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Abstract
For a graph G, let cp(G) denote the minimum number of cliques of

G needed to cover the edges of G exactly once. Similarly, let bpk(G)
denote the minimum number of bicliques (i.e. complete bipartite sub-
graphs of G) needed to cover each edge of G exactly k times. We
consider two conjectures – one regarding the maximum possible value
of cp(G)+cp(G) (due to de Caen, Erdős, Pullman and Wormald) and
the other regarding bpk(Kn) (due to de Caen, Gregory and Pritikin).
We disprove the first, obtaining improved lower and upper bounds
on maxG cp(G) + cp(G), and we prove an asymptotic version of the
second, showing that bpk(Kn) = (1 + o(1))n.

1 Introduction
For a fixed family of graphs F , an F -partition of a graph G is a collection
C = {H1, . . . , H`} of subgraphs Hi ⊂ G such that each edge of G belongs
to exactly one Hi ∈ C, and each Hi is isomorphic to some graph in F .
When F = {Kr}r≥2, we refer to F -partitions as clique partitions, and when
F = {Ks,t}s,t≥1, the corresponding partitions are called biclique partitions.
The size |C| of the smallest clique partition of G is called the clique partition
number of G, denoted cp(G). The biclique partition number bp(G) is defined
analogously. Both cp(G) and bp(G) (and their many variants) are NP-hard
to compute in general graphs, but have been studied extensively from a
combinatorial perspective, in part because of their connections to various
areas of computer science (see, e.g. [13]). In this paper, we consider two
longstanding combinatorial questions related to these quantities.
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1.1 Biclique partitions of Kn

In 1971, Graham and Pollak [9] showed that, for every n ≥ 2,

bp(Kn) = n− 1. (1.1)

In particular, the edges of Kn can be partitioned into n− 1 stars

K1,n−1, K1,n−2, . . . , K1,1

centered at different vertices, while the corresponding lower bound holds
by an elegant linear algebraic argument. The lower bound argument easily
generalizes to give

bpk(Kn) ≥ n− 1 (1.2)
for any k, where bpk(G) is the size of the smallest collection {H1, . . . , H`}
of bicliques Hi ⊂ G such that each edge of G belongs to Hi for exactly k
different values of i ∈ [`]. As a matter of notation, such a collection is called
a k-biclique cover of G. More generally, a {k1, . . . , kt}-biclique cover of G is
a collection {H1, . . . , H`} of bicliques Hi ⊂ G such that for each edge of G
there is some k ∈ {k1, . . . , kt} such that the edge belongs to exactly k of the
bicliques.

In 1993, de Caen, Gregory and Pritikin conjectured that (1.2) is tight for
sufficiently large n:

Conjecture 1.1 (de Caen et al. [3]). For every positive integer k,

bpk(Kn) = n− 1

for all sufficiently large n.

The same authors prove their conjecture for each k ≤ 18, using special
constructions from design theory [3]. However, the best-known upper bound
for general k is bpk(Kn) = O(kn), obtained by simply compounding a small-k
construction.

In Section 2, we show that, to leading order, Conjecture 1.1 is true.

Theorem 1.2. For every positive integer k,

bpk(Kn) = (1 + o(1))n.

More precisely, we construct a family of designs (inspired by classical
ideas of Nisan and Wigderson [15]), that yields a k-covering of Kn by at
most n+ 2kn3/4 + k

√
n complete bipartite subgraphs.
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1.2 Clique partitions of G and G

In 1986, de Caen, Erdős, Pullman and Wormald [4] investigated the maxi-
mum value of cp(G) + cp(G) over the set Gn of all graphs G on n vertices,
and proved that

7n2

25 +O(n) ≤ max
G∈Gn

cp(G) + cp(G) ≤ 13n2

30 +O(n). (1.3)

They conjectured that the lower bound 7n2

25 is tight up to o(n2) terms, and
left closing the gap in (1.3) as an open problem.1

Conjecture 1.3 (de Caen et al. [4]).

max
G∈Gn

cp(G) + cp(G) ∼ 7
25n

2.

In Section 3.1, we show that the family of graphs constructed in [4] can
actually be modified to improve the lower bound in (1.3), thereby disproving
Conjecture 1.3.

Theorem 1.4. For infinitely many n, there exists a self-complementary
graph G ∈ Gn with cp(G) ≥ 23

164n
2 + o(n2).

The upper bound in (1.3) essentially comes from greedily selecting edge-
disjoint triangles from G and G, forming clique partitions into K3’s and
K2’s. Subsequent work on complementary triangle packings, first by Erdős
et al. [7] and later by Keevash and Sudakov [14], improved significantly
upon the greedy packing, with the latter authors showing the existence of a
packing with n2

12.89 edge-disjoint triangles. The resulting clique partitions (as
observed by Bujtas et al. [2]) contain a total of 0.34481n2 + o(n2) cliques,
improving the 0.43n2 upper bound in (1.3). However, partitions into triangles
and edges can never push this bound below 0.33n2, as illustrated by G =
Kn/2,n/2. In Section 3.2, we extend the ideas of Keevash and Sudakov to the
complementary clique partition problem, improving (1.3) beyond the limits
of triangle packings:

Theorem 1.5. For all G ∈ Gn, cp(G) + cp(G) ≤ 0.3186n2 + o(n2).
1In the same paper [4], the authors solve the corresponding problem for cc(G) + cc(G),

where cc(G) is the minimal number of cliques in G needed to cover every edge at least
once, showing that maxG∈Gn

cc(G) + cc(G) = n2

4 (1 + o(1)). This is tight up to the o(1)
error by Kn/2,n/2, and the error term was later removed by Pyber [19] for n > 21500.
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2 A k-biclique covering of Kn

Our goal in this section is to construct a collection of (1 + o(1))n bicliques
on a set of n vertices such that all

(
n
2

)
edges belong to exactly k bicliques in

the collection. We recall the definition of a combinatorial design in the sense
of Nisan and Wigderson [15] from their classical paper on pseudorandom
generators.

Definition 2.1. A family of sets {S1, . . . , Sn} with S1, . . . , Sn ⊆ [d] is a
(n, d, t,m)-design if:

1. |Si| = m for all i ∈ [n];

2. |Si ∩ Sj| ≤ t for all i, j ∈ [n] with i 6= j.

We construct our designs in a way that differs from [15] and better suits
our particular choice of parameters:

Lemma 2.2. For any positive integers m and t, there exists some N such
that an (n, d, t,m)-design with d ≤ 2mn1/(t+1) exists for all n ≥ N .

Proof. Let N be large enough that there are at least m prime numbers in
the interval [n1/(t+1), 2n1/(t+1)] for every n ≥ N ; this is possible by the Prime
Number Theorem. Fix some n ≥ N , and choose m distinct primes p1, . . . , pm
in this interval. We will pick sets S1, . . . , Sn from the disjoint union

U =
m⊔
k=1

Z/pkZ.

For i ∈ [n], let Si consist of m elements from U , one from each group.
Specifically, for k ∈ [m], pick element i (mod pk) from group Z/pkZ.

It is clear that |Si| = m for all i, and that d := |U | = ∑m
k=1 pk ≤

2mn1/(t+1). We claim that |Si ∩ Sj| ≤ t for all distinct i, j ∈ [n]. Indeed,
suppose to the contrary that |Si ∩ Sj| > t for some distinct i, j ∈ [n]. Then
among the chosen primes, there are t + 1 primes pl1 , . . . , plt+1 with i ≡ j
(mod plk) for each k ∈ [t+ 1]. But then

t+1∏
k=1

plk

∣∣∣ (i− j).
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Since i 6= j, it follows that

|i− j| ≥
t+1∏
k=1

plk ≥ n,

a contradiction.

Remark 2.3. The above design is in fact optimal up to constant factors.
Consider any (n, d, t,m)-design, where the sets are contained in a universe
U of size d. For every (t + 1)-element subset of U , there is at most one
set among S1, . . . , Sn that contains the subset. Since each Si contains

(
m
t+1

)
subsets of size t+ 1, we must have

(
d
t+1

)
≥ n

(
m
t+1

)
, so

d ≥
(
n

(
m

t+ 1

)
(t+ 1)!

)1/(t+1)

≥ 1
e
n1/(t+1)m.

We will only use the special case (n, k
√
n, 1, bk/2c) of Lemma 2.2, which

we state explicitly below as a corollary.

Corollary 2.4. For any positive integer k and all n sufficiently large, there
is some d ≤ k

√
n and sets S1, . . . , Sn ⊆ [d] with |Si| = bk/2c for all i, and

|Si ∩ Sj| ≤ 1 for all i 6= j.

We also require a result of Alon [1] on {1, 2}-biclique coverings of Kn,
which are collections of bicliques such that every edge of Kn belongs to
either 1 or 2 of the bicliques in the collection. The size of the smallest such
collection is denoted bp{1,2}(Kn).

Fact 2.5 (Alon, [1]). For all n, bp{1,2}(Kn) ≤ 2
√
n.

Finally, we construct a k-biclique covering of Kn.

Theorem 2.6. Let k be a positive integer. Then for all sufficiently large n,

bpk(Kn) ≤ n+ 2kn3/4 + k
√
n.

Proof. Let n be large enough to apply Corollary 2.4. Let S1, . . . , Sn ⊆ [d] be
the sets in the resulting design, and let p1, . . . , pbk/2c be the corresponding
primes used in the proof of Lemma 2.2. Define bicliques B1, . . . , Bd ⊂ Kn by
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letting Bi be the biclique between {j ∈ [n] | i ∈ Sj} and {j ∈ [n] | i 6∈ Sj}.
Then any edge {i, j} is covered exactly |Si| + |Sj| − 2|Si ∩ Sj| times, and
this number is equal to either 2bk/2c or 2bk/2c − 2 (depending on whether
|Si ∩ Sj| = 0 or 1).

If k is odd, every edge still needs to be covered either 1 or 3 more times.
Let us define a triple-edge to be an edge {i, j} with |Si ∩ Sj| = 1. An edge
{i, j} is a triple-edge if and only if there exists some index l and remainder
r such that i ≡ j ≡ r (mod pl). We can define a clique Cl,r consisting of all
vertices i with i ≡ r (mod pl). Observe that every triple-edge is contained
in exactly one such clique, and every such clique contains only triple-edges.
To make progress, we will construct a {1, 2}-biclique covering of each clique
Cl,r. The number of cliques Cl,r is at most k

√
n, and each has size at most√

n, so by Fact 2.5, at most k
√
n · 2n1/4 = 2kn3/4 bicliques are needed to

{1, 2}-cover every clique Cl,r. Now every edge needs to be covered 1 or 2
more times.

If k is even, every edge needs to be covered only 0 or 2 more times, so we
skip the above step. Finally, in either case, we’ll “pad” the covering so that
every edge is covered exactly k times. To do this, define bicliques D1, . . . , Dn

where Di is the star centered at vertex i and containing edges to all vertices
j < i such that {i, j} needs to be covered 1 or 2 more times, and to all
vertices j > i such that {i, j} needs to be covered 2 more times.

This completes the construction. The total number of bicliques used is
at most n + 2kn3/4 + k

√
n (from the padding step, the {1, 2}-covering step,

and the initial design, respectively).

Remark 2.7. A key ingredient in the proof above is the {2k− 2, 2k}-biclique
covering of Kn using 2k

√
n bicliques. It is shown in [5] that

√
n/2 bicliques

are necessary for this list covering, so the asymptotic dependence on n cannot
be decreased.

6



3 Clique partitions of a graph and its com-
plement

3.1 Improving the lower bound
The construction in our proof of Theorem 1.4 is based on the original con-
struction in [4], and the calculation of its clique partition number makes use
of certain facts shown in [4] and [17]. Here we include the entire argument for
the reader’s convenience. Before proceeding with the construction, we need
the following lemma, which has appeared in many places but perhaps first in
Pullman and Donald [17]. Recall that the edge chromatic number χ′(G) of a
graph G is the minimum number of colors needed to color the edges of G so
that no two edges of the same color are incident to the same vertex. We use
the notation G ≡ H to denote the graph on vertices V (G) t V (H) formed
by adding all edges between V (G) and V (H).

Lemma 3.1. Let G be any graph with n vertices and e edges. Then cp(G ≡
K`) ≥ n`− e. If χ′(G) ≤ `, then cp(G ≡ K`) = n`− e.

Proof. Let H = K` and let EG−H be the set of all n` edges between V (G) and
V (H). Suppose C1, . . . , Cr is a clique partition of G ≡ H. Since Ci can have
at most one vertex in H, it follows that |E(Ci)∩E(G)| ≥

(
|E(Ci)∩EG−H |−1

2

)
≥

|E(Ci)∩EG−H | − 1. Letting S = {i : E(Ci)∩EG−H 6= ∅} and summing this
inequality over S, we obtain

e ≥
∑
i∈S
|E(Ci) ∩ E(G)| ≥

∑
i∈S
|E(Ci) ∩ EG−H | − |S| ≥ n`− r, (3.1)

which implies cp(G ≡ H) ≥ n` − e. When χ′(G) ≤ `, we can assign each
of the ` nodes in H to one of the ` color classes of a valid edge coloring in
G, and obtain a collection of triangles of the form {v, x, y}, for v ∈ H and
(x, y) ∈ E(G) that has been given color v in the edge coloring. No edge in
EG−H will be used twice precisely because no vertex in G is incident to two
edges of the same color. This gives a collection of e edge-disjoint triangles
that cover all the edges in G, and leaves at most n`− 2e edges left to cover.
Adding in those remaining edges yields a clique partition of size at most
n`− e.

The construction: Let ` and m be any positive integers, and let G be
any graph on m vertices. We define H` = H`(G) to be the graph in Figure
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G G

K` K`K` K`

K` K` K` K`

Figure 1: The graph H`(G) and its complement.

G

K2` K` K`

K` K`

Figure 2: Decomposing H` into the edge-disjoint union of the two graphs
X`(G) = G ≡ K2` (left) and Y` = K` ≡ K` ≡ K` ≡ K` (right).

1, where the double lines are to be interpreted in the same way as the ≡
symbol, i.e. including all possible edges between the vertices on either end.
Observe that H`(G) ∼= H`(G), and that the edges of H`(G) can be split into
X`(G) := G ≡ K2` and Y` = K` ≡ K` ≡ K` ≡ K`, as depicted in Figure 2.
Clearly χ′(G) ≤ χ′(Km), which is at most m, since we can assign the numbers
0, 1, . . . ,m− 1 to each vertex and color the edge (i, j) by i− j mod m. So
if m ≤ 2`, Lemma 3.1 implies that cp(X`(G)) = m`− e(G). Therefore

cp(H`(G)) + cp(H`(G)) = cp(H`(G)) + cp(H`(G))
= cp(X`(G)) + cp(X`(G)) + 2cp(Y`)

= 2m`−
(
m

2

)
+ 2cp(Y`)

for any graph G on m ≤ 2` vertices. (In fact, this still gives a lower bound
on cp(H`(G)) + cp(H`(G)) for any G and any m.) The term cp(Y`) was
computed in [4], and we include this calculation in the Appendix:
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Lemma 3.2 (Lem. 2 and 3 in [4]). For any `, cp(Y`) ≥ 7
4`

2 +O(`), and this
is tight infinitely often.

So for any G on m vertices, we have

cp(H`(G)) + cp(H`(G)) ≥ 2m`−
(
m

2

)
+ 7

2`
2. (3.2)

Note that H`(G) has n := m+ 4` vertices, so when we maximize (3.2) in m
while keeping n fixed, we find that the optimum occurs at m = 9

8`. At this
value of m, the lower bound is (8− 81

128)`2 +O(`) for a graph on 41
8 ` vertices,

implying that, for infinitely many n,

max
G∈Gn

cp(G) + cp(G) ≥
(8− 81

128)
(41

8 )2 n2 +O(n) = 23
82n

2 +O(n).

Note that if G is a self-complementary graph (i.e. G ∼= G), then H`(G) is
also self-complementary.

3.2 Improving the upper bound
The problem of partitioning a graph G into as few cliques as possible is
equivalent to the problem of packing disjoint copies of K3, K4, . . . , Kn inside
of G in such a way as to maximize a certain linear objective function. Indeed,
given a clique partition C of G, let Ci denote the number of cliques of size i
in C, for i = 2, . . . , n. Then |C| = ∑n

i=2Ci and ∑n
i=2

(
i
2

)
Ci = |E(G)|, so

cp(G) = min
C
|C|

= E(G)−max
C

∑
i≥3

((
i

2

)
− 1

)
Ci︸ ︷︷ ︸

=:v(G)

. (3.3)

We will also consider r-restricted clique packings/partitions, in which the
largest clique can have size at most r. We define cp(G, r) to be the minimum
number of cliques of size at most r needed to partition the edges of G.
Equivalently, cp(G, r) = E(G)− vr(G), where

vr(G) := max
C

r∑
i=3

((
i

2

)
− 1

)
Ci. (3.4)
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Clearly cp(G, r) ≥ cp(G), and one would expect the numbers cp(G, r) and
cp(G) to be relatively close for large r. This is indeed the case, as we show
in the following lemma.

Lemma 3.3. For any ε > 0, there exists an integer r0 = r0(ε) such that for
any r ≥ r0 and any graph G on n vertices,

cp(G, r) ≤ cp(G) + ε · n2.

Proof. We make use of the following fact, which is a straightforward conse-
quence of Wilson’s theorem [21]: for any fixed t ≥ 2 and ε > 0, there is an
integer m0 = m0(t, ε) such that for all m ≥ m0, there is a partition of Km

into edge-disjoint copies of Kt and at most εm2 leftover edges. Set t = 1
2ε

and r0 = m0(t, ε/5).
Let C be a clique partition with |C| = cp(G). For any r ≥ r0, we can

obtain an r-restricted clique partition C̃ from C as follows: keep each clique
of size at most r, and, for each clique Km with m > r, decompose it into at
most

(
m
2

)
/
(
t
2

)
copies of Kt and cover the remaining edges (of which there are

at most ε
5 ·m

2) with K2’s. This gives a clique partition C̃ of size

|C̃| ≤
r∑
i=2

Ci +
∑
i>r


(
i
2

)
(
t
2

) + ε

5i
2

Ci
≤

n∑
i=2

Ci + ε ·
n∑
i=2

(
i

2

)
Ci

= |C|+ ε · |E(G)|

from which the lemma follows.

3.2.1 Fractional clique packings

For a fixed family F of graphs and any graph G, let
(
G
F

)
denote the set

of (unlabeled, non-induced) subgraphs of G which are isomorphic to some
F ∈ F . Following Keevash and Sudakov [14] and Yuster [22], we say a
function ψ :

(
G
F

)
→ [0, 1] is a fractional F-packing of G if for every edge

e ∈ E(G), we have ∑
e∈H∈(G

F)
ψ(H) ≤ 1.
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We denote by GF the polyhedron of all fractional F -packings of G. As we
are interested in the fractional analogue of clique packings, we will only be
concerned with families of the form

Fr := {K3, K4, . . . , Kr}.

Let νr(G) be the value of the linear program

max
ψ∈GFr

∑
H∈( G

Fr
)

((
|H|
2

)
− 1

)
ψ(H). (3.5)

When the objective function is simply∑H∈(G
F) ψ(H), and the family F = {F}

is just a single graph, a theorem of Haxell and Rödl [11] implies that relaxing
the domain of maximization from (integer) packings to fractional packings
can only change the value of the optimum by o(n2). Subsequently, Yuster [22]
extended this result to arbitrary families of graphs. For finite families (such
as Fr), Yuster’s proof easily extends to arbitrary linear objective functions
[23]. Therefore:

Theorem 3.4. For any r ≥ 3 and G ∈ Gn,

vr(G)− νr(G) = o(n2).

The advantages of studying fractional clique packings rather than clique
partitions are twofold. First, solving the linear program (3.5) is computa-
tionally feasible, unlike the corresponding integer program. Second, they
can be averaged, which not only enables one to turn finite computations into
asymptotic bounds, but also allows one to leverage the results of a search on
n vertices to reduce the search space when looking for a minimizer on n+ 1
vertices. This is the approach used by Keevash and Sudakov in [14], and the
following averaging lemma (for a different LP) appears as their Lemma 2.1,
with the same proof.

For each r, define

fr(n) := min
G∈Gn

νr(G) + νr(G).

Lemma 3.5. For any r ≥ 3, the sequence fr(n)
n(n−1) is increasing in n.
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Proof. Let G ∈ Gn+1, and let G1, . . . , Gn+1 be the induced subgraphs on the
vertex subsets of size n. Let ψi, ψi be optimal fractional packings on Gi and
Gi. Since each edge of G (and G) occurs in n− 1 of the Gi, we have that

ψ := 1
n− 1

n+1∑
i=1

ψi, ψ := 1
n− 1

n+1∑
i=1

ψi

are fractional packings on G and G with combined objective value of at least
n+1
n−1fr(n), and hence fr(n+1)

(n+1)n ≥
(n+1)fr(n)
n(n−1)(n+1) = fr(n)

n(n−1) , as claimed.

Since the sequence fr(n)
n(n−1) is obviously bounded above by 1/2, it follows

that it converges to a limit cr ∈ (0, 1/2). Since cr is increasing in r, the
sequence {cr} also converges to a limit that we will call c∞.

Theorem 3.6.
max
G∈Gn

cp(G) + cp(G) ∼
(1

2 − c∞
)
n2.

Proof. This essentially follows from Lemma 3.3 and Theorem 3.4. More ex-
plicitly, for any ε > 0, we can pick r large enough so that |cp(G)−cp(G, r)| <
εn2 for any G ∈ Gn, and |cr − c∞| < ε. Now pick n large enough so that
|vr(G) − νr(G)| < εn2 for any G ∈ Gn and |fr(n) − crn2| < εn2. It follows
that

max
G∈Gn

cp(G) + cp(G) ∈
(1

2 − c∞ ± 8ε
)
n2

for n sufficiently large.

The same argument shows that maxG∈Gn cp(G, r)+cp(G, r) ∼
(

1
2 − cr

)
n2.

Let us define αr := 1
2 − cr, and α∞ = 1

2 − c∞. We seek an upper bound on
α∞, and since α∞ ≤ αr = 1

2 − cr ≤
1
2 −

fr(n)
n(n−1) for any n, it suffices for our

purposes to compute a lower bound on the value of fr(n)
n(n−1) for any particular

pair of positive integers (r, n). For example, a modern computer can com-
pute f4(8) = 6 numerically by solving the LP (3.5) on every non-isomorphic
graph on 8 vertices. This shows that α∞ ≤ α4 ≤ 1

2 −
6

8·7 = 11
28 ≈ 0.3928.

This already beats the best bound one can get from purely Ramsey-based
arguments2, although it does not beat the Keevash-Sudakov triangle packing
bound. In the remainder of this section, we improve this bound in two ways:

2As was remarked in [4], one can begin with a maximal collection of edge disjoint Kr’s
(instead of triangles) in G and G, and bound the number of remaining edges (using Turan’s
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first, we show in Section 3.2.2, we can combine Ramsey-type arguments with
estimates on fr(n0) to yield better estimates on fr(n) for n much larger than
n0; second, in Section 3.2.3 we compute the exact value of f4(n) up to n = 19,
using an algorithm of Keevash and Sudakov that is significantly more efficient
than brute force search.

3.2.2 Ramsey-type improvements

In [14], it was observed that the averaging argument in Lemma 3.5 can be
improved, in a sense, by using a different decomposition of G into smaller
subgraphs based on a greedy packing as described in the introduction. In par-
ticular, given any bicoloring of K3n, greedily select vertex-disjoint monochro-
matic triangles T1, . . . , Ti. The fact that R(3, 3) = 6 guarantees that we can
do this until 3 vertices remain, giving us n − 1 triangles T1, . . . , Tn−1, and
one set of 3 vertices denoted Tn. Consider the 3n colorings c of Kn obtained
by picking one vertex in each Ti and the edges between them. Each coloring
has some fractional packing ψc of weight at least f3(n), and since each edge
between Ti and Tj for i 6= j occurs in exactly 3n−2 of these, the average
3−(n−2)∑

c ψc is a valid fractional packing in K3n of weight at least 9f3(n).
Since each of the monochromatic triangles T1, . . . , Tn−1 are edge disjoint from
this packing, they can be included as well, yielding a lower bound

f3(3n) ≥ 9f3(n) + 2(n− 1). (3.6)

Since R(4, 4) = 18, we can greedily find vertex disjoint monochromatic copies
ofK4, H1, . . . , Hn−4, with 16 vertices remaining. From the remaining vertices,
we can find edge disjoint monochromatic triangles Tn−3, Tn−2, Tn−1, Tn, which
we join with the remaining four vertices to form Hn−3, . . . , Hn, each of size
four. Repeating the same process as above, we see that

f4(4n) ≥ 16f4(n) + 5(n− 4) + 8. (3.7)

theorem) by ξrn
2, where ξr := 1

2 −
1

2R(r,r)−2 , and the iterate on the remaining edges with
cliques of size Kr−1, etc. It is not hard to see that the bound one obtains is

cp(G) + cp(G) ≤
(
ξ3 + ξ4 − ξ3

3 + ξ5 − ξ4

6 + · · ·+ ξr − ξr−1(
r−1

2
) +

1
2 − ξr(

r
2
) )

n2.

Even using the most optimistic (i.e. smallest) of the possible values for R(k, k) for k ≥ 5,
this approach will not yield an upper bound better than 0.41n2.
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For r = 5, we can use the bound R(5, 5) ≤ 48 to find n − 9 vertex-disjoint
copies of K5, with 45 vertices left over. We can then find d(45− 18)/4e = 7
copies of K4, with 17 vertices left over, in which we can find 2 monochromatic
triangles, and distribute the remaining vertices so that each of these 11 parts
has size 5. Arguing as above, this then implies

f5(5n) ≥ 25f5(n) + 9(n− 9) + 37. (3.8)

We omit the details, but using similar arguments and the Ramsey number
bounds R(6, 6) ≤ 165 and R(7, 7) ≤ 540 yields the inequalities

f6(6n) ≥ 36f6(n) + 14n− 151 (3.9)
f7(7n) ≥ 49f7(n) + 20n− 532. (3.10)

According to András Gyárfás [10], Paul Erdős, sitting in the Atlanta Air-
port in 1995, asked his companions whether every bicoloring of the edges
of KR(k,k) contains two edge-disjoint monochromatic copies of Kk. Ralph
Faudree pointed out that this is not true, at which point Erdős asked for
the smallest number n(k) for which any bicoloring of Kn(k) does contain two
edge-disjoint monochromatic Kk’s. The next day, Faudree showed n(3) = 7,
and some time later, Gyárfás showed n(4) = 19. For our purposes, however,
we require vertex-disjoint monochromatic copies of Kr. In the appendix we
give an argument, inspired by the proof of n(4) = 19 by Gyárfás, showing
that n = 20 is sufficient to find two vertex-disjoint monochromatic K4’s,
provided there is also a monochromatic K5:

Lemma 3.7. Any bicoloring of the edges of K20 with a monochromatic copy
of K5 contains two vertex-disjoint monochromatic copies of K4.

With this lemma in hand, we can obtain a slight improvement over (3.7):

Lemma 3.8. For any n ≥ 12, f4(4n) ≥ 16f4(n) + 5n− 9.

Proof. Consider any bicoloring of K4n. Since 4n ≥ 48 ≥ R(5, 5), there is
some monochromatic copy of K5 – call this subgraph N . While there are at
least R(4, 4) = 18 vertices in K4n \N , we can greedily select vertex-disjoint
monochromatic copies of K4 in K4n \N , H1, . . . , Hn−5. This leaves a set S of
15 remaining vertices. By Lemma 3.7, the coloring induced on S ∪N ∼= K20
has two vertex disjoint copies of K4, which we call Hn−4 and Hn−3. Removing
the vertices in Hn−4 ∪Hn−3 from N ∪ S, we are left with 12 vertices, which
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must contain three vertex-disjoint monochromatic triangles T1, T2 and T3.
This leaves behind a set of three vertices {v1, v2, v3}. Decomposing K4n into
the n blocks of size 4

H1, . . . , Hn−3, T1 ∪ {v1}, T2 ∪ {v2}, T3 ∪ {v3},

we consider the 4n edge-colorings c of Kn obtained by picking one vertex
from each part. Each of these has a fractional clique packing ψc of size
at least f4(n), and since each edge is used in 4−(n−2) such ψc, we know that
4−(n−2)∑

c ψc is a valid packing in K4n. Adding the copies of K4 and K3 inside
the n individual blocks, we see that f4(4n) ≥ 16f4(n) + 5(n− 3) + 6.

3.2.3 Computer-aided calculations

We next describe a generalization of the algorithm used by Keevash and
Sudakov in the case of triangle packings [14], which we call the KS extension
method. For any finite family of graphs F = {H1, . . . , Hr}, any graph G ∈
Gn, and any vector Γ ∈ RF , we let νF ,Γ(G) be the value of the linear program

max
ψ∈GF

∑
H∈(G

F)
Γ(H)ψ(H) (3.11)

and define Λ(F ,Γ, n) := minG∈Gn νF ,Γ(G) + νF ,Γ(G). For any ` ∈ R, and any
set L of graphs, define

L(L, `) := {G ∈ L : νF ,Γ(G) + νF ,Γ(G) ≤ `},

and let ΛF ,Γ(L) = minG∈L νF ,Γ(G′) + νF ,Γ(G′). We also define ext(L) be the
set of one-vertex extensions of the graphs in L. The KS extension method
is based on the following observation: by Lemma 3.5, any graph G′ ∈ Gn+1
with νF ,Γ(G′) + νF ,Γ(G′) ≤ n+1

n−1 · ` must be a one-vertex extension of some
graph in L(Gn, `). In other words, if {`n}n∈N is any sequence of numbers
satisfying `n+1 ≥ n+1

n−1`n, then

L(Gn+1, `n+1) ⊆ ext(L(Gn, `n)).
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Let us refer to such sequences `n as level sequences.

Algorithm 1: KS Extension Method
1 n← n0
2 compute L = L(Gn, `n) (e.g. via exhaustive search)
3 while L 6= ∅ do
4 Λ[n] = ΛF ,Γ(L)
5 S ← ext(L)
6 L← L(S, `n+1)
7 Λ[n+ 1] = `n+1
8 n← n+ 1
9 end

10 return Λ

Note that the sequence `n used by Algorithm 1 does not have to be
determined before runtime; as long as it is guaranteed to be a level sequence,
this guarantees the loop invariant L(Gn, `n) ⊆ L, and hence Λ[n] ≤ ΛF ,Γ(Gn).
In [14], they choose a parameter d (called the “search depth”), and define `n
recursively by taking `n0 = +∞ and `n+1 to be n+1

n−1 · αn, where αn is either
(a) the dth smallest value in the set {νF ,Γ(G′)+νF ,Γ(G′) : G ∈ L(Gn, `n)}, if
this set has at least d elements, or (b) `n, if the set has fewer than d elements.
The role of d is to limit the number of graphs stored in the set L. If d =∞,
then Algorithm 1 has to solve the LP (3.11) on every graph up to size n in
order to compute ΛF ,Γ(Gn), while if d is too small, then the while loop will
terminate after a small number of iterations. We ran an implementation3

of this method on a 24-core computing grid with d = 11, starting with an
exhaustive search on n0 = 6 vertices, and obtained the results summarized
in Table 1. The last column in particular implies f4(20) > 64.725, which
implies c4 > 0.1703. Using Lemma 3.8, and inequalities (3.8), (3.9), and
(3.10) (in that order), we can obtain the bound c7 ≥ 0.1814, which implies

max
G∈Gn

cp(G) + cp(G) < 0.3186n2 + o(n2).

3There are other implementation details omitted from our pseudocode description of
Algorithm 1 that also have significant impact on its runtime and memory usage, such
as how and when to prune isomorphisms, which LP solver to use, which value of n0 to
exhaust from, and how to split work among processors. Our implementation is similar to
the one used in [14], and we recommend reading their magma code, which can be found
online at https://people.math.ethz.ch/˜sudakovb/triangles-program.
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i
n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 4 6 8 11 15 19 23 27 33 39 45 51 57 > 64.725
2 4 5 7 9 12 16 20 24 28 34 40 46 52 58 *
3 5 6 8 10 12.5 16.5 20.5 24.5 28.5 34.5 40.5 * * * *
4 6 7 9 11 13 17 21 25 29 34.75 40.75 * * * *
5 7 8 9.5 12 14 17.5 21.25 25.25 29.25 35 * * * * *
6 8 8.3 10 12.3 14.5 18 21.5 25.5 29.5 35.25 * * * * *
7 8.3 8.5 10.3 12.5 14.6 18.25 22 26 30 35.5 * * * * *
8 9 9 10.5 12.6 14.8 18.3 22.25 26.25 30.25 * * * * * *
9 10.6 9.5 10.6 12.6 15 18.5 22.3 26.3 30.5 * * * * * *
10 12.5 10 10.6 12.8 15.5 18.6 22.5 26.5 30.75 * * * * * *
11 * 10.3 10.8 13 15.6 18.75 * * 31 * * * * * *

Table 1: The lowest values of ν4(G) + ν4(G) for G ∈ Gn, n = 6, . . . , 19, as
found by the KS extension method. The level `20 was 64.72527+ when the
algorithm terminated, which implies that f4(20) > 64.725.
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Appendix

Proof of Lemma 3.2
Lemma 3.2. For any `, cp(Y`) ≥ 7

4`
2 + O(`), and this is tight infinitely

often.

Proof. Let C = {C1, . . . , Ck} be an optimal clique partition of Y`. Let us
denote the left (according to Figure 2) copy of K` in Y` by A and the right
copy by B. Suppose that C ′ = {C1, . . . , Ct}, for some t ≤ k, is the sub-
collection of cliques which contain vertices in both A and B. Let EA and EB
be the edges in A ∩ C ′ and B ∩ C ′, so that Y` is the edge disjoint union of
(A \ EA) ≡ K` and (B \ EB) ≡ K` with C ′, and therefore

cp(Y`) ≥ 2`2 − 2
(
`

2

)
+ |EA|+ |EB|+ t. (3.12)
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If clique Ci has ai vertices in A and bi vertices in B, then

t∑
i

aibi = `2 (3.13)

and
|EA|+ |EB|+ t =

t∑
i=1

((
ai
2

)
+
(
bi
2

)
+ 1

)
. (3.14)

Minimizing (3.14) over positive integers ai, bi subject to the constraint (3.13),
we see the minimum occurs when ai = bi = 2, i.e. each Ci ∈ C ′ is a K4 with
two vertices in each of A and B. Therefore, at the minimum, t = `2/4 and
|EA|+ |EB|+ t = 3`2/4, which gives

cp(Y`) ≥ 2`2 − 2
(
`

2

)
+ 3`2/4 = 7

4`
2 +O(`),

as claimed. Tightness follows from Theorem 4 in [18], which essentially
guarantees the existence of a decomposition of the edges between A and B
into disjoint K4’s, whenever ` ≥ 14 is even.

Proof of Lemma 3.7
Lemma 3.7. Any bicoloring of the edges of K20 with a monochromatic copy
of K5 contains two vertex-disjoint monochromatic copies of K4.

Proof. Suppose that we have a bicoloring of K20 with a red copy N =
{n1, ..., n5} of K5. If there is a blue copy of K4, then we are finished, because
this blue copy and N cannot share an edge, and therefore share at most one
vertex. We may now assume that all monochromatic copies of K4 are red.

We can address the case in which there exists a vertex v such that it
is incident to at least nine red and blue edges each relatively quickly. We
denote byR andB the cliques on the red and blue neighbors of v, respectively.
Because the Ramsey number R(3, 4) = 9 and our graph has no blue copy of
K4, R must contain a red copy of K3. Moreover, B cannot contain a blue
copy of K3, so B must contain a red copy of K4. Adding v to the red copy
of K3 in R results in two vertex-disjoint red copies of K4, one in R ∪ v and
one in B. We may now assume that all vertices have at least eleven incident
edges of the same color.
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Consider the case in which some vertex v has two red and two blue edges
adjacent to a red copy M of K4. If v has at least eleven red edges, then
it has at least nine red edges connected to K20\(M ∪ {v}), which, by the
same argument as above, implies K20\M has a red copy of K4. The same
argument holds if v has at least eleven blue edges. We may now assume that
no vertex has two red and two blue edges adjacent to a red copy of K4.

From here, we consider two cases:

Case I: Suppose that there exists five vertices V = {v1, ..., v5} ⊂ K20\N , each
with at least three red edges adjacent to N . Because no vertex has both
two red and two blue edges adjacent to a red copy of K4, each vertex
of V has at least four red edges adjacent to N . In addition, because
our graph has no blue copy of K4 every set V \vi has a red edge.
Suppose that some vertex of V , without loss of generality called v1, has
five red edges adjacent to N . Without loss of generality, {v2, v3} is a
red edge in V \v1. There are at most two blue edges from v2 or v3 to
N ; without loss of generality assume they are not incident to n4 or n5.
Then the subsets {v1, n1, n2, n3} and {v2, v3, n4, n5} are both red copies
of K4. So we may now assume that each vertex in V has exactly four
red edges adjacent to N .
Let f(vi) denote the unique vertex in N for which edge {vi, f(vi)} is
blue, and f(V ) denote the range of f . We consider several sub-cases,
depending on the size of |f(V )|.
Suppose |f(V )| > 2. Let {v1, v2} be (without loss of generality) a red
edge in V . Both v1 and v2 have four red edges to N , so there are at
least three vertices in N (without loss of generality n1, n2, and n3)
such that {vi, nj} is a red edge for all i ∈ {1, 2} and j ∈ {1, 2, 3}. By
pigeonhole, |f(V ) ∩ {n1, n2, n3}| > 0, so (without loss of generality)
suppose that f(v3) = n1. Then {v1, v2, n1, n2} and {v3, n3, n4, n5} are
vertex-disjoint red copies of K4.
Suppose |f(V )| = 2. Without loss of generality, support that f(V ) =
{n1, n2} and |f−1(n1)| ≥ 3. Because there are no blue copies of K4
in our graph, f−1(n1) contains a red edge {vi, vj}, and the subsets
{vi, vj, n2, n3} and {vk, n1, n4, n5} are vertex-disjoint red copies of K4,
where vk ∈ f−1(n2).
Suppose |f(V )| = 1. Without loss of generality, suppose f(V ) = {n1}.
Then V does not contain a blue copy of K3, otherwise our graph would
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contain a blue copy of K4. If V contains a red copy {v1, v2, v3} of K3,
then {v1, v2, v3, n2} and {v4, n3, n4, n5} are two red copies of K4, and we
are done. If V does not contain a red or blue copy of K3, then the red
edges in V form a cycle of length five, and there are two vertex-disjoint
red edges in V , denoted {vi, vj} and {vk, vl}. In this case, the subsets
{vi, vj, n2, n3} and {vk, vl, n4, n5} are both red copies of K4.

Case II: Suppose that there exist at most four vertices in K20\N with at least
three red edges adjacent to N . Then there are at least eleven vertices
in K20\N with at least three blue edges adjacent to N . Because no
vertex has two red and two blue edges adjacent to a red copy of K4,
these vertices have at least four blue edges adjacent to N , and so there
exists a vertex ni ∈ N with at least nine blue edges adjacent to K20\N .
Therefore, K20\N must contain a red copy of K4.

This completes the proof.
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