}) \rightarrow O b(\mathcal{D})$
and
(vii) for each pair (X, Y) of $O b(\mathcal{C})$ a map

$$
F: \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(F(X), F(Y))
$$

subject to the rules
(viii)

$$
F\left(i d_{X}\right)=i d_{F(X)}
$$

and
(ix)

$$
F(g \circ f)=F(g) \circ F(f)
$$

This is what is usually called a covariant functor.
A contravariant functor would have $F: \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(F(Y), F(X))$ in (vii) and $F(f) \circ F(g)$ on the right hand side of (ix).)

Here is an important example, valid for any category \mathcal{C}. Let us fix an $X \in O b(\mathcal{C})$. We get a functor

$$
F_{X}: \mathcal{C} \rightarrow \text { Set }
$$

by the rule which assigns to each $Y \in O b(\mathcal{C})$ the set $F_{X}(Y)=\operatorname{Hom}(X, Y)$ and to each $f \in \operatorname{Hom}(Y, Z)$ the map $F_{X}(f)$ consisting of composition (on the left) by f. In other words, $F_{X}(f): \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(X, Z)$ is given by

$$
g \in \operatorname{Hom}(X, Y) \mapsto f \circ g \in \operatorname{Hom}(X, Z)
$$

Let F and G be two functors from \mathcal{C} to \mathcal{D}. A morphism, \mathfrak{m}, from F to G (older name: "natural transformation") consists of the following data:
(x) for each $X \in \operatorname{Ob}(\mathcal{C})$ an element $\mathfrak{m}(X) \in \operatorname{Hom}_{\mathcal{D}}(F(X), G(X))$ subject to the "naturality condition"
(xi) for any $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ the diagram in Figure 3.1 commutes.

Figure 3.1:

3.2.1 Involutory functors and involutive functors.

Consider the category \mathcal{V} whose objects are finite dimensional vector spaces (over some given field \mathbb{K}) and whose morphisms are linear transformations. We can consider the "transpose functor" $F: \mathcal{V} \rightarrow \mathcal{V}$ which assigns to every vector space V its dual space

$$
V^{*}=\operatorname{Hom}(V, \mathbb{K})
$$

and which assigns to every linear transformation $\ell: V \rightarrow W$ its transpose

$$
\ell^{*}: V^{*} \rightarrow W^{*}
$$

In other words,

$$
F(V)=V^{*}, \quad F(\ell)=\ell^{*}
$$

This is a contravariant functor which has the property that F^{2} is naturally equivalent to the identity functor. There does not seem to be a standard name for this type of functor. We will call it an involutory functor.

A special type of involutory functor is one in which $F(X)=X$ for all objects X and $F^{2}=$ id (not merely naturally equivalent to the identity). For example, let \mathcal{H} denote the category whose objects are Hilbert spaces and whose morphisms are bounded linear transformations. We take $F(X)=X$ on objects and $F(L)=L^{\dagger}$ on maps where L^{\dagger} denotes the adjoint of L in the Hilbert space sense. We shall call such a functor a involutive functor.

3.3 Example: Sets, maps and relations.

The category Set is the category whose objects are ("all") sets and and whose morphisms are ("all") maps between sets. For reasons of logic, the word "all" must be suitably restricted to avoid contradiction.

We will take the extreme step in this section of restricting our attention to the class of finite sets. Our main point is to examine a category whose objects are finite sets, but whose morphisms are much more general than
maps. Some of the arguments and constructions that we use in the study of this example will be models for arguments we will use later on, in the context of the symplectic category

3.3.1 The category of finite relations.

We will consider the category whose objects are finite sets. But we enlarge the set of morphisms by defining

$$
\operatorname{Morph}(X, Y)=\text { the collection of all subsets of } X \times Y
$$

A subset of $X \times Y$ is called a relation. We must describe the map

$$
\operatorname{Morph}(X, Y) \times \operatorname{Morph}(Y, Z) \rightarrow \operatorname{Morph}(X, Z)
$$

and show that this composition law satisfies the axioms of a category. So let

$$
\Gamma_{1} \in \operatorname{Morph}(X, Y) \quad \text { and } \Gamma_{2} \in \operatorname{Morph}(Y, Z)
$$

Define

$$
\Gamma_{2} \circ \Gamma_{1} \subset X \times Z
$$

by

$$
\begin{equation*}
(x, z) \in \Gamma_{2} \circ \Gamma_{1} \Leftrightarrow \exists y \in Y \text { such that }(z, y) \in \Gamma_{1} \text { and }(y, z) \in \Gamma_{2} \tag{3.1}
\end{equation*}
$$

Notice that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are maps, then

$$
\operatorname{graph}(f)=\{(x, f(x)\} \in \operatorname{Morph}(X, Y) \quad \text { and } \quad \operatorname{graph}(g) \in \operatorname{Morph}(Y, Z)
$$

with

$$
\operatorname{graph}(g) \circ \operatorname{graph}(f)=\operatorname{graph}(g \circ f)
$$

So we have indeed enlarged the category of finite sets and maps.
We still must check the axioms. Let $\Delta_{X} \subset X \times X$ denote the diagonal:

$$
\Delta_{X}=\{(x, x), x \in X\}
$$

If $\Gamma \in \operatorname{Morph}(X, Y)$ then

$$
\Gamma \circ \Delta_{X}=\Gamma \quad \text { and } \Delta_{Y} \circ \Gamma=\Gamma
$$

So Δ_{X} satisfies the conditions for $i d_{X}$. Let us now check the associative law. Suppose that $\Gamma_{1} \in \operatorname{Morph}(X, Y), \Gamma_{2} \in \operatorname{Morph}(Y, Z)$ and $\Gamma_{3} \in \operatorname{Morph}(Z, W)$. Then both $\Gamma_{3} \circ\left(\Gamma_{2} \circ \Gamma_{1}\right)$ and $\left(\Gamma_{3} \circ \Gamma_{2}\right) \circ \Gamma_{1}$ consist of all $(x, w) \in X \times W$ such that there exist $y \in Y$ and $z \in Z$ with

$$
(x, y) \in \Gamma_{1}, \quad(y, z) \in \Gamma_{2}, \quad \text { and }(z, w) \in \Gamma_{3}
$$

This proves the associative law.

3.3.2 Categorical "points".

Let us pick a distinguished one element set and call it "pt.". Giving a map from pt. to any set X is the same as picking a point of X. So in the category of sets and maps, the points of X are the same as the morphisms from our distinguished object pt. to X.

In a more general category, where the objects are not necessarily sets, we can not talk about the points of an object X. However if we have a distinguished object pt., then we can define a "point" of any object X to be an element of $\operatorname{Morph}(\mathrm{pt} ., X)$. Thus in the category we are currently studying, the category of finite sets and relations, an element of $\operatorname{Morph}(\mathrm{pt} ., X)$, i.e a subset of pt. $\times X$ is the same as a subset of X (by projection onto the second factor). So in this category, the "points" of X are the subsets of X.

A morphism $\Gamma \in \operatorname{Morph}(X, Y)$ yields a map from "points" of X to "points" of Y.

Consider the following example: For three objects X, Y, Z in

$$
X \times X \times Y \times Y \times Z \times Z
$$

we have the subset

$$
\Delta_{X} \times \Delta_{Y} \times \Delta_{Z}
$$

Let us move the first X factor past the others until it lies to immediate left of the right Z factor, so consider the subset

$$
\tilde{\Delta}_{X, Y, Z} \subset X \times Y \times Y \times Z \times X \times Z, \quad \tilde{\Delta}_{X, Y, Z}=\{(x, y, y, z, x, z)\}
$$

By introducing parentheses around the first four and last two factors we can write

$$
\tilde{\Delta}_{X, Y, Z} \subset(X \times Y \times Y \times Z) \times(X \times Z)
$$

In other words,

$$
\tilde{\Delta}_{X, Y, Z} \in \operatorname{Morph}(X \times Y \times Y \times Z, X \times Z)
$$

Let $\Gamma_{1} \in \operatorname{Morph}(X, Y)$ and $\Gamma_{2} \in \operatorname{Morph}(Y, Z)$. Then

$$
\Gamma_{1} \times \Gamma_{2} \subset X \times Y \times Y \times Z
$$

is a "point" of $X \times Y \times Y \times Z$. We can think of it as an element of

$$
\operatorname{Morph}(\text { pt., } X \times Y \times Y \times Z)
$$

So we can form

$$
\tilde{\Delta}_{X, Y, Z} \circ\left(\Gamma_{1} \times \Gamma_{2}\right)
$$

which consists of all (x, z) such that

$$
\exists\left(x_{1}, y_{1}, y_{2}, z_{1}, x, z\right) \text { with }
$$

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) & \in \Gamma_{1}, \\
\left(y_{2}, z_{1}\right) & \in \Gamma_{2} \\
x_{1} & =x \\
y_{1} & =y_{2} \\
z_{1} & =z .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\tilde{\Delta}_{X, Y, Z} \circ\left(\Gamma_{1} \times \Gamma_{2}\right)=\Gamma_{2} \circ \Gamma_{1} \tag{3.2}
\end{equation*}
$$

Similarly, given four sets X, Y, Z, W we can form

$$
\begin{gathered}
\tilde{\Delta}_{X, Y, Z, W} \subset(X \times Y \times Y \times Z \times Z \times W) \times(X \times W) \\
\tilde{\Delta}_{X, Y, Z, W}=\{(x, y, y, z, z, w, x, w)\}
\end{gathered}
$$

So

$$
\tilde{\Delta}_{X, Y, Z, W} \in \operatorname{Morph}(X \times Y \times Y \times Z \times Z \times W, X \times W)
$$

If $\Gamma_{1} \in \operatorname{Morph}(X, Y), \Gamma_{2} \in \operatorname{Morph}(Y, Z)$, and $\Gamma_{3} \in \operatorname{Morph}(Z, W)$ then

$$
\Gamma_{3} \circ\left(\Gamma_{2} \circ \Gamma_{1}\right)=\left(\Gamma_{3} \circ \Gamma_{2}\right) \circ \Gamma_{1}=\tilde{\Delta}_{X, Y, Z, W}\left(\Gamma_{1} \times \Gamma_{2} \times \Gamma_{3}\right) .
$$

From this point of view the associative law is a reflection of the fact that

$$
\left(\Gamma_{1} \times \Gamma_{2}\right) \times \Gamma_{3}=\Gamma_{1} \times\left(\Gamma_{2} \times \Gamma_{3}\right)=\Gamma_{1} \times \Gamma_{2} \times \Gamma_{3} .
$$

3.3.3 The transpose.

In our category of sets and relations, if $\Gamma \in \operatorname{Morph}(X, Y)$ define $\Gamma^{\dagger} \in$ $\operatorname{Morph}(Y, X)$ by

$$
\Gamma^{\dagger}:=\{(y, x) \mid(x, y) \in \Gamma\}
$$

We have defined a map

$$
\begin{equation*}
\dagger: \operatorname{Morph}(X, Y) \rightarrow \operatorname{Morph}(Y, X) \tag{3.3}
\end{equation*}
$$

for all objects X and Y which clearly satisfies

$$
\begin{equation*}
\dagger^{2}=\mathrm{id} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\Gamma_{2} \circ \Gamma_{1}\right)^{\dagger}=\Gamma_{1}^{\dagger} \circ \Gamma_{2}^{\dagger} \tag{3.5}
\end{equation*}
$$

This makes our category of finite sets and relations into an involutive category.

3.3.4 The finite Radon transform.

This is a contravariant functor \mathcal{F} from the category of finite sets and relations to the category of finite dimensional vector spaces over a field \mathbb{K}. It is defined as follows: On objects we let

$$
\mathcal{F}(X):=\mathcal{F}(X, \mathbb{K})=\text { the space of all } \mathbb{K} \text {-valued functions on } X
$$

If $\Gamma \subset X \times Y$ is a relation and $g \in \mathcal{F}(Y)$ we set

$$
(\mathcal{F}(\Gamma)(g))(x):=\sum_{y \mid(x, y) \in \Gamma} g(y)
$$

(It is understood that the empty sum gives zero.) It is immediate to check that this is indeed a contravariant functor.

In case $\mathbb{K}=\mathbb{C}$ we can be more precise: Let us make $\mathcal{F}(X)$ into a (finite dimensional) Hilbert space by setting

$$
\left(f_{1}, f_{2}\right):=\sum_{x \in X} f_{1}(x) \overline{f_{2}(x)}
$$

Then for $\Gamma \in \operatorname{Morph}(X, Y), f \in \mathcal{F}(X), g \in \mathcal{F}(Y)$ we have

$$
(f, \mathcal{F}(\Gamma) g)=\sum_{(x, y) \in \Gamma} f(x) \overline{g(y)}=\left(\mathcal{F}\left(\Gamma^{\dagger}\right) f, g\right)
$$

So

$$
\mathcal{F}\left(\Gamma^{\dagger}\right)=\mathcal{F}(\Gamma)^{\dagger}
$$

The functor \mathcal{F} carries the involutive structure of the category of finite sets and relations into the involutive structure of the category of finite dimensional Hilbert spaces.

3.3.5 Enhancing the category of finite sets and relations.

By a vector bundle over a finite set we simply mean a rule which assigns a vector space E_{x} (which we will assume to be finite dimensional) to each point x of X. We are going to consider a category whose objects are vector bundles over finite sets. We will denote such an object by $E \rightarrow X$.

Following Atiyah and Bott, we will define the morphisms in this category as follows: If $E \rightarrow X$ and $F \rightarrow Y$ are objects in our category, and $\Gamma \subset X \times Y$ we consider the vector bundle over Γ which assigns to each point $(x, y) \in \Gamma$ the vector space $\operatorname{Hom}\left(F_{y}, E_{x}\right)$. A morphism in our category will be a section of this vector bundle. So a morphism in our category will be a subset Γ of $X \times Y$ together with a map

$$
r_{x, y}: F_{y} \rightarrow F_{x}
$$

given for each $(x, y) \in \Gamma$. Suppose that $\left(\Gamma_{1}, r\right) \in \operatorname{Morph}(E \rightarrow X, F \rightarrow Y)$ and $\left(\Gamma_{2}, s\right) \in \operatorname{Morph}(F \rightarrow Y, G \rightarrow Z)$. Their composition is defined to be $\left(\Gamma_{2} \circ \Gamma_{1}, t\right)$ where t is the section of the vector bundle over $\Gamma_{2} \circ \Gamma_{1}$ given by

$$
t(x, z)=\sum_{y \mid(x, y) \in \Gamma_{1},(y, z) \in \Gamma_{2}} r(x, y) \circ s(y, z)
$$

The verification of the category axioms is immediate.
We have enhanced the category of finite sets and relations to the category of vector bundles over finite sets.

We also have a generalization of the functor \mathcal{F} : we now define $\mathcal{F}(E \rightarrow$ $X)$ to be the space of sections of the vector bundle $E \rightarrow X$ and if $M \in$ $\operatorname{Morph}(E \rightarrow X, F \rightarrow Y)$ then

$$
\mathcal{F}(g)(x)=\sum_{y \mid(x, y) \in \Gamma} r(x, y) g(y) .
$$

This generalizes the Radon functor of the preceding section.

3.4 The linear symplectic category.

3.4.1 Linear Lagrangian squares.

Let V and W be symplectic vector spaces with symplectic forms ω_{V} and ω_{W}. We put the direct sum symplectic form on $V \oplus W$ and denote it by $\omega_{V \oplus W}$. Let L be a Lagrangian subspace of V and set

$$
H:=L \oplus W
$$

Let Λ be a Lagrangian subspace of $V \oplus W$. Consider the exact square

This means that we have the exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow H \oplus \Lambda \xrightarrow{\tau} V \oplus W \rightarrow \operatorname{Coker}(\tau) \rightarrow 0 \tag{3.7}
\end{equation*}
$$

where the middle map

$$
\tau: H \oplus \Lambda \rightarrow V \oplus W
$$

is given by

$$
\tau(h, \lambda)=\iota_{H}(h)-\iota_{\Lambda}(\lambda)
$$

Let

$$
\operatorname{pr}: F \rightarrow \Lambda
$$

denote projection of $F \subset H \oplus \Lambda$ onto the second component. Let

$$
\rho: \Lambda \rightarrow W
$$

denote the projection of $\Lambda \subset V \oplus W$ onto the second component. So

$$
\begin{equation*}
\alpha:=\rho \circ \operatorname{pr}: F \rightarrow W \tag{3.8}
\end{equation*}
$$

Theorem 6 The image of α is a Lagrangian subspace of W.
Proof. If $w_{1}=\alpha\left(\left(v_{1}, w_{1}\right)\right)$ and $w_{2}=\alpha\left(\left(v_{2}, w_{2}\right)\right)$ then

$$
\omega_{W}\left(w_{1}, w_{2}\right)=\omega_{V \oplus W}\left(\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right)-\omega_{V}\left(v_{1}, v_{2}\right)=0
$$

The first term vanishes because Λ is Lagrangian, and the second term vanishes because L is Lagrangian. We have proved that α maps F onto an isotropic subspace of W. We want to prove that this subspace is Lagrangian. We do this by a dimension count:

We have the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{ker}(\alpha) \rightarrow F \rightarrow \operatorname{im}(\alpha) \rightarrow 0 \tag{3.9}
\end{equation*}
$$

Write

$$
\lambda=\left(v_{1}, w_{1}\right), \quad h=\left(v_{2}, w_{2}\right)
$$

so that $(h, \lambda) \in F$ when these two expressions are equal. To say that $\rho(\lambda)=0$ means that $\lambda=(v, 0)$ so we may identify $\operatorname{ker}(\alpha)$ with the set of all $v \in L$ such that

$$
(v, 0) \in \Lambda
$$

In this way we identify $\operatorname{ker} \alpha$ as a subspace of $V \oplus W$ consisting of all $(v, 0) \in \Lambda$ with $v \in L$.

On the other hand, $u \in \operatorname{im}(\tau)$ when

$$
u=\iota_{H}\left(v_{2}, w_{2}\right)-\iota_{\Lambda}\left(v_{1}, w_{1}\right)
$$

for

$$
\left(v_{1}, w_{1}\right) \in \Lambda, \quad\left(v_{2}, w_{2}\right) \in H
$$

So

$$
\operatorname{im}(\tau)=H+\Lambda
$$

and hence

$$
\operatorname{im}(\tau)^{\perp}=H^{\perp} \cap \Lambda^{\perp}
$$

But $\Lambda^{\perp}=\Lambda$ since Λ is Lagrangian, and $H^{\perp}=L \oplus\{0\}$ since L is Lagrangian and $H=L \oplus W$. So when we think of ker α as a subspace of $V \oplus W$ we have $\operatorname{ker} \alpha=(\operatorname{im} \tau)^{\perp}$. Hence

$$
\begin{equation*}
\operatorname{ker}(\alpha)^{\perp}=\operatorname{im}(\tau) \quad \text { in } V \oplus W \tag{3.10}
\end{equation*}
$$

In other words, the symplectic form on $V \oplus W$ induces a non-degenerate pairing between $\operatorname{ker}(\alpha)$ and $\operatorname{Coker}(\tau)$. Thus we can write

$$
\operatorname{dim} \operatorname{im}(\alpha)=\operatorname{dim} F-\operatorname{dim} \operatorname{ker}(\alpha)=\operatorname{dim} F-\operatorname{dim} \operatorname{Coker} \tau .
$$

From (3.7) we have

$$
\operatorname{dim} F-\operatorname{dim} \operatorname{Coker}(\tau)=\operatorname{dim} H+\operatorname{dim} \Lambda-\operatorname{dim} V-\operatorname{dim} W .
$$

Since $\operatorname{dim} H=\frac{1}{2} \operatorname{dim} V+\operatorname{dim} W$ and $\operatorname{dim} \Lambda=\frac{1}{2} \operatorname{dim} V+\frac{1}{2} \operatorname{dim} W$ we obtain

$$
\operatorname{dim} \alpha(F)=\frac{1}{2} \operatorname{dim} W
$$

as desired.
From (3.7) it follows that $\operatorname{Coker}(\tau)=\{0\}$ if and only if $H+\Lambda=V \oplus W$, in other words, if and only if the spaces H and Λ are transverse. We have thus proved

Proposition 9α is injective if and only if Λ and H are transverse.
Whether or not α is injective, we may identify $\operatorname{im}(\alpha)$ with the set of all $w \in W$ such that there exists a $v \in V$ such that $(v, w) \in \Lambda$ with $v \in L$. In terms of the notation we shall introduce in the next section, it will be convenient to denote this Lagrangian subspace of W as $\Lambda \circ L$, and think of it as "the image of L under Λ ".

3.4.2 The category of symplectic vector spaces and linear Lagrangians.

Let X, Y, and Z be symplectic vector spaces with symplectic forms ω_{X}, ω_{Y}, and ω_{Z}. We will let X^{-}denote the vector space X equipped with the symplectic form $-\omega_{X}$. So $X^{-} \oplus Y$ denotes the vector space $X \oplus Y$ equipped with the symplectic form $-\omega_{X} \oplus \omega_{Y}$ and similarly $Y^{-} \oplus Z$ denotes the vector space $Y \oplus Z$ equipped with the symplectic form $-\omega_{Y} \oplus \omega_{Z}$. Let

$$
\Lambda_{1} \text { be a Lagrangian subspace of } X^{-} \oplus Y
$$

and let

$$
\Lambda_{2} \text { be a Lagrangian subspace of } Y^{-} \oplus Z .
$$

Consider the exact square

This means that we have the exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow \Lambda_{1} \oplus \Lambda_{2} \xrightarrow{\tau} Y \rightarrow \operatorname{Coker}(\tau) \rightarrow 0 \tag{3.12}
\end{equation*}
$$

where

$$
\tau: \Lambda_{1} \oplus \Lambda_{2} \rightarrow Y
$$

is given by

$$
\tau\left(\left(u, y_{1}\right),\left(y_{2}, z\right)\right)=y_{1}-y_{2}
$$

Thus the points of F consist of elements of the form

$$
(x, y, y, z)
$$

where $(x, y) \in \Lambda_{1}$ and $(y, z) \in \Lambda_{2}$. Let

$$
\alpha: F \rightarrow X \oplus Z
$$

be defined by

$$
\alpha((x, v, v, z))=(x, z)
$$

The image of α is the set of all $(x, z) \in X \oplus Z$ such that there exists a $y \in Y$ with $(x, y) \in \Lambda_{1}$ and $(y, z) \in \Lambda_{2}$. If we think of Λ_{1} and Λ_{2} as linear relations, the image of α is just the composite of the two relations in the sense of Section 3.3.1. We may denote it by $\Lambda_{2} \circ \Lambda_{1}$ Then we have

Theorem 7 The composite $\Lambda_{2} \circ \Lambda_{1}$ is a Lagrangian subspace of $X^{-} \oplus Z$.
Proof. Take $V:=Y \oplus Y$ with the symplectic form $\omega_{Y 1}-\omega_{Y 2}$ where $\omega_{Y 2}$ denotes the pullback of ω_{Y} to $Y \oplus Y$ via projections onto the second factor, with $\omega_{Y 1}$ the pullback via projection onto the first factor. Take $L=\Delta$ to be the diagonal in $Y \oplus Y$ so $\Delta:=\{(y, y)\}$. Take $W=X \oplus Z$. Identify $V \oplus W$ with $X \oplus Y \oplus Y \oplus Z$ (by putting the two Y components in the middle), and let $\Lambda:=\Lambda_{1} \oplus \Lambda_{2}$. So in the terminology Theorem $6, H=\{(x, y, y, z)\}$ and $\alpha(F)=\Lambda_{2} \circ \Lambda_{1}$. Thus Theorem 7 is a consequence of Theorem 6 .

Theorem 7 means that we get a category if we take as our objects the symplectic vector spaces, and, if X and Y are symplectic vectors spaces define the morphisms from X to Y to consist of the Lagrangian subspaces of $X^{-} \oplus Y$.

This category is a vast generalization of the symplectic group because of the following observation: Suppose that the Lagrangian subspace $\Lambda \subset$ $X^{-} \oplus Y$ projects bijectively onto X under the projection of $X \oplus Y$ onto the first factor. This means that Λ is the graph of a linear transformation T from X to Y :

$$
\Lambda=\{(x, T x)\}
$$

T must be injective. Indeed, if $T x=0$ the fact that Λ is isotropic implies that $x \perp X$ so $x=0$. Also T is surjective since if $y \perp \operatorname{im}(T)$, then $(0, y) \perp \Lambda$. This implies that $(0, y) \in \Lambda$ since Λ is maximal isotropic. By the bijectivity of the projection this implies that $y=0$. In other words T is a bijection. The fact that Λ is isotropic then says that

$$
\omega_{Y}\left(T x_{1}, T x_{2}\right)=\omega\left(x_{1}, x_{2}\right)
$$

i.e. T is a symplectic isomorphism. If $\Lambda_{1}=\operatorname{graph} T$ and $\Lambda_{2}=\operatorname{graph} S$ then

$$
\Lambda_{2} \circ \Lambda_{1}=\operatorname{graph} S \circ T
$$

so composition of Lagrangian relations reduces to composition of symplectic isomorphisms in the case of graphs. In particular, If we take $Y=X$ we see that $\operatorname{Symp}(X)$ is a subgroup of $\operatorname{Morph}(X, X)$ in our category.

Chapter 4

The Symplectic "Category".

Let M be a symplectic manifold with symplectic form ω. Then $-\omega$ is also a symplectic form on M. We will frequently write M instead of (M, ω) and by abuse of notation we well let M^{-}denote the manifold M with the symplectic form $-\omega$.

Let $\left(M_{i}, \omega_{i}\right) i=1,2$ be symplectic manifolds. A Lagrangian submanifold of

$$
\Gamma \subset M_{1}^{-} \times M_{2}
$$

is called a canonical relation. So Γ is a subset of $M_{1} \times M_{2}$ which is a Lagrangian submanifold relative to the symplectic form $\omega_{2}-\omega_{1}$ in the obvious notation. So a canonical relation is a relation which is a Lagrangian submanifold.

For example, if $f: M_{1} \rightarrow M_{2}$ is a symplectomorphism, then $\Gamma_{f}=$ graph f is a canonical relation.

If $\Gamma_{1} \subset M_{1} \times M_{2}$ and $\Gamma_{2} \subset M_{2} \times M_{3}$ we can form their composite

$$
\Gamma_{2} \circ \Gamma_{1} \subset M_{1} \times M_{3}
$$

in the sense of the composite of relations. So $\Gamma_{2} \circ \Gamma_{1}$ consists of all points (x, z) such that there exists a $y \in M_{2}$ with $(x, y) \in \Gamma_{1}$ and $(y, z) \in \Gamma_{2}$. Let us put this in the language of fiber products: Let

$$
\pi: \Gamma_{1} \rightarrow M_{2}
$$

denote the restriction to Γ_{1} of the projection of $M_{1} \times M_{2}$ onto the second factor. Let

$$
\rho: \Gamma_{2} \rightarrow M_{2}
$$

denote the restriction to Γ_{2} of the projection of $M_{2} \times M_{3}$ onto the first factor. Let

$$
F \subset M_{1} \times M_{2} \times M_{2} \times M_{3}
$$

be defined by

$$
F=(\pi \times \rho)^{-1} \Delta_{M_{2}}
$$

In other words, F is defined as the fiber product

so

$$
F \subset \Gamma_{1} \times \Gamma_{2} \subset M_{1} \times M_{2} \times M_{2} \times M_{3}
$$

Let pr_{13} denote the projection of $M_{1} \times M_{2} \times M_{2} \times M_{3}$ onto $M_{1} \times M_{3}$ (projection onto the first and last components). Let π_{13} denote the restriction of pr_{13} to F. Then, as a set,

$$
\begin{equation*}
\Gamma_{2} \circ \Gamma_{1}=\pi_{13}(F) \tag{4.2}
\end{equation*}
$$

The map pr_{13} is smooth, and hence its restriction to any submanifold is smooth. The problems are that

1. F defined as

$$
F=(\pi \times \rho)^{-1} \Delta_{M_{2}}
$$

i.e. by (4.1), need not be a submanifold, and
2. that the restriction π_{13} of pr_{13} to F need not be an embedding.

So we need some additional hypotheses to ensure that $\Gamma_{2} \circ \Gamma_{1}$ is a submanifold of $M_{1} \times M_{3}$. Once we impose these hypotheses we will find it easy to check that $\Gamma_{2} \circ \Gamma_{1}$ is a Lagrangian submanifold of $M_{1}^{-} \times M_{3}$ and hence a canonical relation.

4.1 Clean intersection.

Assume that the maps

$$
\pi: \Gamma_{1} \rightarrow M_{2} \quad \text { and } \rho: \Gamma_{2} \rightarrow M_{2}
$$

defined above intersect cleanly.
Notice that $\left(m_{1}, m_{2}, m_{2}^{\prime}, m_{3}^{\prime}\right) \in F$ if and only if

- $m_{2}=m_{2}^{\prime}$,
- $\left(m_{1}, m_{2}\right) \in \Gamma_{1}$, and
- $\left(m_{2}^{\prime}, m_{3}\right) \in \Gamma_{2}$.

So we can think of F as the subset of $M_{1} \times M_{2} \times M_{3}$ consisting of all points $\left(m_{1}, m_{2}, m_{3}\right)$ with $\left(m_{1}, m_{2}\right) \in \Gamma_{1}$ and $\left(m_{2}, m_{3}\right) \in \Gamma_{2}$. The clean intersection hypothesis involves two conditions. The first is that F be a manifold. The second is that the derived square be exact at all points. Let us state this second condition more explicitly: Let $m=\left(m_{1}, m_{2}, m_{3}\right) \in F$. We have the following vector spaces:

$$
\begin{aligned}
V_{1} & :=T_{m_{1}} M_{1} \\
V_{2} & :=T_{m_{2}} M_{2} \\
V_{3} & :=T_{m_{3}} M_{3} \\
\Gamma_{1}^{m} & :=T_{\left(m_{1}, m_{2}\right)} \Gamma_{1}, \quad \text { and } \\
\Gamma_{2}^{m} & :=T_{\left(m_{2}, m_{3}\right)} \Gamma_{2}
\end{aligned}
$$

So

$$
\Gamma_{1}^{m} \subset T_{\left(m_{1}, m_{2}\right)}\left(M_{1} \times M_{2}\right)=V_{1} \oplus V_{2}
$$

is a linear Lagrangian subspace of $V_{1}^{-} \oplus V_{2}$. Similarly, Γ_{2}^{m} is a linear Lagrangian subspace of $V_{2}^{-} \oplus V_{3}$. The clean intersection hypothesis asserts that $T_{m} F$ is given by the exact square

$$
\begin{array}{ccc}
T_{m} F & \xrightarrow{d\left(\iota_{1}\right)_{m}} & \Gamma_{1}^{m} \tag{4.3}\\
d\left(\iota_{2}\right)_{m} \downarrow^{\downarrow} & & \downarrow d \pi_{\left.m_{1}, m_{2}\right)} \\
\Gamma_{2}^{m} & \xrightarrow[d \rho_{\left(m_{2}, m_{3}\right)}]{ } & T_{m_{2}} M_{2}
\end{array}
$$

In other words, $T_{m} F$ consists of all $\left(v_{1}, v_{2}, v_{3}\right) \in V_{1} \oplus V_{2} \oplus V_{3}$ such that

$$
\left(v_{1}, v_{2}\right) \in \Gamma_{1}^{m} \quad \text { and } \quad\left(v_{2}, v_{3}\right) \in \Gamma_{2}^{m} .
$$

The exact square (4.3) is of the form (3.11) that we considered in Section 3.4.2. We know from Section 3.4.2 that $\Gamma_{2}^{m} \circ \Gamma_{1}^{m}$ is a linear Lagrangian subspace of $V_{1}^{-} \oplus V_{3}$. In particular its dimension is $\frac{1}{2}\left(\operatorname{dim} M_{1}+\operatorname{dim} M_{3}\right)$ which does not depend on the choice of $m \in F$. This implies the following: Let

$$
\iota: F \rightarrow M_{1} \times M_{2} \times M_{3}
$$

denote the inclusion map, and let

$$
\kappa_{13}: M_{1} \times M_{2} \times M_{3} \rightarrow M_{1} \times M_{3}
$$

denote the projection onto the first and third components. So

$$
\kappa \circ \iota: F \rightarrow M_{1} \times M_{3}
$$

is a smooth map whose differential at any point $m \in F$ maps $T_{m} F$ onto $\Gamma_{2}^{m} \circ \Gamma_{1}^{m}$ and so has locally constant rank. Furthermore, the image os $T_{m} F$ is a Lagrangian subspace of $T_{\left(m_{1}, m 3\right)}\left(M_{1}^{-} \times M_{3}\right)$. We have proved:

Theorem 8 If the canonical relations $\Gamma_{1} \subset M_{1}^{-} \times M_{2}$ and $\Gamma_{2} \subset M_{2}^{-} \times M_{3}$ intersect cleanly, then their composition $\Gamma_{2} \circ \Gamma_{1}$ is an immersed Lagrangian submanifold of $M_{1}^{-} \times M_{3}$.

We must still impose conditions that will ensure that $\Gamma_{2} \circ \Gamma_{1}$ is an honest submanifold of $M_{1} \times M_{3}$. We will do this in the next section.

We will need a name for the manifold F we created out of Γ_{1} and Γ_{2} above. We will call it $\Gamma_{2} \star \Gamma_{1}$.

4.2 Composable canonical relations.

Victor: What is a reference We recall a theorem from differential topology: for this?

Theorem 9 Let X and Y be smooth manifolds and $f: X \rightarrow Y$ is a smooth map of constant rank. Let $W=f(X)$. Suppose that f is proper and that for every $w \in W, f^{-1}(w)$ is connected. Then W is a smooth submanifold of Y.

We apply this theorem to the map $\kappa_{13} \circ \iota: F \rightarrow M_{1} \times M_{3}$. To shorten the notation, let us define

$$
\begin{equation*}
\kappa:=\kappa_{13} \circ \iota . \tag{4.4}
\end{equation*}
$$

Theorem 10 Suppose that the canonical relations Γ_{1} and Γ_{2} intersect cleanly. Suppose in addition that the map κ is proper and that the inverse image of every $\gamma \in \Gamma_{2} \circ \Gamma_{1}=\kappa\left(\Gamma_{2} \star \Gamma_{1}\right)$ is connected. Then $\Gamma_{2} \circ \Gamma_{1}$ is a canonical relation. Furthermore

$$
\begin{equation*}
\kappa: \Gamma_{2} \star \Gamma_{1} \rightarrow \Gamma_{2} \circ \Gamma_{1} \tag{4.5}
\end{equation*}
$$

is a smooth fibration with compact connected fibers.
So we are in the following situation: We can not always compose the canonical relations $\Gamma_{2} \subset M_{2}^{-} \times M_{3}$ with $\Gamma_{1} \subset M_{1}^{-} \times M_{2}$ to obtain a canonical relation $\Gamma_{2} \circ \Gamma_{1} \subset M_{1}^{-} \times M_{3}$. We must impose some additional conditions, for example those of the theorem. So following Weinstein we put quotation maps around the word category to indicate this fact.

We will let \mathcal{S} denote the "category" whose objects are symplectic manifolds and whose morphisms are canonical ralations. We will call $\Gamma_{1} \subset$ $M_{1}^{-} \times M_{2}$ and $\Gamma_{2} \subset M_{2}^{-} \times M_{3}$ composable if they satisfy the hypotheses of Theorem 10.

If $\Gamma \subset M_{1}^{-} \times M_{2}$ is a canonical relation, we will sometimes use the notation

$$
\Gamma \in \operatorname{Morph}\left(M_{1}, M_{2}\right)
$$

and sometimes use the notation

$$
\Gamma: M_{1} \rightarrow M_{2}
$$

to denote this fact.

4.3 Transverse composition.

A special case of clean intersection is transverse intersection. In fact, in applications, this is a convenient hypothesis, and it has some special properties:

Suppose that the maps π and ρ are transverse. This means that

$$
\pi \times \rho: \Gamma_{1} \times \Gamma_{2} \rightarrow M_{2} \times M_{2}
$$

intersects $\Delta_{M_{2}}$ transversally, which implies that the codimension of

$$
\Gamma_{2} \star \Gamma_{1}=(\pi \times \rho)^{-1}\left(\Delta_{M_{2}}\right)
$$

in $\Gamma_{1} \times \Gamma_{2}$ is $\operatorname{dim} M_{2}$. So

$$
\begin{aligned}
\operatorname{dim} F & =\operatorname{dim} \Gamma_{1}+\operatorname{dim} \Gamma_{2}-\operatorname{dim} M_{2} \\
& =\frac{1}{2} \operatorname{dim} M_{1}+\frac{1}{2} \operatorname{dim} M_{2}+\frac{1}{2} \operatorname{dim} M_{2}+\frac{1}{2} \operatorname{dim} M_{3}-\operatorname{dim} M_{2} \\
& =\frac{1}{2} \operatorname{dim} M_{1}+\frac{1}{2} \operatorname{dim} M_{3} \\
& =\operatorname{dim} \Gamma_{2} \circ \Gamma_{1}
\end{aligned}
$$

So under the hypothesis of transversality, the map κ is an immersion. If we add the hypotheses of Theorem 10, we see that κ is a diffeomorphism.

For example, if Γ_{2} is the graph of a symplectomorphism of M_{2} with M_{3} then $d \rho_{\left(m_{2}, m_{3}\right)}: T_{\left(m_{2}, m_{3}\right)}\left(M_{2} \times M_{3}\right) \rightarrow T_{m_{2}} M_{2}$ is surjective at all points $\left(m_{2}, m_{3}\right) \in \Gamma_{2}$. So if $m=\left(m_{1}, m_{2}, m_{2}, m_{3}\right) \in \Gamma_{1} \times \Gamma_{2}$ the image of $d(\pi \times \rho)_{m}$ contains all vectors of the form ($0, w$) in $T_{m_{2}} M_{2} \oplus T_{m_{2}} M_{2}$ and so is transverse to the diagonal. The manifold $\Gamma_{2} \star \Gamma_{1}$ consists of all points of the form $\left(m_{1}, m_{2}, g\left(m_{2}\right)\right)$ with $\left(m_{1}, m_{2}\right) \in \Gamma_{1}$, and

$$
\kappa:\left(m_{1}, m_{2}, g\left(m_{2}\right)\right) \mapsto\left(m_{1}, g\left(m_{2}\right)\right)
$$

Since g is one to one, so is κ. So the graph of a symplectomorphism is transversally composible with any canonical relation.

We will need the more general concept of "clean composability" described in the preceding section for certain applications.

4.4 Lagrangian submanifolds as canonical relations.

We can consider the "zero dimensional symplectic manifold" consisting of the distinguished point that we call "pt.". Then a canonical relation between pt. and a symplectic manifold M is a Lagrangian submanifold of $\mathrm{pt} . \times M$ which may be identified with a symplectic submanifold of M. These are the "points" in our "category" \mathcal{S}.

Suppose that Λ is a Lagrangian submanifold of M_{1} and $\Gamma \in \operatorname{Morph}\left(M_{1}, M_{2}\right)$ is a canonical relation. If we think of Λ as an element of $\operatorname{Morph}\left(\mathrm{pt} ., M_{1}\right)$,
then if Γ and Λ are composible, we can form $\Gamma \circ \Lambda \in \operatorname{Morph(pt.,~} M_{2}$) which may be identified with a Lagrangian submanifold of M_{2}. If we want to think of it this way, we may sometimes write $\Gamma(\Lambda)$ instead of $\Gamma \circ \Lambda$.

We can mimic the construction of composition given in Section 3.3.2 for the category of finite sets and relations. Let M_{1}, M_{2} and M_{3} be symplectic manifolds and let $\Gamma_{1} \in \operatorname{Morph}\left(M_{1}, M_{2}\right)$ and $\Gamma_{2} \in \operatorname{Morph}\left(M_{2}, M_{3}\right)$ be canonical relations. So

$$
\Gamma_{1} \times \Gamma_{2} \subset M_{1}^{-} \times M_{2} \times M_{2}^{-} \times M_{3}
$$

is a Lagrangian submanifold. Let

$$
\begin{equation*}
\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}=\{(x, y, y, z, x, z)\} \subset M_{1} \times M_{2} \times M_{2} \times M_{3} \times M_{1} \times M_{3} \tag{4.6}
\end{equation*}
$$

We endow the right hand side with the symplectic structure
$M_{1} \times M_{2}^{-} \times M_{2} \times M_{3}^{-} \times M_{1}^{-} \times M_{3}=\left(M_{1}^{-} \times M_{2} \times M_{2}^{-} \times M_{3}\right)^{-} \times\left(M_{1}^{-} \times M_{3}\right)$.
Then $\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}$ is a Lagrangian submanifold, i.e. an element of

$$
\operatorname{Morph}\left(M_{1}^{-} \times M_{2} \times M_{2}^{-} \times M_{3}, M_{1}^{-} \times M_{3}\right)
$$

Just as in Section 3.3.2,

$$
\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}\left(\Gamma_{1} \times \Gamma_{2}\right)=\Gamma_{2} \circ \Gamma_{1} .
$$

Victor: I don't know if you It is easy to check that Γ_{2} and Γ_{1} are composible if and only if $\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}$ want more details here. and $\Gamma_{1} \times \Gamma_{2}$ are composible.

4.5 The involutive structure on \mathcal{S}.

Let $\Gamma \in \operatorname{Morph}\left(M_{1}, M_{2}\right)$ be a canonical relation. Just as in the category of finite sets and relations, define

$$
\Gamma^{\dagger}=\left\{\left(m_{2}, m_{1}\right) \mid\left(m_{1}, m_{2}\right) \in \Gamma\right\}
$$

As a set it is a subset of $M_{2} \times M_{1}$ and it is a Lagrangian sumbanifold of $M_{2} \times M_{1}^{-}$. But then it is also a Lagrangian submanifold of

$$
\left(M_{2} \times M_{1}^{-}\right)^{-}=M_{2}^{-} \times M_{1}
$$

So

$$
\Gamma^{\dagger} \in \operatorname{Morph}\left(M_{2}, M_{1}\right)
$$

Therefore $M \mapsto M, \Gamma \mapsto \Gamma^{\dagger}$ is a involutive functor on \mathcal{S}.

4.6 Canonical relations between cotangent bundles.

In this section we want to discuss some special properties of our "category" \mathcal{S} when we restrict the objects to be cotangent bundles (which are, after all, special kinds of symplectic manifolds). One consequence of our discussion will be that \mathcal{S} contains the category \mathcal{C}^{∞} whose objects are smooth manifolds and whose morphisms are smooth maps as a (tiny) subcategory. Another consequence will be a local description of Lagrangian submanifolds of the cotangent bundle which generalizes the description of horizontal Lagrangian submanifolds of the cotangent bundle that we gave in Chapter 1. We will use this local description to deal with the problem of passage through caustics that we encountered in Chapter 1.

We recall the following definitions from Chapter 1: Let X be a smooth manifold and $T^{*} X$ its cotangent bundle, so that we have the projection $\pi: T^{*} X \rightarrow X$. The canonical one form α_{X} is defined by (1.8). We repeat the definition: If $\xi \in T^{*} X, x=\pi(x)$, and $v \in T_{\xi}\left(T^{*} X\right)$ then the value of α_{X} at v is given by

$$
\begin{equation*}
\left\langle\alpha_{X}, v\right\rangle:=\left\langle\xi, d \pi_{\xi} v\right\rangle . \tag{1.8}
\end{equation*}
$$

The symplectic form ω_{X} is given by

$$
\begin{equation*}
\omega_{X}=-d \alpha_{X} \tag{1.10}
\end{equation*}
$$

So if Λ is a submanifold of $T^{*} X$ on which α_{X} vanishes and whose dimension is $\operatorname{dim} X$ then Λ is (a special kind of) Lagrangian submanifold of $T^{*} X$. An instance of this is the conormal bundle of a submanifold: Let $Y \subset X$ be a submanifold. Its conormal bundle

$$
N^{*} Y \subset T^{*} X
$$

consists of all $(x, \xi) \in T^{*} X$ such that $x \in Y$ and ξ vanishes on $T_{x} Y$.If $v \in T_{\xi}\left(N^{*} Y\right)$ then $d \pi_{\xi}(v) \in Y$ so by (1.8) $\left\langle\alpha_{X}, v\right\rangle=0$.

4.7 The canonical relation associated to a map.

Let X_{1} and X_{2} be manfolds and $f: X_{1} \rightarrow X_{2}$ be a smooth map. We set

$$
M_{1}:=T^{*} X_{1} \quad \text { and } \quad M_{2}:=T^{*} X_{2}
$$

with their canonical symplectic structures. We have the identification

$$
M_{1} \times M_{2}=T^{*}\left(X_{1} \times X_{2}\right)
$$

The graph of f is a submanifold of $X_{1} \times X_{2}$:

$$
X_{1} \times X_{2} \supset \operatorname{graph}(f)=\left\{\left(x_{1}, f\left(x_{1}\right)\right)\right\}
$$

So the conormal bundle of the graph of f is a Lagrangian submanifold of $M_{1} \times M_{2}$. Explicitly,

$$
\begin{equation*}
N^{*}(\operatorname{graph}(f))=\left\{\left(x_{1}, \xi_{1}, x_{2}, \xi_{2}\right) \mid x_{2}=f\left(x_{1}\right), \quad \xi_{1}=-d f_{x_{1}}^{*} \xi_{2}\right\} \tag{4.7}
\end{equation*}
$$

Let

$$
\varsigma_{1}: T^{*} X_{1} \rightarrow T^{*} X_{1}
$$

be defined by

$$
\varsigma_{1}(x, \xi)=(x,-\xi)
$$

Then $\varsigma_{1}^{*}\left(\alpha_{X_{1}}\right)=-\alpha_{X_{1}}$ and hence

$$
\varsigma_{1}^{*}\left(\omega_{X_{1}}\right)=-\omega_{X_{1}} .
$$

We can think of this as saying that ς_{1} is a symplectomorphism of M_{1} with M_{1}^{-}and hence

$$
\varsigma_{1} \times \mathrm{id}
$$

is a symplectomorphism of $M_{1} \times M_{2}$ with $M_{1}^{-} \times M_{2}$. Let

$$
\begin{equation*}
\Gamma_{f}:=\left(\varsigma_{1} \times \operatorname{id}\right)\left(N^{*}(\operatorname{graph}(f))\right. \tag{4.8}
\end{equation*}
$$

Then Γ_{f} is a Lagrangian submanifold of $M_{1}^{-} \times M_{2}$. In other words,

$$
\Gamma_{f} \in \operatorname{Morph}\left(M_{1}, M_{2}\right)
$$

Explicitly,

$$
\begin{equation*}
\Gamma_{f}=\left\{\left(x_{1}, \xi_{1}, x_{2}, \xi_{2}\right) \mid x_{2}=f\left(x_{1}\right), \quad \xi_{1}=d f_{x_{1}}^{*} \xi_{2}\right\} \tag{4.9}
\end{equation*}
$$

Suppose that $g: X_{2} \rightarrow X_{3}$ is a smooth map so that $\Gamma_{g} \in \operatorname{Morph}\left(M_{2}, M_{3}\right)$. So

$$
\Gamma_{g}=\left\{\left(x_{2}, \xi_{2}, x_{3}, \xi_{3}\right) \mid x_{3}=g\left(x_{2}\right), \xi_{2}=d g_{x_{2}}^{*} \xi_{3 .}\right\}
$$

The the maps

$$
\pi: \Gamma_{f} \rightarrow M_{2}, \quad\left(x_{1}, \xi_{1}, x_{2}, \xi_{2}\right) \mapsto\left(x_{2}, \xi_{2}\right)
$$

and

$$
\rho: \Gamma_{g} \rightarrow M_{2}, \quad\left(x_{2}, \xi_{2}, x_{3}, \xi_{3}\right) \mapsto\left(x_{2}, \xi_{2}\right)
$$

are transverse. Indeed at any point $\left(x_{1}, \xi_{1}, x_{2}, \xi_{2}, x_{2}, \xi_{2}, x_{3}, \xi_{3}\right)$ the image of $d \pi$ contains all vectors of the form $(0, w)$ and the image of $d \rho$ contains all vectors of the form $(v, 0)$. So Γ_{g} and Γ_{f} are transversely composible. Their composite $\Gamma_{g} \circ \Gamma_{f}$ consists of all $\left(x_{1}, \xi_{1}, x_{3}, \xi_{3}\right)$ such that there exists an x_{2} such that $x_{2}=f\left(x_{1}\right)$ and $x_{3}=g\left(x_{2}\right)$ and a ξ_{2} such that $\xi_{1}=d f_{x_{1}}^{*} \xi_{2}$ and $\xi_{2}=d g_{x_{2}}^{*} \xi_{3}$. But this is precisely the condition that $\left(x_{1}, \xi_{1}, x_{3}, \xi_{3}\right) \in \Gamma_{g \circ f}$! We have proved:

Theorem 11 The assignments

$$
X \mapsto T^{*} X
$$

and

$$
f \mapsto \Gamma_{f}
$$

define a covariant functor from the category \mathcal{C}^{∞} of manifolds and smooth maps to the symplectic "category" \mathcal{S}. As a consequence the assignments $X \mapsto T^{*} X$ and

$$
f \mapsto\left(\Gamma_{f}\right)^{\dagger}
$$

defines a contravariant functor from the category \mathcal{C}^{∞} of manifolds and smooth maps to the symplectic "category" \mathcal{S}.

We now study these functors in a little more detail:

4.8 Pushforward of Lagrangian submanifolds of the cotangent bundle.

Let $f: X_{2} \rightarrow X_{2}$ be a smooth map, and $M_{1}:=T^{*} X_{1}, M_{2}:=T^{*} X_{2}$ as before. The Lagrangian submanifold $\Gamma_{f} \subset M_{1}^{-} \times M_{2}$ is defined by (4.9). In particular, it is a subset of $T^{*} X_{1} \times T^{*} X_{2}$ and hence a particular kind of relation (in the sense of Chapter 3). So if A is any subset of $T^{*} X_{1}$ then $\Gamma_{f}(A)$ is a subset of $T^{*} X_{2}$ which we shall also denote by $d f_{*}(A)$. So

$$
d f_{*}(A):=\Gamma_{f}(A), \quad A \subset T^{*} X_{1}
$$

Explicitly,

$$
d f_{*} A=\left\{(y, \eta) \in T^{*} X_{2} \mid \exists(x, \xi) \in A \text { with } y=f(x) \text { and }\left(x, d f_{x}^{*} \eta\right) \in A\right\}
$$

Now suppose that $A=\Lambda$ is a Lagrangian submanifold of $T^{*} X_{1}$. Considering Λ as an element of $\operatorname{Morph}\left(\right.$ pt., $\left.T^{*} X_{1}\right)$ we may apply Theorem 8. Let

$$
\pi_{1}: N^{*}(\operatorname{graph}(f)) \rightarrow T^{*} X_{1}
$$

denote the restriction to $N^{*}(\operatorname{graph}(f))$ of the projection of $T^{*} X_{1} \times T^{*} X_{2}$ onto the first component. Notice that $N^{*}(\operatorname{graph}(f))$ is stable under the map $(x, \xi, y, \eta) \mapsto\left(x,-\xi, y,-\eta\right.$ and hence π_{1} intersects Λ cleanly if and only if $\pi_{1} \circ(\varsigma \times \mathrm{id}): \Gamma_{f} \rightarrow T^{*} X_{1}$ intersects Λ cleanly where, by abuse of notation, we have also denoted by π_{1} restriction of the projection to Γ_{f}. So
Theorem 12 If Λ is a Lagrangian submanifold and $\pi_{1}: N^{*}(\operatorname{graph}(f)) \rightarrow$ $T^{*} X_{1}$ intersects Λ transversally then $d f_{*}(\Lambda)$ is an immersed Lagrangian submanifold of $T^{*} X_{2}$.
If f has constant rank, then the dimension of $d f_{x}^{*} T^{*}\left(X_{2}\right)_{f(x)}$ does not vary, so that $d f^{*}\left(T^{*} X_{2}\right)$ is a sub-bundle of $T^{*} X_{1}$. If Λ intersects this subbundle transversally, then our conditions are certainly satisified. So

Theorem 13 Suppose that $f: X_{1} \rightarrow X_{2}$ has constant rank. If Λ is a Lagrangian submanifold of $T^{*} X_{1}$ which intersects df* $T^{*} X_{2}$ transversaly then $d f_{*}(\Lambda)$ is a Lagrangian submanifold of $T^{*} X_{2}$.

For example, if f is an immersion, then $d f^{*} T^{*} X_{2}=T^{*} X_{1}$ so all Lagrangian submanifolds are transverse to $d f^{*} T^{*} X_{2}$.

Corollary 14 If f is an immersion, then $d f_{*}(\Lambda)$ is a Lagrangian submanifold of $T^{*} X_{2}$.
At the other extreme, suppose that $f: X_{1} \rightarrow X_{2}$ is a fibration. Then $H^{*}\left(X_{1}\right):=d f^{*} T^{*} N$ consists of the "horizontal sub-bundle", i.e those covectors which vanish when restricted to the tangent space to the fiber. So

Corollary 15 Let $f: X_{1} \rightarrow X_{2}$ be a fibration, and let $H^{*}\left(X_{1}\right)$ be the bundle of the horizontal covectors in $T^{*} X_{1}$. If Λ is a Lagrangian submanifold of $T^{*} X_{1}$ which intersects $H^{*}\left(X_{1}\right)$ transversaly, then $d f_{*}(\Lambda)$ is a Lagrangian submanifold of $T^{*} X_{2}$.

An important special case of this corollary for us will be when $\Lambda=$ graph $d \phi$. Then $\Lambda \cap H^{*}\left(X_{1}\right)$ consists of those points where the "vertical derivative", i.e. the derivative in the fiber direction vanishes. At such points $d \phi$ descends to give a covector at $x_{2}=f\left(x_{1}\right)$. If the intersection is transverse, the set of such covectors is then a Lagrangian submanifold of $T^{*} N$. All of the next chapter will be devoted to the study of this special case of Corollary 15.

4.8.1 Envelopes.

Another important special case of Corollary 15 is the theory of envelopes, a classical subject which has more or less disappeared from the standard curriculum:

Let

$$
X_{1}=X \times S, \quad X_{2}=X
$$

where X and S are manifolds and let $f=\pi: X \times S \rightarrow X$ be projection onto the first component.

Let

$$
\phi: X \times S \rightarrow \mathbb{R}
$$

be a smooth function having 0 as a regular value so that

$$
Z:=\phi^{-1}(0)
$$

is a submanifold of $X \times S$. In fact, we will make a stronger assumption: Let $\phi_{s}: N \rightarrow \mathbf{R}$ be the map obtained by holding s fixed:

$$
\phi_{s}(x):=\phi(x, s)
$$

We make the stronger assumption that each ϕ_{s} has 0 as a regular value, so that

$$
Z_{s}:=\phi_{s}^{-1}(0)=Z \cap(N \times\{s\})
$$

4.8. PUSHFORWARD OF LAGRANGIAN SUBMANIFOLDS OF THE COTANGENT BUNDLE. 65

is a submanifold and

$$
Z=\bigcup_{s} Z_{s}
$$

as a set. The Lagrangian submanifold $N^{*}(Z) \subset T^{*}(X \times)$ consists of all points of the form

$$
\left(x, s, t d \phi_{X}(x, s), t d_{S} \phi(x, s)\right) \text { such that } \phi(x, s)=0
$$

Here t is an arbitrary real number. The sub-bundle $H^{*}(X \times S)$ consists of all points of the form

$$
(x, s, \xi, 0)
$$

So the transversality condition of Corollary 15 asserts that the map

$$
z \mapsto d\left(\frac{\partial \phi}{\partial s}\right)
$$

have rank equal to $\operatorname{dim} S$ on Z. The image Lagrangian submanifold $d f_{*} N^{*}(Z)$) then consists of all covectors $t d_{X} \phi$ where

$$
\phi(x, s)=0 \quad \text { and } \quad \frac{\partial \phi}{\partial s}(x, s)=0
$$

a system of $p+1$ equations in $n+p$ variables, where $p=\operatorname{dim} S$ and $n=\operatorname{dim} X$
Our transversality assumptions say that these equations define a submanifold of $N \times S$. If we make the stronger hypothesis that the last p equations can be solved for s as a function of x, then the first equation becomes

$$
\phi(x, s(x))=0
$$

which defines a hypersurface \mathcal{E} called the envelope of the surfaces Z_{s}. Furthermore, by the chain rule,

$$
d \phi(\cdot, s(\cdot))=d_{X} \phi(\cdot, s(\cdot))+d_{S} \phi(\cdot, s(\cdot)) d_{X} s(\cdot)=d_{X} \phi(\cdot, s(\cdot))
$$

since $d_{S} \phi=0$ at the points being considered. So if we set

$$
\psi:=\phi(\cdot, s(\cdot))
$$

we see that under these restrictive hypotheses $\left.d f_{*} N^{*}(Z)\right)$ consists of all multiples of $d \psi$, i.e.

$$
d f_{*}\left(N^{*}(Z)\right)=N^{*}(\mathcal{E})
$$

is the normal bundle to the envelope.
In the classical theory, the envelope "develops singularities". But form our point of view it is natural to consider the Lagrangian submanifold $d f_{*}(Z)$. This will not be globally a normal bundle to a hypersurface because its projection on N (from $T^{*} N$) may have singularities. But as a submanifold of $T^{*} N$ it is fine:
Examples:

- Suppose that S is an oriented curve in the plane, and at each point $s \in S$ we draw the normal ray to S at s. We might think of this line as a light ray propagating down the normal. The initial curve is called an "initial wave front" and the curve along which the the light tends to focus is called the "caustic". Focusing takes place where "nearby normals intersect" i.e. at the envelope of the family of rays. These are the points which are the loci of the centers of curvature of the curve, and the corresponding curve is called the evolute.
- We can let S be a hypersurface in n - dimensions, say a surface in three dimensions. We can consider a family of lines emanating from a point source (possible at infinity), and reflected by by S. The corresponding envelope is called the "caustic by reflection". In Descartes' famous theory of the rainbow he considered a family of parallel lines (light rays from the sun) which were refracted on entering a spherical raindrop, internally reflected by the opposite side and refracted again when exiting the raindrop. The corresponding "caustic" is the Descartes cone of 42 degrees.
- If S is a submanifold of \mathbf{R}^{n} we can consider the set of spheres of radius r centered at points of S. The corresponding envelope consist of "all points at distance r from S ". But this develops singularities past the radii of curvature. Again, from the Lagrangian or "upstaris" point of view there is no problem.

4.9 Pullback of Lagrangian submanifolds of the cotangent bundle.

We now investigate the contravariant functor which assigns to the smooth map $f: X_{1} \rightarrow X_{2}$ the canonical relation

$$
\Gamma_{f}^{\dagger}: \quad T^{*} X_{2} \rightarrow T^{*} X_{1} .
$$

As a subset of $T^{*}\left(X_{2}\right) \times T^{*}\left(X_{1}\right) m, \quad \Gamma_{f}^{\dagger}$ consists of all

$$
\begin{equation*}
(y, \eta, x, \xi) \mid y=f(x), \quad \text { and } \xi=d f_{x}^{*}(\eta) \tag{4.10}
\end{equation*}
$$

If B is a subset of $T^{*} X_{2}$ we can form $\Gamma_{f}^{\dagger}(B) \subset T^{*} X_{1}$ which we shall denote by $d f^{*}(B)$. So

$$
\begin{equation*}
d f^{*}(B):=\Gamma_{f}^{\dagger}(B)=\left\{(x, \xi) \mid \exists b=(y, \eta) \in B \text { with } f(x)=y, d f_{x}^{*} \eta=\xi\right\} . \tag{4.11}
\end{equation*}
$$

If $B=\Lambda$ is a Lagrangian submanifold, Once again we may apply Theorem 8 to obtain a sufficient condition for $d f^{*}(\Lambda)$ to be a Lagrangian submanifold of $T^{*} X_{1}$. Notice that in the description of Γ_{f}^{\dagger} given in (4.10), the η can vary freely in $T^{*}\left(X_{2}\right)_{f(x)}$. So the issue of clean or transverse inersection comes
down to the behavior of the first component. So, for example, we have the following theorem:

Theorem 16 Let $f: X_{1} \rightarrow X_{2}$ be a smooth map and Λ a Lagrangian submanifold of $T^{*} X_{2}$. If the maps f, and the restriction of the projection $\pi: T^{*} X_{2} \rightarrow X_{2}$ to Λ are transverse, then $d f^{*} \Lambda$ is a Lagrangian submanifold of $T^{*} X_{1}$.

Here are two examples of the theorem:

- Suppose that Λ is a horizontal Lagrangian submanifold of $T^{*} X_{2}$. This means that restriction of the projection $\pi: T^{*} X_{2} \rightarrow X_{2}$ to Λ is a diffeomorphism and so the transversality condition is satisfied for any f. Indeed, if $\Lambda=\Lambda_{\phi}$ for a smooth function ϕ on X_{2} then

$$
f^{*}\left(\Lambda_{\phi}\right)=\Lambda_{f^{*} \phi}
$$

- Suppose that $\Lambda=N^{*}(Y)$ is the normal bundle to a submanifold Y of X_{2}. The transversality condition becomes the condition that the map f is transversal to Y. Then $f^{-1}(Y)$ is a submanifold of X_{1}. If $x \in f^{-1}(Y)$ and $\xi=d f_{x}^{*} \eta$ with $(f(x), \eta) \in N^{*}(Y)$ then ξ vanishes when restricted to $T\left(f^{-1}(Y)\right)$, i.e. $(x, \xi) \in \mathcal{N}\left(f^{-1}(S)\right)$. More precisely, the transversality asserts that at each $x \in f^{-1}(Y)$ we have $d f_{x}\left(T\left(X_{1}\right)_{x}\right)+$ $T Y_{f(x)}=T\left(X_{2}\right)_{f(x)}$ so

$$
T\left(X_{1}\right)_{x} / T\left(f^{-1}(Y)\right)_{x} \cong T\left(X_{2}\right)_{f(x))} / T Y_{f(x)}
$$

and so we have an isomorphism of the dual spaces

$$
N_{x}^{*}\left(f^{-1}(Y)\right) \cong N^{*} f(x)(Y)
$$

In short, the pullback of $N^{*}(Y)$ is $N^{*}\left(f^{-1}(Y)\right)$.

Chapter 5

Generating functions.

In this chapter we continue the study of canonical relations between cotangent bundles. We begin by studying the canonical relation associated to a map in the special case when this map is a fibration. This will allow us to generalize the local description of a Lagrangian submanifold of $T^{*} X$ that we studied in Chapter 1. In Chapter 1 we showed that a horizontal Lagrangian submanifold of $T^{*} X$ is locally described as the set of all $d \phi(x)$ where $\phi \in C^{\infty}(X)$ and we called such a function a "generating function". The purpose of this chapter is to generalize this concept by introducing the notion of a generating function relative to a fibration.

5.1 Fibrations.

In this section we will study in more detail the canonical relation associated to a fibration. So let X and Z be manifolds and

$$
\pi: Z \rightarrow X
$$

a smooth fibration. Then

$$
\Gamma_{\pi} \in \operatorname{Morph}\left(T^{*} Z, T^{*} X\right)
$$

consists of all $(z, \xi, x, \eta) \in T^{*} Z \times T^{*} X$ such that

$$
x=\pi(z) \quad \text { and } \quad \xi=\left(d \pi_{z}\right)^{*} \eta
$$

Then

$$
\operatorname{pr}_{1}: \Gamma_{\pi} \rightarrow T^{*} Z, \quad(z, \xi, x, \eta) \mapsto(z, \xi)
$$

maps Γ_{π} bijectively onto the sub-bundle of $T^{*} Z$ consisting of those covectors which vanish on tangents to the fibers. We will call this sub-bundle the horizontal sub-bundle and denote it by $H^{*} Z$. So at each $z \in Z$, the fiber of the horizontal sub-bundle is

$$
H^{*}(Z)_{z}=\left\{\left(d \pi_{z}\right)^{*} \eta, \eta \in T_{\pi(z)}^{*} X\right\}
$$

Let Λ_{Z} be a Lagrangian submanifold of $T^{*} Z$ which we can also think of as an element of $\operatorname{Morph}\left(\mathrm{pt} ., T^{*} Z\right)$. We want to study the condition that Γ_{π} and Λ_{Z} be composible so that we be able to form

$$
\Gamma_{\pi}\left(\Lambda_{Z}\right)=\Gamma_{\pi} \circ \Lambda_{Z}
$$

which would then be a Lagrangian submanifold of $T^{*} X$. If $\iota: \Lambda_{Z} \rightarrow T^{*} Z$ denotes the inclusion map then the clean intersection part of the composibility condition requires that ι and pr_{1} intersect cleanly. This is the same as saying that Λ_{Z} and $H^{*} Z$ intersect cleanly in which case the intersection

$$
F:=\Lambda_{Z} \cap H^{*} Z
$$

is a smooth manifold and we get a smooth map $\kappa: F \rightarrow T^{*} X$. The remaining hypotheses of Theorem 10 require that this map be proper and have connected fibers.

A more restrictive condition is that intersection be transversal, i.e.that

$$
\Lambda_{Z} \bar{\pi} H^{*} Z
$$

in which case we always get a Lagrangian immersion

$$
F \rightarrow T^{*} X, \quad\left(z, d \pi_{z}^{*} \eta\right) \mapsto(\pi(z), \eta)
$$

The additional composibilty condition is that this be an embedding.
Let us specialize further to the case where Λ_{Z} is a horizontal Lagrangian submanifold of $T^{*} Z$. That is, we assume that

$$
\Lambda_{Z}=\Lambda_{\phi}=\gamma_{\phi}(Z)=\{(z, d \phi(z))\}
$$

as in Chapter 1. When is

$$
\Lambda_{\phi} \pi H^{*} Z ?
$$

Now $H^{*} Z$ is a subbundle of $T^{*} Z$ so we have the exact sequence of vector bundles

$$
\begin{equation*}
0 \rightarrow H^{*} Z \rightarrow T^{*} Z \rightarrow V^{*} Z \rightarrow 0 \tag{5.1}
\end{equation*}
$$

where

$$
\left(V^{*} Z\right)_{z}=T_{z}^{*} Z /\left(H^{*} Z\right)_{z}=T_{z}^{*}\left(\pi^{-1}(x)\right), \quad x=\pi(x)
$$

is the cotangent space to the fiber through z.
Any section $d \phi$ of $T^{*} Z$ gives a section $d_{v e r t} \phi$ of $V^{*} Z$ by the above exact sequence, and $\Lambda_{\phi} \pi H^{*} Z$ if and only if this section intersects the zero section of V^{*} transversally. If this happens,

$$
C_{\phi}:=\left\{z \in Z \mid\left(d_{v e r t} \phi\right)_{z}=0\right\}
$$

is a submanifold of Z whose dimension is $\operatorname{dim} X$. Furthermore, at any $z \in C_{\phi}$

$$
d \phi_{z}=\left(d \pi_{z}\right)^{*} \eta \quad \text { for a unique } \quad \eta \in T_{\pi(z)}^{*} X
$$

Thus Λ_{ϕ} and Γ_{π} are transversally composible if and only if

$$
C_{\phi} \rightarrow T^{*} X, \quad z \mapsto(\pi(z), \eta)
$$

is a Lagrangian embedding in which case its image is a Lagrangian submanifold

$$
\Lambda=\Gamma_{\pi}\left(\Lambda_{\phi}\right)=\Gamma_{\pi} \circ \Lambda_{\phi}
$$

of $T^{*} X$. When this happens we say that ϕ is a a transverse generating function of Λ with respect to the fibration (Z, π).

If Λ_{ϕ} and Γ_{π} are merely cleanly composible, we say that ϕ is a clean generating function with respect to π.

If ϕ is a transverse generating function for Λ with respect to the fibration, π, and $\pi_{1}: Z_{1} \rightarrow Z$ is a fibration over Z, then its easy to see that $\phi_{1}=\pi_{1}^{*} \phi$ is a clean generating function for Λ with respect to the fibration, $\pi \circ \pi_{1}$; and we will show in the next section that there is a converse result: Locally every clean generating can be obtained in this way from a transverse generating function. For this reason it will suffice, for most of the things we'll be doing in this chapter, to work with transverse generating functions; and to simplify notation, we will henceforth, unless otherwise stated, use the terms "generating function" and "transverse generating function" interchangeably.

5.1.1 Transverse vs. clean generating functions.

Locally we can assume that Z is the product, $X \times S$, of X with an open subset, S, of \mathbb{R}^{k}. Then $H^{*} Z$ is defined by the equations, $\eta_{1}=\cdots=\eta_{k}=0$, where the η_{i} 's are the standard cotangent coordinates on $T^{*} S$; so $\Lambda_{\phi} \cap H^{*} Z$ is defined by the equations

$$
\frac{\partial \phi}{\partial s_{i}}=0, \quad i=1, \ldots, k
$$

Let C_{ϕ} be the subset of $X \times S$ defined by these equations. Then if Λ_{ϕ} intersects $H^{*} Z$ cleanly, C_{ϕ} is a submanifold of $X \times S$ of codimension. $r \leq k$; and, at every point, $\left(x_{0}, s_{0}\right) \in C_{\phi}, C_{\phi}$ can be defined locally near $\left(x_{0}, s_{0}\right)$ by r of these equations, i.e., modulo repagination, by the equations

$$
\frac{\partial \phi}{\partial s_{i}}=0, \quad i=1, \ldots, r
$$

Moreover these equations have to be non-degenerate: the tangent space at $\left(x_{0}, s_{0}\right)$ to C_{ϕ} has to be defined by the equations

$$
d\left(\frac{\partial \phi}{\partial s_{i}}\right)_{\left(x_{0} \xi_{0}\right)}=0, \quad i=1, \ldots, r
$$

Suppose $r<k$ (i.e., suppose this clean intersection is not transverse). Since $\partial \phi / \partial s_{k}$ vanishes on C_{ϕ}, there exist C^{∞} functions, $g_{i} \in C^{\infty}(X \times S), i=$
$1, \ldots, r$ such that

$$
\frac{\partial \phi}{\partial s_{k}}=\sum_{i=1}^{r} g_{i} \frac{\partial \phi}{\partial s_{i}}
$$

In other words, if ν is the vertical vector field

$$
\nu=\frac{\partial}{\partial s_{k}}-\sum_{i=1}^{r} g_{i}(x, s) \frac{\partial}{\partial s_{i}}
$$

then $L_{\nu} \phi=0$. Therefore if we make a change of vertical coordinates

$$
\left(s_{i}\right)_{\text {new }}=\left(s_{i}\right)_{\text {new }}(x, s)
$$

so that in these new coordinates

$$
\nu=\frac{\partial}{\partial s_{k}}
$$

this equation reduces to

$$
\frac{\partial}{\partial s_{k}} \phi(x, s)=0
$$

so, in these new coordinates,

$$
\phi(x, s)=\phi\left(x, s_{1}, \ldots, s_{k-1}\right) .
$$

Iterating this argument we can reduce the number of vertical coordinates so that $k=r$, i.e., so that ϕ is a transverse generating function in these new coordinates. In other words, a clean generating function is just a transverse generating function to which a certain number of vertical "ghost variables" ("ghost" meaning that the function doesn't depend on these variables) have been added. The number of these ghost variables is called the excess of the generating function. (Thus for the generating function in the paragraph above, its excess is $k-r$.) More intrinsically the excess is the difference between the dimension of the critical set C_{ϕ} of ϕ and the dimension of X.

5.2 The generating function in local coordinates.

Suppose that X is an open subset of \mathbb{R}^{n}, that

$$
Z=X \times \mathbb{R}^{k}
$$

that π is projection onto the first factor, and that (x, s) are coordinates on Z so that $\phi=\phi(x, s)$. Then $C_{\phi} \subset Z$ is defined by the k equations

$$
\frac{\partial \phi}{\partial s_{i}}=0, \quad i=1, \ldots, k
$$

and the transversality condition is that these equations be functionally independent. This amounts to the hypothesis that their differentials

$$
d\left(\frac{\partial \phi}{\partial s_{i}}\right) \quad i=1, \ldots k
$$

be linearly independent. Then $\Lambda \subset T^{*} X$ is the image of the embedding

$$
C_{\phi} \rightarrow T^{*} X, \quad(x, s) \mapsto \frac{\partial \phi}{\partial x}=d_{X} \phi(x, s) .
$$

Example - a generating function for a conormal bundle. Suppose that

$$
Y \subset X
$$

is a submanifold defined by the k functionally independent equations

$$
f_{1}(x)=\cdots=f_{k}(x)=0 .
$$

Let $\phi: X \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ be the function

$$
\begin{equation*}
\phi(x, s):=\sum_{i} f_{i}(x) s_{i} . \tag{5.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\Lambda=\Gamma_{\pi} \circ \Lambda_{\phi}=N^{*} Y, \tag{5.3}
\end{equation*}
$$

the conormal bundle of Y. Indeed,

$$
\frac{\partial \phi}{\partial s_{i}}=f_{i}
$$

so

$$
C_{\phi}=Y \times \mathbb{R}^{k}
$$

and the map

$$
C_{\phi} \rightarrow T^{*} X
$$

is given by

$$
\left.(x, s) \mapsto \sum s_{i} d_{X} f_{(} x\right)
$$

The differentials $d_{X} f_{x}$ span the conormal bundle to Y at each $x \in Y$ proving (5.3). As a special case of this example, suppose that

$$
X=\mathbb{R}^{n} \times \mathbb{R}^{n}
$$

and that Y is the diagonal

$$
\operatorname{diag}(X)=\{(x, x)\} \subset X
$$

which may be described as the set of all $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ satisfying

$$
x_{i}-y_{i}=0, \quad 1=1, \ldots, n
$$

We may then choose

$$
\begin{equation*}
\phi(x, y, s)=\sum_{i}\left(x_{i}-y_{i}\right) s_{i} \tag{5.4}
\end{equation*}
$$

Now $\operatorname{diag}(X)$ is just the graph of the identity transformation so by Section 4.7 we know that $\varsigma_{1} \times \operatorname{id}\left(N^{*}(\operatorname{diag}(X))\right.$ is the canonical relation giving the identity map on $T^{*} X$. By abuse of language we can speak of ϕ as the generating function of the identity canonical relation. (But we must remember the ς_{1}.)

5.3 Example. The generating function of a geodesic flow.

A special case of our generating functions with respect to a fibration is when the fibration is trivial, i.e. π is a diffeomorphism. Then the vertical bundle is trivial and we have no "auxiliary variables". Such a generating function is just a generating function in the sense of Chapter 1. For example, let $X=\mathbb{R}^{n}$ and let $\phi_{t} \in C^{\infty}(X \times X)$ be defined by

$$
\begin{equation*}
\phi_{t}(x, y):=\frac{1}{2 t} d(x, y)^{2} \tag{5.5}
\end{equation*}
$$

where

$$
t \neq 0
$$

Let us compute Λ_{ϕ} and $\left(\varsigma_{1} \times \mathrm{id}\right)\left(\Lambda_{\phi}\right)$. We first do do this computation under the assumption that the metric occurring in (5.5) is the Euclidean metric so that

$$
\begin{aligned}
\phi(x, y, t) & =\frac{1}{2 t} \sum_{i}\left(x_{i}-y_{y}\right)^{2} \\
\frac{\partial \phi}{\partial x_{i}} & =\frac{1}{t}\left(x_{i}-y_{i}\right) \\
\frac{\partial \phi}{\partial y_{i}} & =\frac{1}{t}\left(y_{i}-x_{i}\right) \text { so } \\
\Lambda_{\phi} & =\left\{\left(x, \frac{1}{t}(x-y), y, \frac{1}{t}(y-x)\right\}\right. \text { and } \\
\left(\varsigma_{1} \times \operatorname{id}\right)\left(\Lambda_{\phi}\right) & =\left\{\left(x, \frac{1}{t}(y-x), y, \frac{1}{t}(y-x)\right\}\right.
\end{aligned}
$$

In this last equation let us set $y-x=t \xi$, i.e.

$$
\xi=\frac{1}{t}(y-x)
$$

which is possible since $t \neq 0$. Then

$$
\left(\varsigma_{1} \times \mathrm{id}\right)\left(\Lambda_{\phi}\right)=\{(x, \xi, x+t \xi, \xi)\}
$$

which is the graph of the symplectic map

$$
(x, \xi) \mapsto(x, x+t \xi)
$$

If we identify cotangent vectors with tangent vectors (using the Eulidean metric) then $x+t \xi$ is the point along the line passing through x with tangent vector ξ a distance $t\|\xi\|$ out. The one parameter family of maps $(x, \xi) \mapsto$ $(x, x+t \xi)$ is known as the geodesic flow. In the Euclidean space, the time t value of this flow is a diffeomorphism of $T^{*} X$ with itself for every t. So long as $t \neq 0$ it has the generating function given by (5.5) with no need of auxiliary variables. When $t=0$ the map is the identity and we need to introduce a fibration.

More generally, this same computation works on any geodesically convex Riemannian manifold:

A Riemannian manifold is called geodesically convex if, given any two points x and y in X there is a unique geodesic which joins them. We will show that the above computation of the generating function works for any geodesically convex Riemannian manifold. In fact, we will prove a more general result. Recall that geodesics on a Riemannian manifold can be described as follows: A Riemann metric on a manifold X is the same as a scalar on each tangent space $T_{x} X$ which varies smoothly with X. This induces an identification of $T X$ with $T^{*} X$ an hence a scalar product \langle,\rangle_{x} on each $T^{*} X$. This in turn induces the "kinetic energy" Hamltonian

$$
H(x, \xi):=\frac{1}{2}\langle\xi, \xi\rangle_{x}
$$

The principle of least action says that the solution curves of the corresponding vector field v_{H} project under $\pi: T^{*} X \rightarrow X$ to geodesics of X and every geodesic is the projection of such a trajectory. An important property of the kinetic energy Hamilonian is that it is quadratic of degree two in the fiber variables. We will prove a theorem (see Theorem ?? below) which generalizes the above computation and is valid for any Hamiltonian which is homogeneous of degree $k \neq 1$ in the fiber variables and which satisfies a condition analogous to the geodesic convexity theorem. We first recall some facts about homogeneous functions and Euler's theorem.

Consider the one parameter group of dilatations $t \mapsto \mathfrak{d}(t)$:

$$
\mathfrak{d}(t): T^{*} X \rightarrow T^{*} X: \quad(x, \xi) \mapsto\left(x, e^{t} \xi\right)
$$

A function f is homogenous of degree k in the fiber variables if and only if

$$
\mathfrak{d}(t)^{*} f=e^{k t} f
$$

For example, the principal symbol of a k-th order linear partial differential operator on X is a function on $T^{*} X$ with which is a polynomial in the fiber variables and is homogenous of degree k. Let \mathcal{E} denote the vector field which is the infinitesimal generator of the one parameter group of dilatations. It is called the Euler vector field. Euler's theorem (which is a direct computation from the preceding equation) says that f is homogenous of degree k if and only if

$$
\mathcal{E} f=k f
$$

Let $\alpha=\alpha_{X}$ be the canonical one form on $T^{*} X$. From its very definition (1.8) it follows that

$$
\mathfrak{d}(t)^{*} \alpha=e^{t} \alpha
$$

and hence that

$$
D_{\mathcal{E}} \alpha=\alpha
$$

Since \mathcal{E} is everywhere tangent to the fiber, it also follows from (1.8) that

$$
i(\mathcal{E}) \alpha=0
$$

and hence that

$$
D_{\mathcal{E}} \alpha=i(\mathcal{E}) d \alpha=-i(\mathcal{E}) \omega
$$

where $\omega=\omega_{X}=-d \alpha$.
Now let H be a function on $T^{*} X$ which is homogeneous of degree k in the fiber variables. Then

$$
\begin{aligned}
k H=\mathcal{E} H & =i(\mathcal{E}) d H \\
& =i(\mathcal{E}) i\left(v_{H}\right) \omega \\
& =-i\left(v_{H}\right) i(\mathcal{E}) \omega \\
& =i\left(v_{H}\right) \alpha \text { so } \\
\left(\exp v_{H}\right)^{*} \alpha-\alpha & =\int_{0}^{1} \frac{d}{d t}\left(\exp t v_{H}\right)^{*} \alpha d t \text { and } \\
\frac{d}{d t}\left(\exp t v_{H}\right)^{*} \alpha & =\left(\exp t v_{H}\right)^{*}\left(i\left(v_{H}\right) d \alpha+d i\left(v_{H}\right) \alpha\right) \\
& =\left(\exp t v_{H}\right)^{*}\left(-i\left(v_{H}\right) \omega+d i\left(v_{H}\right) \alpha\right) \\
& =\left(\exp t v_{H}\right)^{*}(-d H+k d H) \\
& =(k-1)\left(\exp t v_{H}\right)^{*} d H \\
& =(k-1) d\left(\exp t v_{H}\right)^{*} H \\
& =(k-1) d H
\end{aligned}
$$

since H is constant along the trajectories of v_{H}. So

$$
\begin{equation*}
\left(\exp t v_{H}\right)^{*} \alpha-\alpha=(k-1) d H \tag{5.6}
\end{equation*}
$$

Remark. In the above calculation we assumed that H was smooth on all of $T^{*} X$ including the zero section, effectively implying that H is a polynomial in the fiber variables. But the same argument will go through (if $k>0$) if all we assume is that H (and hence v_{H}) are defined on $T^{*} X \backslash$ the zero section, in which case H can be a more general homogeneous function on $T^{*} X \backslash$ the zero section.

Now $\exp v_{H}: T^{*} X \rightarrow T^{*} X$ is symplectic map, and let

$$
\Gamma:=\operatorname{graph}\left(\exp v_{H}\right)
$$

so $\Gamma \subset T^{*} X^{-} \times T^{*} X$ is a Lagrangian submanifold. Suppose that the projection $\pi_{X \times X}$ of Γ onto $X \times X$ is a diffeomorphism, i.e. suppose that Γ is horizontal. This says precisely that for every $(x, y) \in X \times X$ there is a unique $\xi \in T_{x}^{*} X$ such that

$$
\pi \exp v_{H}(x, \xi)=y
$$

In the case of the geodesic flow, this is guaranteed by the condition of geodesic convexity.

Since Γ is horizontal, it has a generating function ϕ such that

$$
d \phi=\operatorname{pr}_{2}^{*} \alpha-\operatorname{pr}_{1}^{*} \alpha
$$

where $\mathrm{pr}_{i}, \quad i=1,2$ are the projections of $T^{*}(X \times X)=T^{*} X \times T^{*} X$ onto the first and second factors. On the other hand pr_{1} is a diffeomorphism of Γ onto $T^{*} X$. So

$$
\operatorname{pr}_{1} \circ\left(\pi_{X \times X \mid \Lambda}\right)^{-1}
$$

is a diffeomorphism of $X \times X$ with $T^{*} X$.
Theorem 17 Under the above hypotheses, then up to an additive constant we have

$$
\left(\operatorname{pr}_{1} \circ\left(\pi_{X \times X \mid \Lambda}\right)^{-1}\right)^{*}[(k-1) H]=\phi
$$

Indeed, this follows immediately from(5.6). An immediate corollary is that (5.5) is the generating function for the time t flow on a geodesically convex Riemmanian manifold.

As mentioned in the above remark, the same theorem will hold if H is only defined on $T^{*} \backslash\{0\}$ and the same hypotheses hold with $X \times X$ relpace by $X \times X \backslash \Delta$.

5.4 The generating function for the transpose.

Let

$$
\Gamma \in \operatorname{Morph}\left(T^{*} X, T^{*} Y\right)
$$

Victor: Is this theorem vacuous when $k \neq 2$?. For example, if $k=1$ then v_{H} is the lift of a vector field v on X and so the hypotheses are never satisfied.
be a canonical relation, let

$$
\pi: Z \rightarrow X \times Y
$$

be a fibration and ϕ a generating function for Γ relative to this fibration. In local coordinates this says that $Z=X \times Y \times S$, that

$$
C_{\phi}=\left\{(x, y, s) \left\lvert\, \frac{\partial \phi}{\partial s}=0\right.\right\},
$$

and that Γ is the image of C_{ϕ} under the map

$$
(x, y, s) \mapsto\left(-d_{X} \phi, d_{Y} \phi\right)
$$

Recall that

$$
\Gamma^{\dagger} \in \operatorname{Morph}\left(T^{*} Y, T^{*} X\right)
$$

is given by the set of all $\left(\gamma_{2}, \gamma_{1}\right)$ such that $\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma$. So if

$$
\kappa: X \times Y \rightarrow Y \times X
$$

denotes the transposition

$$
\kappa(x, y)=(y, x)
$$

then

$$
\kappa \circ \pi: Z \rightarrow Y \times X
$$

is a fibration and $-\phi$ is a generating function for Γ^{\dagger} relative to $\kappa \circ \pi$. Put more succinctly, if $\phi(x, y, s)$ is a generating function for Γ then

$$
\begin{equation*}
\psi(y, x, s)=-\phi(x, y, s) \text { is a generating function for } \Gamma^{\dagger} . \tag{5.7}
\end{equation*}
$$

For example, if Γ is the graph of a symplectomorphism, then Γ^{\dagger} is the graph of the inverse diffeomorphism. So (5.7) says that $-\phi(y, x, s)$ generates the inverse of the symplectomorphism generated by $\phi(x, y, s)$.

This suggests that there should be a simple formula which gives a generating function for the composition of two canonical relations in terms of the generating function of each. This was one of Hamilton's great achievements - that, in a suitable sense to be described in the next section - the generating function for the composition is the sum of the individual generating functions.

5.5 Transverse composition of canonical relations between cotangent bundles.

Let X_{1}, X_{2} and X_{3} be manifolds and

$$
\Gamma_{1} \in \operatorname{Morph}\left(T^{*} X_{1}, T^{*} X_{2}\right), \quad \Gamma_{2} \in \operatorname{Morph}\left(T^{*} X_{2}, T^{*} X_{3}\right)
$$

5.5. TRANSVERSE COMPOSITION OF CANONICAL RELATIONS BETWEEN COTANGENT BUNDLES. 79

be canonical relations which are transversally composible. So we are assuming in particular that the maps

$$
\Gamma_{1} \rightarrow T^{*} X_{2}, \quad\left(p_{1}, p_{2}\right) \mapsto p_{2} \quad \text { and } \quad \Gamma_{2} \rightarrow T^{*} X_{2}, \quad\left(q_{2}, q_{3}\right) \mapsto q_{2}
$$

are transverse.
Suppose that

$$
\pi_{1}: Z_{1} \rightarrow X_{1} \times X_{2}, \quad \pi: Z_{2} \rightarrow X_{2} \times X_{3}
$$

are fibrations and that $\phi_{i} \in C^{\infty}\left(Z_{i}\right), i=1,2$ are generating functions for Γ_{i} with respect to π_{i}.

From π_{1} and π_{2} we get a map

$$
\pi_{1} \times \pi_{2}: Z_{1} \times Z_{2} \rightarrow X_{1} \times X_{2} \times X_{2} \times X_{3}
$$

Let

$$
\Delta_{2} \subset X_{2} \times X_{2}
$$

be the diagonal and let

$$
Z:=\left(\pi_{1} \times \pi_{2}\right)^{-1}\left(X_{1} \times \Delta_{2} \times X_{3}\right)
$$

Finally, let

$$
\pi: Z \rightarrow X_{1} \times X_{3}
$$

be the fibration

$$
Z \rightarrow Z_{1} \times Z_{2} \rightarrow X_{1} \times X_{2} \times X_{2} \times X_{3} \rightarrow X_{1} \times X_{3}
$$

where the first map is the inclusion map and the last map is projection onto the first and last components. Let

$$
\phi: Z \rightarrow \mathbb{R}
$$

be the restriction to Z of the function

$$
\left(z_{1}, z_{2}\right) \mapsto \phi_{1}\left(z_{1}\right)+\phi_{2}\left(z_{2}\right)
$$

Theorem 18ϕ is a generating function for $\Gamma_{2} \circ \Gamma_{1}$ with respect to the fibration π.

Proof. We may check this in local coordinates where the fibrations are trivial to that

$$
Z_{1}=X_{1} \times X_{2} \times S, \quad Z_{2}=X_{2} \times X_{3} \times T
$$

so

$$
Z=X_{1} \times X_{3} \times\left(X_{2} \times S \times T\right)
$$

and π is the projection of Z onto $X_{1} \times X_{3}$. Notice that X_{2} has now become a factor in the parameter space. The function ϕ is given by

$$
\phi\left(x_{1}, x_{3}, x_{2}, s, t\right)=\phi_{1}\left(x_{1}, x_{2}, s\right)+\phi_{2}\left(x_{2}, x_{3}, t\right)
$$

Then for $z=\left(x_{1}, x_{3}, x_{2}, s, t\right)$ to belong to C_{ϕ} the following three conditions must be satisfied:

1. $\frac{\partial \phi_{1}}{\partial s}\left(x_{1}, x_{2}, s\right)=0$, i.e. $z_{1}=\left(x_{1}, x_{2}, s\right) \in C_{\phi_{1}}$.
2. $\frac{\partial \phi_{2}}{\partial t}=0$, i.e. $z_{2}=\left(x_{2}, x_{3}, t\right) \in C_{\phi_{2}}$ and
3.

$$
\frac{\partial \phi_{1}}{\partial x_{2}}\left(x_{1}, x_{2}, s\right)+\frac{\partial \phi_{2}}{\partial x_{2}}\left(x_{2}, x_{3}, t\right)=0
$$

Conditions 1) and 2) are clearly independent of one another and of 3). We are assuming that

$$
\gamma_{1}: C_{\phi_{1}} \rightarrow T^{*}\left(X_{1} \times X_{2}\right) \quad z_{1} \mapsto\left(-\frac{\partial \phi_{1}}{\partial x_{1}}, \frac{\partial \phi_{1}}{\partial x_{2}}\right)
$$

is an embedding and a diffeomorphism of $C_{\phi_{1}}$ with Γ_{1} and that

$$
\gamma_{2}: C_{\phi_{1}} \rightarrow T^{*}\left(X_{2} \times X_{3}\right) \quad z_{2} \mapsto\left(-\frac{\partial \phi_{2}}{\partial x_{2}}, \frac{\partial \phi_{2}}{\partial x_{3}}\right)
$$

is an embedding and a diffeomorphism of $C_{\phi_{2}}$ with Γ_{2}. We are also assuming that the projection

$$
\Gamma_{1} \times \Gamma_{2} \rightarrow T^{*} X_{2} \times T^{*} X_{2}
$$

intersects the diagonal transversally. So the map

$$
\left(\frac{\partial \phi_{1}}{\partial x_{2}},-\frac{\partial \phi_{2}}{\partial x_{2}}\right): C_{\phi_{1}} \times C_{\phi_{2}} \rightarrow T^{*} X_{2} \times T^{*} X_{2}
$$

intersects the diagonal transversally and this is precisely the independence requirement on condition 3). The transverse composibility of Γ_{2} and Γ_{1} says that the map

$$
C_{\phi} \rightarrow T^{*} X_{1} \times T^{*} X_{3}, \quad z \mapsto\left(-\frac{\partial \phi}{\partial x_{1}}, \frac{\partial \phi}{\partial x_{3}}\right)
$$

is a Lagrangian embedding which, by definition has its image $\Gamma_{2} \circ \Gamma_{1}$.
In the next section we will show that the arguments given above apply, essentially without change, to clean generating functions, since, as we saw in Section 5.1.1, clean generating functions are just transverse generating functions to which a number of vertical "ghost variables" have been added.

5.6 Clean composition of canonical relations between cotangent bundles.

Suppose that the canonical relation, Γ_{1} and Γ_{η} are cleanly composible. Let $\phi_{1} \in C^{\infty}\left(X_{1} \times X_{2} \times S\right)$ and $\phi_{2} \in C^{\infty}\left(X_{2} \times X_{3} \times T\right)$ be transverse generating functions for Γ_{1} and Γ_{2} and as above let

$$
\phi\left(x_{1}, x_{3}, x_{2}, s, t\right)=\phi_{1}\left(x_{1}, x_{2}, s\right)+\phi_{2}\left(x_{2}, x_{3}, t\right)
$$

We will prove below that ϕ is a clean generating function for $\Gamma_{2} \circ \Gamma_{1}$ with respect to the fibration

$$
X_{1} \times X_{3} x\left(X_{2} \times S \times T\right) \rightarrow X_{1} \times X_{3}
$$

The argument is similar to that above: As above C_{ϕ} is defined by the three sets of equations:

1. $\frac{\partial \phi_{1}}{\partial s}=0$
2. $\frac{\partial \phi_{2}}{\partial t}=0$
3. $\frac{\partial \phi_{1}}{\partial x_{2}}+\frac{\partial \phi_{2}}{\partial x_{2}}=0$.

Since ϕ_{1} and ϕ_{2} are transverse generating functions the equations 1 and 2 are an independent set of defining equations for $C_{\phi_{1}} \times C_{\phi_{2}}$. As for the equation 3, our assumption that Γ_{1} and Γ_{2} compose cleanly tells us that the mappings

$$
\frac{\partial \phi_{1}}{\partial x_{2}}: C_{\phi_{1}} \rightarrow T^{*} X_{2}
$$

and

$$
\frac{\partial \phi_{2}}{\partial x_{2}}: C_{\phi_{2}} \rightarrow T^{*} X_{2}
$$

intersect cleanly. In other words the subset, C_{ϕ}, of $C_{\phi_{1}} \times C_{\phi_{2}}$ defined by the equation, $\frac{\partial \phi}{\partial x_{2}}=0$, is a submanifold of $C \phi_{1} \times C \phi_{2}$, and its tangent space at each point is defined by the linear equation, $d \frac{\partial \phi}{\partial x_{2}}=0$. Thus the set of equations, $1-3$, are a clean set of defining equations for C_{ϕ} as a submanifold of $X_{1} \times X_{3} \times\left(X_{2} \times S \times T\right)$. In other words ϕ is a clean generating function for $\Gamma_{2} \circ \Gamma_{1}$.

The excess, ϵ, of this generating function is equal to the dimension of C_{ϕ} minus the dimension of $X_{1} \times X_{3}$. One also gets a more intrinsic description of ϵ in terms of the projections of T_{1} and T_{2} onto $T^{*} X_{2}$. From these projections one gets a map

$$
\Gamma_{1} \times \Gamma_{2} \rightarrow T^{*}\left(X_{2} \times X_{2}\right)
$$

which, by the cleanness assumption, intersects the conormal bundle of the diagonal cleanly; so its pre-image is a submanifold, $\Gamma_{2} \star \Gamma_{1}$, of $\Gamma_{1} \times \Gamma_{2}$. It's easy to see that

$$
\epsilon=\operatorname{dim} \Gamma_{2} \star \Gamma_{1}-\operatorname{dim} \Gamma_{2} \circ \Gamma_{1}
$$

5.7 Reducing the number of fiber variables.

Let $\Lambda \subset T^{*} X$ be a Lagrangian manifold and let $\Phi \in C^{\infty}(Z)$ be a generating function for Λ relative to a fibration $\pi: Z \rightarrow X$. Let

$$
x_{0} \in X
$$

let

$$
Z_{0}:=\pi^{-1}\left(x_{0}\right)
$$

and let

$$
\iota_{0}: Z_{0} \rightarrow Z
$$

be the inclusion of the fiber Z_{0} into Z. By definition, a point $z_{0} \in Z_{0}$ belongs to C_{ϕ} if and only if z_{0} is a critical point of the restriction $\iota_{0}^{*} \phi$ of ϕ to Z_{0}.

Theorem 19 If z_{0} is a non-degenerate critical point of $\iota_{0}^{*} \phi$ then Λ is horizontal at

$$
p_{0}=\left(x_{0}, \xi_{0}\right)=\frac{\partial \phi}{\partial x}\left(z_{0}\right)
$$

Moreover, there exists an neighborhood U of x_{0} in X and a function $\psi \in$ $C^{\infty}(U)$ such that

$$
\Lambda=\Lambda_{\psi}
$$

on a neighborhood of p_{0} and

$$
\pi^{*} \psi=\phi
$$

on a neighborhood U^{\prime} of z_{0} in C_{ϕ}.
Proof. (In local coordinates.) So $Z=X \times \mathbb{R}^{k}, \phi=\phi(x, s)$ and C_{ϕ} is defined by the k independent equations

$$
\begin{equation*}
\frac{\partial \phi}{\partial s_{i}}=0, \quad i=1, \ldots k \tag{5.8}
\end{equation*}
$$

Let $z_{0}=\left(x_{0}, s_{0}\right)$ so that s_{0} is a non-degenerate critical point of $\iota_{0}^{*} \phi$ which is the function

$$
s \mapsto \phi\left(x_{0}, s\right)
$$

if and only if the Hessian matrix

$$
\left(\frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}}\right)
$$

is of rank k. By the implicit function theorem we can solve equations (5.8) for s in terms of x near $\left(x_{0}, s_{0}\right)$. This says that we can find a neighborhood U of x_{0} in X and a C^{∞} map

$$
g: U \rightarrow \mathbb{R}^{k}
$$

such that

$$
g(x)=s \Leftrightarrow \frac{\partial \phi}{\partial s_{i}}=0, i=1, \ldots, k
$$

if (x, s) is in a neighborhood of $\left(x_{0}, s_{0}\right.$ in Z. So the map

$$
\gamma: U \rightarrow U \times \mathbb{R}^{k}, \quad \gamma(x)=(x, g(x))
$$

maps U diffeomorphically onto a neighborhood of $\left(x_{0}, s_{0}\right)$ in C_{ϕ}. Consider the commutative diagram

where the left vertical arrow is inclusion and π_{X} is the restriction to Λ of the projection $T^{*} X \rightarrow X$. From this diagram it is clear that the restriction of π to the image of U in C_{ϕ} is a diffeomorphism and that Λ is horizontal at p_{0}. Also

$$
\mu:=d \phi \circ \gamma
$$

is a section of Λ over U. Let

$$
\psi:=\gamma^{*} \phi
$$

Then

$$
\mu=d_{X} \phi \circ \gamma=d_{X} \phi \circ \gamma+d_{S} \phi \circ \gamma=d \phi \circ \gamma
$$

since $d_{S} \phi \circ \gamma \equiv 0$. Also, if $v \in T_{x} X$ for $x \in U$, then

$$
d \psi_{x}(v)=d \phi_{\gamma(x)}\left(d \gamma_{x}(v)\right)=d \phi_{\gamma(x)}\left(v, d g_{x}(v)\right)=d_{X} \phi \circ \gamma(v)
$$

so

$$
\langle\mu(x), v\rangle=\left\langle d \psi_{x}, v\right\rangle
$$

so

$$
\Lambda=\Lambda_{\psi}
$$

over U and from $\pi: Z \rightarrow X$ and $\gamma \circ \pi=$ id on $\gamma(U) \subset C_{\phi}$ we have

$$
\pi^{*} \psi=\pi^{*} \gamma^{*} \phi=(\gamma \circ \pi)^{*} \phi=\phi
$$

on $\gamma(U)$.
We can apply the proof of this theorem to the following situation: Suppose that the fibration

$$
\pi: Z \rightarrow X
$$

can be factored as a succession of fibrations

$$
\pi=\pi_{1} \circ \pi_{0}
$$

where

$$
\pi_{0}: Z \rightarrow Z_{1} \quad \text { and } \quad \pi_{1}: Z_{1} \rightarrow X
$$

are fibrations. Moreover, suppose that the restriction of ϕ to each fiber

$$
\pi_{0}^{-1}\left(z_{1}\right)
$$

has a unique non-degenerate critical point $\gamma\left(z_{1}\right)$. The map

$$
z_{1} \mapsto \gamma\left(z_{1}\right)
$$

defines a smooth section

$$
\gamma: Z_{1} \rightarrow Z
$$

of π_{0}. Let

$$
\phi_{1}:=\gamma^{*} \phi
$$

Theorem $20 \phi_{1}$ is a generating function for Λ with respect to π_{1}.
Proof. (Again in local coordinates.) We may assume that

$$
Z=X \times S \times T
$$

and

$$
\pi(x, s, t)=x, \quad \pi_{0}(x, s, t)=(x, s), \quad \pi_{1}(x, s)=x
$$

The condition for (x, s, t) to belong to C_{ϕ} is that

$$
\frac{\partial \phi}{\partial s}=0
$$

and

$$
\frac{\partial \phi}{\partial t}=0
$$

This last condition has a unique solution giving t as a smooth function of (x, s) by our non-degeneracy condition, and from the definition of ϕ_{1} it follows that $(x, s) \in C_{\phi_{1}}$ if and only if $\gamma(x, s) \in C_{\phi}$. Furthermore

$$
d_{X} \phi_{1}(x, s)=d_{X} \phi(x, s, t)
$$

along $\gamma\left(C_{\phi_{1}}\right)$.
For instance, suppose that $Z=X \times \mathbb{R}^{k}$ and $\phi=\phi(x, s)$ so that $z_{0}=$ $\left(x_{0}, s_{0}\right) \in C_{\phi}$ if and only if

$$
\frac{\partial \phi}{\partial s_{i}}\left(x_{0}, s_{0}\right)=0, \quad i=1, \ldots, k
$$

Suppose that the matrix

$$
\left(\frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}}\right)
$$

is of rank r, for some $0<r \leq k$. By a linear change of coordinates we can arrange that the upper left hand corner

$$
\left(\frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}}\right), \quad 1 \leq i, j, \leq r
$$

is non-degenerate. We can apply Theorem 20 to the fibration

$$
\begin{aligned}
X \times \mathbb{R}^{k} & \rightarrow X \times \mathbb{R}^{\ell}, \quad \ell=k-r \\
\left(x, s_{1}, \ldots s_{k}\right) & \mapsto\left(x, t_{1}, \ldots, t_{\ell}\right), \quad t_{i}=s_{i+r}
\end{aligned}
$$

to obtain a generating function $\phi_{1}(x, t)$ for Λ relative to the fibration

$$
X \times \mathbb{R}^{\ell} \rightarrow X
$$

Thus by reducing the number of variables we can assume that at $z_{0}=\left(x_{0}, t_{0}\right)$

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial t_{i} \partial t_{j}}\left(x_{0}, t_{0}\right)=0, \quad i, j=1, \ldots, \ell \tag{5.9}
\end{equation*}
$$

A generating function satisfying this condition will be said to be reduced at $\left(x_{0}, t_{0}\right)$.

5.8 The existence of generating functions.

In this section we will show that every Lagrangian submanifold of $T^{*} X$ can be described locally by a generating function ϕ relative to some fibration $Z \rightarrow X$.

So let $\Lambda \subset T^{*} X$ be a Lagrangian submanifold and let $p_{0}=\left(x_{0}, \xi_{0}\right) \in \Lambda$. To simplify the discussion let us temporarily make the assumption that

$$
\begin{equation*}
\xi_{0} \neq 0 \tag{5.10}
\end{equation*}
$$

If Λ is horizontal at p_{0} then we know from Chapter 1 that there is a generating function for Λ near p_{0} with the trivial (i.e. no) fibration. If Λ is not horizontal at p_{0}, we can find a Lagrangian subspace

$$
V_{1} \subset T_{p_{0}}\left(T^{*} X\right)
$$

which is horizontal and transverse to $T_{p_{0}}(\Lambda)$. Let Λ_{1} be a Lagrangian submanifold passing throuigh p_{0} and whose tangent space at p_{0} is V_{1}. So Λ_{1} is a horizontal Lagrangian submanifold and

$$
\Lambda_{1} \bar{\pi} \Lambda=\left\{p_{0}\right\}
$$

In words, Λ_{1} intersects Λ transversally at p_{0}. Since Λ_{1} is horizontal, we can find a neighborhood U of x_{0} and a function $\phi_{1} \in C^{\infty}(U)$ such that $\Lambda_{1}=\Lambda_{\phi_{1}}$. By our assumption (5.10)

$$
\left(d \phi_{1}\right)_{x_{0}}=\xi_{0} \neq 0
$$

So we can find a system of coordinates $x_{1} \ldots, x_{n}$ on U (or on a smaller neighborhood) so that

$$
\phi_{1}=x_{1}
$$

Let $\xi_{1} \ldots, \xi_{n}$ be the dual coordinates so that in the coordinate system

$$
x_{1} \ldots, x_{n}, \xi_{1} \ldots, \xi_{n}
$$

on $T^{*} X$ the Lagrangian submanifold Λ_{1} is described by the equations

$$
\xi_{1}=1, \xi_{2}=\cdots=\xi_{n}=0
$$

Consider the canonical transformation generated by the function

$$
\tau: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \tau(x, y)=x \cdot y
$$

The Lagrangian submanifold in $T^{*} \mathbb{R}^{n} \times T^{*} \mathbb{R}^{n}$ generated by ψ is

$$
\{(x, y, y, x)\}
$$

so the canonical relation is

$$
\{x, \xi,-\xi, x)\}
$$

In other words, it is the graph of the linear symplectic transformation

$$
\gamma:(x, \xi) \mapsto(-\xi, x)
$$

So $\gamma\left(\Lambda_{1}\right)$ is the cotangent space at $y_{0}=(-1,0, \ldots, 0)$. Since $\gamma(\Lambda)$ is transverse to this cotangent fiber, it follows that $\Gamma(\Lambda)$ is horizontal. So in some neighborhood W of y_{0} there is a function ψ such that

$$
\gamma(\Lambda)=\Lambda_{\psi}
$$

over W. By equation (5.7) we know that

$$
\tau^{*}(x, y)=-\tau(y, x)=-y \cdot x
$$

is the generating function for γ^{-1}. Furthermore, near p_{0},

$$
\Lambda=\gamma^{-1}\left(\Lambda_{\psi}\right)
$$

Hence, by Theorem 18 the function

$$
\begin{equation*}
\psi_{1}(x, y) ;=-y \cdot x+\psi(y) \tag{5.11}
\end{equation*}
$$

is a generating function for Λ relative to the fibration

$$
(x, y) \mapsto y
$$

We have proved the existence of a generating function under the auxiliary hypothesis (5.10). However it is easy to deal with the case $\xi_{0}=0$ as well. Namely, suppose that $\xi_{0}=0$. Let $f \in C^{\infty}(X)$ be such that $d f\left(x_{0}\right) \neq 0$. Then

$$
\gamma_{f}: T^{*} X \rightarrow T^{*} X, \quad(x, \xi) \mapsto(x, \xi+d f)
$$

5.9. GENERATING FUNCTIONS FOR CANONICAL RELATIONS.

is a symplectomorphism and $\gamma_{f}\left(p_{0}\right)$ satisfies (5.10). We can then form

$$
\gamma \circ \gamma_{f}(\Lambda)
$$

which is horizontal. Notice that $\gamma_{\circ} \gamma_{f}$ is given by

$$
(x, \xi) \mapsto(x, \xi+d f) \mapsto(-\xi-d f, x)
$$

If we consider the generating function on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ given by

$$
g(x, z)=x \cdot z+f(x)
$$

then the corresponding Lagrangian submanifold is

$$
\{(x, z+d f, z, x)\}
$$

so the canonical relation is

$$
\{(x,-z-d f, z, x)\}
$$

or, setting $\xi=-z-d f$ so $z=-\xi-d f$ we get

$$
\{(x, \xi,-\xi-d f, x)\}
$$

which is the graph of $\gamma \circ \gamma_{f}$. We can now repeat the previous argument. So we have proved:

Theorem 21 Every Lagrangian submanifold of $T^{*} X$ can be locally represented by a generating function relative to a fibration.

5.9 Generating functions for canonical relations.

In this section we will give a slight refinement of Theorem 21 for the case of a canonical relation.

So let X and Y be manifolds and

$$
\Gamma \subset T^{*} X \times T^{*} Y
$$

a canonical relation. Let $\left(p_{0}, q_{0}\right)=\left(x_{0}, \xi_{0}, y_{0}, \eta_{0}\right) \in \Gamma$ and assume now that

$$
\begin{equation*}
\xi_{0} \neq 0, \quad \eta_{0} \neq 0 \tag{5.12}
\end{equation*}
$$

We claim that the following theorem holds
Theorem 22 There exist coordinate systems $\left(U, x_{1}, \ldots, x_{n}\right)$ about x_{0} and $\left(V, y_{1} \ldots, y_{k}\right)$ about y_{0} such that if

$$
\gamma_{U}: T^{*} U \rightarrow T^{*} \mathbb{R}^{n}
$$

is the transform

$$
\gamma_{U}(x, \xi)=(-\xi, x)
$$

and

$$
\gamma_{V}: T^{*} V \rightarrow T^{*} * \mathbb{R}^{k}
$$

is the transform

$$
\gamma_{V}(y, \eta)=(-\eta, y)
$$

then locally near

$$
p_{0}^{\prime}:=\gamma_{U}^{-1}\left(p_{0}\right) \quad \text { and } \quad q_{0}^{\prime}:=\gamma_{V}\left(q_{0}\right)
$$

the canonical relation

$$
\begin{equation*}
\gamma_{V}^{-1} \circ \Gamma \circ \gamma_{U} \tag{5.13}
\end{equation*}
$$

is of the form

$$
\Gamma_{\phi}, \quad \phi=\phi(x, y) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{k}\right)
$$

Proof. Let

$$
M_{1}:=T^{*} X, \quad M_{2}=T^{*} Y
$$

and

$$
V_{1}:=T_{p_{0}} M_{1}, \quad V_{2}:=T_{q_{0}} M_{2}, \quad \Sigma:=T_{\left(p_{0}, q_{0}\right)} \Gamma
$$

so that Σ is a Lagrangian subspace of

$$
V_{1}^{-} \times V_{2}
$$

Let W_{1} be a Lagrangian subspace of V_{1} so that (in the linear symplectic category)

$$
\Sigma\left(W_{1}\right)=\Sigma \circ W_{1}
$$

is a Lagrangian subspace of V_{2}. Let W_{2} be another Lagrangian subspace of V_{2} which is transverse to $\Sigma\left(W_{1}\right)$. We may choose W_{1} and W_{2} to be horizontal subspaces of $T_{p_{0}} M_{1}$ and $T_{q_{0}} M_{2}$. Then $W_{1} \times W_{2}$ is transverse to Σ in $V_{1} \times V_{2}$ and we may choose a Lagrangian submanifold passing through p_{0} and tangent to W_{1} and similarly a Lagrangian submanifold passing through q_{0} and tangent to W_{2}. As in the proof of Theorem 21 we can arrange local coordinates $\left(x_{1} \ldots, x_{n}\right)$ on X and hence dual coordinates $\left(x_{1}, \ldots x_{n}, \xi_{1}, \ldots, \xi_{n}\right)$ around p_{0} such that the Lagrangian manifold tangent to W_{1} is given by

$$
\xi_{1}=-1, \quad \xi_{2}=\cdots \xi_{n}=0
$$

and similarly dual coordinates on $M_{2}=T^{*} Y$ such that the second Lagrangian submanifold (the one tangent to W_{2}) is given by

$$
\eta_{1}=-1, \quad \eta_{2}=\cdots=\eta_{k}=0
$$

It follows that the Lagrangian submanifold corresponding to the canonical relation (5.13) is horizontal and hence is locally of the form Γ_{ϕ}.

5.10 The Legendre transformation.

Coming back to our proof of the existence of a generating function for Lagrangian manifolds, let's look a little more carefully at the details of this proof. Let $X=\mathbb{R}^{n}$ and let $\Lambda \subset T^{*} X$ be the Lagrangian manifold defined by the fibration, $Z=X \times \mathbb{R}^{n} \xrightarrow{\pi} X$ and the generating function

$$
\begin{equation*}
\phi(x, y)=-x \cdot y+\psi(y) \tag{5.14}
\end{equation*}
$$

where $\psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
(x, y) \in C_{\phi} \Leftrightarrow x=\frac{\partial \psi}{\partial y}(y) .
$$

Recall also that $\left(x_{0}, y_{0}\right) \in C_{\phi} \Leftrightarrow$ the function $\phi\left(x_{0}, y\right)$ has a critical point at y_{0}. Let us suppose this is a non-degenerate critical point, i.e., that the matrix

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial y_{i} \partial y_{j}}\left(x_{0}, y_{0}\right)=\frac{\partial \psi}{\partial y_{i} \partial y_{j}}\left(y_{0}\right) \tag{5.15}
\end{equation*}
$$

is of rank n. Then there exists a neighborhood $U \ni x_{0}$ and a function $\psi^{*} \in C^{\infty}(U)$ such that

$$
\begin{align*}
\psi^{*}(x) & =\phi(x, y) \text { at }(x, y) \in C_{\phi} \tag{5.16}\\
\Lambda & =\Lambda_{\psi} \tag{5.17}
\end{align*}
$$

locally near the image $p_{0}=\left(x_{0}, \xi_{0}\right)$ of the map $\frac{\partial \phi}{\partial x}: C_{\phi} \rightarrow \Lambda$. What do these three assertions say? Assertion(5.15) simply says that the map

$$
\begin{equation*}
y \rightarrow \frac{\partial \psi}{\partial y} \tag{5.18}
\end{equation*}
$$

is a diffeomorphism at y_{0}. Assertion(5.16) says that

$$
\begin{equation*}
\psi^{*}(x)=-x y+\psi(x) \tag{5.19}
\end{equation*}
$$

at $x=\frac{\partial \psi}{\partial y}$, and assertion(5.17) says that

$$
\begin{equation*}
x=\frac{\partial \psi}{\partial y} \Leftrightarrow y=-\frac{\partial \psi^{*}}{\partial x} \tag{5.20}
\end{equation*}
$$

i.e., the map

$$
\begin{equation*}
x \rightarrow-\frac{\partial \psi^{*}}{\partial x} \tag{5.21}
\end{equation*}
$$

is the inverse of the mapping (5.15). The mapping (5.15) is known as the Legendre transform associated with ψ and the formulas (5.19)- (5.21) are the famous inversion formula for the Legendre transform. Notice also that in the course of our proof that (5.19) is a generating function for Λ we proved that ψ is a generating function for $\gamma(\Lambda)$, i.e., locally near $\gamma\left(p_{0}\right)$

$$
\gamma(\Lambda)=\Lambda_{\psi}
$$

Thus we've proved that locally near p_{0}

$$
\Lambda_{\psi^{*}}=\gamma^{-1}\left(\Lambda_{\psi}\right)
$$

where

$$
\gamma^{-1}: T^{*} \mathbb{R}^{n} \rightarrow T^{*} \mathbb{R}^{n}
$$

is the transform $(y, \eta) \rightarrow(x, \xi)$ where

$$
y=\xi \quad \text { and } \quad x=-\eta
$$

This identity will come up later when we try to compute the semi-classical Fourier transform of the rapidly oscillating function

$$
a(y) e^{i \frac{\psi(y)}{\hbar}}, a(y) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

5.11 The Hörmander-Morse lemma.

In this section we will describe some relations between different generating functions for the same Lagrangian submanifold.

Let Λ be a Lagrangian submanifold of $T^{*} X$, and let

$$
Z_{0} \xrightarrow{\pi_{0}} X, \quad Z_{1} \xrightarrow{\pi_{1}} X
$$

be two fibrations over X. Let ϕ_{1} be a generating function for Λ with respect to $\pi_{1}: Z_{1} \rightarrow X$.

Proposition 10 If

$$
f: Z_{0} \rightarrow Z_{1}
$$

is a diffeomorphism satisfying

$$
\pi_{1} \circ f=\pi_{0}
$$

then

$$
\phi_{0}=f^{*} \phi_{1}
$$

is a generating function for Λ with respect to π_{0}.
Proof. We have $d\left(\phi_{1} \circ f\right)=d \phi_{0}$. Since f is fiber preserving,

$$
d\left(\phi_{\circ} f\right)_{v e r t}=\left(d \phi_{0}\right)_{\mid}
$$

so f maps $C_{\phi_{0}}$ diffeomorphically onto $C_{\phi_{1}}$. Furthermore, on $C_{\phi_{0}}$ we have

$$
d \phi_{1} \circ f=\left(d \phi_{1} \circ f\right)_{h o r}=\left(d \phi_{0}\right)_{h o r}
$$

so f conjugates the maps $d_{X} \phi_{i}: C_{\phi_{i}}, \quad i=0,1$. Since $d_{X} \phi_{1}$ is a diffeomorphism of $C_{\phi_{1}}$ with Λ we conclude that $d_{X} \phi_{0}$ is a diffeomorphism of $C_{\phi_{0}}$ with Λ, i.e. ϕ_{0} is a generating function.

Our goal is to prove a result in the opposite direction. So as above let $\pi_{i}: Z_{i} \rightarrow X, i=0,1$ be fibrations and suppose that ϕ_{0} and ϕ_{1} are generating functions for Λ with respect to π_{i}. Let

$$
p_{0} \in \Lambda
$$

and $z_{i} \in C_{\phi_{i}}, i=0,1$ be the preimages of p_{0} under the diffeomorphism $d \phi_{i}$ of $C_{\phi_{i}}$ with Λ. So

$$
d_{X} \phi_{i}\left(z_{i}\right)=p_{0}, \quad i=0,1
$$

Finally let $x_{0} \in X$ be given by

$$
x_{0}=\pi_{0}\left(z_{0}\right)=\pi_{1}\left(z_{1}\right)
$$

and let $\psi_{i}, i=0,1$ be the restriction of ϕ_{i} to the fiber $\pi_{i}^{-1}\left(x_{0}\right)$. Since $z_{i} \in C_{\phi_{i}}$ we know that z_{i} is a critical point for ψ_{i}. Let

$$
d^{2} \psi_{i}\left(z_{i}\right)
$$

be the Hessian of ψ_{i} at z_{i}.
Theorem 23 The Hörmander Morse lemma. If $d^{2} \psi_{0}\left(z_{0}\right)$ and $d^{2} \psi_{1}\left(z_{1}\right)$ have the same rank and signature, then there exists neighborhood U_{0} of z_{0} in Z_{0} and U_{1} of z_{1} in Z_{1} and a diffeomorphism

$$
f: U_{0} \rightarrow U_{1}
$$

such that

$$
\pi_{1} \circ f=\pi_{0}
$$

and

$$
f^{*} \phi_{1}=\phi_{0}+\text { const. }
$$

Proof. We will prove this theorem in a number of steps. We will first prove the theorem under the additional assumption that Λ is horizontal at p_{0}. Then we will reduce the general case to this special case.

Assume that Λ is horizontal at $p_{0}=\left(x_{0}, \xi_{0}\right)$. Let S be an open subset of \mathbb{R}^{k} and

$$
\pi: X \times S \rightarrow X
$$

projection onto the first factor. Suppose that $\phi \in C^{\infty}(X \times S)$ is a generating function for Λ with respect to π so that

$$
d_{X} \phi: \quad C_{\phi} \rightarrow \Lambda
$$

is a diffeomorphism, and let $z_{0} \in C_{\phi}$ be the pre-image of p_{0} under this diffeomorphism.

Since Λ is horizontal at p_{0} there is a neighborhood U of x_{0} and a $\psi \in$ $C^{\infty}(U)$ such that

$$
d \psi: U \rightarrow T^{*} X
$$

maps U diffeomorphically onto a neighborhood of p_{0} in Λ. So

$$
(d \psi)^{-1} \circ d_{X} \phi: \quad C_{\phi} \rightarrow U
$$

is a diffeomorhism. But $d \psi^{-1}$ is just the restriction to Λ of the projection $\pi_{X}: T^{*} X \rightarrow X$. So $\pi_{X} \circ d_{X} \phi: C_{\phi} \rightarrow X$ is a diffeomorphism (when restricted to $\left.\pi^{-1}(U)\right)$. But

$$
\pi_{X} \circ d_{X} \phi=\pi
$$

so the restriction of π to C_{ϕ} is a diffeomorphism. So C_{ϕ} is horizontal at z_{0}, in the sense that

$$
T_{z_{0}} C_{\phi} \cap T_{z_{0}} S=\{0\}
$$

So we have a smooth map

$$
\mathbf{s}: U \rightarrow S
$$

such that $x \mapsto(x, \mathbf{s}(x))$ is a smooth section of C_{ϕ} over U. We have

$$
d_{X} \phi=d \phi \quad \text { at all points } \quad(x, \mathbf{s}(x))
$$

by the definition of C_{ϕ} and $d \psi(x)=d_{X} \phi(x, \mathbf{s}(x))$ so

$$
\begin{equation*}
\psi(x)=\phi(x, \mathbf{s}(x))+\text { const. } . \tag{5.22}
\end{equation*}
$$

The submanifold $C_{\phi} \subset Z=X \times S$ is defined by the k - equations

$$
\frac{\partial \phi}{\partial s_{i}}=0, \quad i=1, \ldots, k
$$

and hence $T_{z_{0}} C_{\phi}$ is defined by the k independent linear equations

$$
d\left(\frac{\partial \phi}{\partial s_{i}}\right)=0, \quad i=1, \ldots, k
$$

A tangent vector to S at Z_{0}, i.e. a tangent vector of the form

$$
(0, v), \quad v=\left(v^{1}, \ldots v^{k}\right)
$$

will satisfy these equations if and only if

$$
\sum_{j} \frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}} v^{j}=0, \quad i=1, \ldots, k .
$$

But we know that these equations have only the zero solution as no non-zero tangent vector to S lies in the tangent space to C_{ϕ} at z_{0}. We conclude that the vertical Hessian matrix

$$
d_{S}^{2} \phi=\left(\frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}}\right)
$$

is non-degenerate.

We can apply the above considerations to each of the generating functions ϕ_{0} and ϕ_{1}. So we get a section \mathfrak{s}_{0} of $\pi_{0}: Z_{0} \rightarrow X$ over U with with $\mathfrak{s}_{0}(U)=C_{\phi_{0}}($ over $U)$ and similarly a section \mathfrak{s}_{1} of $\pi_{1}: Z_{1} \rightarrow X$. By (5.22) we know that (up to adjusting an overall additive constant) we can arrange that

$$
\begin{equation*}
\phi_{0}\left(\mathfrak{s}_{0}(x)\right)=\phi_{1}\left(\mathfrak{s}_{1}(x)\right) \tag{5.23}
\end{equation*}
$$

over U.
Let us again revert to local coordinates: We know that the vertical Hessians occurring in the statement of the theorem are both non-degenerate, and we are assuming that they are of the sake rank. So the fiber dimensions of π_{0} and π_{1} are the same. So we may assume that $Z_{0}=X \times S$ and $Z_{1}=X \times S$ where S is an open subset of \mathbb{R}^{k} and that coordinates have been chosen so that the coordinates of z_{0} are $(0,0)$ as are the coordinates of z_{1}. We write

$$
\mathfrak{s}_{0}(x)=\left(x, \mathbf{s}_{0}(x)\right), \quad \mathfrak{s}_{1}(x)=\left(x, \mathbf{s}_{1}(x)\right)
$$

where \mathbf{s}_{0} and \mathbf{s}_{1} are smooth maps $X \rightarrow \mathbb{R}^{k}$ with

$$
\mathbf{s}_{0}(0)=\mathbf{s}_{1}(0)=0
$$

Let us now take into account that the signatures of the vertical Hessians are the same at z_{0}. By continuity they must be the same at the points $\left(x, \mathrm{~s}_{0}(x)\right)$ and $\left(x, \mathbf{s}_{1}(x)\right)$ for each $x \in U$. So for each fixed $x \in U$ we can make an affine change of coordinates in S to arrange that

1. $\mathbf{s}_{0}(x)=\mathbf{s}_{1}(x)=0$.
2. $\frac{\partial \phi_{0}}{\partial s_{i}}(x, 0)=\frac{\partial \phi_{1}}{\partial s_{i}}(x, 0), i=1 \ldots, k$.
3. $\phi_{0}(x, 0)=\phi_{1}(x, 0)$.
4. $d_{S}^{2} \phi_{0}(x, 0)=d_{S}^{2} \phi_{1}(x, 0)$.

We can now apply Morse's lemma with parameters to conclude that there exists a fiber preserving diffeomorhism $f: U \times S \rightarrow U \times S$ with

$$
f^{*} \phi_{1}=\phi_{0}
$$

This completes the proof of Theorem 23 under the additional hypothesis that Lagrangian manifold Λ is horizontal.

Reduction of the number of fiber variables. Our next step in the proof of Theorem 23 will be an application of Theorem 20. Let $\pi: Z \rightarrow X$ be a fibration and ϕ a generating function for Λ with respect to π. Suppose we are in the setup of Theorem 20 which we recall with some minor changes in notation: We suppose that the fibration

$$
\pi: Z \rightarrow X
$$

can be factored as a succession of fibrations

$$
\pi=\rho \circ \varrho
$$

where

$$
\rho: Z \rightarrow W \quad \text { and } \quad \varrho: W \rightarrow X
$$

are fibrations. Moreover, suppose that the restriction of ϕ to each fiber

$$
\rho^{-1}(w)
$$

has a unique non-degenerate critical point $\gamma(w)$. The map

$$
w \mapsto \gamma(w)
$$

defines a smooth section

$$
\gamma: W \rightarrow Z
$$

of ρ. Let

$$
\chi:=\gamma^{*} \phi
$$

Theorem 20 asserts that χ is a generating function of Λ with respect to ϱ. Consider the Lagrangian submanifold

$$
\Lambda_{\chi} \subset T^{*} W
$$

This is horizontal as a Lagrangian submanifold on $T^{*} W$ and ϕ is a generating function for Λ_{χ} relative to the fibration $\rho: Z \rightarrow W$.

Now suppose that we had two fibrations and generating functions as in the hypotheses of Theorem 23 and suppose that they both factored as above with the same $\varrho: W \rightarrow X$ and the same χ. So we get fibrations $\varrho_{O}: Z_{0} \rightarrow W$ and $\varrho_{1}: Z_{1} \rightarrow W$ We could then apply the above (horizontal) version of Theorem 23 to conclude the truth of the theorem.

Since the ranks of $d^{2} \psi_{1}$ and $d^{2} \psi$ at z_{0} and z_{1} are the same, we can apply the reduction leading equation (5.9) to each. So Theorem 23 will be proved once we prove it for the reduced case.

Some normalizations in the reduced case. We now examine a fibration $Z=X \times S \rightarrow S$ and generating function ϕ and assume that ϕ is reduced at $z_{0}=\left(x_{0}, s_{0}\right)$ so all the second partial derivatives of ϕ in the S direction vanish, i. e.

$$
\frac{\partial^{2} \phi}{\partial s_{i} \partial s_{j}}\left(x_{o}, s_{0}\right)=0 \quad \forall i, j .
$$

This implies that

$$
T_{s_{0}} S \cap T_{\left(x_{0}, s_{0}\right)} C_{\phi}=T_{s_{0}} S
$$

i.e. that

$$
\begin{equation*}
T_{s_{0}} S \subset T_{\left(x_{0}, s_{0}\right)} C_{\phi} \tag{5.24}
\end{equation*}
$$

Consider the map

$$
d_{X} \phi: X \times S \rightarrow T^{*} X, \quad(x, s) \mapsto d_{X} \phi(x, s)
$$

The restriction of this map to C_{ϕ} is just our diffeomorphism of C_{ϕ} with Λ. So the restriction of the differential of this map to any subspace of any tangent space to C_{ϕ} is injective. By (5.24) the restriction of the differential of this map to $T_{s_{0}} S$ at $\left(x_{0}, s_{0}\right)$ is injective. In other words, we have an embedding

of $X \times S$ onto a subbundle W of $T^{*} X$.
Now let us return to the proof of our theorem. Suppose that we have two generating functions $\phi_{i}, i=0,1 X \times S_{i} \rightarrow X$ and both are reduced at the points z_{i} of $C_{\phi_{1}}$ corresponding to $p_{0} \in \Lambda$. So we have two embeddings

of $X \times S_{i}$ onto subbundle W_{i} of $T^{*} X$ for $i=0,1$. Each of these maps the corresponding $C_{\phi_{i}}$ diffeomorphically onto Λ.

Let V be a tubular neighborhood of W_{1} in $T^{*} X$ and $\tau: V \rightarrow W_{1}$ a projection of V onto W_{1} so we have the commutative diagram

Let

$$
\gamma:=\left(d_{X} \phi_{1}\right)^{-1} \circ \tau
$$

So we have the diagram

and

$$
\gamma \circ d_{X} \phi_{1}=\mathrm{id}
$$

We may assume that $W_{0} \subset V$ so we gat a fiber map

$$
g:=\gamma \circ d_{X} \phi_{0} \quad g: X \times S_{0} \rightarrow X \times S_{1}
$$

When we restrict g to $C_{\phi_{0}}$ we get a diffeomorphism of $C_{\phi_{0}}$ onto $C_{\phi_{1}}$. By (5.24) we know that

$$
T_{s_{i}} S_{i} \subset T_{z_{i}} C_{\phi_{i}}
$$

and so $d g_{z_{0}}$ maps $T_{s_{0}} S_{0}$ bijectively onto $T_{s_{1}} S_{1}$. Hence g is locally a diffeomorphism at z_{0}. So by shrinking X and S_{i} we may assume that

$$
g: X \times S_{0} \rightarrow X \times S_{1}
$$

is a fiber preserving diffeomorphism.
We now apply Proposition 10. So we replace ϕ_{1} by $g^{*} \phi_{1}$. Then the two fibrations Z_{0} and Z_{1} are the same and $C_{\phi_{0}}=C_{\phi_{1}}$. Call this common submanifold C. Also $d_{X} \phi_{0}=d_{X} \phi_{1}$ when restricted to C, and by definition the vertical derivatives vanish. So $d \phi_{0}=d \phi_{1}$ on C, and so by adjusting an additive constant we can arrange that $\phi_{0}=\phi_{1}$ on C.

Completion of the proof. We need to prove the theorem in the following situation:

- $Z_{0}=Z_{1}=X \times S$ and $\pi_{0}=\pi_{1}$ is projection onto the first factor.
- The two generating functions ϕ_{0} and ϕ_{1} have the same critical set:

$$
C_{\phi_{0}}=C_{\phi_{1}}=C
$$

- $\phi_{0}=\phi_{1}$ on C.
- $d_{S} \phi_{0}=0, i=0,1$ on C and $d_{X} \phi_{0}=d_{X} \phi_{1}$ on C.
-

$$
d\left(\frac{\partial \phi_{0}}{\partial s_{i}}\right)=d\left(\frac{\partial \phi_{1}}{\partial s_{i}}\right) \text { at } z_{0}
$$

We will apply the Moser trick: Let

$$
\phi_{t}:=(1-t) \phi_{0}+t \phi_{1} .
$$

From the above we know that

- $\phi_{t}=\phi_{0}=\phi_{1}$ on C.
- $d_{S} \phi_{t}=0$ on C and $d_{X} \phi_{t}=d_{X} \phi_{0}=d_{X} \phi_{1}$ on C.
-

$$
d\left(\frac{\partial \phi_{t}}{\partial s_{i}}\right)=d\left(\frac{\partial \phi_{0}}{\partial s_{i}}\right)=d\left(\frac{\partial \phi_{1}}{\partial s_{i}}\right) \text { at } z_{0}
$$

So in a sufficiently small neighborhood of Z_{0} the submanifold C is defined by the k independent equations

$$
\frac{\partial \phi_{t}}{\partial s_{i}}=0, \quad i=1, \ldots k
$$

We look for a vertical (time dependent) vector field

$$
v_{1}=\sum_{i} v_{i}(x, s, t) \frac{\partial}{\partial s_{i}}
$$

on $X \times S$ such that

1. $D_{v_{t}} \phi_{t}=-\dot{\phi}_{1}=\phi_{0}-\phi_{1}$ and
2. $v=0$ on C.

Suppose we find such a v_{t}. Then solving the differential equations

$$
\frac{d}{d t} f_{t}(m)=v_{t}\left(f_{t}(m)\right), \quad f_{0}(m)=m
$$

will give a family of fiber preserving diffeomorphsms (since v_{t} is vertical) and

$$
f_{1}^{*} \phi_{1}-\phi_{0}=\int_{0}^{1} \frac{d}{d t}\left(f_{t}^{*} \phi_{t}\right) d t=\int_{0}^{1} f_{t}^{*}\left[D_{v_{t}} \phi_{t}+\dot{\phi}_{t}\right] d t=0
$$

So finding a vector field v_{t} satisfying 1) and 2) will complete the proof of the theorem. Now $\phi_{0}-\phi_{1}$ vanishes to second order on C which is defined by the independent equations $\partial \phi_{t} / \partial s_{i}=0$. So we can find functions

$$
w_{i j}(x, s, t)
$$

defined and smooth in some neighborhood of C such that

$$
\phi_{0}-\phi_{1}=\sum_{i j} w_{i j}(x, s, t) \frac{\partial \phi_{t}}{\partial s_{i}} \frac{\partial \phi_{t}}{\partial s_{j}}
$$

in this neighborhood. Set

$$
v_{i}(x, s, t)=\sum_{i} w_{i j}(x, s, t) \frac{\partial \phi_{t}}{\partial s_{j}}
$$

Then condition 2) is clearly satisfied and

$$
D_{v_{t}} \phi_{t}=\sum_{i j} w_{i j}(x, s, t) \frac{\partial \phi_{t}}{\partial s i} \frac{\partial \phi_{t}}{\partial s_{j}}=\phi_{0}-\phi_{1}=-\dot{\phi}
$$

as required.

5.12 Changing the generating function.

We summarize the results of the preceding section as follows: Suppose that $\left(\pi_{1}: Z_{1} \rightarrow X, \phi_{1}\right)$ and ($\left.\pi_{2}: Z_{2} \rightarrow X, \phi_{2}\right)$ are two descriptions of the same Lagrangian submaniifold Λ of $T^{*} X$. Then locally one description can be obtained from the other by applying sequentially "moves" of the following two types:

Victor: We need more arg mentation here. Why do this follow from $\mathrm{H}-\mathrm{M}$?

1. Equivalence. There exists a diffeomorphism $g: Z_{1} \rightarrow Z_{2}$ with

$$
\pi_{2} \circ g=\pi_{1} \quad \text { and } \quad \text { and } \quad \phi_{2} \circ g=\phi_{1} .
$$

2. Increasing (or deceasing) the number of fiber variables. Here $Z_{2}=Z_{1} \times \mathbb{R}^{d}$ and

$$
\phi_{2}(s, s)=\phi_{1}(z)+\frac{1}{2}\langle A s, s\rangle
$$

where A is a non-degenerate $d \times d$ matrix.

5.13 The phase bundle of a Lagrangian submanifold of $T^{*} X$.

In this section and the next we introduce two important flat line bundles associated with a Lagrangian submanifold of a cotangent bundle. For a review of the basic facts about line bundles with connections, especially line bundles with flat connections, see Appendix III.

Let $\Lambda \subset T^{*} X$ be a Lagrangian submanifold. Let α_{Λ} denote the restriction of the canonical one form α_{X} to Λ. Since Λ is Lagrangian, α_{Λ} is closed.

The line bundle $\mathbb{L}_{\text {phase }}$ with flat connection is defined as follows: As a line bundle, $\mathbb{L}_{\text {phase }}$ is the trivial bundle

$$
\mathbb{L}_{\text {phase }}=\Lambda \times \mathbb{C}
$$

The connection on $\mathbb{L}_{\text {phase }}$ is given by setting

$$
\frac{\nabla s_{0}}{s_{0}}==\frac{i}{\hbar} \alpha_{\Lambda}
$$

where s_{0} is the trivial section

$$
s_{0}(p)=(p, 1)
$$

In order for a section $s=f s_{0}$ to be flat, we must have $\nabla s=0$ which translates into

$$
d f-\frac{i}{\hbar} \alpha_{\Lambda}=0
$$

If ψ is a function on an open subset of Λ which satisfies $d \psi=\alpha_{\Lambda}$ then this says that

$$
f=c e^{i \psi / \hbar}, \quad c \in \mathbb{C}
$$

Suppose that $\pi: Z \rightarrow X$ is a fibration and that ϕ is a generating function for Λ relative to this fibration. So $d_{X} \phi$ gives a diffeomorphism

$$
\lambda_{\phi}: C_{\phi} \rightarrow \Lambda
$$

Let

$$
\psi:=\phi \circ \lambda_{\phi}^{-1} .
$$

Then

$$
d \phi=\alpha_{\Lambda}
$$

So if we have a generating function, we get flat section of \mathbb{L}.

5.14 The Maslov bundle.

We first define the Maslov line bundle $\mathbb{L}_{\text {Maslov }} \rightarrow \Lambda$ first in terms of a global generating function, and then show that the definition is invariant under change of generating function. We then use the local existence of generating functions to patch the line bundle together globally. Here are the details:

Suppose that ϕ is a generating function for Λ relative to a fibration $\pi: Z \rightarrow X$. For each z be a point of the critical set C_{ϕ}, let $x=\pi(z)$ and let $F=\pi^{-1}(x)$ be the fiber contiaining z. The restriction of ϕ to the fiber F has a critical point at z. Let $\operatorname{sgn}^{\#}(z)$ be the signature of the Hessian at z of ϕ restricted to F. This gives an integer valued function on C_{ϕ} :

$$
\operatorname{sgn}^{\#}: C_{\phi} \rightarrow \mathbb{Z}, \quad z \mapsto \operatorname{sgn}^{\#}(z)
$$

From the diffeomorphism $\lambda_{\phi}=d_{X} \phi$

$$
\lambda_{\phi}: C_{\phi} \rightarrow \Lambda
$$

we get a \mathbb{Z} valued function

$$
\operatorname{sgn}_{\phi}:=\operatorname{sgn}^{\sharp} \circ \lambda_{\phi}^{-1} .
$$

Let

$$
s_{\phi}:=e^{\frac{\pi i}{4} \operatorname{sgn}_{\phi}}
$$

So

$$
s_{\phi}: \Lambda \rightarrow \mathbb{C}^{*}
$$

taking values in the eighth roots of unity.
We define the Maslov bundle $\mathbb{L}_{\text {Maslov }} \rightarrow \Lambda$ to be the trivial flat bundle having s_{ϕ} as its defining flat section. For this definition to make sense we
have to show that if $\left(Z_{i}, \pi_{i}, \phi_{i}\right), \quad i=1,2$ are two descriptions of Λ by generating functions, then

$$
\begin{equation*}
s_{\phi_{1}}=c_{1,2} s_{\phi_{2}} \tag{5.25}
\end{equation*}
$$

for some constant $c_{1,2} \in \mathbb{C}^{*}$. So we need to check this for the two types of move of Section 5.12. For moves of type 1), i.e. equivalences this is obvious.

For a move of type 2) the $\operatorname{sgn}_{1}^{\#}$ and $\operatorname{sgn}_{2}^{\#}$ are related by

$$
\operatorname{sgn}_{1}^{\#}=\operatorname{sgn}_{2}^{\#}+\text { signature of } A
$$

This proves (5.25), and defines the Maslov bundle when a global generating function exists.

Now consider a general Lagrangian submanifold $\Lambda \subset T^{*} X$. Cover Λ by open sets U_{i} such that each U_{i} is defined by a generating function. We get function $s_{\phi_{i}}: U_{i} \rightarrow \mathbb{C}$ such that on every overlap $U_{i} \cap U_{j}$

$$
s_{\phi_{i}}=c_{i j} s_{\phi_{j}}
$$

with constants $c_{i j}$ with $\left.\mid c_{[} i j\right] \mid=1$. In other words we get a Cech cocycle on the one skeleton of the nerve of this cover and 'hence a line bundle.

We will study the geometry of the Maslov bundle in more detail in Chapter ??

5.15 Examples.

5.15.1 The image of a Lagrangian submanifold under geodesic flow.

Let X be a geodesically convex Riemannian manifold, for example $X=\mathbb{R}^{n}$. Let f_{t} denote geodesic flow on X. We know that for $t \neq 0$ a generating function for the symplectomorphism f_{t} is

$$
\psi_{t}(x, y)=\frac{1}{2 t} d(x, y)^{2}
$$

Let Λ be a Lagrangian submanifold of $T^{*} X$. Even if Λ is horizontal, there is no reason to expect that $f_{t}(\Lambda)$ be horizontal - caustics can develop. But our theorem about the generating function of the composition of two canonical relasions will give a generating function for $f_{t}(\Lambda)$. Indeed, suppose that ϕ is a generating function for Λ relative to a fibration

$$
\pi: X \times S \rightarrow X
$$

Then

$$
\frac{1}{2} d(x, y)^{2}+\psi(y, s)
$$

is a generating function for $f_{t}(\Lambda)$ relative to the fibration

$$
X \times X \times S \rightarrow X, \quad(x, y, s) \mapsto x
$$

5.15.2 The billiard map and its iterates.

Definition of the billiard map.

Let Ω be a bounded open convex domain in \mathbb{R}^{n} with smooth boundary X. We may identify the tangent space to any point of \mathbb{R}^{n} with \mathbb{R}^{n} using the vector space structure, and identify \mathbb{R}^{n} with $\left(\mathbb{R}^{n}\right)^{*}$ using the standard inner product. Then at any $x \in X$ we have the identifications

$$
T_{x} X \cong T_{x} X^{*}
$$

using the euclidean scalar product on $T_{x} X$ and

$$
\begin{equation*}
T_{x} X=\left\{v \in \mathbb{R}^{n} \mid v \cdot n(x)=0\right\} \tag{5.26}
\end{equation*}
$$

where $n(x)$ denotes the inward pointing unit normal to X at x. Let $U \subset T X$ denote the open subset consisting of all tangent vectors (under the above identification) satisfying

$$
\|v\|<1
$$

For each $x \in X$ and $v \in T_{x} X$ satisfying $\|v\|<1$ let

$$
u:=v+a n(x) \text { where } a:=\left(1-\|v\|^{2}\right)^{\frac{1}{2}} .
$$

So u is the unique inward pointing unit vector at x whose orthogonal projection onto $T_{x} X$ is v.

Consider the ray through x in the direction of u, i.e. the ray

$$
x+t u, \quad t>0
$$

Since Ω is convex and bounded, this ray will intersect X at a unique point y. Let w be the orthogonal projection of u on $T_{y} X$. So we have defined a map

$$
\mathcal{B}: U \rightarrow U, \quad(x, v) \mapsto(y, w)
$$

which is known as the billiard map.

The generating function of the billiard map.
We shall show that the billiard map is a symplectomorphism by writing down a function ϕ which is its generating function.

Consider the function

$$
\psi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \psi(x, y)=\|x-y\|
$$

This is smooth at all points $(x, y), x \neq y$. Let us compute $d_{x} \psi(v)$ at such a point (x, y) where $v \in T_{x} X$.

$$
\frac{d}{d t} \psi(x+t v, y)_{\mid t=0}=\left(\frac{x-y}{\|y-x\|}, v\right)
$$

where (,) denotes the scalar product on \mathbb{R}^{n}. Identifying $T \mathbb{R}^{n}$ with $T^{*} \mathbb{R}^{n}$ using this scalar product, we can write that for all $x \neq y$

$$
d_{x} \psi(x, y)=-\frac{y-x}{\|x-y\|}, \quad d_{y} \psi(x, y)=\frac{y-x}{\|x-y\|}
$$

If we set

$$
u=\frac{y-x}{\|x-y\|}, \quad t=\|x-y\|
$$

we have

$$
\|u\|=1
$$

and

$$
y=x+t u
$$

Let ϕ be the restriction of ψ to $X \times X \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$. Let

$$
\iota: X \rightarrow \mathbb{R}^{n}
$$

denote the embedding of X into \mathbb{R}^{n}. Under the identifications

$$
T_{x} \mathbb{R}^{n} \cong T_{x}^{*} \mathbb{R}^{n}, \quad T_{x} X \cong T_{x}^{*} X
$$

the orthogonal projection

$$
T_{x}^{*} \mathbb{R}^{n} \cong T_{x} \mathbb{R}^{n} \ni u \mapsto v \in T_{x} X \cong T_{x}^{*} X
$$

is just the map

$$
d \iota_{x}^{*}: T_{x}^{*} \mathbb{R}^{n} \rightarrow T_{x}^{*} X, \quad u \mapsto v
$$

So

$$
v=d \iota_{x}^{*} u=d \iota_{x}^{*} d_{x} \psi(x, y)=d_{x} \phi(x, y)
$$

So we have verified the conditions

$$
v=-d_{x} \phi(x, y), \quad w=d_{y} \phi(x, y)
$$

which say that ϕ is a generating function for the billiard map \mathcal{B}.

Iteration of the billiard map.

Our general prescription for the composite of two canonical relations says that a generating function for the composite is given by the sum of generating functions for each (where the intermediate variable is regarded as a fiber variable over the initial and final variables). Therefore a generating function for \mathcal{B}^{n} is given by the function

$$
\phi\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left\|x_{1}-x_{0}\right\|+\left\|x_{2}-x_{1}\right\|+\cdots+\left\|x_{n}-x_{n-1}\right\| .
$$

5.15.3 The classical analogue of the Fourier transform.

We repeat a previous computation: Let $X=\mathbb{R}^{n}$ and consider the map

$$
\mathfrak{F}: T^{*} X \rightarrow T^{*} X, \quad(x, \xi) \mapsto(-\xi, x) .
$$

The generating function for this symplectomorphism is

$$
x \cdot y
$$

Since the transpose of the graph of a symplectomorphism is the graph of the inverse, the generating function for the inverse is

$$
-y \cdot x
$$

So a generating function for the identity is

$$
\begin{aligned}
& \phi \in C^{\infty}\left(X \times X, \times \mathbb{R}^{n}\right) \\
& \phi(x, z, y)=(x-z) \cdot y
\end{aligned}
$$

Chapter 6

The calculus of $\frac{1}{2}$ densities.

An essential ingredient in our symbol calculus will be the notion of a $\frac{1}{2}$ density on a canonical relation. We begin this chapter with a description of densities of arbitrary order on a manifold, and then specialize to the study of canonical relations.

6.1 The linear algebra of densities.

6.1.1 The definition of a density on a vector space.

Let V be an n-dimensional vector space over the real numbers. A basis $\mathbf{e}=e_{1}, \ldots, e_{n}$ of V is the same as an isomorphism $\ell_{\mathbf{e}}$ of \mathbb{R}^{n} with V according to the rule

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto x_{1} e_{1}+\cdots+x_{n} e_{n}
$$

We can write this as

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto\left(e_{1}, \ldots e_{n}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

or even more succinctly as

$$
\ell_{\mathbf{e}}: \quad \mathbf{x} \mapsto \mathbf{e} \cdot \mathbf{x}
$$

where

$$
\mathbf{x}:=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)
$$

The group $G l(n)=G l(n, \mathbb{R})$ acts on the set $\mathcal{F}(V)$ of all bases of V according to the rule

$$
\ell_{\mathrm{e}} \mapsto \ell_{\mathrm{e}} \circ A^{-1}, \quad A \in G l(n)
$$

which is the same as the "matrix multiplication"

$$
\mathbf{e} \mapsto \mathbf{e} \cdot A^{-1} .
$$

This action is effective and transitive:

- If $\mathbf{e}=\mathbf{e} \cdot A^{-1}$ for some basis \mathbf{e} then $A=I$, the identity matrix, and
- Given any two bases e and \mathbf{f} these exists a (unique) A such that $\mathbf{e}=$ f. A.

Let $\alpha \in \mathbb{C}$ be any complex number. A density of order α on V is a function

$$
\rho \mathcal{F}(V) \rightarrow \mathbb{C}
$$

satisfying

$$
\begin{equation*}
\rho(\mathbf{e} \cdot A)=\rho(\mathbf{e})|\operatorname{det} a|^{\alpha} \quad \forall A \in G l(n) . \tag{6.1}
\end{equation*}
$$

We will denote the space of all densities of order α on V by

$$
|V|^{\alpha}
$$

This is a one dimensional vector space over the complex numbers.
Let $L: V \rightarrow V$ be a linear map. If L is invertible and $\mathbf{e} \in \mathcal{F}(V)$ then $L \mathbf{e}=\left(L e_{1}, \ldots, L e_{n}\right)$ is again a basis of V. If we write

$$
L e_{j}=\sum_{i} L_{i j} e_{i}
$$

then

$$
L e=e \mathrm{e}
$$

where L is the matrix

$$
\mathrm{L}:=\left(L_{i j}\right)
$$

so if $\rho \in|V|^{\alpha}$ then

$$
\rho(L \mathbf{e})=(\operatorname{det} L) \rho(\mathbf{e}) .
$$

We can extend this to all L, non necessarily invertible, where the right hand side is 0 . So here is an equivalent definition of a density on an n-dimensional real vector space:

A density ρ of order α is a rule which assigns a number $\rho\left(v_{1}, \ldots, v_{n}\right)$ to every n-tuplet of vectors and which satisfies

$$
\begin{equation*}
\rho\left(L v_{1}, \ldots, L v_{n}\right)=|\operatorname{det} L|^{\alpha} \rho\left(v_{1}, \ldots, v_{n}\right) \tag{6.2}
\end{equation*}
$$

for any linear transformation $L: V \rightarrow V$. Of course, if the v_{1}, \ldots, v_{n} are not linearly independent then

$$
\rho\left(v_{1}, \ldots, v_{n}\right)=0 .
$$

6.1.2 Multiplication.

If $\rho \in|V|^{\alpha}$ and $\tau \in|V|^{\beta}$ then we get a density $\rho \cdot \tau$ of order $\alpha+\beta$ given by

$$
\rho \cdot \tau(\mathbf{e})=\rho(\mathbf{e}) \tau(\mathbf{e})
$$

In other words we have an isomorphism:

$$
\begin{equation*}
|V|^{\alpha} \otimes|V|^{\beta} \cong|V|^{\alpha+\beta} \tag{6.3}
\end{equation*}
$$

6.1.3 Complex conjugation.

If $\rho \in|V|^{\alpha}$ then $\bar{\rho}$ defined by

$$
\bar{\rho}(\mathbf{e})=\overline{\rho(\mathbf{e})}
$$

is a density of order $\bar{\alpha}$ on V. In other words we have an anti-linear map

$$
|V|^{\alpha} \rightarrow|V|^{\bar{\alpha}}, \quad \rho \mapsto \bar{\rho}
$$

This map is clearly an anti-linear isomorphism. Combined with (6.3) we get a sesquilinear map

$$
|V|^{\alpha} \otimes|V|^{\beta} \rightarrow|V|^{\alpha+\bar{\beta}}
$$

We will especially want to use this for the case $\alpha=\beta=\frac{1}{2}+i s$ where s is a real number. In this case we get a sesquilinear map

$$
\begin{equation*}
|V|^{\frac{1}{2}+i s} \otimes|V|^{\frac{1}{2}+i s} \rightarrow|V|^{1} \tag{6.4}
\end{equation*}
$$

6.1.4 Elementary consequences of the definition.

There are two obvious but very useful facts that we will use repeatedly:

1. An element of $|V|^{\alpha}$ is completely determined by its value on a single basis e.
2. More generally, suppose we are given a subset S of the set of bases on which a subgroup $H \subset G l(n)$ acts transitively and a function $\rho: S \rightarrow \mathbb{C}$ such (6.1) holds for all $A \in H$. Then ρ extends uniquely to a density of order α on V.

Here are some typical ways that we will use these facts:
Orthonormal frames: Suppose that V is equipped with a scalar product. This picks out a subset $\mathcal{O}(V) \subset \mathcal{F}(V)$ consisting of the orthonormal frames. The corresponding subgroup of $G l(n)$ is $O(n)$ and every element of $O(n)$ has determinant ± 1. So any density of any order must take on a constant value on orthonormal frames, and item 2 above implies that any constant then determines a density of any order. We have trivialized the space $|V|^{\alpha}$ for all α. Another way of saying the
same thing is that V has a preferred density of order α, namely the density which assigns the value one to any orthonormal frame. The same applies if V has any non-degenerate quadratic form, not necessarily positive definite.

Symplectic frames: Suppose that V is a symplectic vector space, so $n=$ $\operatorname{dim} V=2 d$ is even. This picks out a collection of preferred bases, namely those of the form $e_{1}, \ldots, e_{d}, f_{1}, \ldots f_{d}$ where

$$
\omega\left(e_{i}, e_{j}\right)=0, \quad \omega\left(f_{i}, f_{j}\right)=0 . \quad \omega\left(e_{i}, f_{j}\right)=\delta_{i j}
$$

where ω denotes the symplectic form. These are known as the symplectic frames. In this case $H=S p(n)$ and every element of $S p(n)$ has determinant one. So again $|V|^{\alpha}$ is trivialized. Again, another way of saying this is that a symplectic vector space has a preferred density of any order - the density which assigns the value one to any symplectic frame.

Transverse Lagrangian subspaces: Suppose that V is a symplectic vector space and that M and N are Lagrangian subspaces of V with $M \cap N=\{0\}$. Any basis $e_{1}, \ldots e_{d}$ of N determines a dual basis $f_{1}, \ldots f_{d}$ of N according to the requirement that

$$
\omega\left(e_{i}, f_{j}\right)=\delta_{i j}
$$

and then $e_{1}, \ldots e_{d}, f_{1} \ldots f_{d}$ is a symplectic basis of V. If $C \in G l(d)$ and we make the replacement

$$
\mathbf{e} \mapsto \mathbf{e} \cdot C
$$

then we must make the replacement

$$
\mathbf{f} \mapsto \mathbf{f} \cdot\left(C^{t}\right)^{-1}
$$

So if ρ is a density of order α on M and τ is a density of order α on N they fit together to get a density of order zero (i.e. a constant) on V according to the rule

$$
(\mathbf{e}, \mathbf{f})=\left(e_{1}, \ldots, e_{d}, f_{1}, \ldots, f_{d}\right) \mapsto \rho(\mathbf{e}) \tau(\mathbf{f})
$$

on frames of the above dual type. The corresponding subgroup of $G l(n)$ is a subgroup of $S p(n)$ isomorphic to $G l(d)$. So we have a canonical isomorphism

$$
\begin{equation*}
|M|^{\alpha} \otimes|N|^{\alpha} \cong \mathbb{C} \tag{6.5}
\end{equation*}
$$

Using (6.3) we can rewrite this as

$$
|M|^{\alpha} \cong|N|^{-\alpha} .
$$

Dual spaces: If we start with a vector space M we can make $M \oplus M^{*}$ into a symplectic vector space with M and M^{*} transverse Lagrangian subspaces and the pairing B between M and M^{*} just the standard pairing of a vector space with its dual space. So making a change in notation we have

$$
\begin{equation*}
|V|^{\alpha} \cong\left|V^{*}\right|^{-\alpha} . \tag{6.6}
\end{equation*}
$$

Short exact sequences: Let

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0
$$

be an exact sequence of linear maps of vector spaces. We can choose a preferred set of bases of V as follows : Let $\left(e_{1}, \ldots, e_{k}\right)$ be a basis of V^{\prime} and extend it to a basis $\left(e_{1}, \ldots, e_{k}, e_{k+1}, \ldots e_{n}\right.$ of V. then the images of $e_{i}, i=k+1, \ldots n$ form a basis of $V^{\prime \prime}$. Any two bases of this type differ by the action of an $A \in G l(n)$ of the form

$$
A=\left(\begin{array}{cc}
A^{\prime} & * \\
0 & A^{\prime \prime}
\end{array}\right)
$$

so

$$
\operatorname{det} A=\operatorname{det} A^{\prime} \cdot \operatorname{det} A^{\prime \prime} .
$$

This shows that we have an isomorphism

$$
\begin{equation*}
|V|^{\alpha} \cong\left|V^{\prime}\right|^{\alpha} \otimes\left|V^{\prime \prime}\right|^{\alpha} \tag{6.7}
\end{equation*}
$$

for any α.

Long exact sequences Let

$$
0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow \cdots V_{k} \rightarrow 0
$$

be an exact sequence of vector spaces. Then using (6.7) inductively we get

$$
\begin{equation*}
\bigotimes_{j \text { even }}\left|V_{j}\right|^{\alpha} \cong \bigotimes_{j \text { odd }}\left|V_{j}\right|^{\alpha} \tag{6.8}
\end{equation*}
$$

for any α.

6.1.5 Pullback and pushforward under isomorphism.

Let

$$
L: V \rightarrow W
$$

be an isomorphism of n - dimensional vector spaces. If

$$
\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)
$$

is a basis of V then

$$
L \mathbf{e}:=\left(L e_{1}, \ldots, L e_{n}\right)
$$

is a basis of W and

$$
L(\mathbf{e} \cdot A)=(L \mathbf{e}) \cdot A \quad \forall a \in G l(n) .
$$

So if $\rho \in|W|^{\alpha}$ then $L^{*} \rho$ defined by

$$
\left(L^{*} \rho\right)(\mathbf{e}):=\rho(L \mathbf{e})
$$

is an element of $|V|^{\alpha}$. In other words we have a pullback isomorphism

$$
L^{*}:|W|^{\alpha} \rightarrow|V|^{\alpha}, \quad \rho \mapsto L^{*} \rho
$$

Applied to L^{-1} gives a pushforward map

$$
L_{*}:|V|^{\alpha} \rightarrow|W|^{\alpha}, \quad L_{*}=\left(L^{-1}\right)^{*} .
$$

6.1.6 Lefschetz symplectic linear transformations.

There is a special case of (6.5) which we will use a lot in our applications, so we will work out the details here. A linear map $L: V \rightarrow V$ on a vector space is called Lefschetz if it has no eigenvalue equal to 1 . Another way of saying this is that $I-L$ is invertible. Yet another way of saying this is the following: Let

$$
\operatorname{graph} L \subset V \oplus V
$$

be the graph of L so

$$
\operatorname{graph} L=\{(v, L v) \quad v \in V\} .
$$

Let

$$
\Delta \subset V \oplus V
$$

be the diagonal, i.e. the graph of the identity transformation. Then

$$
\begin{equation*}
\operatorname{graph} L \cap \Delta=\{0\} . \tag{6.9}
\end{equation*}
$$

Now suppose that V is a symplectic vector space and we consider $V^{-} \oplus V$ as a symplectic vector space. Suppose also that L is a (linear) symplectic transformation so that graph L is a Lagrangian subspace of $V^{-} \oplus V$ as is Δ. Suppose that L is also Lefschetz so that (6.9) holds.

The isomorphism

$$
V \rightarrow \operatorname{graph} L: \quad v \mapsto(v, L v)
$$

pushes the canonical α-density on V to an α-density on graph L, namely, if v_{1}, \ldots, v_{n} is a symplectic basis of V, then this pushforward α density assigns the value one to the basis

$$
\left(\left(v_{1}, L v_{1}\right), \ldots,\left(v_{n}, L v_{n}\right)\right) \quad \text { of } \operatorname{graph} L .
$$

Let us call this α-density ρ_{L}. Similarly, we can use the map

$$
\operatorname{diag}: V \rightarrow \Delta, \quad v \mapsto(v, v)
$$

to push the canonical α density to an α-density ρ_{Δ} on Δ. So ρ_{Δ} assigns the value one to the basis

$$
\left(\left(v_{1}, v_{1}\right), \ldots,\left(v_{1}, v_{1}\right)\right) \quad \text { of } \Delta
$$

According to (6.5)

$$
|\operatorname{graph} L|^{\alpha} \otimes|\Delta|^{\alpha} \cong \mathbb{C}
$$

So we get a number $\left\langle\rho_{L}, \rho_{\Delta}\right\rangle$ attached to these two α-densities. We claim that

$$
\begin{equation*}
\left\langle\rho_{L}, \rho_{\Delta}\right\rangle=|\operatorname{det}(I-L)|^{-\alpha} . \tag{6.10}
\end{equation*}
$$

Before proving this formula, let us give another derivation of (6.5). Let M and N be subspaces of a symplectic vector space W. (The letter V is currently overworked.) Suppose that $M \cap N=\{0\}$ so that $W=M \oplus N$ as a vector space and so by (6.7) we have

$$
|W|^{\alpha}=|M|^{\alpha} \otimes|N|^{\alpha}
$$

We have an identification of $|W|^{\alpha}$ with \mathbb{C} given by sending

$$
|W|^{\alpha} \ni \rho_{W} \mapsto \rho_{W}(\mathbf{w})
$$

where \mathbf{w} is any symplectic basis of W. Combing the last two equations gives an identification of $|M|^{\alpha} \otimes|N|^{\alpha}$ with \mathbb{C} which coincides with (6.5) in case M and N are Lagrangian subspaces. Put another way, let \mathbf{w} be a symplectic basis of W and suppose that $A \in G l(\operatorname{dim} W)$ is such that

$$
\mathbf{w} \cdot A=(\mathbf{m}, \mathbf{n})
$$

where \mathbf{m} is a basis of M and \mathbf{n} is a basis of N. Then the pairing of of $\rho_{M} \in|M|^{\alpha}$ with $\rho_{N} \in|N|^{\alpha}$ is given by

$$
\begin{equation*}
\left\langle\rho_{M}, \rho_{N}\right\rangle=|\operatorname{det} A|^{-\alpha} \rho_{M}(\mathbf{m}) \rho_{N}(\mathbf{n}) \tag{6.11}
\end{equation*}
$$

Now let us go back to the proof of (6.10). If $\mathbf{e}, \mathbf{f}=e_{1}, \ldots, e_{d}, f_{1} \ldots, f_{d}$ is a symplectic basis of V then

$$
((\mathbf{e}, 0)(0, \mathbf{e}),(\mathbf{f}, 0),(0,-\mathbf{f}))
$$

is a symplectic basis of $V^{-} \oplus V$. We have
$\left.((\mathbf{e}, 0)(0, \mathbf{e}),(\mathbf{f}, 0),(0,-\mathbf{f}))\left(\begin{array}{cccc}I_{d} & 0 & 0 & 0 \\ 0 & 0 & I_{d} & 0 \\ 0 & I_{d} & 0 & 0 \\ 0 & 0 & 0 & -I_{d}\end{array}\right)=((\mathbf{e}, 0), \mathbf{f}, 0),(0, \mathbf{e}),(0, \mathbf{f})\right)$
and

$$
\operatorname{det}\left(\begin{array}{cccc}
I_{d} & 0 & 0 & 0 \\
0 & 0 & I_{d} & 0 \\
0 & I_{d} & 0 & 0 \\
0 & 0 & 0 & -I_{d}
\end{array}\right)=1
$$

Let \mathbf{v} denote the symplectic basis \mathbf{e}, \mathbf{f} of V so that

$$
((\mathbf{e}, 0), \mathbf{f}, 0),(0, \mathbf{e}),(0, \mathbf{f}))=((\mathbf{v}, 0),(0, \mathbf{v}))
$$

Write

$$
L v_{j}=\sum_{i} L_{i j} v_{j}, \quad \mathrm{~L}=\left(L_{i j}\right)
$$

Then

$$
((\mathbf{v}, 0),(0, \mathbf{v}))\left(\begin{array}{cc}
I_{n} & I_{n} \\
\mathrm{~L} & I_{n}
\end{array}\right)=((\mathbf{v}, L \mathbf{v}),(\mathbf{v}, \mathbf{v}))
$$

So taking

$$
A=\left(\begin{array}{cccc}
I_{d} & 0 & 0 & 0 \\
0 & 0 & I_{d} & 0 \\
0 & I_{d} & 0 & 0 \\
0 & 0 & 0 & -I_{d}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & I_{n} \\
\mathrm{~L} & I_{n}
\end{array}\right)=((\mathbf{v}, L \mathbf{v}),(\mathbf{v}, \mathbf{v}))
$$

in (6.11) proves (6.10) since

$$
\operatorname{det} A=\operatorname{det}\left(\begin{array}{cccc}
I_{d} & 0 & 0 & 0 \\
0 & 0 & I_{d} & 0 \\
0 & I_{d} & 0 & 0 \\
0 & 0 & 0 & -I_{d}
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
I_{n} & I_{n} \\
\mathrm{~L} & I_{n}
\end{array}\right)=\operatorname{det}\left(I_{n}-L\right)
$$

6.2 Densities on manifolds.

If $E \rightarrow X$ be a real vector bundle. We can then conisder the complex line bundle

$$
|E|^{\alpha} \rightarrow X
$$

whose fiber over $x \in X$ is $\left|E_{x}\right|^{\alpha}$. The formulas of the preceding section apply pointwise.

We will be primarily interested in the tangent bundle $T X$. So $|T X|^{\alpha}$ a line bundle which we will call the α-density bundle and a smooth section of $|T X|^{\alpha}$ will be called an α-density or a density of order α.

Examples.

- . Let $X=\mathbb{R}^{n}$ with its standard coordinates and hence the standard vector fields

$$
\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}
$$

This means that at each point $p \in \mathbb{R}^{n}$ we have a preferred basis

$$
\left(\frac{\partial}{\partial x_{1}},\right)_{p}, \ldots,\left(\frac{\partial}{\partial x_{n}},\right)_{p} .
$$

We let

$$
d x^{\alpha}
$$

denote the α-density which assigns, at each point p, the value 1 to the above basis. So the most general α-density on \mathbb{R}^{n} can be written as

$$
u \cdot d x^{\alpha}
$$

or simply as

$$
u d x^{\alpha}
$$

where u is a smooth function.

- Let X be an n-dimensional Riemannian manifold. At each point p we have a preferred family of bases of the tangent space - the orthonormal bases. We thus get a preferred density of order α - the density which assigns the value one to eacu orthonormal basis at each point.
- Let X be an orientable manifold and Ω a nowhere vanishing n-form on X. Then we get an α-density according to the rule: At each $p \in X$ assign to each basis e_{1}, \ldots, e_{n} of $T_{p} X$ the value

$$
\left|\Omega\left(e_{1}, \ldots, e_{n}\right)\right|^{\alpha}
$$

We will denote this density by

$$
|\Omega|^{\alpha}
$$

- As a special case of the preceding example, if M is a symplectic manifold of dimension $2 d$ with symplectic form ω, take

$$
\Omega=\omega \wedge \cdots \omega \quad d \text { factors }
$$

So every symplectic manifold has a preferred α-density for any α.

If μ is an α density and ν is a β density the we can multiply them (pointwise) to obtain an $\alpha+\beta$ density $\mu \nu$. Similarly, we can take the complex conjugate of an α density to obtain an $\bar{\alpha}$ density.

Since a density is a section of a line bundle, it makes sense to say that a density is or is not zero at a point. The support of a density is defined to be the closure of the set of points where it is not zero.

6.3 Pull-back of a density under a diffeomorphism.

If

$$
f: X \rightarrow Y
$$

is a diffeomorphism, then we get, at each $x \in X$, a linear isomorphism

$$
d f_{x} T_{x} X \rightarrow T_{f(x)} Y
$$

A density ν of order α on Y assigns a density of order α (in the sense of vector spaces) to each $T_{y} Y$ which we can then pull back using $d f_{x}$ to obtain a density of order α on X. We denote this pulled back density by $f^{*} \nu$. For example, suppose that

$$
\nu=|\Omega|^{\alpha}
$$

for an n-form Ω on Y (where $n=\operatorname{dim} Y$). Then

$$
\begin{equation*}
f^{*}|\Omega|^{\alpha}=\left|f^{*} \Omega\right|^{\alpha} \tag{6.12}
\end{equation*}
$$

where the $f^{*} \Omega$ occurring on right hand side of this equation is the usual pull-back of forms.

As an example, suppose that X and Y are open subsets of \mathbb{R}^{n}, then

$$
d x^{\alpha}=\left|d x_{1} \wedge \cdots d x_{n}\right|^{\alpha}, \quad|d y|^{\alpha}=\left|d y_{1} \wedge \cdots \wedge d y_{n}\right|^{\alpha}
$$

and

$$
f^{*}\left(d y 1 \wedge \cdots \wedge d y_{n}\right)=\operatorname{det} J(f) d x_{1} \wedge \cdots \wedge d x_{n}
$$

where $J(f)$ is the Jacobian matrix of f. So

$$
\begin{equation*}
f^{*} d y^{\alpha}=|\operatorname{det} J(f)|^{\alpha} d x^{\alpha} \tag{6.13}
\end{equation*}
$$

Here is a second application of (6.12). Let $f_{t}: X \rightarrow X$ be a one parameter group of diffeomorphisms generated by a vector field v, and let ν be a density of order α on X. As usual, we define the Lie derivative $D_{v} \nu$ by

$$
D_{v} \nu:=\frac{d}{d t} f_{t}^{*} \nu_{\mid t=0}
$$

If $\nu=|\Omega|^{\alpha}$ then

$$
D_{v} \nu=\alpha D_{v}|\Omega| \cdot|\Omega|^{\alpha-1}
$$

and if X is oriented, then we can identify $|\Omega|$ with Ω on oriented bases, so

$$
D_{v}|\Omega|=D_{v} \Omega=\operatorname{di}(v) \Omega
$$

on oriented bases. For example,

$$
\begin{equation*}
D_{v} d x^{\frac{1}{2}}=\frac{1}{2}(\operatorname{div} v) d x^{\frac{1}{2}} \tag{6.14}
\end{equation*}
$$

where

$$
\operatorname{div} v=\frac{\partial v_{1}}{\partial x_{1}}+\cdots+\frac{\partial v_{n}}{\partial x_{n}} \quad \text { if } \quad v=v_{1} \frac{\partial}{\partial x_{1}}+\cdots+v_{n} \frac{\partial}{\partial x_{n}}
$$

6.4 Densities of order 1.

If we set $\alpha=1$ in (6.13) we get

$$
f^{*} d y=|\operatorname{det} J(f)| d x
$$

or, more generally,

$$
f^{*}(u d y)=(u \circ f)|\operatorname{det} J(f)| d x
$$

which is the change of variables formula for a multiple integral. So if ν is a density of order one of compact support which is supported on a coordinate patch $\left(U, x_{1}, \ldots, x_{n}\right)$, and we write

$$
\nu=g d x
$$

then

$$
\int \nu:=\int_{U} g d x
$$

is independent of the choice of coordinates. If ν is a density of order one of compact support we can use a partition of unity to break it into a finite sum of densities of order one and of compact support contained in coordinate patches

$$
\nu=\nu_{1}+\cdots+\nu_{r}
$$

and $\int_{X} \nu$ defined as

$$
\int_{X} \nu:=\int \nu_{1}+\cdots+\int \nu_{r}
$$

is independent of all choices. In other words densities of order one (usually just called densities) are objects which can be integrated (if of compact support). Furthermore, if

$$
f: X \rightarrow Y
$$

is a diffeomorphism, and ν is a density of order one of compact support on Y, we have the genral "change of variables formula"

$$
\begin{equation*}
\int_{X} f^{*} \nu=\int_{Y} \nu \tag{6.15}
\end{equation*}
$$

Suppose that α and β are complex numbers with

$$
\alpha+\bar{\beta}=1
$$

Suppose that μ is a density of order α and ν is a density of order β on X and that one of them has compact support. Then $\mu \cdot \bar{\nu}$ is a density of order one and we can form

$$
\langle\mu, \nu\rangle:=\int_{X} \mu \bar{\nu}
$$

So we get an intrinsic sesquilinear pairing between the densities of order α of compact support and the densities of order $1-\bar{\alpha}$.

6.5 The principal series representation of $\operatorname{Diff}(X)$.

So if $s \in \mathbb{R}$, we get a pre-Hilbert space structure on the space of densities of order $\frac{1}{2}+i s$ given by

$$
(\mu, \nu):=\int_{X} m u \bar{\nu}
$$

If $f \in \operatorname{Diff}(X)$, i.e. if $f: X \rightarrow X$ is a diffeomorphism, then

$$
\left(f^{\mu}, f^{*} \nu\right)=(\mu, \nu)
$$

and

$$
(f \circ g)^{*}=g^{*} \circ f^{*} .
$$

Let \mathfrak{H}_{s} denote the completion of the pre-Hilbert space of densities of order $\frac{1}{2}+i s$. The Hilbert space \mathfrak{H}_{s} is known as the bf intrinsic Hilbert space of order s. The map

$$
f \mapsto\left(f^{-1}\right)^{*}
$$

is a representation of $\operatorname{Diff}(X)$ on the space of densities or order $\frac{1}{2}+i s$ which extends by completion to a unitary representation of Diff (X on \mathfrak{H}_{s}. This collection of representations (parametrized by s) is known as the principal series of representations.

If we take $S=S^{1}=\mathbb{P R}^{1}$ and restrict the above representations of $\operatorname{Diff}(X)$ to $G=P L(2, \mathbb{R})$ we get the principal series of representations of G.

We will concentrate on the case $s=0$, i.e. we will deal primarily with densities of order $\frac{1}{2}$.

6.6 The push-forward of a density of order one by a fibration.

There is an important generalization of the notion of the integral of a density of compact support: Let

$$
\pi: Z \rightarrow X
$$

be a proper fibration. Let μ be a density of order one on Z. We are going to define

$$
\pi_{*} \mu
$$

which will be a density of order one on X. We proceed as follows: for $x \in X$, let

$$
F=F_{x}:=\pi^{-1}(x)
$$

be the fiber over x. Let $z \in F$. We have the exact sequence

$$
0 \rightarrow T_{z} F \rightarrow T_{z} Z \xrightarrow{d \pi_{z}} T_{x} X \rightarrow 0
$$

which gives rise to the isomorphism

$$
\left|T_{z} F\right| \otimes\left|T_{x} X\right| \cong\left|T_{z} Z\right| .
$$

The density μ thus assigns, to each z in the manifold F an element of $\left|T_{Z}\right| \otimes$ $\left|T_{x} X\right|$. In other words, on the manifold F it is a density of order one with values in the fixed one dimensional vector space $\left|T_{x} X\right|$. Since F is compact, we can integrate this density over F to obtain an element of $\left|T_{x} X\right|$. As we do this for all x, we have obtained a density of order one on X.

Let us see what the operation $\mu \mapsto \pi_{*} \mu$ looks like in local coordinates. Let us choose local ccordinates (U, x_{1},
dots, $\left.x_{n} . s_{1} \ldots, s_{d}\right)$ on Z and coordinates y_{1}, \ldots, y_{n} on X so that

$$
\pi:\left(x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{d}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right)
$$

Suppose that μ is supported on U and we write

$$
\mu=u d x d s=u\left(x_{1}, \ldots, x_{n}, s_{1} d o t s, s_{d}\right) d x_{1} \ldots d x_{n} d s_{1} \ldots d s_{d}
$$

Then

$$
\begin{equation*}
\pi_{*} \mu=\left(\int u\left(x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{d}\right) d s_{1} \ldots d s_{d}\right) d x_{1} \ldots, d x_{n} \tag{6.16}
\end{equation*}
$$

In the special case that X is a point, $\pi_{*} \mu=\int_{Z} \mu$. Also, Fubini's theorem says that if

$$
W \xrightarrow{\rho} Z \xrightarrow{\pi} X
$$

are fibrations with compact fibers then

$$
\begin{equation*}
(\pi \circ \rho)_{*}=\pi_{*} \circ \rho_{*} \tag{6.17}
\end{equation*}
$$

In particular, if μ is a density of compact support on Z with $Z \rightarrow X$ a fibration then $\pi_{*} \mu$ is defined and

$$
\begin{equation*}
\int_{X} \pi_{*} \mu=\int_{Z} \mu \tag{6.18}
\end{equation*}
$$

If f is a C^{∞} function on X of compact support and $\pi: Z \rightarrow X$ is a proper fibration then $\pi^{*} f$ is constant along fibers and (6.18) says that

$$
\begin{equation*}
\int_{Z} \pi^{*} f \mu=\int_{X} f \mu \tag{6.19}
\end{equation*}
$$

In other words, the operations

$$
\pi^{*}: C_{0}^{\infty}(X) \rightarrow^{*}: C_{0}^{\infty}(Z)
$$

and

$$
\pi_{*}: C^{\infty}(|T Z|) \rightarrow C^{\infty}(|T X|)
$$

are transposes of one another.

Chapter 7

The enhanced symplectic "category".

Suppose that M_{1}, M_{2}, and M_{3} are symplectic manifolds, and that

$$
\Gamma_{2} \in \operatorname{Morph}\left(M_{2}, M_{3}\right) \text { and } \quad \Gamma_{1} \in \operatorname{Morph}\left(M_{1}, M_{2}\right)
$$

are canonical relations which can be composed in the sense of Chapter 4. Let ρ_{1} be a $\frac{1}{2}$-density on Γ_{1} and ρ_{2} a $\frac{1}{2}$-density on Λ_{2}. The purpose of this chapter is to define a $\frac{1}{2}$-density $\rho_{2} \circ \rho_{1}$ on $\Gamma_{2} \circ \Gamma_{1}$ and to study the properties of this composition. In particular we will show that the composition

$$
\left(\Gamma_{2}, \rho_{2}\right) \times\left(\Gamma_{1}, \rho_{1}\right) \mapsto\left(\Gamma_{2} \circ \Gamma_{1}, \rho_{2} \circ \rho_{1}\right)
$$

is associative when defined, and that the axioms for a "category" are satisfied.

7.1 The underlying linear algebra.

Let V_{1} and V_{2} be symplectic vector spaces and let $\Gamma \subset V_{1}^{-} \times V_{2}$ be a linear canonical relation. Let

$$
\pi: \Gamma \rightarrow V_{2}
$$

be the projection onto the second factor. Define

- Ker $\Gamma \subset V_{1}$ by Ker $\Gamma=\left\{v \in V_{1} \mid(v, 0) \in \Gamma\right\}$.
- $\operatorname{Im} \Gamma \subset V_{2}=\Gamma\left(V_{1}\right)$.

So $\Gamma^{\dagger} \subset V_{2}^{-} \oplus V_{1}$ and hence both $\operatorname{ker} \Gamma^{\dagger}$ and $\operatorname{Im} \Gamma$ are linear subspaces of the symplectic vector space V_{2}. We claim that

$$
\begin{equation*}
\left(\operatorname{ker} \Gamma^{\dagger}\right)^{\perp}=\operatorname{Im} \Gamma \tag{7.1}
\end{equation*}
$$

Here \perp means perpendicular relative to the symplectic structure on V_{2}.
Proof. Let B_{1} and B_{2} be the symplectic bilinear forms on V_{1} and V_{2} so that $\tilde{B}=-B_{1} \oplus\left(B_{2}\right)$ is the symplectic form on $V_{1}^{-} \oplus V_{2}$. So $v \in V_{2}$ is in Ker Γ^{\dagger} if and only if $(0, v) \in \Gamma$. Since Γ is Lagrangian,

$$
(0, v) \in \Gamma^{\perp} \Leftrightarrow 0=-B_{1}\left(0, v_{1}\right)+B_{2}\left(v, v_{2}\right)=-B_{2}\left(v, v_{2}\right) \forall\left(v_{1}, v_{2}\right) \in \Gamma
$$

But this is precisely the condition that $v \in(\operatorname{Im} \Gamma)^{\perp}$.
Now let V_{1}, V_{2}, V_{3} be symplectic vectors spaces and $\Gamma_{1} \subset V_{1}^{-} \times V_{2}$ and $\Gamma_{2} \subset V_{2}^{-} \times V_{3}$ be linear canonical relations. Let

$$
\pi: \Gamma_{2} \rightarrow V_{2}, \quad \pi\left(v_{1}, v_{2}\right)=v_{2}
$$

and

$$
\rho: \Gamma_{2} \rightarrow V_{2}, \quad \rho\left(v_{2}, v_{3}\right)=v_{2}
$$

so that the fiber product of π and ρ is given by

$$
F:=\left\{\left(v_{1}, v_{2}, v_{3}\right) \mid\left(v_{1}, v_{2}\right) \in \Gamma_{1}, \text { and }\left(v_{2}, v_{3}\right) \in \Gamma_{2}\right\} .
$$

Let

$$
\alpha: F \rightarrow V_{1} \times V_{3}, \quad \alpha\left(v_{1}, v_{2}, v_{3}\right):=\left(v_{1}, v_{3}\right)
$$

The image of α is, by definition, $\Gamma_{2} \circ \Gamma_{1}$. The kernel of α consists of those $(0, v, 0) \in F$. So if we let

$$
\mu: F \rightarrow V_{2}, \quad \mu\left(v_{1}, v_{2}, v_{3}\right)=v_{2}
$$

denote the projection of F onto the middle factor we have

$$
\begin{equation*}
\mu(\operatorname{Ker} \alpha)=\operatorname{Ker} \Gamma_{1}^{\dagger} \cap \operatorname{Ker} \Gamma_{2} . \tag{7.2}
\end{equation*}
$$

Let

$$
\tau: \Gamma_{1} \times \Gamma_{2} \rightarrow V_{2}
$$

be defined by

$$
\tau\left(\gamma_{1}, \gamma_{2}\right):=\pi\left(\gamma_{1}\right)-\rho\left(\gamma_{2}\right)
$$

so that the definition of the fiber product F gives the exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow \Gamma_{1} \times \Gamma_{2} \xrightarrow{\tau} V_{2} \rightarrow \text { Coker } \tau \rightarrow 0 \tag{7.3}
\end{equation*}
$$

We have

$$
\operatorname{Im} \tau=\operatorname{Im} \Gamma_{1}+\operatorname{Im} \Gamma_{2}^{*}
$$

so that

$$
(\operatorname{Im} \tau)^{\perp}=\operatorname{Ker} \Gamma_{1}^{\dagger} \cap \operatorname{Ker} \Gamma_{2}=\mu(\operatorname{Ker} \alpha) .
$$

7.2. HALF DENSITIES AND CLEAN CANONICAL COMPOSITIONS. 121

From the definition of $\operatorname{Ker} \Gamma$ we see that it is always isotropic so $\operatorname{Ker} \Gamma_{1}^{\dagger} \cap$ Ker Γ_{2} is isotropic and hence $\operatorname{Im} \tau$ is a co-isotropic subspace of V_{2} and the symplectic bilinear form B_{2} on V_{2} induces a non-singular bilinear pairing

$$
\left(V_{2} / \operatorname{Im} \tau\right) \times \mu(\operatorname{Ker} \alpha) \rightarrow \mathbb{R}
$$

Furthermore, the map μ restricted to $\operatorname{Ker} \alpha$ is an isomorphism. So we have produced a canonical isomorphism

$$
\begin{equation*}
(\operatorname{Coker} \tau)^{*} \cong \operatorname{Ker} \alpha \tag{7.4}
\end{equation*}
$$

From the exact sequence (7.3) we get the isomorphism

$$
\left.|F|^{\frac{1}{2}} \otimes\left|V_{2}\right|^{\frac{1}{2}} \cong\left|\Gamma_{1}\right|^{\frac{1}{2}} \otimes\left|\Gamma_{2}\right|^{\frac{1}{2}} \otimes \right\rvert\, \text { Coker }\left.\tau\right|^{\frac{1}{2}}
$$

The symplectic form on V_{2} gives a canonical trivialization $\left|V_{2}\right|^{\frac{1}{2}} \cong \mathbb{C}$. Also we have $|F|^{\frac{1}{2}} \cong|\operatorname{Ker} \alpha|^{\frac{1}{2}} \otimes|\operatorname{Im} \alpha|^{\frac{1}{2}}$. From (7.4) we have

$$
\mid \text { Coker }\left.\tau\right|^{\frac{1}{2}} \cong \mid \text { Ker }\left.\alpha\right|^{-\frac{1}{2}}
$$

Substituting these into the preceding isomorphism we get

$$
|\operatorname{Ker} \alpha| \otimes|\operatorname{Im} \alpha|^{\frac{1}{2}} \cong\left|\Gamma_{1}\right|^{\frac{1}{2}} \otimes\left|\Gamma_{2}\right|^{\frac{1}{2}}
$$

But since $\operatorname{Im} \alpha=\Gamma_{2} \circ \Gamma_{1}$ we get the key formula

$$
\begin{equation*}
\mid \text { Ker }\left.\alpha|\otimes| \Gamma_{2} \circ \Gamma_{1}\right|^{\frac{1}{2}} \cong\left|\Gamma_{1}\right|^{\frac{1}{2}} \otimes\left|\Gamma_{2}\right|^{\frac{1}{2}} \tag{7.5}
\end{equation*}
$$

7.2 Half densities and clean canonical compositions.

Let M_{1}, M_{2}, M_{3} be symplectic manifolds and let $\Gamma_{1} \subset M_{1}^{-} \times M_{2}$ and $\Gamma_{2} \subset$ $M_{2}^{-} \times M_{3}$ be canonical relations. Let

$$
\pi: \Gamma_{1} \rightarrow M_{2}, \pi\left(m_{1}, m_{2}\right)=m_{2}, \quad \rho: \Gamma_{2} \rightarrow M_{2}, \rho\left(m_{2}, m_{3}\right)=m_{2}
$$

and $F \subset \Gamma_{1} \times \Gamma_{2}$ the fiber product:

$$
F=\left\{\left(m_{1}, m_{2}, m_{3}\right) \mid\left(m_{1}, m_{2}\right) \in \Gamma_{1}, \quad\left(m_{2}, m_{3}\right) \in \Gamma_{2}\right\}
$$

Let

$$
\alpha: F \rightarrow M_{1} \times M_{3}, \quad \alpha\left(m_{1}, m_{2}, m_{3}\right)=\left(m_{1}, m_{3}\right)
$$

The image of α is the composition $\Gamma_{2} \circ \Gamma_{1}$.
Recall that we say that Γ_{1} and Γ_{2} intersect cleanly if the maps ρ and π intersect cleanly. If π and ρ intersect cleanly then their fiber product F is a submanifold of $\Gamma_{1} \times \Gamma_{2}$ and the arrows in the exact square

are smooth maps. Furthermore the differentials of these maps at any point give an exact square of the corresponding linear canonical relations. In particular, α is of constant rank and $\Gamma_{2} \circ \Gamma_{1}$ is an immersed canonical relation. If we further assume that

1. α is proper and
2. the level sets of α are connected,
then $\Gamma_{2} \circ \Gamma_{1}$ is an embedded Lagrangian submanifold of $M_{1}^{-} \times M_{2}$ and

$$
\alpha: F \rightarrow \Gamma_{2} \circ \Gamma_{1}
$$

is a fiber map with proper fibers. So our key identity (7.5) holds at the tangent space level: If we let $m=\left(m_{1}, m_{2}, m_{3}\right) \in F$ and $q=\alpha(m) \in \Gamma_{2} \circ \Gamma_{1}$ we get an isomorphism

$$
\left|T_{m} F\right| \otimes\left|T_{q}\left(\Gamma_{2} \circ \Gamma_{1}\right)\right|^{\frac{1}{2}} \cong\left|T_{m_{1}, m_{2}} \Gamma_{1}\right|^{\frac{1}{2}} \otimes\left|T_{\left(m_{2}, m_{3}\right)} \Gamma_{2}\right|^{\frac{1}{2}}
$$

This means that if we are given half densities ρ_{1} on Γ_{1} and ρ_{2} on Γ_{2} we get a half density on $\Gamma_{2} \circ \Gamma_{1}$ by integrating the expression obtained from the left hand side of the above isomorphism over the fiber. This gives us the composition law for half densities. Once we establish the associative law and the existence of the identity we will have have enhanced our symplectic category so that now the morphisms consist of pairs (Γ, ρ) where Γ is a canonical relation and where ρ is a half density on Γ.

7.3 Rewriting the composition law.

We will rewrite the composition law in the spirit of Sections 3.3.2 and 4.4: If $\Gamma \subset M^{-} \times M$ is the graph of a symplectomorphism, then the projection of Γ onto the first factor is a diffeomorphism. The symplectic form on M determines a canonical $\frac{1}{2}$ density on M, and hence on Γ. In particular, we can apply this fact to the identity map, so $\Delta \subset M^{-} \times M$ carries a canonical $\frac{1}{2}$-density. Hence, the submanifold

$$
\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}=\{(x, y, y, z, x, z)\} \subset M_{1} \times M_{2} \times M_{2} \times M_{3} \times M_{1} \times M_{3}
$$

as in (4.6) carries a canonical $\frac{1}{2}$-form $\tau_{1,2,3}$. Then we know that

$$
\Gamma_{2} \circ \Gamma_{1}=\tilde{\Delta}_{M_{1}, M_{2}, M_{3}} \circ \Gamma_{1} \times \Gamma_{2}
$$

More details? and it is easy to check that

$$
\rho_{2} \circ \rho_{1}=\tau_{123} \circ\left(\rho_{1} \times \rho_{2}\right.
$$

Similarly,

$$
\left.\left(\Gamma_{3} \circ \Gamma_{2}\right) \circ \Gamma_{1}\right)=\Gamma_{3} \circ\left(\Gamma_{2} \circ \Gamma_{1}\right)=\tilde{\Delta}_{M_{1}, M_{2}, M_{3}, M_{4}} \circ\left(\Gamma_{1} \times \Gamma_{2} \times \Gamma_{3}\right)
$$

and $\tilde{\Delta}_{M_{1}, M_{2}, M_{3}, M_{4}}$ carries a canonical $\frac{1}{2}$-density $\tau_{1,2,3,4}$ with

$$
\left(\rho_{3} \circ \rho_{2}\right) \circ \rho_{1}=\rho_{3} \circ\left(\rho_{2} \circ \rho_{1}\right)=\tau_{1.2 .3 .4} \circ\left(\rho_{1} \times \rho_{2} \times \rho_{3} .\right.
$$

This establishes the associative law.

7.4. ENHANCING THE CATEGORY OF SMOOTH MANIFOLDS AND MAPS. 123

7.4 Enhancing the category of smooth manifolds and maps.

Let X and Y be smooth manifolds and $E \rightarrow X$ and $F \rightarrow Y$ be vector bundles. According to Atiyah and Bott, a morphism from $E \rightarrow X$ to $F \rightarrow Y$ consists of a smooth map

$$
f: X \rightarrow Y
$$

and a section

$$
r \in C^{\infty}\left(f^{*} F, E\right)
$$

We described the finite set analogue of this concept in Section 3.3.5. If s is a smooth section of $F \rightarrow Y$ then we get a smooth section of $E \rightarrow X$ via

$$
(f, r)^{*} s(x):=r(s(f(x))
$$

We want to specialize this construction of Atiyah-Bott to the case where E and F are the line bundles of $\frac{1}{2}$-forms. So we say that r is an enhancement of the smooth map $F: X \rightarrow Y$ or that (f, r) is an enhanced smooth map if r is a smooth section of the line bundle

$$
\operatorname{Hom}\left(\left|f^{*} T Y\right|,|T X|\right)
$$

The composition of two enhanced maps

$$
(f, r):(E \rightarrow X) \rightarrow(F \rightarrow Y) \quad \text { and } \quad\left(g, r^{\prime}\right):(F \rightarrow Y) \rightarrow(G \rightarrow Z)
$$

is $\left(g \circ f, r \circ r^{\prime}\right)$ where, for $\left.\tau \in \mid T_{g(f(x))} Z\right)\left.\right|^{\frac{1}{2}}$

$$
\left(r \circ r^{\prime}\right)(\tau)=r\left(r^{\prime}(\tau)\right)
$$

We thus obtain a category whose objects are manifolds and whose morphisms are enhanced maps.

If ρ is a $\frac{1}{2}$ density on Y and (f, r) is an enhanced map then we get a $\frac{1}{2}$ density on X by the Atiyah-Bott rule

$$
(f, r)^{*} \rho(x)=r\left(\rho(f(x)) \in\left|T_{x} X\right|^{\frac{1}{2}}\right.
$$

Then we know that the assignment $(f, r) \mapsto(f, r)^{*}$ is functorial.
We now give some examples of enhancement of particular kinds of maps:

7.4.1 Enhancing an immersion.

Suppose $f: X \rightarrow Y$ is an immersion. We then get the conormal bundle $N_{f}^{*} X$ whose fiber at x consists of all covectors $\xi \in T_{f(x)}^{*} Y$ such that $d f_{x}^{*} \xi=0$. We have the exact sequence

$$
0 \rightarrow T_{x} X \xrightarrow{d f_{x}} T_{f(x)} Y \rightarrow N_{x} Y \rightarrow \rightarrow 0 .
$$

Here $N_{x} Y$ is defined as the quotient $T_{f(x)) Y /\left(d f_{x}\left(T_{x} X\right)\right.}$. The fact that f is an immersion is the statement that $d f_{x}$ is injective. The space $\left(N_{f}^{*} X_{x}\right)$ is the dual space of $N_{x} Y$. From this exact sequence we get the isomorphism

$$
\left.\left|T_{f(x)} Y\right|^{\frac{1}{2}} \cong N_{x} Y\right|^{f r a c 12} \otimes\left|T_{x} X\right|^{\frac{1}{2}} .
$$

So
$\operatorname{Hom}\left(\left|T_{f(x)} Y\right|^{\frac{1}{2}},\left|T_{x} X\right|^{\frac{1}{2}}\right) \cong\left|T_{x} X\right|^{\frac{1}{2}} \otimes \operatorname{Hom}\left(\left|T_{f(x)} Y\right|^{-\frac{1}{2}} \cong\left|N_{x}\right|^{-\frac{1}{2}} \cong\left|\left(N_{f}^{*} X\right)_{x}\right|^{\frac{1}{2}}\right.$.
Conclusion. Enhancing an immersion is the same as giving a section of $\left|N_{f}^{*} X\right|^{\frac{1}{2}}$.

7.4.2 Enhancing a fibration.

Suppose that $\pi: Z \rightarrow X$ is a submersion. If $z \in Z$, let V_{z} denote the tangent space to to the fiber $\pi^{-1}(x)$ at z where $x=\pi(z)$. Thus V_{z} is the kernel of $d \pi_{z}: T_{z} Z \rightarrow T_{\pi(z)} X$. So we have an exact sequence

$$
0 \rightarrow V_{z} \rightarrow T_{z} Z \rightarrow T_{\pi(z)} X \rightarrow 0
$$

and hence the isomorphism

$$
\left|T_{z} Z\right|^{\frac{1}{2}} \cong\left|V_{z}\right|^{\frac{1}{2}} \otimes\left|T_{\pi(z)} X\right|^{\frac{1}{2}} .
$$

So

$$
\begin{equation*}
\operatorname{Hom}\left(\left|T_{\pi(z)} X\right|^{\frac{1}{2}},\left|T_{z} Z\right|^{\frac{1}{2}}\right) \cong\left|T_{\pi(z)} X\right|^{-\frac{1}{2}} \otimes\left|T_{z} Z\right|^{\frac{1}{2}} \cong\left|V_{z}\right|^{\frac{1}{2}} . \tag{7.6}
\end{equation*}
$$

Conclusion. Enhancing a fibration is the same as giving a section of $|V|^{\frac{1}{2}}$ where V denote the vertical sub-bundle of the tangent bundle, i.e. the subbundle tangent to the fibers of the fibration.

7.4.3 The pushforward via an enhanced fibration.

Suppose that $\pi: Z \rightarrow X$ is a fibration with compact fibers and r is an enhancement of π so that r is given by a section of the line-bundle $\left.V\right|^{\frac{1}{2}}$ as we have just seen. Let ρ be a $\frac{1}{2}$-form on Z. From the isomorphism

$$
\left|T_{z} Z\right|^{\frac{1}{2}} \cong\left|V_{z}\right|^{\frac{1}{2}} \otimes\left|T_{\pi(z)} X\right|^{\frac{1}{2}}
$$

we can regard ρ as section of $\left|V_{z}\right|^{\frac{1}{2}} \otimes \pi^{*}|T X|^{\frac{1}{2}}$ and hence

$$
r \cdot \rho
$$

is a section of $|V| \otimes \pi^{*}|T X|^{\frac{1}{2}}$. Put another way, for each $x \in X r \cdot \rho$ gives a density (of order one)) on $\pi^{-1}(x)$ with values in the fixed vector space $\left|T_{x} X\right|^{\frac{1}{2}}$. So we can integrate this density of order one over the fiber to obtain

$$
\pi_{*}(r \cdot \rho)
$$

which is a $\frac{1}{2}$-density on X. If the enhancement r of π is understood, we will denote the push-forward of the $\frac{1}{2}$-density ρ simply by

$$
\pi_{*} \rho
$$

We have the obvious variants on this construction if π is not proper. We can construct $\pi_{*}(r \cdot \rho)$ if either r or ρ are compactly supported in the fiber direction.

An enhanced fibration $\pi=(\pi, r)$ gives a pull-back operation π^{*} from half densities on X to $\frac{1}{2}$-densities on Z. So if μ is a $\frac{1}{2}$-density on X and ν is a $\frac{1}{2}$-density on Z then

$$
\nu \cdot \pi^{*} \mu
$$

is a density on Z. If μ is of compact support and if ν is compactly supported in the fiber direction, then $\nu \cdot \pi^{*} \mu$ is a density (of order one) of compact support on Z which we can integrate over Z. We can also form

$$
\left(\pi_{*} \nu\right) \cdot \mu
$$

which is a density (of order one) which is of compact support on X. It follows form Fubini's theorem that

$$
\int_{Z} \nu \cdot \pi^{*} \mu=\int_{X}\left(\pi_{*} \nu\right) \cdot \mu
$$

7.5 Enhancing a map enhances the corresponding canonical relation.

Let $f: X \rightarrow Y$ be a smooth map. We can enhance this map by giving a section r of $\operatorname{Hom}\left(|T Y|^{\frac{1}{2}},|T X|^{\frac{1}{2}}\right)$. On the other hand, we can construct the canonical relation

$$
\Gamma_{f} \in \operatorname{Morph}\left(T^{*} X, T^{*} Y\right)
$$

as described in Section 4.7. Enhancing this canonical relation amounts to giving a $\frac{1}{2}$-form ρ on Γ_{f}. In this section we show how the enhancement r of the map f gives rise to a $\frac{1}{2}$-form on Γ_{f}.

Recall (4.9) which says that

$$
\Gamma_{f}=\left\{\left(x_{1}, \xi_{1}, x_{2}, \xi_{2}\right) \mid x_{2}=f\left(x_{1}\right), \quad \xi_{1}=d f_{x_{1}}^{*} \xi_{2}\right\}
$$

From this description we see that Γ_{f} is a vector bundle over X whose fiber over $x \in X$ is $T_{f(x)}^{*} Y$. So at each point $z=\left(x, \xi_{1}, y, \eta\right) \in \Gamma_{f}$ we have the isomorphism

$$
\left|T_{z} \Gamma_{f}\right|^{\frac{1}{2}} \cong\left|T_{x} X\right|^{\frac{1}{2}} \otimes\left|T_{\eta}\left(T_{f(x)}^{*} Y\right)\right|^{\frac{1}{2}}
$$

But $\left(T_{f(x)}^{*} Y\right)$ is a vector space, and at any point η in a vector space W we have a canonical idenitication of $T_{\eta} W$ with W. So at each $z \in \Gamma_{f}$ we have an isomorphism

$$
\left|T_{z} \Gamma_{f}\right|^{\frac{1}{2}} \cong\left|T_{x} X\right|^{\frac{1}{2}} \otimes\left|T_{\eta}\left(T_{f(x)}^{*} Y\right)\right|^{\frac{1}{2}}=\operatorname{Hom}\left(\left|T_{f(x)} Y\right|^{\frac{1}{2}},\left|T_{x} X\right|^{\frac{1}{2}}\right)
$$

and at each $x, r(x)$ is an element of $\operatorname{Hom}\left(\left|T_{f(x)} Y\right|^{\frac{1}{2}},\left|T_{x} X\right|^{\frac{1}{2}}\right)$. So r gives rise I still need to write up the to a $\frac{1}{2}$-density on Γ_{f} functoriality of this relation.

7.6 The involutive structure of the enhanced symplectic "category".

Recall that if $\Gamma \in \operatorname{Morph}\left(M_{1}, M_{2}\right)$ then we defined $\Gamma^{\dagger} \in\left(M_{2}, M_{1}\right)$ be

$$
\Gamma^{\dagger}=\{(y, x) \mid(x, y) \in \Gamma\}
$$

We have the switching diffeomorphism

$$
s: \Gamma^{\dagger} \rightarrow \Gamma, \quad(y, x) \mapsto(x, y)
$$

and so if ρ is a $\frac{1}{2}$-density on Γ then $s^{*} \rho$ is a $\frac{1}{2}$-density on Γ^{\dagger}. We define

$$
\begin{equation*}
\rho^{\dagger}=\overline{s^{*} \rho} \tag{7.7}
\end{equation*}
$$

Starting with an enhanced morphism (Γ, ρ) we define

$$
(\Gamma, \rho)^{\dagger}=\left(\Gamma^{\dagger}, \rho^{\dagger}\right)
$$

We show that $\dagger:(\Gamma, \rho) \mapsto(\Gamma, \rho)^{\dagger}$ satisfies the conditions for a involutive structure. Since $s^{2}=$ id it is clear that $\dagger^{2}=$ id. If $\Gamma_{2} \in \operatorname{Morph}\left(M_{2}, M_{1}\right)$ and $\Gamma_{1} \in \operatorname{Morph}\left(M_{1}, M_{2}\right)$ are composible morphsims, we know that the composition of $\left(\Gamma_{2}, \rho_{2}\right)$ with $\left(\Gamma_{1}, \rho_{1}\right)$ is given by

$$
\left(\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}, \tau_{123}\right) \circ\left(\Gamma_{1} \times \Gamma_{2}, \rho_{1} \times \rho_{2}\right)
$$

where

$$
\tilde{\Delta}_{M_{1}, M_{2}, M_{3}}=\left\{(x, y, y, z, x, z) \mid x \in M_{1}, y \in M_{2}, z \in M_{3}\right\}
$$

and τ_{123} is the canonical (real) $\frac{1}{2}$-density arising from the symplectic structures on M_{1}, M_{2} and M_{3}. So

$$
s:\left(\Gamma_{1} \circ \Gamma_{2}\right)^{\dagger}=\Gamma_{1}^{\dagger} \circ \Gamma_{2}^{\dagger} \rightarrow \Gamma_{2} \circ \Gamma_{1}
$$

is given by applying the operator S switching x and z

$$
S: \tilde{\Delta}_{M_{3}, M_{2}, M_{1}} \rightarrow \tilde{\Delta}_{M_{1}, M_{2}, M_{3}}
$$

applying the switching operators $s_{1}: \Gamma_{1}^{\dagger} \rightarrow \Gamma_{1}$ and $s_{2}: \Gamma_{2}^{\dagger} \rightarrow \Gamma_{2}$ and also switching the order of Γ_{1} and Γ_{2}. Pull-back under switching the order of Γ_{1} and Γ_{2} sends $\rho_{1} \times \rho_{2}$ to $\rho_{2} \times \rho_{1}$, applying the individual s_{1}^{*} and s_{2}^{*} and taking complex conjugates sends $\rho_{2} \times \rho_{1}$ to $\rho_{2}^{\dagger} \times \rho_{1}^{\dagger}$. Also

$$
S^{*} \tau_{123}=\tau_{321}
$$

and τ_{321} is real. Putting all these facts together shows that

$$
\left(\left(\Gamma_{2}, \rho_{2}\right) \circ\left(\Gamma_{1}, \rho_{1}\right)\right)^{\dagger}=\left(\Gamma_{1}, \rho_{1}\right)^{\dagger} \circ\left(\Gamma_{2}, \rho_{2}\right)^{\dagger}
$$

proving that \dagger satisfies the conditions for a involutive structure.
Let M be an object in our "category", i.e. a symplectic manifold. A "point" of M in our enchanced "category" will consist of a Lagrangian submanifold $\Lambda \subset M$ thought of as an element of Morph(pt., M) (in \mathcal{S}) together with a $\frac{1}{2}$-density on Λ. If (Λ, ρ) is such a point, then $(\Lambda, \rho)^{\dagger}=\left(\Lambda^{\dagger}, \rho^{\dagger}\right)$ where we now think of the Lagrangian submanifold Λ^{\dagger} as an element of $\operatorname{Morph}(M$, pt.).

Suppose that $\left(\Lambda_{1}, \rho_{1}\right)$ and $\left(\Lambda_{2}, \rho_{2}\right)$ are "points" of M and that Λ_{2}^{\dagger} and Λ_{1} are composible. Then $\Lambda_{2}^{\dagger} \circ \Lambda_{1}$ in \mathcal{S} is an element of Morph(pt., pt.) which consists of a (single) point. So in our enhanced "category" $\tilde{\mathcal{S}}$

$$
\left(\Lambda_{2}, \rho_{2}\right)^{\dagger}\left(\Lambda_{1}, \rho_{1}\right)
$$

is a $\frac{1}{2}$-density on a point, i.e. a complex number. We will denote this number by

$$
\left\langle\left(\Lambda_{1}, \rho_{1}\right),\left(\Lambda_{2}, \rho_{2}\right)\right\rangle
$$

7.6.1 Computing the pairing $\left\langle\left(\Lambda_{1}, \rho_{1}\right),\left(\Lambda_{2}, \rho_{2}\right)\right\rangle$.

This is, of course, a special case of the computation of Section 7.2.
The first condition that Λ_{2}^{\dagger} and Λ_{1} be composible is that $F=\Lambda_{1}$ and Λ_{2} intersect cleanly as submanifolds of M. Here F is a special case of the fiber product of Section 7.2 and the argument there show that we have an isomorphism

$$
\left|T_{p} F\right|=\left\lvert\, T_{p}\left(\left.\Lambda_{1} \cap \Lambda_{2}|\cong| T_{p} \Lambda_{1}\right|^{\frac{1}{2}} \otimes\left|T_{p} \Lambda_{2}\right|^{\frac{1}{2}}\right.\right.
$$

and so ρ_{1} and $\overline{\rho_{2}}$ multiply together to give a density $\rho_{1} \overline{\rho_{2}}$ on $\Lambda_{1} \cap \Lambda_{2}$. A second condition on composibility requires that $\Lambda_{1} \cap \Lambda_{2}$ be compact and then

$$
\left\langle\left(\Lambda_{1}, \rho_{1}\right),\left(\Lambda_{2}, \rho_{2}\right)\right\rangle=\int_{\Lambda_{1} \cap \Lambda_{2}} \rho_{1} \overline{\rho_{2}} .
$$

7.6.2 \dagger and the adjoint under the pairing.

In the category of whose objects are Hilbert spaces and whose morphisms are bounded operators, the adjoint A^{\dagger} of a operator $A: H_{1} \rightarrow H_{2}$ is defined by

$$
\begin{equation*}
\langle A v, w\rangle_{2}=\left\langle v, A^{\dagger} w\right\rangle_{1} \tag{7.8}
\end{equation*}
$$

for all $v \in H_{1}, w \in H_{2}$ where \langle,\rangle_{i} denotes the scalar product on $H_{i}, i=1,2$. This can be given a more categorical interpretation as follows: A vector u in
a Hilbert space H determines and is determined by a bounded linear map from \mathbb{C} to H,

$$
z \mapsto z u .
$$

In other words, if we regard \mathbb{C} as the pt. in the category of Hilbert spaces, then we can regard $u \in H$ as an element of of $\operatorname{Morph}($ pt., $H)$. So if $v \in H$ we can regard v^{\dagger} as an element of $\operatorname{Morph}(H$, pt.) where

$$
v^{\dagger}(u)=\langle u, v\rangle
$$

So if we regard \dagger as the primary operation, then the scalar product on each Hilbert space is determined by the preceding equation - the right hand side is defined as being equal to the left hand side. Then equation (7.8) is a consequence of the associative law and the laws $(A \circ B)^{\dagger}=B^{\dagger} \circ A^{\dagger}$ and $\dagger^{2}=\mathrm{id}$.. Indeed

$$
\langle A v, w\rangle_{2}:=w^{\dagger} \circ A \circ v=\left(A^{\dagger} \circ w\right)^{\dagger} \circ v=:\left\langle v, A^{\dagger} w\right\rangle_{1} .
$$

So once we agree that a $\frac{1}{2}$-density is just a complex number, we can conclude that the analogue of (7.8) holds in our enhanced category $\tilde{\mathcal{S}}$: If $\left(\Lambda_{1}, \rho_{1}\right)$ is a "point " of M_{1} in our enhanced category, and if $\left(\Lambda_{2}, \rho_{2}\right)$ is a "point" of M_{2} and if $(\Gamma, \tau) \in \operatorname{Morph}\left(M_{1}, M_{2}\right)$ then (assuming that the various morphisms are composible) we have

$$
\begin{equation*}
\left\langle\left((\Gamma, \tau) \circ\left(\Lambda_{1}, \rho_{1}\right),\left(\Lambda_{2}, \rho_{2}\right)\right\rangle_{2}=\left\langle\left(\Lambda_{1}, \rho_{1}\right),\left((\Gamma, \tau)^{\dagger} \circ\left(\Lambda_{2}, \rho_{2}\right)\right\rangle_{1}\right.\right. \tag{7.9}
\end{equation*}
$$

7.7 The moment Lagrangian.

Let (M, ω) be a symplectic manifold. Let Z, X and S be manifolds and suppose that

$$
\pi: Z \rightarrow S
$$

is a fibration with fibers diffeomorphic to X. Let

$$
\begin{gathered}
G: Z \rightarrow M \\
g_{s}: Z_{s} \rightarrow M, \quad Z_{s}:=\pi^{-1}(s)
\end{gathered}
$$

denote the restriction of G to Z_{s}. We assume that

$$
\begin{equation*}
g_{s} \text { is a Lagrangian embedding } \tag{7.10}
\end{equation*}
$$

and let

$$
\begin{equation*}
\Lambda_{s}:=g_{s}\left(Z_{s}\right) \tag{7.11}
\end{equation*}
$$

denote the image of g_{s}. So we have a family of Lagrangian submanifolds $\Lambda_{s} \subset M$ parametrized by the points of S.

Let $s \in S$ and $\xi \in T_{s} S$. For $z \in Z_{s}$ and $w \in T_{z} Z_{s}$ tangent to the fiber Z_{s}

$$
d G_{z} w=\left(d g_{s}\right)_{z} w \in T_{G(z)} \Lambda_{s}
$$

so $d G_{z}$ induces a map, which by abuse of language we will continue to denote by $d G_{z}$

$$
\begin{equation*}
d G_{z}: T_{z} Z / T_{z} Z_{s} \rightarrow T_{m} M / T_{m} \Lambda, \quad m=G(z) \tag{7.12}
\end{equation*}
$$

But $d \pi_{z}$ induces an identification

$$
\begin{equation*}
T_{z} Z / T_{z}\left(Z_{s}\right)=T_{s} S \tag{7.13}
\end{equation*}
$$

Furthermore, we have an identification

$$
\begin{equation*}
T_{m} M / T_{m}\left(\Lambda_{s}\right)=T_{m}^{*} \Lambda_{s} \tag{7.14}
\end{equation*}
$$

given by

$$
T_{m} M \ni u \mapsto i(u) \omega_{m}(\cdot)=\omega_{m}(u, \cdot)
$$

Thus (7.12) shows that each $\xi \in T_{s} S$ gives rise to a one form on Λ_{s} and hence by pull-back a one form on Z_{s}. To be explicit, let us choose a trivialization of our bundle around Z_{s} so we have an identification

$$
H: Z_{s} \times U \rightarrow \pi^{-1}(U)
$$

where U is a neighborhood of s in S. Then if $t \mapsto s(t)$ is any curve on S with $s(0)=s, s^{\prime}(0)=\xi$ we get a curve of maps $h_{s(t)}$ of $Z_{s} \rightarrow M$ where

$$
h_{s(t)}=g_{s(t)} \circ H
$$

We thus get a vector field v^{ξ} along the map h_{s}

$$
v^{\xi}: Z_{s} \rightarrow T M, \quad v^{\xi}(z)=\frac{d}{d t} h_{s(t)}(z)_{\mid t=0}
$$

Then the one form in question is

$$
\tau^{\xi}=h_{s}^{*}\left(i\left(v^{\xi}\right) \omega\right)
$$

A direct check shows that this one form is exactly the one form described above (and hence is independent of all the choices). We claim that

$$
\begin{equation*}
d \tau^{\xi}=0 \tag{7.15}
\end{equation*}
$$

Indeed, the general form of the Weil formula (See Chapter ??) and the fact that $d \omega=0$ gives

$$
\frac{d}{d t} h_{s(t)}^{*} \omega_{\mid t=0}=d h_{s}^{*} i\left(v^{\xi}\right) \omega
$$

and the fact that Γ_{s} is Lagrangian for all s implies that the left hand side and hence the right hand side is zero.

Assume that $H^{1}(X)=\{0\}$. Since the fiber Z_{s} is diffeomorphic to X, this implies that

$$
\tau^{\xi}=d \phi^{\xi}
$$

for some C^{∞} function ϕ^{ξ} on Z_{s}. The function ϕ^{ξ} is uniquely determined up to an additive constant (if X is connected) which we can fix (in various Victor: Do we want to ways) so that it depends smoothly on s and linearly on ξ. For example, if more explicit about hypoth we have a cross-section $c: S \rightarrow Z$ we can demand that $\phi(c(s))^{\xi} \equiv 0$ for all ses here? s and ξ. Alternatively, if each Z_{s} is compact and equipped with a positive density $d z_{s}$ we can demand that $\int_{Z_{s}} \phi^{\xi} d z_{s}=0$ for all ξ and s.

Suppose that we have made such choice. Then for fixed $z \in Z_{s}$ the number $\phi^{\xi}(z)$ depends linearly on ξ,. Hence we get a map

$$
\begin{equation*}
\Phi_{0}: Z \rightarrow T^{*} S, \quad \Phi_{0}(z)=\lambda \Leftrightarrow \lambda(\xi)=\phi^{\xi}(z) \tag{7.16}
\end{equation*}
$$

As we shall see in the next section, Φ_{0} can be considered as a generalization of the moment map for a Hamiltonian group action.

Our choice determines ϕ^{ξ} up to an additive constant (if X is connected) $\mu(s, \xi)$ which we can assume to be smooth in s and linear in ξ. Replacing ϕ^{ξ} by $\phi^{\xi}+\mu(s, \xi)$ has the effect of making the replacement

$$
\Phi_{0} \mapsto \Phi_{0}+\mu \circ \pi
$$

where $\mu: S \rightarrow T^{*} S$ is the one form $\left\langle\mu_{s}, \xi\right\rangle=\mu(s, \xi)$.
Let ω_{S} denote the canocial two form on $T^{*} S$.
Theorem 24 Assume that $H^{2}(S)=\{0\}$. Then there exists a $\nu \in \Omega^{1}(S)$ such that if we set

$$
\Phi=\Phi_{0}+\nu \circ \pi
$$

then

$$
\begin{equation*}
G^{*} \omega+\Phi^{*} \omega_{S}=0 \tag{7.17}
\end{equation*}
$$

As a consequence, the map

$$
\begin{equation*}
\tilde{G}: Z \rightarrow M \times T^{*} S, \quad z \mapsto(G(z), \Phi(z)) \tag{7.18}
\end{equation*}
$$

is a Lagrangian embedding.

Proof.

We first prove a local version of the theorem. Locally, we may assume that $Z=X \times S$ and by the Weinstein tubular neighborhood theorem we may assume (locally) that $M=T^{*} X$ and that for a fixed $s_{0} \in S$ the Lagrangian submanifold $\Lambda_{s_{0}}$ is the zero section of $T^{*} X$ and that the map

$$
G: X \times S \rightarrow T^{*} X
$$

is given by

$$
G(x, s)=d_{X} \psi(x, s)
$$

where $\psi \in C^{\infty}(X \times S)$. So in terms of these choices, the maps $h_{s(t)}$ used above are given by

$$
h_{s(t)}(x)=d_{X} \psi(x, s(t))
$$

and hence the one form τ^{ξ} is given by

$$
d_{S} d_{X} \psi(x, \xi)=\left\langle d_{X} d_{S} \psi, \xi\right\rangle
$$

so we may choose

$$
\Phi(x, s)=d_{S} \psi(x, s)
$$

Thus

$$
G^{*} \alpha_{X}=d_{X} \psi, \quad \Phi^{*} \alpha_{S}=d_{S} \psi
$$

and hence

$$
G^{*} \omega_{X}+\Phi^{*} \omega_{S}=-d d \psi=0
$$

This proves a local version of the theorem. We now pass from the local to the global:

By uniqueness, our global Φ_{0} must agree with our local Φ up to the replacement $\Phi \mapsto \Phi+\mu \circ \pi$. So we know that

$$
G^{*} \omega+\Phi_{0}^{*} \omega_{S}=(\mu \circ \pi)^{*} \omega_{S}=\pi^{*} \mu^{*} \omega_{S}
$$

Here μ is a one form on S regarded as a map $S \rightarrow T^{*} S$. But

$$
d \pi^{*} \mu^{*} \omega_{S}=\pi^{*} \mu^{*} d \omega_{S}=0
$$

So we know that $G^{*} \omega+\Phi_{0}^{*} \omega_{S}$ is a closed two form which is locally and hence globally of the form $\pi^{*} \tau$ where $d \tau=0$. Now we make use of our assumption that $H^{2}(S)=\{0\}$ to write $\tau=d \nu$. Replacing Φ_{0} by $\Phi_{0}+\nu$ replaces τ by $\tau+\nu^{*} \omega_{S}$. But

$$
\nu^{*} \omega_{S}=-\nu^{*} d \alpha_{S}=-d \nu=-\tau
$$

Remarks 1. If $H^{2}(S) \neq\{0\}$ then we can not succeed by modifying Φ. But we can modify the symplectic form on $T^{*} S$ replacing ω_{S} by $\omega_{S}-\pi_{S}^{*} \sigma$ where π_{S} denotes the projection $T^{*} S \rightarrow S$.
2. Suppose that a compact Lie group K acts as fiber bundle automorphisms of $\pi: Z \rightarrow S$ and acts as symplectomorphisms of M. Suppose further that the fibers of Z are compact and equipped with a density along the fiber which is invariant under the group action. Finally suppose that the map G Victor; I think this is right is equivariant for the group actions of K on Z and on M. Then the map \tilde{G} but please check. can be chosen to be equivariant for the actions of K on Z and the induced action of K on $M \times T^{*} G$.
3. More generally we want to consider situations where a Lie group K acts on Z as fiber bundle automorphisms and on M and where we know by explicit construction that the map \tilde{G} can be chosen to be equivariant. This will be the case for the classical moment map for a Hamiltonian group action as we shall see in the next section.
4. Let $\Gamma \subset M \otimes T^{*} S$ denote the image of \tilde{G}. If we are given a $\frac{1}{2}$-density μ on Z. then we get its image $\tilde{G}_{*} \mu$, a $\frac{1}{2}$-density on Γ.

7.7.1 The derivative of the moment map.

We continue the current notation. So we have the moment map

$$
\Phi: Z \rightarrow T^{*} S
$$

Fix $s \in S$. The restriction of Φ to the fiber Z_{s} maps $Z_{s} \rightarrow T_{s}^{*} S$. since $T_{s}^{*} S$ is a vector space, we may identify its tangent space at any point with $T_{s}^{*} S$ itself. Hence for $z \in Z_{s}$ we may regard $d \Phi_{z}$ as a linear map from $T_{z} Z$ to $T_{s}^{*} S$. So we write

$$
\begin{equation*}
d \Phi_{z}: T_{z} Z_{s} \rightarrow T_{s}^{*} S \tag{7.19}
\end{equation*}
$$

On the other hand, recall that using the identifications (7.13) and (7.14) we got a map

$$
d G_{z}: T_{s} S \rightarrow T_{m}^{*} \Lambda, \quad m=G(z)
$$

and hence composing with $d\left(g_{s}\right)_{z}^{*}: T_{m}^{*} \Lambda \rightarrow T_{z}^{*} Z_{s}$ a linear map

$$
\begin{equation*}
\chi_{z}:=d\left(g_{s}\right)_{z}^{*} \circ d G_{z}: T_{s} S \rightarrow T_{z}^{*} Z \tag{7.20}
\end{equation*}
$$

Theorem 25 The maps $d \Phi_{z}$ given by (7.19) and χ_{z} given by (7.20) are transposes of one another.

Proof. Each $\xi \in T_{s} S$ gives rise to a one form τ^{ξ} on Z_{s} and by definition, the value of this one form at $z \in Z_{s}$ is exactly $\chi_{z}(\xi)$. The function ϕ^{ξ} was defined on Z_{s} so as to satisfy $d \phi^{\xi}=\tau^{\xi}$. In other words, for $v \in T_{z} Z$

$$
\left\langle\chi_{z}(\xi), v\right\rangle=\left\langle d \Phi_{z}(v), \xi\right\rangle .
$$

Corollary 26 The kernel of χ_{z} is the annihilator of the image of the map (7.19). In particular z is a regular point of the map $\Phi: Z_{s} \rightarrow T_{s}^{*} S$ if the map χ_{z} is injective.

Corollary 27 The kernel of the map (7.19) is the annihilator of the image of χ_{z}.

7.8 Families of symplectomorphisms.

Let us now specialize to the case of a parametrized family of symplectomorphisms. So let $(M \omega)$ be a symplectic manifold, S a manifold and

$$
F: M \times S \rightarrow M
$$

a smooth map such that

$$
f_{s}: M \rightarrow M
$$

is a symplectomophism for each s, where $f_{s}(m)=F(m, s)$. We can apply the results of the preceding section where now $\Lambda_{s} \subset M \times M^{-}$is the graph of f_{s} (and the M of the preceding section is replaced by $M \times M^{-}$) and so

$$
\begin{equation*}
G: M \times S \rightarrow M \times M^{-}, \quad G(m, s)=(m, F(m, s)) \tag{7.21}
\end{equation*}
$$

Theorem 24 says that get a map

$$
\Phi: M \times S \rightarrow T^{*} S
$$

and a moment Lagrangian

$$
\Gamma_{\Phi} \subset M \times M^{-} \times T^{*} S
$$

7.8.1 Hamiltonian group actions.

Let us specialize further by assuming that S is a Lie group K and that $F: M \times K \rightarrow M$ is a Hamiltonian group action. So we have a map

$$
G: M \times K \rightarrow M \times M^{-}, \quad(m, a) \mapsto(m, a m)
$$

Let K act on $Z=M \times K$ via its left action on K so $a \in K$ acts on Z as

$$
a:(m, b) \mapsto(m, a b)
$$

We expect to be able to construct $\tilde{G}: M \times K \rightarrow T^{*} K$ so as to be equivariant for the action of K on $Z=M \times K$ and the induced action of K on $T^{*} K$.

To say that the action is Hamiltonian with moment map $\Psi: M \rightarrow \mathfrak{k}^{*}$ is to say that

$$
i\left(\xi_{M}\right) \omega=-d\langle\Psi, \xi\rangle
$$

Thus under the left invariant identification of $T^{*} K$ with $K \times \mathfrak{k}^{*}$ we see that Ψ determines a map

$$
\Phi: M \times K \rightarrow T^{*} K, \quad \Phi(m, a)=(a, \Psi(m))
$$

So our Φ of (7.16) is indeed a generalization of the moment map for Hamiltonian group actions.

7.8.2 The derivative of the moment map.

In this section we will generalize an basic result about moment maps for Hamiltonian group actions to parametrized families of symplectomorphisms. We recall our notation: $(M \omega)$ is a symplectic manifold, S a manifold and

$$
F: M \times S \rightarrow M
$$

a smooth map such that

$$
f_{s}: M \rightarrow M
$$

is a symplectomophism for each s, where $f_{s}(m)=F(m, s)$.
For $p \in M$ and $s_{0} \in S$ define

$$
\gamma_{0}: \quad S \rightarrow M \quad \text { by } \quad \gamma_{0}(s)=f_{s}\left(f_{s_{0}}^{-1}(p)\right)
$$

This section will be rewritten in view of the more general version given above.

Differentiating this map at s_{0} gives linear map

$$
\begin{equation*}
\left(d \gamma_{0}\right)_{s_{0}}: T_{s_{0}} Z \rightarrow T_{p} M \tag{7.22}
\end{equation*}
$$

On the other hand, restricting the moment map $\Phi: M \times S \rightarrow T^{*} S$ to $M \times\left\{s_{0}\right\}$ gives a map

$$
\Phi_{0}: M \rightarrow T_{s_{0}}^{*} S
$$

and differentiating Φ_{0} at p, and using the fact that $T_{s_{0}}^{*} M$ is a vector space, gives a map

$$
\begin{equation*}
\left(d \Phi_{0}\right)_{p}: T_{p} M \rightarrow T_{s_{0}}^{*} S \tag{7.23}
\end{equation*}
$$

The bilinear form ω_{p} on $T_{p} M$ gives a bijective linear map

$$
T_{p} M \rightarrow T_{p}^{*} m
$$

with an inverse

$$
\begin{equation*}
T_{p}^{*} M \rightarrow T_{p} M \tag{7.24}
\end{equation*}
$$

Composing (7.23) and (7.23) gives a map

$$
\begin{equation*}
\left(d \tilde{\phi}_{0}\right)_{p}: \quad T_{p}^{*} M \rightarrow T_{s_{0}} S \tag{7.25}
\end{equation*}
$$

I haven't had time to think about how this works for the general case of families of canonical relations and so did not put in details here.

Theorem 28 The maps (7.22) and (7.24) are transposes of one another and hence

- The kernel of the map (7.23) is the symplectic orthocomplement of the image of the map (7.22) and
- The image of the map (7.23) is the annihilator in $T_{s_{0}}^{*} S$ of the kernel of the map (7.22).

7.9 The symbolic distributional trace.

We continue with the notation of the precding section.

7.9.1 The $\frac{1}{2}$-density on Γ.

Since M is symplectic it has a canonical $\frac{1}{2}$ density. So if we equip S with a half density ρ_{S} we get a $\frac{1}{2}$ density on $M \times S$ and hence a $\frac{1}{2}$ density ρ_{Γ} making Γ into a morphism

$$
\left(\Gamma, \rho_{\Gamma}\right) \in \operatorname{Morph}\left(M^{-} \times M, T^{*} S\right)
$$

in our enhanced symplectic category.
Let $\Delta \subset M^{-} \times M$ be the diagonal. The map

$$
M \rightarrow M^{-} \times M \quad m \mapsto(m, m)
$$

carries the canonical $\frac{1}{2}$-density on M to a $\frac{1}{2}$-density, call it ρ_{Δ} on Δ making Δ into a morphism

$$
\left(\Delta, \rho_{\Delta}\right) \in \operatorname{Morph}\left(\operatorname{pt} . . M^{-} \times M\right)
$$

The generalized trace in our enhanced symplectic "category".

Suppose that Γ and Δ are composable. Then we get a Lagrangian submanifold

$$
\Lambda=\Gamma \circ \Delta
$$

and a $\frac{1}{2}$-density

$$
\rho_{\lambda}:=\rho_{\Gamma} \circ \rho_{\Delta}
$$

on Λ. the operation of passing from F to $\left(\Lambda, \rho_{\Lambda}\right)$ can be regarded as the symbolic version of the distributional trace operation in operator theory.

7.9.2 Example: The symbolic trace.

Suppose that we have a single symplectomorphism $f: M \rightarrow M$ so that S is a point as is $T^{*} S$. Let

$$
\Gamma=\Gamma_{f}=\operatorname{graph} f=\{(m, f(m)), m \in M\}
$$

considered as a morphism from $M \times M^{-}$to a point. Suppose that Γ and Δ intersect transversally so that $\Gamma \cap \Delta$ is discrete. Suppose in fact that it is finite. We have the $\frac{1}{2}$-densities ρ_{Δ} on $T_{m} \Delta$ and $T_{m} \Gamma$ at each point m of of $\Gamma \cap \Delta$. Hence, by (6.10) The result is

$$
\begin{equation*}
\sum_{m \in \Delta \cap \Gamma}\left|\operatorname{det}\left(I-d f_{m}\right)\right|^{-\frac{1}{2}} \tag{7.26}
\end{equation*}
$$

7.9.3 General transverse trace.

Let S be arbitrary. We examine the meaning of the hypothesis that that the inclusion $\iota: \Delta \rightarrow M \times M$ and the projection $\Gamma \rightarrow M \times M$ be transverse.

Since Γ is the image of $(G, \Phi): M \times S \rightarrow M \times M \times T^{*}$, the projection of Γ onto $M \times M$ is just the image of the map G given in (7.21). So the transverse composibility condition is

$$
\begin{equation*}
G \pi \Delta . \tag{7.27}
\end{equation*}
$$

The fiber product of Γ and Δ can thus be identified with the "fixed point submanifold" of $M \times S$:

$$
\mathfrak{F}:=\left\{(m, s) \mid f_{s}(m)=m\right\}
$$

The transversality assumption guarantees that this is a submanifold of $M \times S$ whose dimension is equal to $\operatorname{dim} S$. The transversal version of our composition law for morphisms in the category \mathcal{S} assert that

$$
\Phi: \mathfrak{F} \rightarrow T * S
$$

is a Lagrangian immersion whose image is

$$
\Lambda=\Gamma \circ \Delta .
$$

Let us assume that \mathfrak{F} is connected and that Φ is a Lagrangian imbedding. (More generally we might want to assume that \mathfrak{F} has a finite number of connected components and that Φ restricted to each of these components is an imbedding. Then the discussion below would apply separately to each component of \mathfrak{F}.)

Let us derive some consequences of the transversality hypothesis G त Δ. By the Thom transverslity theorem, there exists an open subset

$$
S_{O} \subset S
$$

such that for every $s \in S_{O}$, the map

$$
g_{s}: M \rightarrow M \times M, \quad g_{s}(m)=G(m, s)=\left(m f_{s}(m)\right)
$$

is transverse to Δ. So for $s \in S_{O}$,

$$
g_{s}^{-1}(\Delta)=\left\{m_{i}(s), i=1, \ldots, r\right\}
$$

is a finite subset of M and the m_{i} depend smoothly on $s \in S_{O}$. For each i, $\Phi\left(m_{i}(s)\right) \in T_{s}^{*} S$ then depends smoothly on $s \in S_{O}$. So we get one forms

$$
\begin{equation*}
\mu_{i}:=\Phi\left(m_{i}(s)\right) \tag{7.28}
\end{equation*}
$$

parametrizing open subsets Λ_{i} of Λ. Since Λ is Lagrangian, these one forms are closed. So if we assume taht $H^{1}\left(S_{O}\right)=\{0\}$, we cad write

$$
\mu_{i}=d \psi_{i}
$$

for $\psi_{i} \in C^{\infty}\left(S_{O}\right)$ and

$$
\Lambda_{i}=\Lambda_{\psi_{i}}
$$

The maps

$$
S_{O} \rightarrow \Lambda_{i}, \quad s \mapsto\left(s, d \psi_{i}(s)\right)
$$

map S_{O} diffeomorphically onto Λ_{i}. The pull-backs of the $\frac{1}{2}$-density $\rho_{\Lambda}=$ $\rho_{\Gamma} \circ \rho_{\Delta}$ under these maps can be written as

$$
h_{i} \rho_{S}
$$

where ρ_{S} is the $\frac{1}{2}$-density we started with on S and where the h_{i} are the
Victor: details here? smooth functions

$$
\begin{equation*}
h_{i}(s)=\left|\operatorname{det}\left(I-d f_{m_{i}}\right)\right|^{-\frac{1}{2}} \tag{7.29}
\end{equation*}
$$

In other words, on the generic set S_{O} where g_{s} is transverse to Δ, we can compute the symbolic trace $h(s)$ of g_{s} as in the preceding section. At points not in S_{O}, the "fixed points coalesce" so that g_{s} is no longer transverse to Δ and the individual g_{s} no longer have a trace as individual maps. Nevertheless, the parametrized family of maps have a trace as a $\frac{1}{2}$-form on Λ which need not be horizontal over points of S which are not in S_{O}.

7.9.4 Example: Periodic Hamiltonian trajectories.

Let (M, ω) be a symplectic manifold and

$$
H: M \rightarrow \mathbb{R}
$$

a proper smooth function with no critical points. Let $v=v_{H}$ be the corresponding Hamiltonian vector field, so that

$$
i(v) \omega=-d H
$$

The fact that H is proper implies that v generates a global one parameter group of transformations, so we get a Hamiltonian action of \mathbb{R} on M with Hamiltonian H, so we know that the function Φ of (7.16) (determined up to a constant) can be taken to be

$$
\Phi: M \times \mathbb{R} \rightarrow T^{*} \mathbb{R}=\mathbb{R} \times \mathbb{R}, \quad \Phi(m, t)=(t, H(m))
$$

The fact that $d H_{m} \neq 0$ for any m implies that the vector field v has no zeros.

Notice that in this case the transversality hypothesis of the previous example is never satisfied. For if it were, we could find a dense set of t for which $\exp t v: M \rightarrow M$ has isolated fixed points. But if m is fixed under $\exp t v$ then every point on the orbit $(\exp s v) m$ of m is also fixed under $\exp t v$ and we know that this orbit is a curve since v has no zeros.

So the best we can do is assume clean intersection: Our Γ in this case is

$$
\Gamma=\{m,(\exp s v) m, s, H(m))\}
$$

If we set $f_{s}=\exp s v$ we write this as

$$
\Gamma=\left\{\left(m, f_{s}(m), s, H(m)\right)\right\}
$$

The assumption that the maps $\Gamma \rightarrow M \times M$ and

$$
\iota: \Delta \rightarrow M \times M
$$

intersect cleanly means that the fiber product

$$
X=\left\{(m, s) \in M \times \mathbb{R} \mid f_{s}(m)=m\right\}
$$

and that its tangent space at (m, s) is

$$
\begin{equation*}
\left\{(v, c) \in T_{m} M \times \mathbb{R} \mid v=\left(d f_{s}\right)_{m}(v)+c v(m)\right. \tag{7.30}
\end{equation*}
$$

since

$$
d F_{(m, s)}\left(v, c \frac{\partial}{\partial t}\right)=\left(d f_{s}\right)_{m}(v)+c v(m)
$$

The enery-period relation.

As we know, a consequence of our clean intersection assumption is that the map Φ restricted to X is of constant rank, and its image is an immersed Lagrangian submanifold of $T^{*} \mathbb{R}$. So if t is the standard coordinate of \mathbb{R} and (t, τ) the corresponding coordinates of $T^{*} \mathbb{R}=\mathbb{R} \times \mathbb{R}$, we know that

$$
d H \wedge d t=-\Phi^{*}(d t \wedge d \tau)
$$

vanishes when restricted to X. Now the function t when restricted to X gives the value at (m, s) for which $f_{t}(m)=m$. It is a period of the trajectory through m. So if c is a regular value H, so $d H(m) \neq 0$ at all $m \in H^{-1}(c)$, then $d t$ must be a multiple of $d H(m)$ at such points of X. We conclude:

Proposition 11 If c is a regurlar value of H, then on every connected component of $H^{-1}(c) \cap X$ all trajectories of v have the sameperiod.

The trace and the Poincaré map.
Victor: I have not been able to figure out all the details of this section.

Chapter 8

Oscillatory $\frac{1}{2}$-densities.

Let $\Lambda \subset T^{*} X$ be a Lagrangian submanifold. Let

$$
\infty<k<\infty
$$

The plan of this chapter is to associate to Λ and to k a space

$$
I^{k}(X, \Lambda)
$$

of rapidly oscillating $\frac{1}{2}$-densities on X and to study the properties of these spaces. If

$$
\Lambda=\Lambda_{\psi}, \quad \psi \in C^{\infty}(X)
$$

this space will consist of $\frac{1}{2}$-densities of the form

$$
e^{i \frac{c}{\hbar}} \hbar^{k} a(x, \hbar) e^{i \frac{\psi(x)}{\hbar}} \rho_{0}
$$

where $c \in \mathbb{R}$, where ρ_{0} is a fixed non-vanishing $\frac{1}{2}$-density on X and where

$$
a \in C^{\infty}(X \times \mathbb{R})
$$

In other words, so long as Λ is horizontal, our space will consist of the $\frac{1}{2}$-densities we studied in Chapter 1.

As we saw in Chapter 1, one must take into account, when solving hyperbolic partial differential equations, the fact that caustics develop as a result of the Hamiltonian flow applied to initial conditions. So we will need a more general definition. We will make a more general definition in terms of a general generating function relative to a fibration, and then show that the class of oscillating $\frac{1}{2}$-densities on X that we obtain this way is independent of the choice of generating functions.

8.1 Definition of $I^{k}(X, \Lambda)$ in terms of a generating function.

Let $\pi: Z \rightarrow X$ be a fibration which is enhanced in the sense of Section 7.4.2. Recall that this means that we are given a smooth section r of $|V|^{\frac{1}{2}}$ where V is the vertical. We will assume that r vanishes nowhere. If ν is a $\frac{1}{2}$-density on Z which is of compact support in the vertical direction, then recall from Section 7.4.3 that we get from this data a push-forward $\frac{1}{2}$-density $\pi_{*} \nu$ on X.

Now suppose that ϕ is a global generating function for Λ with respect to π. Let

$$
d:=\operatorname{dim} Z-\operatorname{dim} X
$$

We define $I_{0}^{k}(X, \Lambda, \phi)$ to be the space of all compactly supported $\frac{1}{2}$-densities on X of the form

$$
\begin{equation*}
\mu=\hbar^{k-\frac{d}{2}} \pi_{*}\left(a e^{i \frac{\phi}{\hbar}} \tau\right) e^{i \frac{c}{\hbar}} \tag{8.1}
\end{equation*}
$$

where

$$
a \in C_{0}^{\infty}(Z \times \mathbb{R})
$$

and where τ is a nowhere vanishing $\frac{1}{2}$-density on Z. Then define $I^{k}(X, \Lambda, \phi)$ to consist of those $\frac{1}{2}$-densities μ such that $\rho \mu \in I_{0}^{k}(X, \Lambda, \phi)$ for every $\rho \in$ $C_{0}^{\infty}(X)$.

It is clear that $I^{k}(X, \Lambda, \phi)$ does not depend on the choice of the enhancement r of π or on the choice of τ.

8.1.1 Local description of $I^{k}(X, \Lambda, \phi)$.

Suppose that $Z=X \times S$ where S is an open subset of \mathbb{R}^{d} and π is projection onto the first factor. We may choose our fiber $\frac{1}{2}$-density to be the Euclidean $\frac{1}{2}$-density $d s^{\frac{1}{2}}$ and τ to be $\tau_{0} \otimes d s^{\frac{1}{2}}$ where τ_{0} is a nowhere vanishing $\frac{1}{2}$-density on X. Then $\phi=\phi(x, s)$ and (8.1) becomes the oscillating integral

$$
\begin{equation*}
e^{i \frac{c}{\hbar}}\left(\int_{S} a(x, s, \hbar) e^{i \frac{\phi}{\hbar}} d s\right) \tau_{0} \tag{8.2}
\end{equation*}
$$

8.1.2 Independence of the generating function.

Let $\pi_{i}: Z_{i} \rightarrow X, \phi_{i}$ be two fibrations and and generating functions for the same Lagrangian submanifold $\Lambda \subset T^{*} X$. We wish to show that $I^{k}\left(X, \Lambda, \phi_{1}\right)=$ $I^{k}\left(X, \Lambda, \phi_{2}\right)$. By a partition of unity, it is enough to prove this locally. According to Section 5.12, it is enough to check this for two types of change of generating functions, 1) equivalence and 2)increasing the number of fiber variables. Let us examine each of the two cases:

8.1. DEFINITION OF $I^{K}(X, \Lambda)$ IN TERMS OF A GENERATING FUNCTION. 141

Equivalence.

There exists a diffeomorphism $g: Z_{1} \rightarrow Z_{2}$ with

$$
\pi_{2} \circ g=\pi_{1} \quad \text { and } \quad \text { and } \quad \phi_{2} \circ g=\phi_{1}
$$

Let us fix a non-vanishing section r of the vertical $\frac{1}{2}$-density bundle $\left|V_{1}\right|^{\frac{1}{2}}$ of Z_{1} and a $\frac{1}{2}$-density τ_{1} on Z_{1}. Since g is a fiber map, these determine vertical $\frac{1}{2}$-densities and $\frac{1}{2}$-densities $g_{*} r$ and $g_{*} \tau$ on Z_{2}. If $a \in C_{0}^{\infty}\left(Z_{2} \times \mathbb{R}\right)$ then the change of variables formula for an integral implies that

$$
\pi_{2, *} a e^{i \frac{\phi_{2}}{\hbar}} g_{*} \tau=\pi_{1, *} g_{*} a e^{\frac{\phi_{1}}{\hbar}}
$$

where the push forward $\pi_{2, *}$ on the left is relative to $g_{*} r$ and the push forward on the right is relative to r.

Increasing the number of fiber variables.

We may assume that $Z_{2}=Z_{2} \times S$ where S is an open subset of \mathbb{R}^{m} and

$$
\phi_{2}(z, s)=\phi_{1}(z)+\frac{1}{2}\langle A s, s\rangle
$$

where A is a symmetric non-degenerate $m \times m$ matrix. We write Z for Z_{1}. If d is the fiber dimension of Z then $d+m$ is the fiber dimension of Z_{2}. Let r be a vertical $\frac{1}{2}$-density on Z so that $r \otimes d s^{\frac{1}{2}}$ is a vertical $\frac{1}{2}$ density on Z_{2}. Let τ be a $\frac{1}{2}$ density on Z so that $\tau \otimes d s^{\frac{1}{2}}$ is a $\frac{1}{2}$-density on Z_{2}. We want to consider the expression

$$
\hbar^{k-\frac{d+m}{2}} \pi_{2 *} a_{2}(z, s, \hbar) e^{i \frac{\phi_{1}(z, s)}{\hbar}}\left(\tau \otimes d s^{\frac{1}{2}}\right)
$$

Let $\pi_{2,1}: Z \times S \rightarrow Z$ be projection onto the first factor so that

$$
\pi_{2 *}=\pi_{1 *} \circ \pi_{2,1 *}
$$

and the operation $\pi_{2,1 *}$ sends

$$
a_{2}(z, s, \hbar) e^{i \frac{\phi_{2}}{\hbar}} \tau \otimes d s^{\frac{1}{2}} \mapsto b(z, \hbar) e^{i \frac{\phi_{1}}{\hbar}} \tau
$$

where

$$
b(z, \hbar)=\int a_{2}(z, s, \hbar) e^{\frac{\langle A s, s\rangle}{2 \hbar}} d s
$$

We now apply the Lemma of Stationary Phase (see Chapter ??) to conclude that

$$
b(z, \hbar)=\hbar^{m} a_{1}(z, \hbar)
$$

and in fact $a_{1}(z, \hbar)=a_{2}(z, 0, \hbar)+O(\hbar)$.

8.1.3 The global definition of $I^{k}(X, \Lambda)$.

Let Λ be a Lagrangian submanifold of $T^{*} X$. We can find a locally finite open cover of Λ by open sets Λ_{i} such that each Λ_{i} is defined by a generating function ϕ_{i} relative to a fibration $\pi_{i}: Z_{i} \rightarrow U_{i}$ where the U_{i} are open subsets of X. We let $I_{0}^{k}(X, \Lambda)$ consist of those $\frac{1}{2}$-densities which can be written as a finite sum of the form

$$
\mu=\sum_{j=1}^{N} \mu_{i_{j}}, \quad \mu_{i_{j}} \in I_{0}^{k}\left(X, \Lambda_{i_{j}}\right)
$$

By the results of the preceding section we know that this definition is independent of the choice of open cover and of the local descriptions by generating functions.

We then define the space $I^{k}(X, \Lambda)$ to consist of those $\frac{1}{2}$-densities μ on X such that $\rho \mu \in I_{0}^{k}(X, \Lambda)$ for every C^{∞} function ρ on X of compact support.

8.2 Semi-classical Fourier integral operators.

Let X_{1} and X_{2} be manifolds, let

$$
X=X_{1} \times X_{2}
$$

and let

$$
M_{i}=T^{*} X_{i}, \quad i=1,2
$$

Finally, let

$$
\Gamma \in \operatorname{Morph}\left(M_{1}, M_{2}\right)
$$

be a canonical relation, so

$$
\Gamma \subset M_{1}^{-} \times M_{2}
$$

Let

$$
\varsigma_{1}: M_{1}^{-} \rightarrow M_{1}, \quad \varsigma_{1}\left(x_{1}, \xi_{1}\right)=\left(x_{1},-\xi_{1}\right)
$$

so that

$$
\Lambda:=\left(\varsigma_{1} \times \mathrm{id}\right)(\Gamma)
$$

is a Lagrangian submanifold of

$$
T^{*} X=T^{*} X_{1} \times T^{*} X_{2}
$$

Associated with Λ we have the space of compactly supported oscillatory $\frac{1}{2}$ densities $I_{0}^{k}(X, \Lambda)$. Choose a nowhere vanishing density on X_{1} which we will denote (with some abuse of language) as $d x_{1}$ and similarly choose a nowhere vanishing density $d x_{2}$ on X_{2}. We can then write a typical element of $I_{0}^{k}(X, \Lambda)$ as

$$
u\left(x_{1}, x_{2}, \hbar\right) d x_{1}^{\frac{1}{2}} d x_{2}^{\frac{1}{2}}
$$

where u is a smooth function of compact support in all three "variables".
Recall that $L^{2}\left(X_{i}\right)$ is the intrinsic Hilbert space of L^{2} half densities on X_{i}. Since u is compactly supported, we can define the integral operator

$$
F_{\mu}=F_{\mu, \hbar}: \quad \mathrm{Ł}^{2}\left(X_{1}\right) \rightarrow L^{2}\left(X_{2}\right)
$$

by

$$
\begin{equation*}
F_{\mu}\left(f d x_{1}^{\frac{1}{2}}\right)=\left(\int_{X_{1}} f\left(x_{1}\right) u\left(x_{1}, x_{2}\right) d x_{1}\right) d x_{2}^{\frac{1}{2}} \tag{8.3}
\end{equation*}
$$

We will denote the space of such operators by

$$
\mathcal{F}_{0}^{k}(\Gamma)
$$

and call them compactly supported semi-classical Fourier integral operators. We could, more generally, demand merely that $u\left(x_{1}, x_{2}, \hbar\right) d x_{1}^{\frac{1}{2}}$ be an element of $L_{2}\left(X_{1}\right)$ in this definition, in which case we would drop the subscript 0 .

Let X_{1}, X_{2} and X_{3} be manifolds, let $M_{i}=T^{*} X_{i}, i=1,2,3$ and let

$$
\Gamma_{1} \in \operatorname{Morph}\left(M_{1}, M_{2}\right), \quad \Gamma_{2} \in \operatorname{Morph}\left(M_{2}, M_{3}\right)
$$

be canonical relations. Let

$$
F_{1} \in \mathcal{F}_{0}^{m_{1}}\left(\Gamma_{1}\right) \quad \text { and } \quad F_{2} \in \mathcal{F}_{0}^{m_{2}}\left(\Gamma_{2}\right)
$$

Finally, let

$$
n=\operatorname{dim} X_{2}
$$

Theorem 29 If Γ_{2} and Γ_{1} are transversally composible, then

$$
\begin{equation*}
F_{2} \circ F_{1} \in \mathcal{F}_{0}^{m_{1}+m_{2}+\frac{n}{2}}\left(\Gamma_{2} \circ \Gamma_{1}\right) \tag{8.4}
\end{equation*}
$$

Proof. By partition of unity we may assume that we have fibrations

$$
\pi_{1}: X_{1} \times X_{2} \times S_{1} \rightarrow X_{1} \times X_{2}, \quad \pi_{2}: X_{2} \times X_{3} \times S_{2} \rightarrow X_{2} \times X_{3}
$$

where S_{1} and S_{2} are open subsets of $\mathbb{R}^{d_{1}}$ and $\mathbb{R}^{d_{2}}$ and that ϕ_{1} and ϕ_{2} are generating functions for Γ_{1} and Γ_{2} with respect to these fibrations. We also fix nowhere vansihing $\frac{1}{2}$-densities $d x_{i}^{\frac{1}{2}}$ on $X_{i}, i=1,2,3$. So F_{1} is an integral operator with respect to a kernel of the form (8.3) where

$$
u_{1}\left(x_{1}, x_{2}, \hbar\right)=e^{\frac{i c_{1}}{\hbar}} \hbar^{m_{1}-\frac{d_{1}}{2}} \int a_{1}\left(x_{1}, x_{2}, s_{1}, \hbar\right) e^{i \frac{\phi_{1}\left(x_{1}, x_{2}, s_{1}\right)}{\hbar}} d s_{1}
$$

and F_{2} has a similar expression (under the change $1 \mapsto 2,2 \mapsto 3$). So their composition is the integral operator

$$
f d x_{1}^{\frac{1}{2}} \mapsto\left(\int_{X_{1}} f\left(x_{1}\right) u\left(x_{1}, x_{3}\right) d x_{1}\right) d x_{3}^{\frac{1}{2}}
$$

where

$$
u\left(x_{1}, x_{3}\right)=e^{i \frac{c_{1}+c_{2}}{h}} h^{m_{1}+m_{2}-\frac{d_{1}+d_{2}}{2}} \int a_{1}\left(x_{1}, x_{2}, s_{1}, \hbar\right) a_{2}\left(x_{2}, x_{3}, s_{2}, \hbar\right) e^{i \frac{\phi_{1}+\phi_{2}}{h}} d s_{1} d s_{2} d x_{2} .
$$

Victor: I think we only proved this above for transverse composition. In your notes you state a more general theorem here in which case we may have to go back and prove the general case.

8.3 The symbol of an element of $I^{k}(X, \Lambda)$.

Let Λ be a Lagrangian submanifold of $T^{*} X$. We have attached to Λ the space $I^{k}(X, \Lambda)$ of oscillating $\frac{1}{2}$-densities. The goal of this section is to give an intrinsic description of the quotient

$$
I^{k}(X, \Lambda) / I^{k+1}(X, \Lambda)
$$

as sections of line bundle $\mathbb{L} \rightarrow \Lambda$. This line bundle will locally look like the line bundle $|T \Lambda|^{\frac{1}{2}}$ whose sections are $\frac{1}{2}$-densities on Λ. However we will have
Victor: Should we mention Keller and Maslov here? to tensor this bundle with some flat line b
global description of $I^{k}(X, \Lambda) / I^{k+1}(X, \Lambda)$.

8.3.1 A local description of $I^{k}(X, \Lambda) / I^{k+1}(X, \Lambda)$.

Let S be an open subset of \mathbb{R}^{d} and suppose that we have a generating function $\phi=\phi(x, s)$ for Λ with respect to the fibration

$$
X \times S \rightarrow X, \quad(x, s) \mapsto x .
$$

Fix a nowhere vanishing $C^{\infty} \quad \frac{1}{2}$-density ν on X so that any other $\frac{1}{2}$-density μ on X can be written as

$$
\mu=u \nu
$$

where u is a C^{∞} function on X.
The critical set C_{ϕ} is defined by the d independent equations

$$
\begin{equation*}
\frac{\partial \phi}{\partial s_{i}}=0, \quad i=1, \ldots d \tag{8.5}
\end{equation*}
$$

That fact that ϕ is a generating function of Λ asserts that the map

$$
\begin{equation*}
\lambda_{\phi}: C_{\phi} \rightarrow T^{*} X, \quad(x, s) \mapsto\left(x, d \phi_{X}(x, s)\right) \tag{8.6}
\end{equation*}
$$

is a diffeomorphism of C_{ϕ} with Λ. To say that $\mu=u \nu$ belongs to $I_{0}^{k}(X, \Lambda)$ means that the function $u(x, \hbar)$ can be expressed as the oscillatory integral

$$
\begin{equation*}
u(x, \hbar)=\hbar^{k-\frac{d}{2}} \int a(x, s, \hbar) e^{i \frac{\phi(x, s)}{\hbar}} d s, \quad \text { where } \quad a \in C_{0}^{\infty}(X \times S \times \mathbb{R}) \tag{8.7}
\end{equation*}
$$

Proposition 12 If $a(x, s, 0)=0$ on C_{ϕ} then $\mu \in I^{k+1}(X, \Lambda)$.
Proof. $a(x, s, 0)=0$ on C_{ϕ} then by the description (8.5) of C_{ϕ} we see that we can write

$$
a=\sum_{j=1}^{d} a_{j}(x, s, \hbar) \frac{\partial \phi}{\partial s_{j}}+a_{0}(x, s, \hbar) \hbar
$$

We can then write the integral (8.7) as $v+u_{0}$ where

$$
u_{0}(x, \hbar)=\hbar^{k+1-\frac{d}{2}} \int a_{0}(x, s, \hbar) e^{i \frac{\phi(x, s)}{\hbar}} d s
$$

so

$$
\mu_{0}=u_{0} \nu \in I^{k+1}(X, \Lambda)
$$

and

$$
\begin{aligned}
v & =\hbar^{k-\frac{d}{2}} \sum_{j=1}^{d} \int a_{h}(x, s, \hbar) \frac{\partial \phi}{\partial s_{j}} e^{i \frac{\phi}{\hbar}} \\
& =-i \hbar^{k+1-\frac{d}{2}} \sum_{j=1}^{d} \int a_{j}(x, s, \hbar) \frac{\partial}{\partial s_{j}} e^{i \frac{\phi}{\hbar}} d s \\
& =i \hbar^{k+1-\frac{d}{2}} \sum_{j=1}^{d} \int\left(\frac{\partial}{\partial s_{j}} a_{j}(x, s, \hbar)\right) e^{i \frac{\phi}{\hbar}} d s
\end{aligned}
$$

so

$$
\begin{equation*}
v=i \hbar^{k+1-\frac{d}{2}} \int b(x, s, \hbar) e^{i \frac{\phi}{\hbar}} d s \quad \text { where } \quad b=i \sum_{j=1}^{d} \frac{\partial a_{j}}{\partial s_{j}} . \tag{8.8}
\end{equation*}
$$

This completes the proof of Proposition 12.
This proof can be applied inductively to conclude the following sharper result:

Proposition 13 Suppose that for $i=0, \ldots, \ell$

$$
\frac{\partial^{i} a}{(\partial \hbar)^{i}}(x, s, 0)
$$

vanishes to order $2(\ell-i)$ on C_{ϕ}. Then

$$
\mu \in I_{0}^{k+\ell}(X, \Lambda)
$$

As a corollary we obtain:
Proposition 14 If a vanishes to infinite order on C_{ϕ} then $\mu \in I^{\infty}(X, \Lambda)$, i.e.

$$
\mu \in \bigcap_{k} I^{k}(X, \Lambda)
$$

Victor: In the "hints" to your notes of Lect 32 theorem 2 you say that you lose 2 degrees when differentiating. Why don't you lose just one?

We will now use stationary phase to prove the following converse to Proposition 12:

Proposition 15 If $\mu \in I_{0}^{k+1}(X, \Lambda)$ then the restriction of $a(x, s, 0)$ to C_{ϕ} vanishes identically.

Recall the following fact from the formula of stationary phase: Suppose that Y is a manifold with a nowhere vanishing density $d y$ and that $\psi: Y \rightarrow \mathbb{R}$ is a a C^{∞} function on Y with a single non-degenerate critical point p_{0}. Suppose that $f \in C_{0}^{\infty}(Y)$. The formula of stationary phase (see Chapter ??) implies that

$$
I(\hbar):=\int_{Y} f(y) e^{i \frac{\psi(y)}{\hbar}} d y
$$

satisfies

$$
I(\hbar)=\hbar^{\frac{\operatorname{dim} Y}{2}}\left(\gamma f\left(p_{0}\right)+O(\hbar)\right)
$$

where γ is a non-zero constant. In particular, if we write $m=\operatorname{dim} Y$

$$
\begin{equation*}
I(\hbar)=O\left(\hbar^{\frac{m}{2}+1}\right) \Leftrightarrow f\left(p_{0}\right)=0 \tag{8.9}
\end{equation*}
$$

Proof of Propostion 15. As usual, we choose a nowhere vanishing $\frac{1}{2}$ density on X and write $\mu=u \nu$ where

$$
u(x, \hbar)=\hbar^{=-\frac{d}{2}} \int a(x, s, \hbar) e^{i \frac{\phi(x, s)}{\hbar}} d s
$$

where d is the fiber dimension. Let $p_{0}=\left(x_{0}, s_{0}\right) \in C_{\phi}$ and let

$$
\left(x_{0}, \xi_{0}\right)=\lambda_{\phi}\left(p_{0}\right) \in \Lambda
$$

Let Γ be a Lagrangian submanifold of $T^{*} X$ which is horizontal and which intersects Λ transversally at $\left(x_{0}, \xi_{0}\right)$. We will view Γ as a "point" of $T^{*} X$, that is as an element of

$$
\operatorname{Morph}\left(\mathrm{pt} ., T^{*} X\right)
$$

Since Γ is horizontal, it is defined by a generating function $\chi \in C^{\infty}(X)$. In other words, $(x, \xi) \in \Gamma$ if and only if $d \chi(x)=\xi$. Let b be any element of $C_{0}^{\infty}(X)$ with $b\left(x_{0}\right) \neq 0$. Let

$$
v(x)=b(x) e^{-i \frac{\chi(x)}{\hbar}}
$$

This is is the integral kernel of a semi-classical Fourier integral operator

$$
F_{v} \in I^{0}\left(\Gamma^{\dagger}\right)
$$

associated to the canonical relation

$$
\Gamma^{\dagger} \in \operatorname{Morph}\left(T^{*} X, \mathrm{pt} .\right)
$$

Since

$$
\Gamma^{\dagger} \pi \Lambda
$$

we can compose F_{v} with $\mu \in I_{0}^{k+1}(X . \Lambda)$ to get an element

$$
\int_{X} v(x, \hbar) u(x, \hbar) d x \in I^{k+1+\frac{n}{2}}(\mathrm{pt} .)
$$

This says that

$$
\int_{X} v(x, \hbar) u(x, \hbar) d x=O\left(\hbar^{k+1+\frac{n}{2}}\right)
$$

So

$$
\hbar^{k-\frac{d}{2}} \int b(x) a(x, s, \hbar) e^{i \frac{-\chi(x)+\phi(x, s)}{\hbar}} d x d s=O\left(\hbar^{k+1+\frac{n}{2}}\right) .
$$

So if we set

$$
\psi(x, s)=-\chi(x)+\phi(x, s)
$$

then

$$
\int b(x) a(x, s, 0) e^{i \frac{\psi(x, s)}{\hbar}} d x d s=O\left(\hbar^{\frac{d+n}{2}+1}\right)
$$

We want to apply (8.9) with $Y=X \times S$ and $f=b a$. First observe that $\left(x_{0}, s_{0}\right)$ is a critical point of ψ. Indeed

$$
\frac{\partial \psi}{\partial s_{i}}=\frac{\partial \phi}{\partial s_{i}}=0
$$

because $\left(x_{0}, s_{0}\right) \in C_{\phi}$ and

$$
d_{X} \psi\left(x_{0}\right)=-d \chi\left(x_{0}\right)+d_{X} \phi\left(x_{0}, s_{0}\right)=-\xi_{0}+\xi_{0}=0
$$

We claim that $\left(x_{0}, s_{0}\right)$ is a non-degenerate critical point of ψ. Indeed, we know that $\psi(x, s)=-\chi(x)+\phi(x, s)$ is a generating function for $\mathrm{pt} .=\Gamma^{\dagger} \circ \Lambda$ with respect to the fibration $X \times S \rightarrow \mathrm{pt}$.. The condition for being such a generating function says that the differentials of all the partial derivatives of ψ be linearly independent at $\left(x_{0}, s_{0}\right)$ which is the same as saying that $\left(x_{0}, s_{0}\right)$ is a non-degenerate critical point. So $b\left(x_{0}\right) a\left(x_{0}, s_{0}, 0\right)=0$ and since $b\left(x_{0}\right) \neq 0$ we must have $a\left(x_{0}, s_{0}, 0\right)=0$. Since this is true at all points of C_{ϕ} we conclude that $a(x, s, 0) \equiv 0$ on C_{ϕ}.

We can now summarize the results of the last few propositions: Given $\mu \in I_{0}^{k}(X, \Lambda)$, suppose that we can write $\mu=u d x^{\frac{1}{2}}$ where $d x^{\frac{1}{2}}$ is a nowhere vanishing $\frac{1}{2}$-density on X and suppose there is a generating function ϕ for Λ valid over an open set containing the support of μ such that u is of the form

$$
u=\hbar^{k-\frac{d}{2}} \int a(x, s, \hbar) e^{i \frac{\phi(x, s)}{\hbar}} d s
$$

where $a \in C_{0}^{\infty}(X \times S \times \mathbb{R})$. We know from Proposition 12 that the function $a(x, s, 0)_{\mid C_{\phi}}$ depends only on the equivalence class of $\mu \bmod I_{0}^{k+1}(X, \Lambda)$ (once ϕ is fixed) and from Proposition 14 that the map

$$
\mu \mapsto a(x, s, 0)_{\mid C_{\phi}}
$$

is an isomorphism of $I_{0}^{k}(X, \Lambda) / I_{0}^{k+1}(X, \Lambda)$ with $C_{0}^{\infty}\left(C_{\phi}\right)$. Now the map

$$
\lambda_{\phi}: C_{\phi} \rightarrow \Lambda ; \quad(x, s) \mapsto\left(x, d \phi_{X}(x, s)\right)
$$

is a diffeomorphism. So we have proved
Theorem 30 Let Λ be a Lagrangian submanifold of $T^{*}(X)$ and ϕ a generating function for Λ relative to $\pi: X \times S \rightarrow X$ and let ν be a nowhere vanishing $\frac{1}{2}$-density on X so that every element of $I_{0}^{k}(X, \Lambda)$ has a representation as an oscillatory integral of the form (8.7). For each $\mu \in I_{0}^{k}(X, \Lambda)$ define the symbol

$$
\sigma_{\phi}(\mu) \in C_{0}^{\infty}(\Lambda)
$$

by

$$
\begin{equation*}
\sigma_{\phi}(\mu)(x, \xi)=a(x, s, 0) \text { where }(x, s) \in C_{\phi} \quad \text { and } \lambda_{\phi}(x, s)=(x, \xi) \tag{8.10}
\end{equation*}
$$

for every $(x, \xi) \in \Lambda$. Then σ_{ϕ} defines an isomorphism

$$
\sigma_{\phi}: \quad I_{0}^{k}(X, \Lambda) / I_{0}^{k+1}(X, \Lambda) \cong C_{0}^{\infty}(\Lambda)
$$

The isomorphism σ_{ϕ} depends on the choice of the generating function ϕ. We shall remedy this by reinterpreting $\sigma_{\phi}(\mu)$ as a section of an appropriate line bundle. Recall from Sections 5.13 and 5.14 that the generating function ϕ gives a local flat trivialization of the line bundles $\mathbb{L}_{\text {phase }}$ and $\mathbb{L}_{\text {Maslov }}$. We shall show in the next section that if we use these trivializations and our choice of $\frac{1}{2}$-densities to identify $\sigma_{\phi}(\mu)$ as a section of

$$
|T \Lambda|^{\frac{1}{2}} \otimes \mathbb{L}_{\text {phase }} \otimes \mathbb{L}_{\text {Maslov }}
$$

then the resulting section is independent of all these choices and we will be able to define an isomorphism of $I_{0}^{k}(X, \Lambda) / I_{0}^{k+1}(X, \Lambda)$ with smooth sections of compact support of $|T \Lambda|^{\frac{1}{2}} \otimes \mathbb{L}_{\text {phase }} \otimes \mathbb{L}_{\text {Maslov }}$.

8.3.2 The global definition of the symbol.

Let $\pi: Z \rightarrow X$ be an enhanced fibration. This means that the fibers are equipped with a $\frac{1}{2}$-density and hence that the corresponding canonical relation

$$
\Gamma_{\pi} \in \operatorname{Morph}\left(T^{*} Z, T^{*} X\right), \quad \Gamma_{\pi}=H^{*}(Z)
$$

is equipped with a $\frac{1}{2}$-density. Recall that this defines a pushforward map on $\frac{1}{2}$-densities of compact support:

$$
\pi_{*} C_{0}^{\infty}\left(|Z|^{\frac{1}{2}}\right) \rightarrow C_{0}^{\infty}\left(|X|^{\frac{1}{2}}\right.
$$

Let $v=v(z, \hbar)$ be a smooth $\frac{1}{2}$-density of compact support on Z depending smoothly on \hbar. Then we can rewrite (8.1) as

$$
\begin{equation*}
\mu=\hbar^{k-\frac{d}{2}} \pi_{*}\left(v e^{i \frac{\phi}{\hbar}}\right) \tag{8.11}
\end{equation*}
$$

By definition, an element of $I_{0}^{k}(X, \Lambda)$ is a $\frac{1}{2}$-density on X which can be written as a finite sum of such terms.

Recall that ϕ defines the horizontal Lagrangian submanifold $\Lambda_{\phi} \subset T^{*} Z$, and so a diffeomorphism

$$
\gamma_{\phi}: Z \rightarrow \Lambda_{\phi}, \quad z \mapsto(z, d \phi(z))
$$

and hence a pushforward isomorphism

$$
\gamma_{\phi *}: C_{0}^{\infty}\left(|Z|^{\frac{1}{2}}\right) \rightarrow C_{0}^{\infty}\left(\left|\Lambda_{\phi}\right|^{\frac{1}{2}}\right)
$$

By assumption,

$$
\Gamma_{\pi} \pi \Lambda_{\phi}
$$

and, locally,

$$
\Lambda=\Gamma_{\pi}\left(\Lambda_{\phi}\right)
$$

The enhancement of Γ_{π} defines a map

$$
\Gamma_{\pi *}: C_{0}^{\infty}\left(\Lambda_{\phi}\right) \rightarrow C_{0}^{\infty}(\Lambda)
$$

Hence

$$
\Gamma_{\pi *} \circ \gamma_{\phi *}: C_{0}^{\infty}\left(|Z|^{\frac{1}{2}}\right) \rightarrow C_{0}^{\infty}(\Lambda)
$$

We now define

$$
\begin{equation*}
\sigma_{\phi, \text { new }}(\mu):=(2 \pi)^{-\frac{d}{2}} \hbar^{k} e^{\frac{\pi i}{4} \sigma_{\phi}}\left(\Gamma_{\pi *} \circ \gamma_{\phi *}\right)\left(v(z, 0) e^{i \frac{\phi(z)}{\hbar}}\right) \tag{8.12}
\end{equation*}
$$

where

$$
d=\operatorname{dim} Z-\operatorname{dim} X
$$

and where σ_{ϕ} is defined in Section 5.14.
Let us see how this new definition of the symbol is related to the one given in Theorem 30. We begin by being more explicit about the map $\Gamma_{\pi *}$. Let

$$
M=T^{*} Z
$$

The fact that $\Gamma_{\pi} \pi \Lambda_{\phi}$ says that at every $z \in C_{\phi}$ we have the exact sequence

$$
\begin{equation*}
0 \rightarrow T_{z}\left(C_{\phi}\right) \rightarrow T_{q}\left(\Lambda_{\phi}\right) \oplus T_{q}\left(\Gamma_{\pi}\right) \rightarrow T_{q} M \rightarrow 0 \tag{8.13}
\end{equation*}
$$

where $q=\gamma_{\phi}(z)$. Since M is a symplectic manifold, it carries a canonical $\frac{1}{2}$-density. The enhancement of Γ_{π} means that Γ_{π} is equipped with a $\frac{1}{2}$ density, call it τ. If we are given a $C^{\infty} \frac{1}{2}$-density ρ on Λ_{ϕ}, the above exact sequence implies that from the $\frac{1}{2}$-density

$$
\begin{equation*}
\rho_{q} \otimes \tau_{q} \tag{8.14}
\end{equation*}
$$

we get a $\frac{1}{2}$-density, call it ρ_{z}^{\sharp} on $T_{z}\left(C_{\phi}\right)$. So we get a $\frac{1}{2}$-density ρ^{\sharp} on C_{ϕ}. Then

$$
\begin{equation*}
\Gamma_{\pi *} \rho=\left(\lambda_{\phi}^{-1}\right)^{*} \rho^{\sharp} \in C^{\infty}(\Lambda) \tag{8.15}
\end{equation*}
$$

Fix a nowhere vanishing $\frac{1}{2}$-density τ_{Z} on Z and write

$$
v(z, \hbar)=a(z, \hbar) \tau_{Z}, \quad a \in C_{0}^{\infty}(Z \times \mathbb{R})
$$

Define the function a^{\sharp} on C_{ϕ} by

$$
a^{\sharp}(z)=a(z, 0), \quad z \in C_{\phi}
$$

and define the function ϕ^{\sharp} on C_{ϕ} by

$$
\phi^{\sharp}=\phi_{\mid C_{\phi}} .
$$

Thus we can write the $\sigma_{\phi}(\mu)$ as given in equation (8.10) as

$$
\sigma_{\phi}(\mu)=\left(\lambda_{\phi}^{-1}\right)^{*} a^{\sharp} .
$$

Let ψ be the function on Λ defined by

$$
\begin{equation*}
\psi:=\left(\lambda_{\phi}^{-1}\right)^{*} \phi^{\sharp} . \tag{8.16}
\end{equation*}
$$

Then it follows directly from these definitions that

$$
\begin{equation*}
\sigma_{\phi, \text { new }}(\mu)=\sigma_{\phi}(\mu) \kappa e^{i\left(\frac{\psi}{\hbar}+\frac{\pi}{4} \operatorname{sgn}_{\phi}\right)} \tag{8.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa:=(2 \pi)^{-\frac{d}{2}} \hbar^{k} \Gamma_{\pi *}\left(\gamma_{\phi *} \tau_{Z}\right) \tag{8.18}
\end{equation*}
$$

does not depend on μ.
From the above discussion it follows that
Proposition $16 \sigma_{\phi, \text { new }}$ depends only on Γ_{π} but not on its enhancement.
Proof. Indeed, if we replace τ by $f \tau$ where f is a nowhere vanishing function, then $\pi_{*} \beta$ is replaced by $\pi_{*}(f \beta)$ for any $\frac{1}{2}$-density β on Z. This means that in the description (8.11) of μ we must replace v by $f^{-1} v$. So in (8.14), we replace τ by $f \tau$ and ρ by $f^{-1} \rho$. So these two changes cancel one another in in (8.14) and hence in (8.12).

Let us now examine the meaning of of the factor

$$
e^{i \frac{\nu}{\hbar}}
$$

occurring in (8.17). Let α_{Λ} denote the restriction of the canonical one form α_{X} of $T^{*} X$ to Λ. We claim that the function ψ on Λ given by (8.16) satisfies

$$
\begin{equation*}
d \psi=\alpha_{\Lambda} \tag{8.19}
\end{equation*}
$$

and so the factor $e^{i \frac{\nu}{\hbar}}$ is a flat section of the line bundle $\mathbb{L}_{\text {phase }}$ as defined in Section 5.13. Since the factor $e^{\frac{\pi i}{4} \operatorname{sgn}_{\phi}}$ is a flat section of $\mathbb{L}_{\text {Maslov }}$ and since κ
as given by (8.18) is a $\frac{1}{2}$-density on Λ, this allows us to interpret $\sigma_{\phi, \text { new }}(\mu)$ as a section of the line bundle

$$
|\Lambda|^{\frac{1}{2}} \otimes \mathbb{L}_{\text {phase }} \otimes \mathbb{L}_{\text {Maslov }}
$$

Proof of (8.19). Let α_{Z} denote the canonical one form of $T^{*} Z$ so that the canonical one form of $T^{*}(Z \times X)=T^{*} Z \times T^{*} X$ is given by

$$
\alpha_{Z \times X}=\operatorname{pr}_{1}^{*} \alpha_{Z}+\operatorname{pr}_{2}^{*} \alpha_{X}
$$

Recall that

$$
\left(\varsigma_{1} \times \mathrm{id}\right) \Gamma_{\pi}=N^{*}(\operatorname{graph} \pi
$$

is a Lagrangian submanifold. Hence

$$
\operatorname{pr}_{1}^{*} \alpha_{Z}=\operatorname{pr}_{2}^{*} \alpha_{X}
$$

on Γ_{π}. But $d \phi=\gamma_{\phi}^{*} \alpha_{Z}$ by the definition of $\Lambda_{\phi}=\gamma_{\phi}(Z)$ and hence the restriction of γ_{ϕ} to C_{ϕ}, which is a diffeomorphism of C_{ϕ} with $\Gamma_{\pi} \cap \Lambda_{\phi}$ satisfies

$$
\left(\gamma_{\phi \mid C_{\phi}}\right)^{*} \operatorname{pr}_{2}^{*} \alpha_{X}=d \phi^{\sharp}
$$

Applying $\left(\lambda_{\phi}^{-1}\right)^{*}$ proves (8.19).
Theorem 31 The definition of the map

$$
\sigma_{\phi, \text { new }}: I_{0}^{k} \rightarrow C_{0}^{\infty}\left(|\Lambda|^{\frac{1}{2}} \otimes \mathbb{L}_{\text {phase }} \otimes \mathbb{L}_{\text {Maslov }}\right)
$$

is independent of the choice of generating function and fibration and hence defines (locally) an isomorphism

$$
\sigma: I^{k}(X, \Lambda) / I^{k+1}(X, \Lambda) \rightarrow C^{\infty}\left(|\Lambda|^{\frac{1}{2}} \otimes \mathbb{L}_{\text {phase }} \otimes \mathbb{L}_{\text {Maslov }}\right)
$$

Proof. The second assertion follows from what we proved in the preceding section. So we need to prove the first assertion. By Section 5.12, we need to prove independence under two kinds of moves - equivalence and increasing the number of fiber variables.

Invariance under equivalence.

So we have $\left(Z_{1}, \pi_{1}, \phi_{1}\right)$ and $\left(Z_{2}, \pi_{2}, \phi_{2}\right)$ and a diffeomorphism

$$
g: Z_{1} \rightarrow Z_{2}
$$

with

$$
\pi_{1}=\pi_{2} \circ g \quad \text { and } \quad \phi_{1}=\phi_{2} \circ g .
$$

Then g determines a symplectomorphsim

$$
\Gamma_{g} \in \operatorname{Morph}\left(T^{*} Z_{1}, T^{*} Z_{2}\right)
$$

with

$$
\Gamma_{\pi_{1}}=\Gamma_{\pi_{2}} \circ \Gamma_{g} \quad \text { and } \quad \gamma_{\phi_{2}}=\Gamma_{g} \circ \gamma_{\phi_{1}}
$$

We may choose the nowhere vanishing $\frac{1}{2}$-densities on Z_{1} and Z_{2} to be consisitent as we did in Section8.1.2 By Proposition 16 we may also choose the enhancements consistently in the sense that

$$
\left(\pi_{1}\right)_{*}=\left(\pi_{2}\right)_{*} \circ g_{*}
$$

We also know that the signatures entering into formula (8.17) are the same for ϕ_{1} and ϕ_{2}. Thus (8.17) gives the same answer for ϕ_{1} and ϕ_{2}.

Invariance under increasing the number of fiber variables.

So now

$$
Z_{2}=Z_{1} \times \mathbb{R}^{m}
$$

and

$$
\phi_{2}(z, y)=\phi_{1}\left(z_{1}\right)+\frac{1}{2}\langle A y, y\rangle
$$

where A is a non-degenerate symmetric matrix and

$$
\pi_{2}=\pi_{1} \circ \pi, \quad \pi\left(z_{1}, y\right)=z_{1}
$$

We choose an enhancement r of $\pi_{1}: Z_{1} \rightarrow X$ and then pick the enhancement of $\pi_{2}: Z_{2} \rightarrow X$ to be $r \otimes d y^{\frac{1}{2}}$. This is legitimate by Proposition 16. So if we choose $d y^{\frac{1}{2}}$ to be the enhancement of π we have

$$
\begin{equation*}
\pi_{2 *}=\pi_{1 *} \circ \pi_{*} \tag{8.20}
\end{equation*}
$$

as maps from $C_{0}^{\infty}\left(\left|Z_{2}\right|^{\frac{1}{2}}\right) \rightarrow C_{0}^{\infty}\left(|X|^{\frac{1}{2}}\right)$ and

$$
\begin{equation*}
\Gamma_{\pi_{2} *}=\Gamma_{\pi_{1} *} \circ \Gamma_{\pi *} \tag{8.21}
\end{equation*}
$$

as maps from $\frac{1}{2}$-densities on $\Lambda_{\phi_{2}}$ to $\frac{1}{2}$-densities on Λ.
Let us also choose a nowhere vanishing $\tau_{Z_{1}}$ on Z_{1} and choose the nowhere vanishing $\frac{1}{2}$-density on Z_{2} to be

$$
\tau_{Z_{2}}=\tau_{Z_{1}} \otimes d y^{\frac{1}{2}}
$$

Let us now rewrite the definitions (8.1), (8.10) and (8.12) in terms of a general fibration $\pi: Z \rightarrow X$ and generating function ϕ as follows: First consider the manifold Z relative to the trivial fibration over itself, and the Lagrangian submanifold $\Lambda_{\phi} \subset T^{*} Z$ given by the the function ϕ so that $\Lambda_{\phi}=\gamma_{\phi}(Z)$. Let τ_{Z} be a nowhere vanishing $\frac{1}{2}$-density on Z. Definition (8.1) (relative to the trivial fibration of Z over itself) says that $I_{0}^{k-\frac{d}{2}}\left(Z, \Lambda_{\phi}\right)$ consists of all $\frac{1}{2}$ densities on Z of the form

$$
v=\hbar^{k-\frac{d}{2}} a(z, \hbar) \tau_{Z} e^{i \frac{\phi(z)}{\hbar}}
$$

We may write

$$
v=v_{0}+O\left(\hbar^{k-\frac{d}{2}+1}\right)
$$

where

$$
v_{0}=\hbar^{k-\frac{d}{2}} a(z, 0) \tau_{Z} e^{i \frac{\phi(z)}{\hbar}}
$$

The definition of the symbol for this trivial fibration then says that

$$
\sigma_{\text {new }}(v)=\gamma_{\phi_{*}} v
$$

If we set

$$
\sigma_{\Lambda_{\phi}}:=\gamma_{\phi *} \sigma_{Z}
$$

and use the above representation of v then

$$
\begin{equation*}
\sigma_{\text {new }}(v)=\gamma_{\phi_{*}} v_{0}=\hbar^{k-\frac{d}{2}}\left(\gamma_{\phi}^{-1}\right)^{*}\left(a(z, 0) e^{i \frac{\phi}{\hbar}}\right) \sigma_{\Lambda_{\phi}} \tag{8.22}
\end{equation*}
$$

Now (8.1) says that a general element of $I^{k}(X, \Lambda)$ can be written locally as

$$
\mu=\pi_{*} v, \quad v \in I^{k-\frac{d}{2}}\left(Z, \Lambda_{\phi}\right)
$$

and then (8.12) says that

$$
\begin{equation*}
\sigma_{\phi, \text { new }}=e^{i \frac{\pi}{4} \sigma_{\phi}}\left(\frac{\hbar}{2 \pi}\right)^{\frac{d}{2}} \Gamma_{\pi *} \sigma(v) \tag{8.23}
\end{equation*}
$$

Back to the proof of the theorem: Let $v_{2} \in I_{0}^{k-\frac{d_{2}}{2}}\left(Z_{2}, \Lambda_{\phi_{2}}\right)$ and

$$
\mu=\pi_{2 *} v_{2}
$$

Let

$$
v_{1}:=\pi_{*} v_{2}
$$

so that by (8.20) and (8.21)

$$
\mu=\pi_{1 *} v_{1}=\pi_{1 *}\left(\pi_{*} v_{2}\right)
$$

and

$$
\Gamma_{\pi_{2} *} \sigma\left(v_{2}\right)=\Gamma_{\pi_{1} *}\left(\Gamma_{\pi *} \sigma\left(v_{2}\right)\right)
$$

So to prove that the two definitions of $\sigma_{\text {new }}(\mu)$ coincide, it is enough to show that the two definitions of $\sigma\left(v_{1}\right)$ - the one associated with the trivial fibration of Z_{1} over itself and the generating function ϕ_{1}, and the one associated the the fibration $\pi: Z_{2} \rightarrow Z_{1}$ and ϕ_{2} - coincide.

Write

$$
v_{2}=\hbar^{k-\frac{d_{2}}{2}} a\left(z_{1}, y, \hbar\right) e^{i \frac{\phi_{2}(z, y)}{\hbar}} \tau_{Z_{2}}
$$

so that

$$
v_{1}=\hbar^{k-\frac{d_{2}}{2}}\left(\int a\left(z_{1}, y, \hbar\right) e^{i \frac{i A y, y\rangle}{2 \hbar}} d y\right) e^{i \frac{\phi_{1}}{\hbar}} \tau_{Z_{1}} .
$$

By stationary phase, this last expression is of the form

$$
\frac{\hbar^{k-\frac{d_{1}}{2}}}{(2 \pi)^{\frac{m}{2}}}|\operatorname{det} A|^{-\frac{1}{2}} a\left(z_{1}, 0,0\right) e^{i \frac{\pi}{4} \operatorname{sgn} A} e^{i \frac{\phi_{1}}{\hbar}} \tau_{Z_{1}}+O\left(\hbar^{k-\frac{d_{1}}{2}+1}\right)
$$

Hence $\sigma_{\text {new }}\left(v_{1}\right)$ computed for the trivial fibration according to (8.22) is

$$
\begin{equation*}
\frac{\hbar^{k-\frac{d_{1}}{2}}}{(2 \pi)^{\frac{m}{2}}}|\operatorname{det} A|^{-\frac{1}{2}}\left(\gamma_{\phi_{1}}^{-1}\right)^{*}\left(a\left(z_{1}, 0,0\right) e^{i \frac{\phi_{1}}{\hbar}}\right) e^{i \frac{\pi}{4} \operatorname{sgn} A} \gamma_{\phi_{1} *} \tau_{Z_{1}} \tag{8.24}
\end{equation*}
$$

We now do the computation of the symbol via the pushforward by $\Gamma_{\pi *}$ of a $\frac{1}{2}$-density on $\Lambda_{\phi_{2}}$. The $\frac{1}{2}$-density in question is

$$
\sigma\left(v_{2}\right)=\hbar^{k-\frac{d_{2}}{2}}\left(\gamma_{\phi_{2}}^{-1}\right)^{*}\left(a\left(z_{1}, y, 0\right) e^{i \frac{\phi_{2}}{\hbar}}\right) \gamma_{\phi_{2} *}\left(\tau_{Z_{1}} \otimes d y^{\frac{1}{2}}\right)
$$

We apply (8.23) to the fibration $\pi: Z_{2} \rightarrow Z_{1}$ which says that we must use the preceding expression for $\sigma\left(v_{2}\right)$ in

$$
\left(\frac{\hbar}{2 \pi}\right)^{\frac{m}{2}} e^{\frac{\pi i}{4} \operatorname{sgn}} \Gamma_{\pi *} \sigma\left(v_{2}\right)
$$

where sgn is the signature of the fibration π and the function

$$
Q: y \mapsto \frac{1}{2}\langle A y, y\rangle
$$

on the fibers. This signature is just sgn A. So we get for our second computation:

$$
\frac{\hbar^{k-\frac{d_{1}}{2}}}{(2 \pi)^{\frac{m}{2}}} e^{\frac{\pi i}{4} \operatorname{sgn} A} \Gamma_{\pi *}\left[\left(\gamma_{\phi_{2}}^{-1}\right)^{*}\left(a\left(z_{1}, y, 0\right) e^{i \frac{\phi_{2}}{\hbar}}\right) \gamma_{\phi_{2} *}\left(\tau_{Z_{1}} \otimes d y^{\frac{1}{2}}\right)\right]
$$

The critical set $C_{\phi_{2}}$ for the fibration π is the set $y=0$. Identifying this set with Z_{1}, we see that the map

$$
\lambda_{\phi_{2}, \pi}: C_{\phi_{2}} \rightarrow \Lambda_{\phi_{1}}
$$

is just the map

$$
\gamma_{\phi_{1}}: Z_{1} \rightarrow \Lambda_{\phi_{1}}
$$

so our second computation becomes

$$
\frac{\hbar^{k-\frac{d_{1}}{2}}}{(2 \pi)^{\frac{m}{2}}} e^{\frac{\pi i}{4} \operatorname{sgn} A}\left(\gamma_{\phi_{1}}^{-1}\right)^{*}\left(a\left(z_{1}, 0,0\right) e^{i \frac{\phi_{1}}{\hbar}}\right) \Gamma_{\pi *}\left(\gamma_{\phi_{2} *}\left(\tau_{Z_{1}} \otimes d y^{\frac{1}{2}}\right)\right)
$$

If we compare this with (8.24) we see that the proof of the theorem hinges on showing that

$$
\begin{equation*}
\Gamma_{\pi *}\left(\gamma_{\phi_{2} *}\left(\tau_{Z_{1}} \otimes d y^{\frac{1}{2}}\right)\right)=|\operatorname{det} A|^{-\frac{1}{2}} \gamma_{\phi_{1} *} \tau_{Z_{1}} \tag{8.25}
\end{equation*}
$$

Now $Z_{2}=Z_{1} \times \mathbb{R}^{m}$ and the map $\gamma_{\phi_{2}}$ factors as

$$
\gamma_{\phi_{2}}=\gamma_{\phi_{1}} \times \gamma_{Q}
$$

where

$$
\gamma_{\phi_{1}}: Z_{1} \rightarrow \Lambda_{\phi_{1}}
$$

and

$$
\gamma_{Q}: \mathbb{R}^{m} \rightarrow \Lambda_{Q} . \quad \gamma_{Q}(y)=(y, \eta), \quad \eta=A y
$$

Similarly, the map π factors as

$$
\pi=\mathrm{id} \times \wp
$$

where

$$
\wp: \mathbb{R}^{m} \rightarrow\{0\}
$$

So the theorem amount to showing that

$$
\Gamma_{\wp *}\left(\gamma_{Q *}|d y|^{\frac{1}{2}}\right)=|\operatorname{det} A|^{-\frac{1}{2}}
$$

For this let us go back to the exact secquence (8.13) where now $\phi=Q$ so $C_{\phi}=\{0\}$ is a point. Here $\frac{1}{2}$-density $\gamma_{Q *}|d y|^{\frac{1}{2}}$ assigns the value one to the basis

$$
\left(\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{m}}, A \frac{\partial}{\partial y_{1}}, \ldots, A \frac{\partial}{\partial y_{m}}\right)
$$

of $T_{0}\left(\Lambda_{Q}\right)$. The Lagrangian submanifold Γ_{π} consists of the zero section of $T^{*}\left(\mathbb{R}^{m}\right.$ and the enhancement by $\left.d y\right|^{\frac{1}{2}}$ of Γ_{π} assigns the value one to the basis

$$
\left(\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{m}}, 0, \ldots, 0\right)
$$

of $T_{0} \Gamma_{\pi}$.
So the tensor product (8.14) assigns the value one to the basis of $\left.T_{0}\left(T^{*} \mathbb{R}^{m}\right)\right)$ obtained by combining these two bases. But the symplectic $\frac{1}{2}$-density assigns the value $|\operatorname{det} A|^{\frac{1}{2}}$ to this combined basis. This proves that $\Gamma_{\wp *}\left(\gamma_{Q *}|d y|^{\frac{1}{2}}\right)=$ $|\operatorname{det} A|^{-\frac{1}{2}}$.

Whew!

The general definition of the symbol.

Let Λ be an arbitrary Lagrangian submanifold of $T^{*} X$. We can cover Λ by open sets U_{i} each described by a generating function ϕ_{i} relative to a fibration fibration $\pi_{i}: Z_{i} \rightarrow U_{i}$. By definition, if $\mu \in I_{0}^{k}(X, \Lambda)$, we can write μ as a finite sum

$$
\mu=\sum_{i=1}^{N} \mu_{i}, \quad \text { with } \quad \mu_{i}=\pi_{i *} v_{i}, \quad v_{i} \in I_{0}^{k-\frac{d_{i}}{2}}\left(Z_{i}, \Lambda_{\phi_{i}}\right.
$$

where d_{i} is the fiber dimension of $Z_{i} \rightarrow X_{i}$. Let

$$
\begin{equation*}
\mathbb{L}=\mathbb{L}_{\Lambda}:=\mathbb{L}_{\text {phase }} \otimes \mathbb{L}_{\text {Maslov }} \tag{8.26}
\end{equation*}
$$

Define

$$
\sigma(\mu) \in C_{0}^{\infty}\left(|\Lambda|^{\frac{1}{2}} \otimes \mathbb{L}\right.
$$

by

$$
\begin{equation*}
\sigma(\mu):=\sum_{i=1}^{N} \sigma\left(\mu_{i}\right) \tag{8.27}
\end{equation*}
$$

From Theorems 30 and 31 we conclude
Theorem $32 \sigma(\mu)$ is well defined and independent of the choices that went into (8.27). The map

$$
\sigma: \quad \mu \mapsto \sigma(\mu)
$$

induces a bijection

$$
I^{k}(X, \Lambda) / I^{k+1}(X, \Lambda) \cong C^{\infty}\left(|\Lambda|^{\frac{1}{2}} \otimes \mathbb{L}_{\Lambda}\right)
$$

8.4 Symbols of semi-classical Fourier integral operators.

Let X_{1} and X_{2} be manifolds, and

$$
\Gamma \in \operatorname{Morph}\left(T^{*} X_{1}, T^{*} X_{2}\right)
$$

be a canonical relation. Let

$$
\Lambda=\left(\varsigma_{1} \times \mathrm{id}\right)(\Gamma)
$$

where $\varsigma\left(x_{1}, \xi_{1}\right)=\left(x_{1},-\xi_{1}\right)$ so that Λ is a Lagrangian submanifold of $T^{*}\left(X_{1} \times\right.$ X_{2}). We have associated to Γ the space of compactly supported semiclassical Fourier integral operators

$$
\mathcal{F}_{0}^{k}(\Gamma)
$$

where $F \in \mathcal{F}_{0}^{k}(\Gamma)$ is an integral operator with kernel

$$
\mu \in I_{0}^{k}\left(X_{1} \times X_{2}, \Lambda\right)
$$

We define the symbol of F to be

$$
\sigma(F)=\left(\varsigma_{1} \times \mathrm{id}\right)_{*} \sigma(\mu)
$$

so that

$$
\sigma(F) \in C_{0}^{\infty}\left(|\Gamma|^{\frac{1}{2}} \otimes \mathbb{L}_{\Gamma}\right)
$$

where

$$
\left(\mathbb{L}_{\Gamma}\right)_{\left(x_{1}, \xi_{1}, x_{2}, \xi_{2}\right)}=\left(\mathbb{L}_{\Lambda}\right)_{\left(x_{1},-\xi_{1}, x_{2}, \xi_{2}\right)}
$$

By Theorem 32 we have an isomorphism

$$
\begin{equation*}
\mathcal{F}_{0}^{k}(\Gamma) / \mathcal{F}_{0}^{k+1}(\Gamma) \cong C_{0}^{\infty}\left(|\Gamma|^{\frac{1}{2}} \otimes \mathbb{L}_{\Gamma}\right) \tag{8.28}
\end{equation*}
$$

Suppose that X_{1}, X_{2} and X_{3} are manifolds and that

$$
\Gamma_{1} \in \operatorname{Morph}\left(T^{*} X_{1}, T^{*} X_{2}\right) \quad \text { and } \Gamma_{2} \in \operatorname{Morph}\left(T^{*} X_{2}, T^{*} X_{3}\right)
$$

are transversally composible. Let $n=\operatorname{dim} X_{2}$ and

$$
F_{i} \in \mathcal{F}_{0}^{k_{i}}(\Gamma), \quad i=1,2
$$

By Theorem 29 we know that

$$
F_{2} \circ F_{1} \in \mathcal{F}_{0}^{m_{1}+m_{2}+\frac{n}{2}}\left(\Gamma_{2} \circ \Gamma_{1}\right)
$$

So if

$$
\sigma_{i}:=\sigma\left(F_{i}\right)
$$

we may define

$$
\sigma_{2} \circ \sigma_{1}:=\sigma\left(F_{2} \circ F_{1}\right)
$$

By (8.28) we know that this is well defined and hence gives us a composition law

$$
C_{0}^{\infty}\left(\left|\Gamma_{1}\right|^{\frac{1}{2}} \otimes \mathbb{L}_{\Gamma_{1}}\right) \times C_{0}^{\infty}\left(\left|\Gamma_{2}\right|^{\frac{1}{2}} \otimes \mathbb{L}_{\Gamma_{2}}\right) \rightarrow C_{0}^{\infty}\left(\left|\Gamma_{2} \circ \Gamma_{1}\right|^{\frac{1}{2}} \otimes \mathbb{L}_{\Gamma_{2} \circ \Gamma_{1}}\right)
$$

This modifies our composition formula for $\frac{1}{2}$-densities in the enhanced symplectic category in that it takes the line bundle \mathbb{L}_{Γ} into account.

8.5 Differential operators on oscillatory $\frac{1}{2}$-densities.

Let

$$
P: \quad C^{\infty}\left(|X|^{\frac{1}{2}}\right) \rightarrow C^{\infty}\left(|X|^{\frac{1}{2}}\right)
$$

be an m-th order differential operator as discussed in Section 1.3.7. Let $\sigma(P)$ denote the principal symbol of P as discussed there. In particular, $\sigma(P)$ is a function on $T^{*} X$.

Let Λ be a Lagrangian submanifold of $T^{*} X$, let $\mu \in I^{k}(X, \Lambda)$ and let $\sigma(\mu)$ denote the symbol of μ as defined in Theorem 32.

Theorem 33 If $\mu \in I^{k}(X, \Lambda)$ then

$$
P \mu \in I^{k-m}(X, \Lambda)
$$

and

$$
\begin{equation*}
\sigma(P \mu)=\hbar^{-m} \sigma(P)_{\mid \Lambda} \sigma(\mu) \tag{8.29}
\end{equation*}
$$

Proof. Let $\left(x_{0}, \xi_{0}\right)$ be a point of Λ and let ϕ be a generating function for Λ near (x_{0}, ξ_{0} relative to a fibration $\pi: Z \rightarrow X$. Then μ has the form (8.2) relative to (Z, π, ϕ) and the choices made in Section 8.1.1. We may differentiate under the integral sign and it is clear that applying D^{α} to $e^{i \frac{\phi}{\hbar}}$ will have a term $\left(d_{X} \phi\right)^{\alpha} \cdot \hbar^{-|\alpha|}$ with all other terms being of higher order in \hbar. This proves the first statement in the theorem. Equation (8.29) then follows from the local expression (8.10) for the symbol.

We can be more explicit near points $\left(x_{0}, \xi_{0}\right) \in \Lambda$ where $\xi_{0} \neq 0$. According to the result that we proved in Section 5.8, we can find a coordinate patch $\left(U, x_{1}, \ldots, x_{n}\right)$ about x_{0} such that with the property that near $\left(x_{0}, \xi_{0}\right), \Lambda$ can be described by a generating function

$$
\phi(x, \xi)=x \cdot \xi-\rho(\xi), \quad \rho \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

relative to the fibration

$$
U \times \mathbb{R}^{n} \rightarrow U .
$$

See equation (5.11) of Section 5.8.
So near (x_{0}, ξ_{0})

$$
\Lambda=\left\{(x, \xi) \left\lvert\, x=\frac{\partial \rho}{\partial \xi}\right.\right\}
$$

and $\mu \mid U$ is of the form

$$
\begin{equation*}
\left(\hbar^{k-\frac{n}{2}} \int b(x, \xi, \hbar) e^{i \frac{\phi}{\hbar}} d \xi\right) d x^{\frac{1}{2}} \tag{8.30}
\end{equation*}
$$

where $b \in C^{\infty}$ is supported on a set $|\xi| \leq N$. By Proposition 12 we may replace $b(x, \xi, \hbar)$ by $b\left(\frac{\partial \rho}{\partial \xi}, \xi, \hbar\right)$ up to adding a term in $I^{k+1}(X, \Lambda)$. So mod $I^{k+1}(X, \Lambda)$ we may write μ as

$$
\begin{equation*}
\mu=\left(\hbar^{k-\frac{n}{2}} \int b_{0}(\xi, \hbar) e^{i \frac{\phi}{\hbar}} d \xi\right) d x^{\frac{1}{2}} \tag{8.31}
\end{equation*}
$$

where

$$
b_{0}(\xi, \hbar)=b\left(\frac{\partial \rho}{\partial \xi}, \xi, \hbar\right)
$$

Since we have chosen the nowhere vanishing $\frac{1}{2}$-density $d x^{\frac{1}{2}}$, we can regard P as a differential operator on functions, and hence by (8.31)

$$
\begin{aligned}
P \mu= & \left(\hbar^{k-\frac{n}{2}} \int P(x, D) e^{i \frac{x, \xi}{\hbar}} b_{0}(\xi, \hbar) e^{-i \frac{\rho(\xi)}{\hbar}} d \xi\right) d x^{\frac{1}{2}} \\
& =\left(\hbar^{k-\frac{n}{2}} \int P(x, \xi) b_{0}(\xi, \hbar) e^{i \frac{\phi}{\hbar}} d \xi\right) d x^{\frac{1}{2}}
\end{aligned}
$$

where $P(x, \xi)$ is the total symbol of P as defined in Section 1.3.2. So

$$
\begin{equation*}
P \mu=\left(\sum_{\ell=1}^{m} \hbar^{k-\ell-\frac{n}{2}} \int p_{\ell}(x, \xi) b_{0}(\xi, \hbar) e^{i \frac{\phi}{\hbar}} d \xi\right) d x^{\frac{1}{2}} . \tag{8.32}
\end{equation*}
$$

This proves that $P \mu \in I^{k-m}(X, \Lambda)$ and gives (8.29).

8.6 The transport equations redux.

Let us write H for the principal symbol of P as in Section 1.2.1 and let us assume that

$$
H \equiv 0 \quad \text { on } \Lambda
$$

as in Sections 1.2.10 and 1.3. Then by (8.29) and Theorem 32, we know that $P \mu \in I^{k-m+1}(X, \Lambda)$. the first main result of this section will be to compute the symbol of $P \mu$ considered as an element of $I^{k-m+1}(X, \Lambda)$. See formula (8.36) below. To prove (8.36) it is enough to prove it on an open dense subset of Λ since the symbol of $P \mu$ (as an element of $I^{k-m+1}(X, \Lambda)$) is a smooth $\frac{1}{2}$-density on Λ. We will assume in this section that Λ has the property that the set of points $(x, \xi) \in \Lambda, \xi \neq 0$ is dense in Λ. So it is enough to prove (8.36) at points (x, ξ) where $\xi \neq 0$ near which Λ has a generating function of the form $\phi(x, \xi)=x \cdot \xi-\rho(\xi), \quad \rho \in C^{\infty}\left(\mathbb{R}^{n}\right)$ as in the preceding section.

Since Λ is defined by the equations

$$
x_{i}=\frac{\partial \rho}{\partial \xi_{i}}, \quad i=, \ldots, n
$$

the fact that $H=p_{m}$ vanishes identically on Λ implies that

$$
\begin{equation*}
H=\sum_{i=1}^{n} q_{k}(x, \xi)\left(x_{i}-\frac{\partial \rho}{\partial \xi_{i}}\right) . \tag{8.33}
\end{equation*}
$$

Thus the highest order term in the multiple of $d x^{\frac{1}{2}}$ in (8.32) can be written as

$$
\begin{aligned}
\hbar^{k-\frac{n}{2}-m} \int p_{m}(x, \xi) b_{0}(\xi, \hbar) e^{i \frac{\phi}{\hbar}} d \xi & =\hbar^{k-\frac{n}{2}-m} \sum_{j} \int q_{j}(x, \xi) b_{0}(x, \xi) \frac{\partial \phi}{\partial \xi_{j}} e^{i \frac{\phi}{\hbar}} d \xi \\
& =\hbar^{k-\frac{n}{2}-m} \sum_{j} \int q_{j} b_{0} \frac{\hbar}{i} \frac{\partial}{\partial \xi_{j}}\left(e^{i \frac{\phi}{\hbar}}\right) d \xi \\
& =\hbar^{k-\frac{n}{2}-m+1} \int i \sum_{j} \frac{\partial}{\partial \xi_{j}}\left(q_{j} b_{0}\right) e^{i \frac{\phi}{\hbar}} d \xi
\end{aligned}
$$

So, by (8.32), we may write

$$
P \mu=\hbar^{k-\frac{n}{2}-m+1}\left(\int a(\xi, \hbar) e^{i \frac{\phi}{\hbar}} d \xi\right) d x^{\frac{1}{2}} \bmod I^{k-m+2}(X, \Lambda)
$$

where

$$
a=\iota^{*}\left(i \sum_{j} \frac{\partial}{\partial \xi_{j}}\left(q_{j} b_{0}\right)+p_{m-1} b_{0}\right)
$$

and ι denotes the inclusion

$$
\iota: \mathbb{R}^{n} \rightarrow U \times \mathbb{R}^{n}, \quad \xi \mapsto\left(\frac{\partial \rho}{\partial \xi}, \xi\right)
$$

We decompose a into two terms

$$
a=a_{I}+a_{I I}
$$

where

$$
a_{I}:=\iota^{*}\left(i \sum_{j} q_{j} \frac{\partial}{\partial \xi_{j}} b_{0}\right)
$$

and

$$
a_{I I}:=\iota^{*}\left(\left(p_{m-1}+i \sum_{j} \frac{\partial}{\partial \xi_{j}} q_{j}\right) b_{0}\right)
$$

and will give a geometric interpretation to each of these terms.
We begin with a_{I}. Since H has the form (8.33),

$$
\iota^{*} \frac{\partial H}{\partial x_{j}}=q_{j}\left(\frac{\partial \rho}{\partial \xi}, \xi\right)
$$

Let π denote the diffeomorphism

$$
\pi: \Lambda \rightarrow \mathbb{R}^{n}, \quad(x, \xi) \mapsto \xi
$$

Since

$$
v_{H}=\sum_{i}\left(\frac{\partial H}{\partial \xi_{j}} \frac{\partial}{\partial x_{j}}-\frac{\partial H}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}}\right)
$$

is tangent to Λ, we see that the diffeomorphism π maps the restriction of v_{H} to Λ to

$$
\tilde{v}:=-\sum_{j} q_{j}\left(\frac{\partial \rho}{\partial \xi}, \xi\right) \frac{\partial}{\partial \xi_{j}}
$$

and so

$$
\begin{equation*}
a_{I}=\frac{1}{i} D_{v_{H} \mid \Lambda} \pi^{*} b_{0} \tag{8.34}
\end{equation*}
$$

We now turn to $a_{I I}$. Let ν be the $\frac{1}{2}$-density on Λ given by

$$
\nu:=\pi^{*} d \xi^{\frac{1}{2}}
$$

Then

$$
\begin{aligned}
D_{v_{H} \mid \Lambda} \nu & =\pi^{*}\left(D_{\tilde{v}} d \xi^{\frac{1}{2}}\right) \\
& =\frac{1}{2} \pi^{*}\left(\operatorname{div}(\tilde{v}) d \xi^{\frac{1}{2}}\right) \\
& =\frac{1}{2} \pi^{*}(\operatorname{div}(\tilde{v})) \nu \cdot \text { and } \\
(\operatorname{div}(\tilde{v}) & =\sum_{j}\left(-\frac{\partial}{\partial \xi_{j}}\left(q_{j}\left(\frac{\partial \rho}{\partial \xi}, \xi\right)\right)\right. \\
& =\iota^{*}\left(-\sum_{j} \frac{\partial q_{j}}{\partial \xi_{j}}(x, \xi)-\sum_{j, \ell} \frac{\partial q_{j}}{\partial x_{\ell}}(x, \xi) \frac{\partial^{2} \rho}{\partial \xi_{j} \partial \xi_{\ell}}\right)
\end{aligned}
$$

So

$$
\begin{equation*}
D_{v_{H} \mid \Lambda} \nu=\frac{1}{2} \iota^{*}\left(-\sum_{j} \frac{\partial q_{j}}{\partial \xi_{j}}(x, \xi)-\sum_{j, \ell} \frac{\partial q_{j}}{\partial x_{\ell}}(x, \xi) \frac{\partial^{2} \rho}{\partial \xi_{j} \partial \xi_{\ell}}\right) \nu . \tag{8.35}
\end{equation*}
$$

On the other hand from the formula (8.33) for $H=p_{m}$ we have

$$
\iota^{*} \sum_{\ell} \frac{\partial}{\partial x_{\ell}} \frac{\partial}{\partial \xi_{\ell}} p_{m}=\iota^{*}\left(-\sum_{j, \ell} \frac{\partial q_{j}}{\partial x_{\ell}} \frac{\partial^{2} \rho}{\partial \xi_{\ell} \partial \xi_{j}}+\sum_{j} \frac{\partial q_{j}}{\partial \xi_{j}}\right) .
$$

Multiplying this by $\frac{1}{2}$ and comparing with (8.35) and recalling the formula (1.19) for the sub-principal symbol, we see that

$$
a_{I I}=\left(\iota^{*} \sigma_{\text {sub }}(P)+\frac{1}{i} \frac{D_{v_{H} \mid \lambda} \nu}{\nu}\right) b_{0} .
$$

Hence the symbol of $P \mu$ is given as

$$
\begin{equation*}
\sigma(P \mu)=\hbar^{-(m-1)}\left(\frac{1}{i} D_{v_{h} \mid \Lambda}+\sigma_{\text {sub }}\right) \sigma(\mu) . \tag{8.36}
\end{equation*}
$$

We can now go back to the iterative procedure of Chapter 1 for the semiclassical solution of hyperbolic partial differential equations. The first step is to find a Λ on which $H \equiv 0$. The next step is to solve the transport equation

$$
\begin{equation*}
\left(\frac{1}{i} D_{v_{h} \mid \Lambda}+\sigma_{s u b}\right) \sigma(\mu)=0 . \tag{8.37}
\end{equation*}
$$

Along an integral curve $\gamma(t)$ of v_{H} on λ this reduces to a first order linear ordinary differential equation of the form

$$
\frac{d}{d t} \sigma(\mu)(\gamma(t))+\sigma_{\text {sub }}(\gamma(t)) \sigma(m u)(\gamma(t))=0
$$

with given initial conditions.
Assuming that the integral curves of v_{H} lying of Λ are well behaved in the sense that they are defined for all t and that there are no periodic or recurrent trajectories, the solution of (8.37) is reduced to the solution of a system of first order linear differential equations.

If we solved (8.37), then we know from Theorem 32 that

$$
P \mu \in I^{k-m+2}(X, \Lambda) .
$$

Let $\sigma_{k+m-2}(\mu)$ now denote the symbol of $P \mu$ considered as an element of $I^{k-m+2}(X, \Lambda)$. We look for a $\nu \in I^{k-1}(X, \Lambda)$ such that

$$
P(\mu+\nu) \in I^{k-m+3}(X, \Lambda) .
$$

For this to be the case $\sigma(\nu)$ must satisfy the inhomogeneous transport equation

$$
\begin{equation*}
\hbar^{-m-1}\left(\frac{1}{i} D_{v_{h} \mid \Lambda}+\sigma_{s u b}\right) \sigma(\nu)=-\sigma_{k+m-2}(\mu) \tag{8.38}
\end{equation*}
$$

This reduces to a system of first order inhomogeneous linear differential equations.

We can now proceed recursively to find $\frac{1}{2}$-densities in $I^{k}(X, \Lambda)$ such that

$$
P \mu \in I^{N}(X, \Lambda)
$$

for arbitrarily large N.
This completes the program outlined in Chapter 1.

8.7 Semi-classical pseudo-differential operators.

These are a special case of the semi-classical Fourier integral operators described in Section 8.2 specialized to the case

$$
X_{1}=X_{2}=X
$$

and

$$
\Gamma=\mathrm{id} \in \operatorname{Morph}\left(T^{*} X, T^{*} X\right)
$$

so

$$
(\varsigma \times \mathrm{id})(\Gamma)=N^{*}(\Delta)
$$

where

$$
\Delta \subset X \times X
$$

So we definitely need to gen- is the diagonal. Clearly Γ is composable with itself so $\mathcal{F}_{0}(\Gamma)$ is an algebra. eralize Theorem 29 so as to If $F_{1} \in \mathcal{F}^{k_{1}}(\Gamma)$ and $F_{2} \in \mathcal{F}^{k_{2}}(\Gamma)$ and either F_{1} or F_{2} is in $\mathcal{F}_{0}(\Gamma)$ then their include clean composition. composition is defined and

$$
F_{2} \circ F_{1} \in \mathcal{F}^{k_{1}+k_{2}+\frac{n}{2}}(\Gamma)
$$

where

$$
n=\operatorname{dim} X
$$

In order to avoid the nuisance of accumulating the $\frac{n}{2}$-s we define

$$
\begin{equation*}
\Psi^{k}(X):=\mathcal{F}^{k-\frac{n}{2}}(\Gamma), \quad \Psi_{0}^{k}(X):=\mathcal{F}_{0}^{k-\frac{n}{2}}(\Gamma) \tag{8.39}
\end{equation*}
$$

Thus if $A_{1} \in \Psi^{k_{1}}(X)$ and $A_{2} \in \Psi^{k_{2}}(X)$ and one or the other is in $\Psi_{0}(X)$ then

$$
A_{2} \circ A_{1} \in \Psi^{k_{1}+k_{2}}(X)
$$

We call $\Psi_{0}(X)$ the algebra of compactly supported semi-classical pseudodifferential operators on X.

We will now examine the local expression for the composition law in this algebra. So we assume that X is an open convex subset of \mathbb{R}^{n} and that we have chosen the standard $\frac{1}{2}$ density $d x^{\frac{1}{2}}$ on X. A generating function for $N^{*} \Delta$ is given as follows: Let

$$
\pi: X \times X \times \mathbb{R}^{n} \rightarrow X \times X, \quad(x, y, \xi) \mapsto(x, y)
$$

Then according to (5.4) (with a slightly more compact notation)

$$
\phi: X \times X \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \phi(x, y, \xi)=(x-y) \cdot \xi
$$

is a generating function for $N^{*} \Delta$.
Dropping the ubiquitous factors of $d x^{\frac{1}{2}}$ we can write $A \in \Psi_{0}^{k}(X)$ as being given by the integral kernel

$$
A\left(x_{1}, x_{2}, \hbar\right)=\hbar^{k-\frac{n}{2}} \int a\left(x_{1}, x_{2}, \xi, \hbar\right) e^{i \frac{\left(x_{1}-x_{2}\right) \cdot \xi}{\hbar}} d \xi
$$

where

$$
a \in C_{0}^{\infty}\left(X \times X \times \mathbb{R}^{n} \times \mathbb{R}\right)
$$

Then

$$
\left(A_{1} \circ A_{2}\right)\left(x_{1}, x_{2}\right)=\int A_{1}(x, y, \hbar) A_{2}\left(y, x_{2}\right) d y
$$

so
$\left(A_{1} \circ A_{2}\right)\left(x_{1}, x_{2}\right)=\hbar^{\ell} \int a_{1}\left(x_{1}, y, \xi_{1}, \hbar\right) a_{2}\left(y, x_{2}, \xi_{2}, \hbar\right) e^{i \frac{\xi_{1} \cdot\left(x_{1}-y\right)+\xi_{2} \cdot\left(y-x_{2}\right)}{\hbar}} d \xi_{1} d \xi_{2} d y$
where

$$
\begin{equation*}
\ell=k_{1}+k_{2}-n . \tag{8.40}
\end{equation*}
$$

Our task is to disentangle this formula.

8.7.1 The right handed symbol calculus of Kohn and Nirenberg.

Make the changes of coordinates

$$
\xi=\xi_{1}, \eta=\xi_{1}-\xi_{2}, z=y-x_{2}
$$

so

$$
\xi_{1}=\xi, \xi_{2}=\xi-\eta, y=z+x_{2}
$$

in (8.40). Thus

$$
\xi_{1} \cdot\left(x_{1}-y\right)+\xi_{2} \cdot\left(y-x_{2}\right)=\xi \cdot\left(x_{1}-x_{2}\right)-\eta \cdot z
$$

is the phase function in the new coordinates.

The amplitude in the new coordinates is a_{R} where

$$
\begin{equation*}
a_{R}\left(x_{1}, x_{2}, \xi, z, \eta, \hbar\right):=a_{1}\left(x_{1}, z+x_{2}, \xi, \hbar\right) a_{2}\left(z+x_{2}, x_{2}, \xi-\eta, \hbar\right) \tag{8.41}
\end{equation*}
$$

Thus the right hand side of (8.40) is equal to

$$
\begin{equation*}
\int e^{i \frac{\xi \cdot\left(x_{1}-x_{2}\right)}{\hbar}}\left(\int a_{R}\left(x_{1}, x_{2}, \xi, z, \eta, \hbar\right) e^{-i \frac{\eta \cdot z}{\hbar}} d \eta d z\right) d \xi \tag{8.42}
\end{equation*}
$$

We are now going to apply stationary phase to the integral with respect to z and η occurring in (8.42) for fixed $x_{1}, x-2, \xi$. This integral is of the form

$$
I(\hbar)=\int f(w) e^{i \frac{\langle A w, w\rangle}{2 \hbar}} d w
$$

In the case at hand

$$
w=\binom{z}{\eta}
$$

and

$$
A=\left(\begin{array}{cc}
0 & -I \\
-I & 0
\end{array}\right)
$$

The general stationary phase prescription says that an integral of the above form has the asymptotic expansion

$$
I(\hbar) \sim\left(\frac{\hbar}{2 \pi}\right)^{\frac{d}{2}} \gamma_{A} \sum \exp \left(-\frac{i \hbar}{2} b(D)\right) f(0)
$$

where

$$
\begin{gathered}
b(D)=\sum_{i j} b_{i j} D_{i} D_{j} . \quad\left(b_{i j}\right)=B=A^{-1} \\
\gamma_{A}=|\operatorname{det} A|^{-\frac{1}{2}} e^{\frac{\pi i}{4} \operatorname{sgn} A}
\end{gathered}
$$

and d is the dimension of the space over which we are integrating. In the case at hand

$$
B=A
$$

and

$$
\operatorname{sgn} A=0
$$

so

$$
\gamma_{A}=1
$$

Also $d=2 n$. Let us denote the result of applying this stationary phase formula to the a_{R} of (8.41) by

$$
a_{1} \star_{R} a_{2}
$$

Then we have the formula

$$
\begin{equation*}
a_{1} \star_{R} a_{2}=\left.\left(\frac{\hbar}{2 \pi}\right)^{n} \sum_{k}\left(\frac{i \hbar}{2}\right)^{k} \frac{1}{k!}\left(D_{z} D_{\eta}\right)^{k} a_{R}\right|_{z=\eta=0} \tag{8.43}
\end{equation*}
$$

Example. Suppose we take $a_{1}=a$ and

$$
a_{2}=a_{2}(\xi)=\left(\frac{2 \pi}{\hbar}\right)^{n} \rho(\xi)
$$

where

$$
\rho \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

and $\rho \equiv 1$ on $\operatorname{supp}(a)$.
Then

$$
a_{R}=\left(\frac{2 \pi}{\hbar}\right)^{n} a\left(x_{1}, z+x_{2}, \xi, \hbar\right) \rho(\xi-\eta)
$$

so (8.43) gives

$$
a_{1} \star_{R} a_{2}=\left.\sum_{k}\left(\frac{i \hbar}{2}\right)^{k} \frac{1}{k!}\left(D_{z} D_{\eta}\right)^{k} a_{1}\left(x_{1}, z+x_{2}, \xi, \hbar\right) \rho(\xi-\eta)\right|_{z=\eta=0}
$$

But since $\rho \equiv 1$ on a neighborhod of $\operatorname{supp} a$, all terms except the first vanish. Hence

$$
a \star_{R}\left(\left(\frac{2 \pi}{\hbar}\right)^{n} \rho\right)=a
$$

The element

$$
\left(\frac{2 \pi}{\hbar}\right)^{n} \rho
$$

acts as a right identity on all a whose support is contained in the set where $\rho \equiv 1$.

Remark. If at the beginning of this section we had made the change of variables

$$
\xi=\xi_{2}, \eta=\xi_{2}-\xi_{1}, z=y-x_{1}
$$

we would obtain an alternative symbol calculus, the "left handed calculus". The same argument will then show that $\left(\frac{2 \pi}{\hbar}\right)^{n} \rho$ is a left identity on all a whose support is contained in the set where $\rho \equiv 1$.

8.8 $I(X, \Lambda)$ as a module over $\Psi_{0}(X)$.

Let X be a manifold and Λ a Lagrangian submanifold of $T^{*} X$. Since semi-classical pseudo-differential operators are special kinds of semi-classical Fourier integral operators - ones associated with the identity morphism of $T^{*} X$ - we may apply the results of Section 8.2 to conclude that $I_{0}(X, \Lambda)$ is a module over $\Psi_{0}(X)$. More precisely, if $A \in \Psi_{0}^{k}(X)$ and $\nu \in I_{0}^{\ell}(X, \Lambda)$ then it follows from Theorem 29 and our convention on the exponent in $\Psi(X)$ that $A \nu \in I_{0}^{k+\ell}(X, \Lambda)$. In this section we will use stationary phase once again to obtain a local description of this module structure.

We may assume that X is an open subset of \mathbb{R}^{n}, since we are interested in a local description. For simplicity, we will assume that Λ does not intersect the zero section. So we know from Section 5.8 , see equation (5.11), that locally Λ can be described by the fibration

$$
\pi: X \times \mathbb{R}^{n} \rightarrow X, \quad(x, \xi) \mapsto x
$$

and a generating function of the form

$$
\phi^{\sharp}(x, \xi)=x \cdot \xi-\phi(\xi) .
$$

We will work locally where this generating function is valid. So we are assuming that $\nu \in I_{0}^{\ell}(X, \Lambda)$ is of the form $f d x^{\frac{1}{2}}$ where

$$
f(x, \hbar)=\hbar^{\ell-\frac{n}{2}} \int b(x, \xi, \hbar) e^{i \frac{x \cdot \xi-\phi(\xi)}{\hbar}} d \xi
$$

with

$$
b \in C_{0}^{\infty}\left(X \times \mathbb{R}^{n} \times \mathbb{R}\right)
$$

Let $A \in \Psi^{k}(X)$, so $=u d x^{\frac{1}{2}} d y^{\frac{1}{2}}$ where

$$
u(x, y, \hbar)=\hbar^{k-n} \int a(x, y, \xi, \hbar) e^{i \frac{(x-y) \cdot \xi}{\hbar}} d \xi
$$

with $a \in C^{\infty}\left(X \times X \times \mathbb{R}^{n}, \mathbb{R}\right)$ supported in a set

$$
\|\xi\| \leq C
$$

By definition $A f=g(x, \hbar) d x^{\frac{1}{2}}$ where

$$
g(x, \hbar)=\int u(x, y, \hbar) f(y, \hbar) d y
$$

and hence is given by $\hbar^{k+\ell-\frac{3}{2} n} \times$ the integral

$$
\int a(x, y, \xi, \hbar) b\left(y, \xi_{1}, \hbar\right) e^{i \frac{(x-y) \cdot \xi+y \cdot \xi_{1}-\phi\left(\xi_{1}\right)}{\hbar}} d \xi d \xi_{1} d y
$$

The amplitude in this integral is

$$
a(x, y, \xi, \hbar) b\left(y, \xi_{1}, \hbar\right)
$$

and the phase is

$$
(x-y) \cdot \xi+y \cdot \xi_{1}-\phi\left(\xi_{1}\right)=x \cdot \xi-\phi(\xi)+y \cdot\left(\xi_{1}-\xi\right)-\left(\phi\left(\xi_{1}\right)-\phi(\xi)\right)
$$

Let

$$
\phi\left(\xi_{1}\right)-\phi(\xi)=\psi\left(\xi, \xi_{1}\right) \cdot\left(\xi_{1}-\xi\right)
$$

so that

$$
\psi(\xi, \xi)=\frac{\partial \phi}{\partial \xi}(\xi)
$$

Holding x and ξ fixed, make the change of variables

$$
\eta:=\xi_{1}-\xi, \quad z:=y-\psi\left(\xi_{1}, \xi\right)
$$

so that in the new coordinates the phase is

$$
x \cdot \xi-\phi(\xi)+z \cdot \eta
$$

and the amplitude is

$$
a^{\sharp}(x, \xi, \eta, z, \hbar):=a(x, z+\psi(\xi+\eta, \xi), \xi, \hbar) b(z+\psi(\xi+\eta, \xi), \xi+\eta, \hbar) .
$$

So we have $A f=g d x^{\frac{1}{2}}$ with

$$
g=\hbar^{m} \int b^{\sharp}(x, \xi, \hbar) e^{i \frac{x \cdot \xi-\phi(\xi)}{\hbar}} d \xi, \quad m=k+\ell-\frac{3 n}{2}
$$

and

$$
b^{\sharp}(x, \xi, \hbar)=\int a^{\sharp}(x, \xi, \eta, z, \hbar) e^{-\frac{z \cdot \eta}{\hbar}} d z d \eta .
$$

Once again, stationary phase applied to this integral gives

$$
\left.b^{\sharp}(x, \xi, \hbar) \sim\left(\frac{\hbar}{2 \pi}\right)^{n} \exp \left(\frac{i \hbar}{2} D_{z} D_{\eta}\right) a^{\sharp}(x, \xi, \eta, z, \hbar)\right|_{z=\eta=0}
$$

The leading term in this expansion is

$$
\begin{gathered}
a^{\sharp}(x, \xi, 0,0)=a(x, \psi(, \xi, \xi), \xi, \hbar) b(\psi(\xi, \xi), \xi, \hbar)= \\
a\left(x, \frac{\partial \phi}{\partial \xi}(\xi), \xi, \hbar\right) b\left(\frac{\partial \phi}{\partial \xi}(\xi), \xi, \hbar\right) .
\end{gathered}
$$

Since Λ is the submanifold consisting of all

$$
(x, \xi)=\left(\frac{\partial \phi}{\partial \xi}(\xi), \xi,\right)
$$

in $T^{*} X$ we see that the leading term depends only on $b_{\mid \Lambda}$.

8.9 The trace of a semiclassical Fourier integral operator.

Let X be an n-dimensional manifold, let $M=T^{*} X$ and let

$$
\Gamma: T^{*} X \rightarrow T^{*} X
$$

be a canonical relation. Let $\Delta_{M} \subseteq M \times M$ be the diagonal and let us assume that

$$
\Gamma \pi \Delta_{M} .
$$

Our goal in this section is to show that if $F \in \mathcal{F}_{0}^{k}(\Gamma)$ is a semi-classical Fourier integral operator "quantizing" the canonical relation Γ then one has a trace formula of the form:

$$
\begin{equation*}
\operatorname{tr} F=\hbar^{k+n} \sum a_{p}(h) e^{\frac{i \pi}{\eta_{p}}} e^{i T_{p}^{*} / \hbar} \tag{8.44}
\end{equation*}
$$

summed over $p \in \Gamma \cap \Delta_{M}$. In this formula n is the dimension of X, the η_{p} 's are Maslov factors, the T_{p}^{*} are symplectic invariants of Γ at $p \in \Gamma \circ \Delta_{M}$ which will be defined below, and $a_{p}(h) \in C^{\infty}(\mathbb{R})$.

Let $\varsigma: M \rightarrow M$ be the involution, $(x, \xi) \rightarrow(x,-\xi)$ and let $\Lambda=\varsigma \circ \Gamma$. We will fix a non-vanishing density, $d x$, on X and denote by

$$
\begin{equation*}
\mu=\mu(x, y, \hbar) d x^{\frac{1}{2}} d y^{\frac{1}{2}} \tag{8.45}
\end{equation*}
$$

the Schwartz kernel of the operator, F. By definition

$$
\mu \in I^{k}(X \times X, \Lambda)
$$

and by (8.47) the trace of F is given by the integral

$$
\begin{equation*}
\operatorname{tr} F=: \int \mu(x, x) d x \tag{8.46}
\end{equation*}
$$

Here are the details:
Let $\varsigma: M \rightarrow M$ be the involution, $(x, \xi) \rightarrow(x,-\xi)$ and let $\Lambda=\varsigma \circ \Gamma$. We will fix a non-vanishing density, $d x$, on X and denote by

$$
\begin{equation*}
\mu=\mu(x, y, \hbar) d x^{\frac{1}{2}} d y^{\frac{1}{2}} \tag{8.47}
\end{equation*}
$$

the Schwartz kernel of the operator, F. By definition

$$
\mu \in I^{k}(X \times X, \Lambda)
$$

and by (8.47) the trace of F is given by the integral

$$
\begin{equation*}
\operatorname{tr} F=: \int \mu(x, x) d x \tag{8.48}
\end{equation*}
$$

We can without loss of generality assume that Λ is defined by a generating function, i.e., that there exists a d-dimensional manifold, S, and a function $\varphi(x, y, s) \in C^{\text {infty }}(X \times X \times S)$ which generates Λ with respect to the fibration, $X \times X \times S \rightarrow X \times X$. Let C_{φ} be the critical set of φ and $\lambda_{\varphi}: C_{\varphi} \rightarrow \Lambda$ the diffeomorphism of this set onto Λ. Denoting by φ^{\sharp} the restriction of φ to C_{φ} and by ψ the function, $\varphi^{\sharp} \circ \lambda_{\varphi}^{-1}$, we have by (8.19)

$$
\begin{equation*}
d \psi=\alpha_{\Lambda} \tag{8.49}
\end{equation*}
$$

where α_{Λ} is the restriction to Λ of the canonical one form, α, on $T^{*}(X \times X)$.
Lets now compute the trace of F. By assumption μ can be expressed as an oscillatory integral

$$
(d x)^{\frac{1}{2}}(d y)^{\frac{1}{2}}\left(h^{k-d / 2} \int a(x, y, s, h) e^{\frac{i \varphi(x, y, s)}{\hbar}} d s\right)
$$

and hence by (8.48)

$$
\begin{equation*}
\operatorname{tr} F=\hbar^{k-d / 2} \int a(x, y, s, \hbar) e^{i \frac{\varphi(x, y, s)}{\hbar}} d s d x \tag{8.50}
\end{equation*}
$$

We claim that: The function

$$
\begin{equation*}
\varphi(x, y, s): X \times S \rightarrow \mathbb{R} \tag{8.51}
\end{equation*}
$$

is a Morse function, and its critical points are in one-one correspondence with the points, $p \in \Gamma \cap \Delta_{M}$.

Proof. Let Δ_{X} be the diagonal in $X \times X$ on $\Lambda_{\Delta}=N^{*} \Delta_{X}$ its conormal bundle in $T^{*}(X \times X)=M \times M$. Then $\varsigma \circ \Lambda_{\Delta}=\Delta_{M}$ and hence $\Gamma \pi \Delta_{M} \Leftrightarrow$ $\Lambda \pi \Lambda_{\Delta}$. Thus the canonical relations

$$
\Lambda: p t \rightarrow M \times M
$$

and

$$
\Lambda_{\Delta}^{t}: M \times M \rightarrow p t
$$

are composable and hence the function (8.51) is a generating function for the Lagrangian manifold " $p t$ " with respect to the fibration $X \times S \rightarrow p t$. In other words, in more prosaic language, the function (8.51) is a Morse function. Its critical points are the points where

$$
\frac{\partial \varphi}{\partial s}=0
$$

and

$$
\xi=\frac{\partial \varphi}{\partial x}(x, x, s)=-\frac{\partial \varphi}{\partial y}(x, x, s)=\eta
$$

in other words, points $(x, y, s) \in C_{\varphi}$ with the property $\gamma_{\varphi}(x, y, s)=(x, \xi, y, \eta)$, $p=(x, \xi)=(y,-\eta)$, hence these points are in one-one correspondence with the points $p \in \Gamma \cap \Delta_{M}$.

Since the function (8.51) is a Morse function we can evaluate (8.49) by stationary phase obtaining

$$
\begin{equation*}
\operatorname{tr} F=\sum h^{k+\eta} a_{p}(h) e^{i \frac{\pi}{4} \operatorname{sgn}_{p}} e^{i \psi(p) / \hbar} \tag{8.52}
\end{equation*}
$$

where sgn_{p} is the signature of $\varphi(x, x, s)$ at the critical point corresponding to p and

$$
\psi(p)=\varphi(x, x, s)
$$

the value of $\varphi(x, x, s)$ at this point. This gives us the trace formula (8.44) with $T_{p}^{\sharp}=\psi(p)$.

8.9.1 Examples.

Let's now describe how to compute these T_{p}^{\sharp} 's in some examples: Suppose Γ is the graph of a symplectomorphism

$$
f: M \rightarrow M
$$

Let $p r_{1}$ and $p r_{2}$ be the projections of $T^{*}(X \times X)=M \times M$ onto its first and second factors, and let α_{X} be the canonical one form on $T^{*} X$. Then the canonical one form, α, on $T^{*}(X \times X)$ is

$$
\left(p r_{1}\right)^{*} \alpha_{X}+\left(p r_{2}\right)^{*} \alpha_{X},
$$

so if we restrict this one form to Λ and then identify Λ with M via the map, $M \rightarrow \Lambda, p \rightarrow(p, \sigma f(p))$, we get from (8.49)

$$
\begin{equation*}
\alpha_{X}-f^{*} \alpha_{X}=d \psi \tag{8.53}
\end{equation*}
$$

and T_{p}^{\sharp} is the value of ψ at the point, p.
Let's now consider the Fourier integral operator

$$
F^{m}=\overbrace{F \circ \cdots \circ F}
$$

and compute its trace. This operator "quantizes" the symplectomorphism f^{m}, hence if

$$
\operatorname{graph} f^{m} \pi \Delta_{M}
$$

we can compute its trace by (8.44) getting the formula

$$
\begin{equation*}
\operatorname{tr} F^{m}=\hbar^{\ell} \sum a_{m, p}(\hbar) e^{i \frac{\pi}{4} \sigma_{m, p}} e^{i T_{m, p}^{\sharp} / \hbar} . \tag{8.54}
\end{equation*}
$$

with $\ell=k m+\left(\frac{m-1}{2}\right) n$, the sum now being over the fixed points of f^{m}. As above, the oscillations, $T_{m, p}^{\sharp}$, are computed by evaluating at p the function, ψ_{m}, defined by

$$
\alpha_{X}-\left(f^{m}\right)^{*} \alpha_{X}=d \psi_{m}
$$

However,

$$
\begin{aligned}
\alpha_{X}-\left(f^{m}\right)^{*} \alpha_{X} & =\alpha_{X}-f^{*} \alpha_{X}+\cdots+\left(f^{m-1}\right)^{*} \alpha_{X}-\left(f^{m}\right)^{*} \alpha \\
& =d\left(\psi+f^{x} \psi+\cdots+\left(f^{m-1}\right)^{x} \psi\right)
\end{aligned}
$$

where ψ is the function (8.49). Thus at $p=f^{m}(p)$

$$
\begin{equation*}
T_{m, p}^{\sharp}=\sum_{i=1}^{m-1} \psi\left(p_{i}\right), \quad p_{i}=f^{i}(p) \tag{8.55}
\end{equation*}
$$

In other words $T_{m, p}^{\sharp}$ is the sum of ψ over the periodic trajectory $\left(p_{1}, \ldots, p_{m-1}\right)$ of the dynamical system

$$
f^{k}, \quad-\infty<k<\infty
$$

We refer to the next subsection "The period spectrum of a symplectomorphism" for a proof that the $T_{m, p}^{\sharp}$'s are intrinsic symplectic invariants of this dynamical system, i.e., depend only on the symplectic structure of M not on the canonical one form, α_{X}. (We will also say more about the "geometric" meaning of these $T_{m, p}^{\sharp}$'s in the next lecture.)

Finally, what about the amplitudes, $a_{p}(h)$, in formula (8.44)? There are many ways to quantize the symplectomorphism, f, and no canonical way of choosing such a quantization; however, one condition which one can impose on F is that its symbol be of the form:

$$
\begin{equation*}
h^{-n} \sigma_{\Gamma} e^{\frac{i \psi}{\hbar}} e^{i \frac{\pi}{4} \sigma_{\varphi}} \tag{8.56}
\end{equation*}
$$

in the vicinity of $\Gamma \cap \Delta_{M}$, where ν_{Γ} is the $\frac{1}{2}$ density on Γ obtained from the symplectic $\frac{1}{2}$ density, ν_{M}, on M by the identification, $M \leftrightarrow \Gamma, p \rightarrow(p, f(p))$. We can then compute the symbol of $a_{p}(h) \in I^{0}(p t)$ by pairing the $\frac{1}{2}$ densities, ν_{M} and ν_{Γ} at $p \in \Gamma \cap \Delta_{M}$ as in (7.29) obtaining

$$
\begin{equation*}
a_{p}(0)=\left|\operatorname{det}\left(I-d f_{p}\right)\right|^{\frac{1}{2}} \tag{8.57}
\end{equation*}
$$

Remark. The condition (8.56) on the symbol of F can be interpreted as a "unitarity" condition. It says that "microlocally" near the fixed points of f :

$$
F F^{t}=I+O(h)
$$

8.9.2 The period spectrum of a symplectomorphism.

Let (M, ω) be a symplectic manifold. We will assume that the cohomology class of ω is zero; i.e., that ω is exact, and we will also assume that M is connected and that

$$
\begin{equation*}
H^{1}(M, \mathbb{R})=0 \tag{}
\end{equation*}
$$

Let $f: M \rightarrow M$ be a symplectomorphism and let $\omega=d \alpha$. We claim that $\alpha-f^{*} \alpha$ s exact. Indeed $d \alpha-f^{*} d \alpha=\omega-f^{*} \omega=0$, and hence by (*) $\alpha-f^{*} \alpha$ s exact. Let

$$
\alpha-f^{*} \alpha=d \psi
$$

for $\psi \in C^{\infty}(M)$. This function is only unique up to an additive constant; however, there are many ways to normalize this constant. For instance if W is a connected subset of the set of fixed points of f, and $j: W \rightarrow M$ is the inclusion map, then $f \circ j=j$; so

$$
j^{*} d \psi=j^{*} \alpha-j^{*} f^{*} \alpha=0
$$

and hence ψ is constant on W. Thus one can normalize ψ by requiring it to be zero on W.

Example. Let Ω be a smooth convex compact domain in \mathbb{R}^{n}, let X be its boundary, let U be the set of points, $(x, \xi),|\xi|<1$, in $T^{*} X$. If $B: U \rightarrow U$
is the billiard map and α the canonical one form on $T^{*} X$ one can take for $\psi=\psi(x, \xi)$ the function

$$
\psi(x, \xi)=|x-y|+C
$$

where $(y, n)=B(x, \xi) . B$ has no fixed points on U, but it extends continuously to a mapping of \bar{U} on \bar{U} leaving the boundary, W, of U fixed and we can normalize ψ by requiring that $\psi=0$ on W, i.e., that $\psi(x, \xi)=|x-y|$.

Now let

$$
\gamma=p_{1}, \ldots, p_{k+1}
$$

be a periodic trajectory of f, i.e.,

$$
f\left(p_{i}\right)=p_{i+1} \quad i=1, \ldots k
$$

and $p_{k+1}=p_{1}$. We define the period of γ to be the sum

$$
p(\gamma)=\sum_{i=1}^{k} \psi\left(p_{i}\right) .
$$

Claim: $P(\gamma)$ is independent of the choice of α and ψ. In other words it is a symplectic invariant of f.

Proof. Suppose $\omega=d \alpha-d \alpha^{\prime}$. Then $d\left(\alpha-\alpha^{\prime}\right)=0$; so, by $\left({ }^{*}\right), \alpha^{\prime}-\alpha=d h$ for some function, $h \in C^{\infty}(M)$. Now suppose $\alpha-f^{*} \alpha=d \psi$ and $\alpha^{\prime}-f^{*} \alpha^{\prime}=$ $d \psi^{\prime}$ with $\psi=\psi^{\prime}$ on the set of fixed points, W. Then

$$
d \psi^{\prime}-d \psi=d\left(f^{*} h-h\right)
$$

and since $f^{*}=0$ on W

$$
\psi^{\prime}-\psi=f^{*} h-h
$$

Thus

$$
\begin{aligned}
\sum_{i=1}^{k} \psi^{\prime}\left(p_{i}\right)-\psi\left(p_{i}\right) & =\sum_{i=1}^{k} h\left(f\left(p_{i}\right)\right)-h\left(p_{i}\right) \\
& =\sum_{i=1}^{k} h\left(p_{i+1}\right)-h\left(p_{i}\right) \\
& =0 .
\end{aligned}
$$

Hence replacing ψ by ψ^{\prime} doesn't change the definition of $P(\gamma)$.
Example Let $p_{i}=\left(x_{i}, \xi_{i}\right) i=1, \ldots, k+1$ be a periodic trajectory of the billiard map. Then its period is the sum

$$
\sum_{i=1}^{k}\left|x_{i+1}-x_{i}\right|
$$

i.e., is the perimeter of the polygon with vertices at x_{1}, \ldots, x_{k}. (It's far from obvious that this is a symplectic invariant of B.)

8.10 The mapping torus of a symplectic mapping.

We'll give below a geometric interpretation of the oscillations, $T_{m, p}^{\sharp}$, occurring in the trace formula (8.54). First, however, we'll discuss a construction used in dynamical systems to convert "discrete time" dynamical systems to "continuous time" dynamical systems. Let M be a manifold and $f: M \rightarrow M$ a diffeomorphism. From f one gets a diffeomorphism

$$
g: M \times \mathbb{R} \rightarrow M \times \mathbb{R}, \quad g(p, q)=(f(p), q+1)
$$

and hence an action

$$
\begin{equation*}
\mathbb{Z} \rightarrow \operatorname{Diff}(M \times \mathbb{R}), \quad k \rightarrow g^{k} \tag{8.58}
\end{equation*}
$$

of the group, \mathbb{Z} on $M \times \mathbb{R}$. This action is free and properly discontinuous so the quotient

$$
Y=M \times \mathbb{R} / \mathbb{Z}
$$

is a smooth manifold. The manifold is called the mapping torus of f. Now notice that the translations

$$
\begin{equation*}
\tau_{t}: M \times \mathbb{R} \rightarrow M \times \mathbb{R},(p, q) \rightarrow(p, q+t), \tag{8.59}
\end{equation*}
$$

commute with the action (8.58), and hence induce on Y a one parameter group of translations

$$
\begin{equation*}
\tau_{t}^{\sharp}: Y \rightarrow Y,-\infty<t<\infty \tag{8.60}
\end{equation*}
$$

Thus the mapping torus construction converts a "discrete time" dynamical system, the "discrete" one-parameter group of diffeomorphisms, $f^{k}: M \rightarrow$ $M,-\infty<k<\infty$, into a "continuous time" one parameter group of diffeomorphisms (8.60).

To go back and reconstruct f from the one-parameter group (8.60) we note that the map

$$
\iota: M=M \times\{0\} \rightarrow M \times \mathbb{R} \rightarrow(M \times \mathbb{R}) / Z
$$

imbeds M into Y as a global cross-section, M_{0}, of the flow (8.60) and for $p \in M_{0} \gamma_{t}(p) \in M_{0}$ at $t=1$ and via the identification $M_{0} \rightarrow M$, the map, $p \rightarrow \gamma_{1}(p)$, is just the map, f. In other words, $f: M \rightarrow M$ is the "first return map" associated with the flow (8.60).

We'll now describe how to "symplecticize" this construction. Let $\omega \in$ $\Omega^{2}(M)$ be an exact symplectic form and $f: M \rightarrow M$ a symplectomorphism. For $\alpha \in \Omega^{1}(M)$ with $d \alpha=\omega$ let

$$
\begin{equation*}
\alpha-f^{*} \alpha=d \varphi \tag{8.61}
\end{equation*}
$$

and lets assume that φ is bounded from below by a positive constant. Let

$$
g: M \times \mathbb{R} \rightarrow M \times \mathbb{R}
$$

be the map

$$
\begin{equation*}
g(p, q)=(p, q+\varphi(x)) \tag{8.62}
\end{equation*}
$$

As above one gets from g a free properly discontinuous action, $k \rightarrow g^{k}$, of \mathbb{Z} on $M \times \mathbb{R}$ and hence one can form the mapping torus

$$
Y=(M \times \mathbb{R}) / \mathbb{Z}
$$

Moreover, as above, the group of translations,

$$
\tau_{t}: M \times \mathbb{R} \rightarrow M \times \mathbb{R}, \tau_{t}(p, q)=(p, q+t)
$$

commutes with (8.62) and hence induces on Y a one-parameter group of diffeomorphisms

$$
\tau_{t}^{\sharp}: Y \rightarrow Y
$$

just as above. We will show, however, that these are not just diffeomorphisms, they are contacto-morphisms. To prove this we note that the oneform,

$$
\tilde{\alpha}=\alpha+d t
$$

on $M \times \mathbb{R}$ is a contact one-form. Moreover,

$$
\begin{aligned}
g^{*} \tilde{\alpha} & =f^{*} \alpha+d(\varphi+t) \\
& =\alpha+\left(f^{*} \alpha-\alpha\right)+d \varphi+d t \\
& =\alpha+d t=\tilde{\alpha}
\end{aligned}
$$

by (8.61) and

$$
\left(\tau_{a}\right)^{*} \tilde{\alpha}=\alpha+d(t+a)=\alpha+d t=\tilde{\alpha}
$$

so the action of \mathbb{Z} on $M \times \mathbb{R}$ and the translation action of \mathbb{R} on $M \times \mathbb{R}$ are both actions by groups of contacto-morphisms. Thus, $Y=(M \times \mathbb{R}) / \mathbb{Z}$ inherits from $M \times \mathbb{R}$ a contact structure and the one-parameter group of diffeomorphisms, τ_{t}^{\sharp}, preserves this contact structure.

Note also that the infinitesimal generator, of the group translations, τ_{t}, is just the vector field, $\frac{\partial}{\partial t}$, and that this vector field satisfies

$$
\iota\left(\frac{\partial}{\partial t}\right) \tilde{\alpha}=1
$$

and

$$
\iota\left(\frac{\partial}{\partial t}\right) d \tilde{\alpha}=0
$$

Thus $\frac{\partial}{\partial t}$ is the contact vector field associated with the contract form $\tilde{\alpha}$, and hence the infinitesimal generator of the one-parameter group, $\tau_{t}^{\sharp}: Y \rightarrow Y$ is the contact vector field associated with the contract form on Y.

Comments:

1. The construction we've just outlined involves the choice of a one-form, α, on M with $d \alpha=\omega$ and a function, φ, with $\alpha=f^{x} \alpha=d \varphi$; however, it is easy to see that the contact manifold, Y, and oneparameter group of contacto-morphisms are uniquely determined, up to contracto-morphism, independent of these choices.
2. Just as in the standard mapping torus construction f can be shown to be "first return map" associated with the one-parameter group, τ_{t}^{\sharp}.

We can now state the main result of this section, which gives a geometric description of the oscillations, $T_{m, p}^{\sharp}$, in the trace formula.

Theorem 34 The periods of the periodic trajectories of the flow, $\tau_{t}^{\sharp},-\infty<$ $t<\infty$, coincide with the "length" spectrum of the symplectomorphism, f : $M \rightarrow M$.

Proof. For $(p, a) \in M \times \mathbb{R}$,

$$
g^{m}(p, a)=\left(f^{m}(p), q+\varphi(p)+\varphi\left(p_{1}\right)+\cdots+\varphi\left(p_{m-1}\right)\right.
$$

with $p_{i}=f^{i}(p)$. Hence if $p=f^{m}(p)$

$$
g^{m}(p, a)=\tau_{T^{\sharp}}(p, a)
$$

with

$$
T^{\sharp}=T_{m, p}^{\sharp}=\sum_{i=1}^{m} \varphi\left(p_{i}\right), \quad p_{i}=f^{i}(p) .
$$

Thus if q is the projection of (p, a) onto Y the trajectory of τ^{\sharp} through q is periodic of period $T_{m, p}^{\sharp}$.

Via the mapping torus construction one discovers an interesting connection between the trace formula in the preceding section and a trace formula which we described in Section 7.9.4.

Let β be the contact form on Y and let

$$
M^{\sharp}=\left\{(y, \eta) \in T^{*} Y, \eta=t \beta_{y}, t \in \mathbb{R}_{+}\right\} .
$$

It's easy to see that M^{\sharp} is a symplectic submanifold of $T^{*} Y$ and hence a symplectic manifold in its own right. Let

$$
H: M^{\sharp} \rightarrow \mathbb{R}^{+}
$$

be the function $H\left(y, t B_{y}\right)=t$. Then Y can be identified with the level set, $H=1$ and the Hamiltonian vector field ν_{H} restricted to this level set coincides with the contact vector field, ν, on Y. Thus the flow, τ_{t}^{\sharp}, is just the Hamiltonian flow, $\exp t \nu_{H}$, restricted to this level set. Let's now compute the "trace" of $\exp t \nu_{H}$ as an element in the category \tilde{S} (the enhanced symplectic category).

The computation of this trace is essentially identical with the computation we make at the end of Section 7.9.4 and gives as an answer the union of the Lagrangian manifold

$$
\Lambda_{T_{m, p}^{\sharp}} \subset T^{*} \mathbb{R}, m \in \mathbb{Z}
$$

where the T^{\sharp} 's are the elements of the period spectrum of ν_{H} and $\Lambda_{T^{\sharp}}$ is the cotangent fiber at $t=T$. Moreover, each of these $\Lambda_{T^{\sharp}}$'s is an element of the enhanced symplectic category, i.e. is equipped with a $\frac{1}{2}$-density $\nu_{T_{m, p}^{\sharp}}$ which we computed to be

$$
\bar{T}_{m, p}^{\sharp}\left|I-d f_{p}^{m}\right|^{-\frac{1}{2}}|d \tau|^{\frac{1}{2}}
$$

$\bar{T}_{m, p}^{\sharp}$ being the primitive period of the period trajectory of f through p (i.e., if $p_{i}=f^{i}(p) i=1, \ldots, m$ and $p, p_{1}, \ldots, p_{k-1}$ are all distinct but $p=p_{k}$ then $\bar{T}_{m, p}^{\sharp}=\bar{T}_{k, p}^{\sharp}$). Thus these expressions are just the symbols of the oscillatory integrals

$$
\hbar^{-1} a_{m, p} e^{I I \bar{T}_{p, m}^{\sharp} t / \hbar}
$$

with $a_{m, p}=\bar{T}_{m, p}^{\sharp}\left|I-d f_{p}^{m}\right|^{\frac{1}{2}}$.

Chapter 9

Differential calculus of forms, Weil's identity and the Moser trick.

The purpose of this chapter is to give a rapid review of the basics of the calculus of differential forms on manifolds. We will give two proofs of Weil's formula for the Lie derivative of a differential form: the first of an algebraic nature and then a more general geometric formulation with a "functorial" proof that we learned from Bott. We then apply this formula to the "Moser trick" and give several applications of this method.

9.1 Superalgebras.

A (commutative associative) superalgebra is a vector space

$$
A=A_{\text {even }} \oplus A_{\text {odd }}
$$

with a given direct sum decomposition into even and odd pieces, and a map

$$
A \times A \rightarrow A
$$

which is bilinear, satisfies the associative law for multiplication, and

$$
\begin{aligned}
A_{\text {even }} \times A_{\text {even }} & \rightarrow A_{\text {even }} \\
A_{\text {even }} \times A_{\text {odd }} & \rightarrow A_{\text {odd }} \\
A_{\text {odd }} \times A_{\text {even }} & \rightarrow A_{\text {odd }} \\
A_{\text {odd }} \times A_{\text {odd }} & \rightarrow A_{\text {even }} \\
\omega \cdot \sigma & =\sigma \cdot \omega \text { if either } \omega \text { or } \sigma \text { are even, } \\
\omega \cdot \sigma & =-\sigma \cdot \omega \text { if both } \omega \text { and } \sigma \text { are odd. }
\end{aligned}
$$

We write these last two conditions as

$$
\omega \cdot \sigma=(-1)^{\operatorname{deg} \sigma \operatorname{deg} \omega} \sigma \cdot \omega .
$$

Here $\operatorname{deg} \tau=0$ if τ is even, and $\operatorname{deg} \tau=1(\bmod 2)$ if τ is odd.

9.2 Differential forms.

A linear differential form on a manifold, M, is a rule which assigns to each $p \in M$ a linear function on $T M_{p}$. So a linear differential form, ω, assigns to each p an element of $T M_{p}^{*}$. We will, as usual, only consider linear differential forms which are smooth.

The superalgebra $\Omega(M)$ is the superalgebra generated by smooth functions on M (taken as even) and by the linear differential forms, taken as odd.

Multiplication of differential forms is usually denoted by \wedge. The number of differential factors is called the degree of the form. So functions have degree zero, linear differential forms have degree one.

In terms of local coordinates, the most general linear differential form has an expression as $a_{1} d x_{1}+\cdots+a_{n} d x_{n}$ (where the a_{i} are functions). Expressions of the form

$$
a_{12} d x_{1} \wedge d x_{2}+a_{13} d x_{1} \wedge d x_{3}+\cdots+a_{n-1, n} d x_{n-1} \wedge d x_{n}
$$

have degree two (and are even). Notice that the multiplication rules require

$$
d x_{i} \wedge d x_{j}=-d x_{j} \wedge d x_{i}
$$

and, in particular, $d x_{i} \wedge d x_{i}=0$. So the most general sum of products of two linear differential forms is a differential form of degree two, and can be brought to the above form, locally, after collections of coefficients. Similarly, the most general differential form of degree $k \leq n$ on an n dimensional manifold is a sum, locally, with function coefficients, of expressions of the form

$$
d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}, \quad i_{1}<\cdots<i_{k} .
$$

There are $\binom{n}{k}$ such expressions, and they are all even, if k is even, and odd if k is odd.

9.3 The d operator.

There is a linear operator d acting on differential forms called exterior differentiation, which is completely determined by the following rules: It satisfies Leibniz' rule in the "super" form

$$
d(\omega \cdot \sigma)=(d \omega) \cdot \sigma+(-1)^{\operatorname{deg} \omega} \omega \cdot(d \sigma) .
$$

On functions it is given by

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}
$$

and, finally,

$$
d\left(d x_{i}\right)=0
$$

Since functions and the $d x_{i}$ generate, this determines d completely. For example, on linear differential forms

$$
\omega=a_{1} d x_{1}+\cdots a_{n} d x_{n}
$$

we have

$$
\begin{aligned}
d \omega= & d a_{1} \wedge d x_{1}+\cdots+d a_{n} \wedge d x_{n} \\
= & \left(\frac{\partial a_{1}}{\partial x_{1}} d x_{1}+\cdots \frac{\partial a_{1}}{\partial x_{n}} d x_{n}\right) \wedge d x_{1}+\cdots \\
& \left(\frac{\partial a_{n}}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial a_{n}}{\partial x_{n}} d x_{n}\right) \wedge d x_{n} \\
= & \left(\frac{\partial a_{2}}{\partial x_{1}}-\frac{\partial a_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2}+\cdots+\left(\frac{\partial a_{n}}{\partial x_{n-1}}-\frac{\partial a_{n-1}}{\partial x_{n}}\right) d x_{n-1} \wedge d x_{n}
\end{aligned}
$$

In particular, equality of mixed derivatives shows that $d^{2} f=0$, and hence that $d^{2} \omega=0$ for any differential form. Hence the rules to remember about d are:

$$
\begin{aligned}
d(\omega \cdot \sigma) & =(d \omega) \cdot \sigma+(-1)^{\operatorname{deg} \omega} \omega \cdot(d \sigma) \\
d^{2} & =0 \\
d f & =\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}
\end{aligned}
$$

9.4 Derivations.

A linear operator $\ell: A \rightarrow A$ is called an odd derivation if, like d, it satisfies

$$
\ell: A_{\text {even }} \rightarrow A_{\text {odd }}, \quad \ell: A_{\text {odd }} \rightarrow A_{\text {even }}
$$

and

$$
\ell(\omega \cdot \sigma)=(\ell \omega) \cdot \sigma+(-1)^{\operatorname{deg} \omega} \omega \cdot \ell \sigma
$$

A linear map $\ell: A \rightarrow A$,

$$
\ell: A_{\text {even }} \rightarrow A_{\text {even }}, \quad \ell: A_{o d d} \rightarrow A_{o d d}
$$

satisfying

$$
\ell(\omega \cdot \sigma)=(\ell \omega) \cdot \sigma+\omega \cdot(\ell \sigma)
$$

is called an even derivation. So the Leibniz rule for derivations, even or odd, is

$$
\ell(\omega \cdot \sigma)=(\ell \omega) \cdot \sigma+(-1)^{\operatorname{deg} \ell \operatorname{deg} \omega} \omega \cdot \ell \sigma .
$$

Knowing the action of a derivation on a set of generators of a superalgebra determines it completely. For example, the equations

$$
d\left(x_{i}\right)=d x_{i}, \quad d\left(d x_{i}\right)=0 \quad \forall i
$$

implies that

$$
d p=\frac{\partial p}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial p}{\partial x_{n}} d x_{n}
$$

for any polynomial, and hence determines the value of d on any differential form with polynomial coefficients. The local formula we gave for $d f$ where f is any differentiable function, was just the natural extension (by continuity, if you like) of the above formula for polynomials.

The sum of two even derivations is an even derivation, and the sum of two odd derivations is an odd derivation.

The composition of two derivations will not, in general, be a derivation, but an instructive computation from the definitions shows that the commutator

$$
\left[\ell_{1}, \ell_{2}\right]:=\ell_{1} \circ \ell_{2}-(-1)^{\operatorname{deg} \ell_{1} \operatorname{deg} \ell_{2}} \ell_{2} \circ \ell_{1}
$$

is again a derivation which is even if both are even or both are odd, and odd if one is even and the other odd.

A derivation followed by a multiplication is again a derivation: specifically, let ℓ be a derivation (even or odd) and let τ be an even or odd element of A. Consider the map

$$
\omega \mapsto \tau \ell \omega .
$$

We have

$$
\begin{aligned}
\tau \ell(\omega \sigma) & =(\tau \ell \omega) \cdot \sigma+(-1)^{\operatorname{deg} \ell \operatorname{deg}_{\omega}} \tau \omega \cdot \ell \sigma \\
& =(\tau \ell \omega) \cdot \sigma+(-1)^{\left({\left.\operatorname{deg} \ell+\operatorname{deg}_{\tau}\right) \operatorname{deg}_{\omega}} \cdot(\tau \ell \sigma)\right.}
\end{aligned}
$$

so $\omega \mapsto \tau \ell \omega$ is a derivation whose degree is

$$
\operatorname{deg} \tau+\operatorname{deg} \ell
$$

9.5 Pullback.

Let $\phi: M \rightarrow N$ be a smooth map. Then the pullback map ϕ^{*} is a linear map that sends differential forms on N to differential forms on M and satisfies

$$
\begin{aligned}
\phi^{*}(\omega \wedge \sigma) & =\phi^{*} \omega \wedge \phi^{*} \sigma \\
\phi^{*} d \omega & =d \phi^{*} \omega \\
\left(\phi^{*} f\right) & =f \circ \phi .
\end{aligned}
$$

The first two equations imply that ϕ^{*} is completely determined by what it does on functions. The last equation says that on functions, ϕ^{*} is given by "substitution": In terms of local coordinates on M and on $N \phi$ is given by

$$
\begin{aligned}
\phi\left(x^{1}, \ldots, x^{m}\right) & =\left(y^{1}, \ldots, y^{n}\right) \\
y^{i} & =\phi^{i}\left(x^{1}, \ldots, x^{m}\right) i=1, \ldots, n
\end{aligned}
$$

where the ϕ_{i} are smooth functions. The local expression for the pullback of a function $f\left(y^{1}, \ldots, y^{n}\right)$ is to substitute ϕ^{i} for the $y^{i} \mathrm{~S}$ as into the expression for f so as to obtain a function of the x^{\prime} s.

It is important to observe that the pull back on differential forms is defined for any smooth map, not merely for diffeomorphisms. This is the great advantage of the calculus of differential forms.

9.6 Chain rule.

Suppose that $\psi: N \rightarrow P$ is a smooth map so that the composition

$$
\phi \circ \psi: M \rightarrow P
$$

is again smooth. Then the chain rule says

$$
(\phi \circ \psi)^{*}=\psi^{*} \circ \phi^{*} .
$$

On functions this is essentially a tautology - it is the associativity of composition: $f \circ(\phi \circ \psi)=(f \circ \phi) \circ \psi$. But since pull-back is completely determined by what it does on functions, the chain rule applies to differential forms of any degree.

9.7 Lie derivative.

Let ϕ_{t} be a one parameter group of transformations of M. If ω is a differential form, we get a family of differential forms, $\phi_{t}^{*} \omega$ depending differentiably on t, and so we can take the derivative at $t=0$:

$$
\frac{d}{d t}\left(\phi_{t}^{*} \omega\right)_{\mid t=0}=\lim _{t=0} \frac{1}{t}\left[\phi_{t}^{*} \omega-\omega\right]
$$

Since $\phi_{t}^{*}(\omega \wedge \sigma)=\phi_{t}^{*} \omega \wedge \phi_{t}^{*} \sigma$ it follows from the Leibniz argument that

$$
\ell_{\phi}: \omega \mapsto \frac{d}{d t}\left(\phi_{t}^{*} \omega\right)_{\mid t=0}
$$

is an even derivation. We want a formula for this derivation.
Notice that since $\phi_{t}^{*} d=d \phi_{t}^{*}$ for all t, it follows by differentiation that

$$
\ell_{\phi} d=d \ell_{\phi}
$$

and hence the formula for ℓ_{ϕ} is completely determined by how it acts on functions.

Let X be the vector field generating ϕ_{t}. Recall that the geometrical significance of this vector field is as follows: If we fix a point x, then

$$
t \mapsto \phi_{t}(x)
$$

is a curve which passes through the point x at $t=0$. The tangent to this curve at $t=0$ is the vector $X(x)$. In terms of local coordinates, X has coordinates $X=\left(X^{1}, \ldots, X^{n}\right)$ where $X^{i}(x)$ is the derivative of $\phi^{i}\left(t, x^{1}, \ldots, x^{n}\right)$ with respect to t at $t=0$. The chain rule then gives, for any function f,

$$
\begin{aligned}
\ell_{\phi} f & =\frac{d}{d t} f\left(\phi^{1}\left(t, x^{1}, \ldots, x^{n}\right), \ldots, \phi_{n}\left(t, x^{1}, \ldots, x^{n}\right)\right)_{\mid t=0} \\
& =X^{1} \frac{\partial f}{\partial x_{1}}+\cdots+X^{n} \frac{\partial f}{\partial x_{n}}
\end{aligned}
$$

For this reason we use the notation

$$
X=X^{1} \frac{\partial}{\partial x_{1}}+\cdots+X^{n} \frac{\partial}{\partial x_{n}}
$$

so that the differential operator

$$
f \mapsto X f
$$

gives the action of ℓ_{ϕ} on functions.
As we mentioned, this action of ℓ_{ϕ} on functions determines it completely. In particular, ℓ_{ϕ} depends only on the vector field X, so we may write

$$
\ell_{\phi}=D_{X}
$$

where D_{X} is the even derivation determined by

$$
D_{X} f=X f, \quad D_{X} d=d D_{X} .
$$

9.8 Weil's formula.

But we want a more explicit formula for D_{X}. For this it is useful to introduce an odd derivation associated to X called the interior product and denoted by $i(X)$. It is defined as follows: First consider the case where

$$
X=\frac{\partial}{\partial x_{j}}
$$

and define its interior product by

$$
i\left(\frac{\partial}{\partial x_{j}}\right) f=0
$$

for all functions while

$$
i\left(\frac{\partial}{\partial x_{j}}\right) d x_{k}=0, \quad k \neq j
$$

and

$$
i\left(\frac{\partial}{\partial x_{j}}\right) d x_{j}=1
$$

The fact that it is a derivation then gives an easy rule for calculating $i\left(\partial / \partial x_{j}\right)$ when applied to any differential form: Write the differential form as

$$
\omega+d x_{j} \wedge \sigma
$$

where the expressions for ω and σ do not involve $d x_{j}$. Then

$$
i\left(\frac{\partial}{\partial x_{j}}\right)\left[\omega+d x_{j} \wedge \sigma\right]=\sigma
$$

The operator

$$
X^{j} i\left(\frac{\partial}{\partial x_{j}}\right)
$$

which means first apply $i\left(\partial / \partial x_{j}\right)$ and then multiply by the function X^{j} is again an odd derivation, and so we can make the definition

$$
\begin{equation*}
i(X):=X^{1} i\left(\frac{\partial}{\partial x_{1}}\right)+\cdots+X^{n} i\left(\frac{\partial}{\partial x_{n}}\right) . \tag{9.1}
\end{equation*}
$$

It is easy to check that this does not depend on the local coordinate system used.

Notice that we can write

$$
X f=i(X) d f
$$

In particular we have

$$
\begin{aligned}
D_{X} d x_{j} & =d D_{X} x_{j} \\
& =d X_{j} \\
& =d i(X) d x_{j}
\end{aligned}
$$

We can combine these two formulas as follows: Since $i(X) f=0$ for any function f we have

$$
D_{X} f=d i(X) f+i(X) d f
$$

Since $d d x_{j}=0$ we have

$$
D_{X} d x_{j}=d i(X) d x_{j}+i(X) d d x_{j} .
$$

Hence

$$
\begin{equation*}
D_{X}=d i(X)+i(X) d=[d, i(X)] \tag{9.2}
\end{equation*}
$$

when applied to functions or to the forms $d x_{j}$. But the right hand side of the preceding equation is an even derivation, being the commutator of two odd derivations. So if the left and right hand side agree on functions and on the differential forms $d x_{j}$ they agree everywhere. This equation, (9.2), known as Weil's formula, is a basic formula in differential calculus.

We can use the interior product to consider differential forms of degree k as k-multilinear functions on the tangent space at each point. To illustrate, let σ be a differential form of degree two. Then for any vector field, X, $i(X) \sigma$ is a linear differential form, and hence can be evaluated on any vector field, Y to produce a function. So we define

$$
\sigma(X, Y):=[i(X) \sigma](Y) .
$$

We can use this to express exterior derivative in terms of ordinary derivative and Lie bracket: If θ is a linear differential form, we have

$$
\begin{aligned}
d \theta(X, Y) & =[i(X) d \theta](Y) \\
i(X) d \theta & =L_{X} \theta-d(i(X) \theta) \\
d(i(X) \theta)(Y) & =Y[\theta(X)] \\
{\left[D_{X} \theta\right](Y) } & =D_{X}[\theta(Y)]-\theta\left(D_{X}(Y)\right) \\
& =X[\theta(Y)]-\theta([X, Y])
\end{aligned}
$$

where we have introduced the notation $D_{X} Y=:[X, Y]$ which is legitimate since on functions we have

$$
\left(D_{X} Y\right) f=D_{X}(Y f)-Y L_{X} f=X(Y f)-Y(X f)
$$

so $D_{X} Y$ as an operator on functions is exactly the commutator of X and Y. (See below for a more detailed geometrical interpretation of $D_{X} Y$.) Putting the previous pieces together gives

$$
\begin{equation*}
d \theta(X, Y)=X \theta(Y)-Y \theta(X)-\theta([X, Y]) \tag{9.3}
\end{equation*}
$$

with similar expressions for differential forms of higher degree.

9.9 Integration.

Let

$$
\omega=f d x_{1} \wedge \cdots \wedge d x_{n}
$$

be a form of degree n on \mathbf{R}^{n}. (Recall that the most general differential form of degree n is an expression of this type.) Then its integral is defined by

$$
\int_{M} \omega:=\int_{M} f d x_{1} \cdots d x_{n}
$$

where M is any (measurable) subset. This, of course is subject to the condition that the right hand side converges if M is unbounded. There is a lot
of hidden subtlety built into this definition having to do with the notion of orientation. But for the moment this is a good working definition.

The change of variables formula says that if $\phi: M \rightarrow \mathbf{R}^{n}$ is a smooth differentiable map which is one to one whose Jacobian determinant is everywhere positive, then

$$
\int_{M} \phi^{*} \omega=\int_{\phi(M)} \omega
$$

9.10 Stokes theorem.

Let U be a region in \mathbf{R}^{n} with a chosen orientation and smooth boundary. We then orient the boundary according to the rule that an outward pointing normal vector, together with the a positive frame on the boundary give a positive frame in \mathbf{R}^{n}. If σ is an $(n-1)$-form, then

$$
\int_{\partial U} \sigma=\int_{U} d \sigma
$$

A manifold is called orientable if we can choose an atlas consisting of charts such that the Jacobian of the transition maps $\phi_{\alpha} \circ \phi_{\beta}^{-1}$ is always positive. Such a choice of an atlas is called an orientation. (Not all manifolds are orientable.) If we have chosen an orientation, then relative to the charts of our orientation, the transition laws for an n-form (where $n=\operatorname{dim} M$) and for a density are the same. In other words, given an orientation, we can identify densities with n-forms and n-form with densities. Thus we may integrate n-forms. The change of variables formula then holds for orientation preserving diffeomorphisms as does Stokes theorem.

9.11 Lie derivatives of vector fields.

Let Y be a vector field and ϕ_{t} a one parameter group of transformations whose "infinitesimal generator" is some other vector field X. We can consider the "pulled back" vector field $\phi_{t}^{*} Y$ defined by

$$
\phi_{t}^{*} Y(x)=d \phi_{-t}\left\{Y\left(\phi_{t} x\right)\right\}
$$

In words, we evaluate the vector field Y at the point $\phi_{t}(x)$, obtaining a tangent vector at $\phi_{t}(x)$, and then apply the differential of the (inverse) map ϕ_{-t} to obtain a tangent vector at x.

If we differentiate the one parameter family of vector fields $\phi_{t}^{*} Y$ with respect to t and set $t=0$ we get a vector field which we denote by $D_{X} Y$:

$$
D_{X} Y:=\frac{d}{d t} \phi_{t}^{*} Y_{\mid t=0}
$$

If ω is a linear differential form, then we may compute $i(Y) \omega$ which is a function whose value at any point is obtained by evaluating the linear
function $\omega(x)$ on the tangent vector $Y(x)$. Thus

$$
i\left(\phi_{t}^{*} Y\right) \phi_{t}^{*} \omega(x)=\left\langle\left(d\left(\phi_{t}\right)_{x}\right)^{*} \omega\left(\phi_{t} x\right), d \phi_{-t} Y\left(\phi_{t} x\right)\right\rangle=\{i(Y) \omega\}\left(\phi_{t} x\right) .
$$

In other words,

$$
\phi_{t}^{*}\{i(Y) \omega\}=i\left(\phi_{t}^{*} Y\right) \phi_{t}^{*} \omega .
$$

We have verified this when ω is a differential form of degree one. It is trivially true when ω is a differential form of degree zero, i.e. a function, since then both sides are zero. But then, by the derivation property, we conclude that it is true for forms of all degrees. We may rewrite the result in shorthand form as

$$
\phi_{t}^{*} \circ i(Y)=i\left(\phi_{t}^{*} Y\right) \circ \phi_{t}^{*} .
$$

Since $\phi_{t}^{*} d=d \phi_{t}^{*}$ we conclude from Weil's formula that

$$
\phi_{t}^{*} \circ D_{Y}=D_{\phi_{t}^{*} Y} \circ \phi_{t}^{*} .
$$

Until now the subscript t was superfluous, the formulas being true for any fixed diffeomorphism. Now we differentiate the preceding equations with respect to t and set $t=0$. We obtain,using Leibniz's rule,

$$
D_{X} \circ i(Y)=i\left(D_{X} Y\right)+i(Y) \circ D_{X}
$$

and

$$
D_{X} \circ D_{Y}=D_{D_{X} Y}+D_{Y} \circ D_{X} .
$$

This last equation says that Lie derivative (on forms) with respect to the vector field $D_{X} Y$ is just the commutator of D_{X} with D_{Y} :

$$
D_{D_{X} Y}=\left[D_{X}, D_{Y}\right] .
$$

For this reason we write

$$
[X, Y]:=D_{X} Y
$$

and call it the Lie bracket (or commutator) of the two vector fields X and Y. The equation for interior product can then be written as

$$
i([X, Y])=\left[D_{X}, i(Y)\right] .
$$

The Lie bracket is antisymmetric in X and Y. We may multiply Y by a function g to obtain a new vector field $g Y$. Form the definitions we have

$$
\phi_{t}^{*}(g Y)=\left(\phi_{t}^{*} g\right) \phi_{t}^{*} Y .
$$

Differentiating at $t=0$ and using Leibniz's rule we get

$$
\begin{equation*}
[X, g Y]=(X g) Y+g[X, Y] \tag{9.4}
\end{equation*}
$$

where we use the alternative notation $X g$ for $D_{X} g$. The antisymmetry then implies that for any differentiable function f we have

$$
\begin{equation*}
[f X, Y]=-(Y f) X+f[X, Y] . \tag{9.5}
\end{equation*}
$$

From both this equation and from Weil's formula (applied to differential forms of degree greater than zero) we see that the Lie derivative with respect to X at a point x depends on more than the value of the vector field X at x.

9.12 Jacobi's identity.

From the fact that $[X, Y]$ acts as the commutator of X and Y it follows that for any three vector fields X, Y and Z we have

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0
$$

This is known as Jacobi's identity. We can also derive it from the fact that $[Y, Z]$ is a natural operation and hence for any one parameter group ϕ_{t} of diffeomorphisms we have

$$
\phi_{t}^{*}([Y, Z])=\left[\phi_{t}^{*} Y, \phi_{t}^{*} Z\right] .
$$

If X is the infinitesimal generator of ϕ_{t} then differentiating the preceding equation with respect to t at $t=0$ gives

$$
[X,[Y, Z]]=[[X, Y], Z]+[Y,[X, Z]]
$$

In other words, X acts as a derivation of the "mutliplication" given by Lie bracket. This is just Jacobi's identity when we use the antisymmetry of the bracket. In the future we we will have occasion to take cyclic sums such as those which arise on the left of Jacobi's identity. So if F is a function of three vector fields (or of three elements of any set) with values in some vector space (for example in the space of vector fields) we will define the cyclic sum \mathcal{C} yc F by

$$
\mathcal{C} y c F(X, Y, Z):=F(X, Y, Z)+F(Y, Z, X)+F(Z, X, Y)
$$

With this definition Jacobi's identity becomes

$$
\begin{equation*}
\mathcal{C} y c[X,[Y, Z]]=0 \tag{9.6}
\end{equation*}
$$

9.13 A general version of Weil's formula.

Let W and Z be differentiable manifolds, let I denote an interval on the real line containing the origin, and let

$$
\phi: W \times I \rightarrow Z
$$

be a smooth map. We let $\phi_{t}: W \rightarrow Z$ be defined by

$$
\phi_{t}(w):=\phi(w, t)
$$

We think of ϕ_{t} as a one parameter family of maps from W to Z. We let ξ_{t} denote the tangent vector field along ϕ_{t}. In more detail:

$$
\xi_{t}: W \rightarrow T Z
$$

is defined by letting $\xi_{t}(w)$ be the tangent vector to the curve $s \mapsto \phi(w, s)$ at $s=t$.

If σ is a differential form on Z of degree $k+1$, we let the expression $\phi_{t}^{*} i\left(\xi_{t}\right) \sigma$ denote the differential form on W of degree k whose value at tangent vectors $\eta_{1}, \ldots, \eta_{k}$ at $w \in W$ is given by

$$
\begin{equation*}
\left.\phi_{t}^{*} i\left(\xi_{t}\right) \sigma\left(\eta_{1}, \ldots, \eta_{k}\right):=\left(i\left(\xi_{t}\right)(w)\right) \sigma\right)\left(d\left(\phi_{t}\right)_{w} \eta_{1}, \ldots, d\left(\phi_{t}\right)_{w} \eta_{k}\right) \tag{9.7}
\end{equation*}
$$

It is only the combined expression $\phi_{t}^{*} i\left(\xi_{t}\right) \sigma$ which will have any sense in general: since ξ_{t} is not a vector field on Z, the expression $i\left(\xi_{t}\right) \sigma$ will not make sense as a stand alone object (in general).

Let σ_{t} be a smooth one-parameter family of differential forms on Z. The

$$
\phi_{t}^{*} \sigma_{t}
$$

is a smooth one parameter family of forms on W, which we can then differentiate with respect to t. The general form of Weil's formula is:

$$
\begin{equation*}
\frac{d}{d t} \phi_{t}^{*} \sigma_{t}=\phi_{t}^{*} \frac{d \sigma_{t}}{d t}+\phi_{t}^{*} i\left(\xi_{t}\right) d \sigma+d \phi_{t}^{*} i\left(\xi_{t}\right) \sigma \tag{9.8}
\end{equation*}
$$

Before proving the formula, let us note that it is functorial in the following sense: Suppose that that $F: X \rightarrow W$ and $G: Z \rightarrow Y$ are smooth maps, and that τ_{t} is a smooth family of differential forms on Y. Suppose that $\sigma_{t}=G^{*} \tau_{t}$ for all t. We can consider the maps

$$
\psi_{t}: X \rightarrow Y, \quad \psi_{t}:=G \circ \phi_{t} \circ F
$$

and then the smooth one parameter familiy of differential forms

$$
\psi_{t}^{*} \tau_{t}
$$

on X. The tangent vector field ζ_{t} along ψ_{t} is given by

$$
\zeta_{t}(x)=d G_{\phi_{t}(F(x))}\left(\xi_{t}(F(x))\right)
$$

So

$$
\psi_{t}^{*} i\left(\zeta_{t}\right) \tau_{t}=F^{*}\left(\phi_{t}^{*} i\left(\xi_{t}\right) G^{*} \tau_{t}\right)
$$

Therefore, if we know that (9.8) is true for ϕ_{t} and σ_{t}, we can conclude that the analogous formula is true for ψ_{t} and τ_{t}.

Consider the special case of (9.8) where we take the one parameter family of maps

$$
f_{t}: W \times I \rightarrow W \times I, \quad f_{t}(w, s)=(w, s+t)
$$

Let

$$
G: W \times I \rightarrow Z
$$

be the map ϕ, and let

$$
F: W \rightarrow W \times I
$$

be the map

$$
F(w)=(w, 0)
$$

Then

$$
\left(G \circ f_{t} \circ F\right)(w)=\phi_{t}(w)
$$

Thus the functoriality of the formula (9.8) shows that we only have to prove it for the special case $\phi_{t}=f_{t}: W \times I \rightarrow W \times I$ as given above!

In this case, it is clear that the vector field ξ_{t} along ψ_{t} is just the constant vector field $\frac{\partial}{\partial s}$ evaluated at $(x, s+t)$. The most general differential $(t-$ dependent) on $W \times I$ can be written as

$$
d s \wedge a+b
$$

where a and b are differential forms on W. (In terms of local coordinates s, x^{1}, \ldots, x^{n} these forms a and b are sums of terms that have the expression

$$
c d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

where c is a function of s, t and x.) To show the full dependence on the variables we will write

$$
\sigma_{t}=d s \wedge a(x, s, t) d x+b(x, s, t) d x
$$

With this notation it is clear that

$$
\phi_{t}^{*} \sigma_{t}=d s \wedge a(x, s+t, t) d x+b(x, s+t, t) d x
$$

and therefore

$$
\begin{aligned}
& \frac{d \phi_{t}^{*} \sigma_{t}}{d t}=d s \\
& \wedge \frac{\partial a}{\partial s}(x, s+t, t) d x+\frac{\partial b}{\partial s}(x, s+t, t) d x \\
&+d s \wedge \frac{\partial a}{\partial t}(x, s+t, t) d x+\frac{\partial b}{\partial t}(x, s+t, t) d x
\end{aligned}
$$

So

$$
\frac{d \phi_{t}^{*} \sigma_{t}}{d t}-\phi_{t}^{*} \frac{d \sigma_{t}}{d t}=d s \wedge \frac{\partial a}{\partial s}(x, s+t, t) d x+\frac{\partial b}{\partial s}(x, s+t, t) d x
$$

Now

$$
i\left(\frac{\partial}{\partial s}\right) \sigma_{t}=a d x
$$

so

$$
\phi_{t}^{*} i\left(\xi_{t}\right) \sigma_{t}=a(x, s+t, t) d x
$$

Therefore

$$
d \phi_{t}^{*} i\left(\xi_{t}\right) \sigma_{t}=d s \wedge \frac{\partial a}{\partial s}(x, s+t, t) d x+d_{W}(a(x, s+t, t) d x)
$$

Also

$$
d \sigma_{t}=-d s \wedge d_{W}(a d x)+\frac{\partial b}{\partial s} d s \wedge d x+d_{W} b d x
$$

so

$$
i\left(\frac{\partial}{\partial s}\right) d \sigma_{t}=-d_{W}(a d x)+\frac{\partial b}{\partial s} d x
$$

and therefore

$$
\phi_{t}^{*} i\left(\xi_{t}\right) d \sigma_{t}=-d_{W} a(x, s+t, t) d x+\frac{\partial b}{\partial s}(x, s+t, t) d x .
$$

So

$$
\begin{aligned}
d \phi_{t}^{*} i\left(\xi_{t}\right) \sigma_{t}+\phi_{t}^{*} i\left(\xi_{t}\right) d \sigma_{t} & =d s \wedge \frac{\partial a}{\partial s}(x, s+t, t) d x+\frac{\partial b}{\partial s}(x, s+t, t) d x \\
& =\frac{d \phi_{t}^{*} \sigma_{t}}{d t}-\phi_{t}^{*} \frac{d \sigma_{t}}{d t}
\end{aligned}
$$

proving (9.8).
A special case of (9.8) is the following. Suppose that $W=Z=M$ and ϕ_{t} is a family of diffeomporphisms $f_{t}: M \rightarrow M$. Then ξ_{t} is given by

$$
\xi_{t}(p)=v_{t}\left(f_{t}(p)\right)
$$

where v_{t} is the vector field

$$
v_{t}(f(p))=\frac{d}{d t} f_{t}(p) .
$$

In this case $i\left(v_{t}\right) \sigma_{t}$ makes sense, and so we can write (9.8) as

$$
\begin{equation*}
\frac{d \phi_{t}^{*} \sigma_{t}}{d t}=\phi_{t}^{*} \frac{d \sigma_{t}}{d t}+\phi_{t}^{*} D_{v_{t}} \sigma_{t} . \tag{9.9}
\end{equation*}
$$

9.14 The Moser trick.

Let M be a differentiable manifold and let ω_{0} and ω_{1} be smooth k-forms on M. Let us examine the following question: does there exist a diffeomorphism $f: M \rightarrow M$ such that $f^{*} \omega_{1}=\omega_{0}$?

Moser answers this kind of question by making it harder! Let $\omega_{t}, \quad 0 \leq$ $t \leq 1$ be a family of k-forms with $\omega_{t}=\omega_{0}$ at $t=0$ and $\omega_{t}=\omega_{1}$ at $t=1$. We look for a one parameter family of diffeomorphisms

$$
f_{t}: M \rightarrow M, \quad 0 \leq t \leq 1
$$

such that

$$
\begin{equation*}
f_{t}^{*} \omega_{t}=\omega_{0} \tag{9.10}
\end{equation*}
$$

and

$$
f_{0}=\mathrm{id} .
$$

Let us differentiate (9.10) with respect to t and apply (9.9). We obtain

$$
f_{t}^{*} \dot{\omega}_{t}+f_{t}^{*} D_{v_{t}} \omega_{t}=0
$$

where we have written $\dot{\omega}_{t}$ for $\frac{d \omega_{t}}{d t}$. Since f_{t} is required to be a diffeomorphism, this becomes the requirement that

$$
\begin{equation*}
D_{v_{t}} \omega_{t}=-\dot{\omega}_{t} . \tag{9.11}
\end{equation*}
$$

Moser's method is to use "geometry" to solve this equation for v_{t} if possible. Once we have found v_{t}, solve the equations

$$
\begin{equation*}
\frac{d}{d t} f_{t}(p)=v_{t}\left(f_{t}(p), \quad f_{0}(p)=p\right. \tag{9.12}
\end{equation*}
$$

for f_{t}. Notice that for p fixed and $\gamma(t)=f_{t}(p)$ this is a system of ordinary differential equations

$$
\frac{d}{d t} \gamma(t)=v_{t}(\gamma(t)), \quad \gamma(0)=p
$$

The standard existence theorems for ordinary differential equations guarantees the existence of of a solution depending smoothly on p at least for $|t|<\epsilon$. One then must make some additional hypotheses that guarantee existence for all time (or at least up to $t=1$). Two such additional hypotheses might be

- M is compact, or
- C is a closed subset of M on which $v_{t} \equiv 0$. Then for $p \in C$ the solution for all time is $f_{t}(p)=p$. Hence for p close to C solutions will exist for a long time. Under this condition there will exist a neighborhood U of C and a family of diffeomorphisms

$$
f_{t}: U \rightarrow M
$$

defined for $0 \leq t \leq 1$ such

$$
f_{0}=\mathrm{id}, \quad f_{t \mid C}=\mathrm{id} \forall t
$$

and (9.10) is satisfied.
We now give some illustrations of the Moser trick.

9.14.1 Volume forms.

Let M be a compact oriented connected n-dimensional manifold. Let ω_{0} and ω_{1} be nowhere vanishing n-forms with the same volume:

$$
\int_{M} \omega_{0}=\int_{M} \omega_{1} .
$$

Moser's theorem asserts that under these conditions there exists a diffeomorphism $f: M \rightarrow M$ such that

$$
f^{*} \omega_{1}=\omega_{0}
$$

Moser invented his method for the proof of this theorem.
The first step is to choose the ω_{t}. Let

$$
\omega_{t}:=(1-t) \omega_{0}+t \omega_{1} .
$$

Since both ω_{0} and ω_{1} are nowhere vanishing, and since they yield the same integral (and since M is connected), we know that at every point they are either both positive or both negative relative to the orientation. So ω_{t} is nowhere vanishing. Clearly $\omega_{t}=\omega_{0}$ at $t=0$ and $\omega_{t}=\omega_{1}$ at $t=1$. Since $d \omega_{t}=0$ as ω_{t} is an n-from on an n-dimensional manifold,

$$
D_{v_{t}}=d i\left(v_{t}\right) \omega_{t}
$$

by Weil's formula. Also

$$
\dot{\omega}_{t}=\omega_{1}-\omega_{0}
$$

Since $\int_{M} \omega_{0}=\int_{M} \omega_{1}$ we know that

$$
\omega_{0}-\omega_{1}=d \nu
$$

for some $(n-1)$-form ν. Thus (9.11) becomes

$$
d i\left(v_{t}\right) \omega_{t}=d \nu
$$

We will certainly have solved this equation if we solve the harder equation

$$
i\left(v_{t}\right) \omega_{t}=\nu
$$

But this equation has a unique solution since ω_{t} is no-where vanishing. QED

9.14.2 Variants of the Darboux theorem.

We present these in Chapter 2.

9.14.3 The classical Morse lemma.

Let $M=\mathbb{R}^{n}$ and $\phi_{i} \in C^{\infty}\left(\mathbb{R}^{n}\right), i=0.1$. Suppose that 0 is a non-degenerate critical point for both ϕ_{0} and ϕ_{1}, suppose that $\phi_{0}(0)=\phi_{1}(0)=0$ and that they have the same Hessian at 0 , i.e. suppose that

$$
\left(d^{2} \phi_{0}\right)(0)=\left(d^{2} \phi_{1}\right)(0)
$$

The Morse lemma asserts that there exist neighborhoods U_{0} and U_{1} of 0 in \mathbb{R}^{n} and a diffeomorphism

$$
f: U_{0} \rightarrow U_{1}, \quad f(0)=0
$$

such that

$$
f^{*} \phi_{1}=\phi_{0} .
$$

Proof. Set

$$
\phi_{t}:=(1-t) \phi_{0}+t \phi_{1} .
$$

The Moser trick tells us to look for a vector field v_{t} with

$$
v_{t}(0)=0, \quad \forall t
$$

and

$$
D_{v_{t}} \phi_{t}=-\dot{\phi}_{t}=\phi_{0}-\phi_{1} .
$$

The function ϕ_{t} has a non-degenerate critical point at zero with the same Hessian as ϕ_{0} and ϕ_{1} and vanishes at 0 . Thus for each fixed t, the functions

$$
\frac{\partial \phi_{t}}{\partial x^{i}}
$$

form a system of coordinates about the origin.
If we expand v_{t} in terms of the standard coordinates

$$
v_{t}=\sum_{j} v_{j}(x, t) \frac{\partial}{\partial x^{j}}
$$

then the condition $v_{j}(0, t)=0$ implies that we must be able to write

$$
v_{j}(x, t)=\sum_{i} v_{i j}(x, t) \frac{\partial \phi_{t}}{\partial x^{i}}
$$

for some smooth functions $v_{i j}$. Thus

$$
D_{v_{t}} \phi_{t}=\sum_{i j} v_{i j}(x, t) \frac{\partial \phi_{t}}{\partial x^{i}} \frac{\partial \phi_{t}}{\partial x^{j}}
$$

Similarly, since $-\dot{\phi}_{t}$ vanishes at the origin together with its first derivatives, we can write

$$
-\dot{\phi}_{t}=\sum_{i j} h_{i j} \frac{\partial \phi_{t}}{\partial x^{i}} \frac{\partial \phi_{t}}{\partial x^{j}}
$$

where the $h_{i j}$ are smooth functions. So the Moser equation $D_{v_{t}} \phi_{t}=-\dot{\phi}_{t}$ is satisfied if we set

$$
v_{i j}(x, t)=h_{i j}(x, t)
$$

Notice that our method of proof shows that if the ϕ_{i} depend smoothly on some paramters lying in a compact manifold S then the diffeomorphism f can be chosen so as to depend smoothly on $s \in S$.

In Section 5.11 we give a more refined version of this argument to prove the Hörmander-Morse lemma for genrating functions.

In differential topology books the classical Morse lemma is usually stated as follows:

Theorem 35 Let M be a manifold and $\phi: M \rightarrow \mathbb{R}$ be a smooth function. Suppose that $p \in M$ is a non-degenerate critical point of ϕ and that the signature of $d^{2} \phi_{p}$ is $(k, n-k)$. Then there exists a system of coordinates $\left(U, x_{1}, \ldots, x_{n}\right)$ centered at p such that in this coordinate system

$$
\phi=c+\sum_{i=1}^{k} x_{i}^{2}-\sum_{i=k+1}^{n} x_{i}^{2}
$$

Proof. Choose any coordinate system $\left(W, y_{1}, \ldots y_{n}\right)$ centered about p and apply the previous result to

$$
\phi_{1}=\phi-c
$$

and

$$
\phi_{0}=\sum h_{i j} y_{i} y_{j}
$$

where

$$
h_{i j}=\frac{\partial^{2} \phi}{\partial y_{i} \partial y_{i}}(0) .
$$

This gives a change of coordinates in terms of which $\phi-c$ has become a nondegenerate quadratic form. Now apply Sylvester's theorem in linear algebra which says that a linear change of variables can bring such a non-degenerate quadratic form to the desired diagonal form.

