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Abstract. Tutte’s spring embedding theorem states that, for a three-connected planar graph, if
the outer face of the graph is fixed as the complement of some convex region in the plane, and all
other vertices are placed at the mass center of their neighbors, then this results in a unique em-
bedding, and this embedding is planar. It also follows fairly quickly that this embedding minimizes
the sum of squared edge lengths, conditional on the embedding of the outer face. However, it is
not at all clear how to embed this outer face. We consider the minimization problem of embedding
this outer face, up to some normalization, so that the sum of squared edge lengths is minimized. In
this work, we show the connection between this optimization problem and the Schur complement
of the graph Laplacian with respect to the interior vertices. We prove a number of discrete trace
theorems, and, using these new results, show the spectral equivalence of this Schur complement
with the boundary Laplacian to the one-half power for a large class of graphs. Using this result, we
give theoretical guarantees for this optimization problem, which motivates an algorithm to embed
the outer face of a spring embedding.

1. Introduction

Graph drawing is an area at the intersection of mathematics, computer science, and more qual-
itative fields. Despite the extensive literature in the field, in many ways the concept of what
constitutes the optimal drawing of a graph is heuristic at best, and subjective at worst. For a
general review of the major areas of research in graph drawing, we refer the reader to [1, 10]. When
energy (i.e. Hall’s energy, the sum of squared distances between adjacent vertices) minimization is
desired, the optimal embedding in the plane is given by the two-dimensional diffusion map induced
by the eigenvectors of the two smallest non-zero eigenvalues of the graph Laplacian [12, 13, 14].
This general class of graph drawing techniques is referred to as spectral layouts. When drawing a
planar graph, often a planar embedding (a drawing in which edges do not intersect) is desirable.
However, spectral layouts of planar graphs are not guaranteed to be planar. When looking at trian-
gulations of a given domain, it is commonplace for the near-boundary points of the spectral layout
to “grow” out of the boundary, or lack any resemblance to a planar embedding. For instance, see
the spectral layout of a random triangulation of a disk and rectangle in Figure 1.

In his 1962 work titled “How to Draw a Graph,” Tutte found an elegant technique to produce
planar embeddings of planar graphs that also minimize “energy” in some sense [20]. In particular,
for a three-connected planar graph, he showed that if the outer face of the graph is fixed as the
complement of some convex region in the plane, and every other point is located at the mass center
of its neighbors, then the resulting embedding is planar. This embedding minimizes Hall’s energy,
conditional on the embedding of the boundary face. This result is now known as Tutte’s spring
embedding theorem, and this general class of graph drawing techniques is known as force-based
layouts. While this result is well known (see [11], for example), it is not so obvious how to embed
the outer face. This, of course, should vary from case to case, depending on the dynamics of the
interior.
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(a) Circle (b) 3-by-1 Rectangle

(c) Spectral Layout (d) Spectral Layout

(e) Schur
Complement
Layout

(f) Schur Complement Layout

Figure 1. Delaunay triangulations of 1250 points randomly generated on the disk
(A) and rectangle (B), their non-planar spectral layouts (C) and (D), and planar
layouts using a spring embedding of the Schur complement of the graph Laplacian
with respect to the interior vertices (E) and (F).

In this work, we examine how to embed the boundary face such that the embedding is convex and
minimizes Hall’s energy over all such convex embeddings with some given normalization. While it
is not clear how to exactly minimize energy over all convex embeddings in polynomial time, it also
is not clear that this is a NP-hard optimization problem. Proving that this optimization problem is
NP-hard appears to be extremely difficult, as the problem itself seems to lack any natural relation to
a known NP-complete problem. In what follows, we analyze this problem and produce an algorithm
with theoretical guarantees for a large class of three-connected planar graphs.
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(a) Laplacian Embedding (b) Schur Complement Embedding

Figure 2. A visual example of embeddings of the 2D finite element discretization
graph 3elt, taken from the SuiteSparse Matrix Collection [5]. Figure (A) is the non-
planar spectral layout of this 2D mesh, and Figure (B) is a planar spring embedding
of the mesh, using the minimal non-trivial eigenvectors of the Schur complement to
embed the boundary.

Our analysis begins by observing that the Schur complement of the graph Laplacian with respect
to the interior vertices is the correct matrix to consider when choosing an optimal embedding of
boundary vertices. See Figure 2 for a visual example of a spring embedding using the two minimial
non-trivial eigenvectors of the Schur complement. In order to theoretically understand the behavior
of the Schur complement, we prove a discrete trace theorem. Trace theorems are a class of results
in theory of partial differential equations relating norms on the domain to norms on the boundary,
which are used to provide a priori estimates on the Dirichlet integral of functions with given data
on the boundary. We construct a discrete version of a trace theorem in the plane for “energy”-only
semi-norms. Using a discrete trace theorem, we show that this Schur complement is spectrally
equivalent to the boundary Laplacian to the one-half power. This spectral equivalence result
produces theoretical guarantees for the energy minimizing spring embedding problem, but is also
of independent interest and applicability in the study of spectral properties of planar graphs. These
theoretical guarantees give rise to a natural algorithm with provable guarantees. The performance
of this algorithm is also illustrated through numerical experiments.

The remainder of the paper is as follows. In Section 2, we formally introduce Tutte’s spring
embedding theorem, characterize the optimization problem under consideration, and illustrate the
connection to the Schur complement. In Section 3, we consider trace theorems for Lipschitz domains
from the theory of elliptic partial differential equations, prove discrete energy-only variants of these
results for the plane, and show that the Schur complement with respect to the interior is spectrally
equivalent to the boundary Laplacian to the one-half power. In Section 4, we use the results from
the previous section to give theoretical guarantees regarding approximate solutions to the original
optimization problem, and use these theoretical results to motivate an algorithm to embed the
outer face of a spring embedding. We present numerical results to illustrate both the behavior of
Schur complement-based embeddings compared to variations of natural spectral embeddings, and
the practical performance of the algorithm introduced.
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2. Spring Embeddings and the Schur Complement

In this section, we introduce the main definitions and notation of the paper, formally define the
optimization problem under consideration, and show how the Schur complement is closely related
to this optimization problem.

2.1. Definitions and Notation. Let G = (V,E), V = {1, ..., n}, E ⊂ {e ⊂ V | |e| = 2}, be a
simple, connected, undirected graph. G is k-connected if it remains connected upon the removal of
any k − 1 vertices, and is planar if it can be drawn in the plane such that no edges intersect (save
for adjacent edges at their mutual endpoint). A face of a planar embedding of a graph is a region of
the plane bounded by edges (including the outer infinite region, referred to as the outer face). Let
Gn be the set of all ordered pairs (G,Γ), where G is a simple, undirected, planar, three-connected
graph of order n > 4, and Γ ⊂ V , nΓ := |Γ|, are the vertices of some face of G. Three-connectedness
is an important property for planar graphs, which, by Steinitz’s theorem, guarantees that the graph
is the skeleton of a convex polyhedron [19]. This characterization implies that for three-connected
graphs (n > 4), the edges corresponding to each face in a planar embedding are uniquely determined
by the graph. In particular, the set of faces is simply the set of induced cycles, so we may refer to
faces of the graph without specifying an embedding. One important corollary of this result is that,
for n > 4, the vertices of any face form an induced simple cycle. Let NG(i) be the neighborhood of
vertex i, NG(S) be the union of the neighborhoods of the vertices in S, and dG(i, j) be the distance
between vertices i and j in the graph G. When the associated graph is obvious, we may remove
the subscript. Let d(i) be the degree of vertex i. Let G[S] be the graph induced by the vertices S,
and dS(i, j) be the distance between vertices i and j in G[S]. If H is a subgraph of G, we write
H ⊂ G. The Cartesian product G1�G2 between G1 = (V1, E1) and G2 = (V2, E2), is the graph
with vertices (v1, v2) ∈ V1 × V2 and edges ((u1, u2), (v1, v2)) ∈ E if (u1, v1) ∈ E1 and u2 = v2, or
u1 = v1 and (u2, v2) ∈ E2. The graph Laplacian LG ∈ IRn×n of G is the symmetric matrix defined
by

〈LGx, x〉 =
∑
{i,j}∈E

(xi − xj)2,

and, in general, a matrix is the graph Laplacian of some weighted graph if it is symmetric diagonally
dominant, has non-positive off-diagonal entries, and the vector 1 := (1, ..., 1)T lies in its nullspace.
The convex hull of a finite set of points X is denoted by conv(X), and a point x ∈ X is a vertex

of conv(X) if x 6∈ conv(X\x). Given a matrix A, we denote the ith row by Ai,·, the jth column by

A·,j , and the entry in the ith row and jth column by Ai,j .

2.2. Spring Embeddings. Here and in what follows, we refer to Γ as the “boundary” of the
graph G, V \Γ as the “interior,” and generally assume nΓ := |Γ| to be relatively large (typically

nΓ = Θ(n1/2)). Of course, the concept of a “boundary” face is somewhat arbitrary, though,
depending on the application from which the graph originated (i.e., a discretization of some domain),
one face is often already designated as the boundary face. If a face has not been designated, choosing
the largest induced cycle is a reasonable choice. By embedding G in the plane and traversing the
embedding, one can easily find all the induced cycles of G in linear time and space [3].

Without loss of generality, suppose that Γ = {n− nΓ + 1, ..., n}. A matrix X ∈ IRn×2 is said to
be a planar embedding of G if the drawing of G using straight lines and with vertex i located at
coordinates Xi,· for all i is a planar drawing. A matrix XΓ ∈ IRnΓ×2 is said to be a convex embedding
of Γ if the embedding is planar and every point is a vertex of the convex hull conv({[XΓ]i,·}nΓ

i=1).
Tutte’s spring embedding theorem states that if XΓ is a convex embedding of Γ, then the system
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of equations

Xi,· =


1

d(i)

∑
j∈N(i)

Xj,· i = 1, ..., n− nΓ

[XΓ]i−(n−nΓ),· i = n− nΓ + 1, ..., n

has a unique solution X, and this solution is a planar embedding of G [20].
We can write both the Laplacian and embedding of G in block-notation, differentiating between

interior and boundary vertices as follows:

LG =

(
Lo +Do −Ao,Γ
−ATo,Γ LΓ +DΓ

)
∈ IRn×n, X =

(
Xo

XΓ

)
∈ IRn×2,

where Lo, Do ∈ IR(n−nΓ)×(n−nΓ), LΓ, DΓ ∈ IRnΓ×nΓ , Ao,Γ ∈ IR(n−nΓ)×nΓ , Xo ∈ IR(n−nΓ)×2, XΓ ∈
IRnΓ×2, and Lo and LΓ are the Laplacians of G[V \Γ] and G[Γ], respectively. Using block notation,
the system of equations for the Tutte spring embedding of some convex embedding XΓ is given by

Xo = (Do +D[Lo])
−1[(D[Lo]− Lo)Xo +Ao,ΓXΓ],

where D[A] is the diagonal matrix with diagonal entries given by the diagonal of A. Therefore, the
unique solution to this system is

Xo = (Lo +Do)
−1Ao,ΓXΓ.

We note that this choice of Xo not only guarantees a planar embedding of G, but also minimizes
Hall’s energy, namely,

arg min
Xo

h(X) = (Lo +Do)
−1Ao,ΓXΓ,

where h(X) := Tr(XTLX) (see [14] for more on Hall’s energy).
While Tutte’s theorem is a very powerful result, guaranteeing that, given a convex embedding of

any face, the energy minimizing embedding of the remaining vertices results in a planar embedding,
it gives no direction as to how this outer face should be embedded. In this work, we consider the
problem of producing a planar embedding that is energy minimizing, subject to some normalization.
We consider embeddings that satisfy XT

ΓXΓ = I and XT
Γ 1 = 0, though other normalizations, such

as XTX = I and XT1 = 0, would be equally appropriate. The analysis that follows in this paper
can be readily applied to this alternate normalization, but it does require the additional step of
verifying a norm equivalence between V and Γ for the harmonic extension of low energy vectors,
which can be produced relatively easily for the class of graphs considered in Section 3. Let X be
the set of all convex, planar embeddings XΓ that satisfy XT

ΓXΓ = I and XT
Γ 1 = 0. The main

optimization problem under consideration is

(2.1) min h(X) s.t. XΓ ∈ cl(X ),

where cl(·) is the closure of a set. X is not a closed set, and so the minimizer of (2.1) may be
a non-convex embedding. However, by the definition of closure, any such minimizer is arbitrarily
close to a convex embedding. The normalizations XT

Γ 1 = 0 and XT
ΓXΓ = I ensure that the solution

does not degenerate into a single point or line. In what follows we are primarily concerned with
approximately solving this optimization problem. It is unclear whether there exists an efficient
algorithm to solve (2.1) or if the associated decision problem is NP-hard. If (2.1) is NP-hard, it
seems extremely difficult to verify that this is indeed the case. This remains an open problem.
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2.3. Schur Complement of V \Γ. Given some choice of XΓ, by Tutte’s theorem the minimum
value of h(X) is attained when Xo = (Lo +Do)

−1Ao,ΓXΓ, and given by

h(X) = Tr

[(
[(Lo +Do)

−1Ao,ΓXΓ]T XT
Γ

)(Lo +Do −Ao,Γ
−ATo,Γ LΓ +DΓ

)(
(Lo +Do)

−1Ao,ΓXΓ

XΓ

)]
= Tr

(
XT

Γ

[
LΓ +DΓ −ATo,Γ(Lo +Do)

−1Ao,Γ
]
XΓ

)
= Tr

(
XT

Γ SΓXΓ

)
,

where SΓ is the Schur complement of LG with respect to V \Γ,

SΓ = LΓ +DΓ −ATo,Γ(Lo +Do)
−1Ao,Γ.

For this reason, we can treat Xo as a function of XΓ and instead consider the optimization problem

(2.2) min hΓ(XΓ) s.t. XΓ ∈ cl(X ),

where

hΓ(XΓ) := Tr
(
XT

Γ SΓXΓ

)
.

This immediately implies that, if the minimal two non-trivial eigenvectors of SΓ produce a convex
embedding, then this is the exact solution of (2.2). However, a priori, there is no reason to think
that this embedding would be planar or convex. In Section 4, we perform numerical experiments
that suggest that this embedding is often planar, and “near” a convex embedding in some sense.
However, even if the embedding is planar, converting a non-convex embedding to a convex one may

increase the objective function by a large amount. In Section 3, we show that SΓ and L
1/2
Γ are

spectrally equivalent. This spectral equivalence leads to provable guarantees for an algorithm to

approximately solve (2.2), as the minimal two eigenvectors of L
1/2
Γ are planar and convex.

First, we present a number of basic properties of the Schur complement of a graph Laplacian in
the following proposition. For more information on the Schur complement, we refer the reader to
[2, 6, 22].

Proposition 2.1. Let G = (V,E), n = |V |, be a graph and LG ∈ IRn×n the associated graph
Laplacian. Let LG and vectors v ∈ IRn be written in block form

L(G) =

(
L11 L12

L21 L22

)
, v =

(
v1

v2

)
,

where L22 ∈ IRm×m, v2 ∈ IRm, and L12 6= 0. Then

(1) S = L22 − L21L
−1
11 L12 is a graph Laplacian,

(2)
m∑
i=1

(eTi L221m)eie
T
i − L21L

−1
11 L12 is a graph Laplacian,

(3) 〈Sw,w〉 = inf{〈Lv, v〉|v2 = w}.

Proof. Let P =

(
−L−1

11 L12

I

)
∈ IRn×m. Then

P TLP =
(
−L21L

−1
11 I

)(L11 L12

L21 L22

)(
−L−1

11 L12

I

)
= L22 − L21L

−1
11 L12 = S.

Because L111n−m + L121m = 0, we have 1n−m = −L−1
11 L121m. Therefore P1m = 1n, and, as a

result,

S1m = P TLP1m = P TL1n = P T 0 = 0.
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In addition,[
m∑
i=1

(eTi L221m)eie
T
i − L21L

−1
11 L12

]
1m =

[ m∑
i=1

(eTi L221m)eie
T
i − L22

]
1m + S1m

=

m∑
i=1

(eTi L221m)ei − L221m

=

[ m∑
i=1

eie
T
i − Im

]
L221m = 0.

L11 is an M-matrix, so L−1
11 is a non-negative matrix. L21L

−1
11 L12 is the product of three non-

negative matrices, and so must also be non-negative. Therefore, the off-diagonal entries of S and
m∑
i=1

(eTi L221)eie
T
i − L21L

−1
11 L12 are non-positive, and so both are graph Laplacians.

Consider

〈Lv, v〉 = 〈L11v1, v1〉+ 2〈L12v2, v1〉+ 〈L22v2, v2〉,
with v2 fixed. Because L11 is symmetric positive definite, the minimum occurs when

∂

∂v1
〈Lv, v〉 = 2L11v1 + 2L12v2 = 0.

Setting v1 = −L−1
11 L12v2, the desired result follows. �

The Schur complement Laplacian SΓ is the sum of two Laplacians LΓ and DΓ − ATo,Γ(Lo +

Do)
−1Ao,Γ, where the first is the Laplacian of G[Γ], and the second is a Laplacian representing the

dynamics of the interior.

In the next section we prove the spectral equivalence of SΓ and L
1/2
Γ for a large class of graphs

by first proving discrete energy-only trace theorems. Then, in Section 4, we use this spectral
equivalence to prove theoretical properties of (2.2) and motivate an algorithm to approximately
solve this optimization problem.

3. Trace Theorems for Planar Graphs

The main result of this section takes classical trace theorems from the theory of partial differential
equations and extends them to a class of planar graphs. However, for our purposes, we require a
stronger form of trace theorem, one between energy semi-norms (i.e., no `2 term), which we refer to
as “energy-only” trace theorems. These energy-only trace theorems imply their classical variants
with `2 terms almost immediately. We then use these new results to prove the spectral equivalence

of SΓ and L
1/2
Γ for the class of graphs under consideration. This class of graphs is rigorously

defined below, but includes planar three-connected graphs that have some regular structure (such
as graphs of finite element discretizations). In what follows, we prove spectral equivalence with
explicit constants. While this does make the analysis slightly messier, it has the benefit of showing
that equivalence holds for constants that are not too large, thereby verifying that the equivalence is
a practical result which can be used in the analysis of algorithms. We begin by formally describing
a classical trace theorem.

Let Ω ⊂ Rd be a domain with boundary Γ = δΩ that, locally, is a graph of a Lipschitz function.
H1(Ω) is the Sobolev space of square integrable functions with square integrable weak gradient,
with norm

‖u‖21,Ω = ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω), where ‖u‖2L2(Ω) =

∫
Ω
u2 dx.
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Let

‖ϕ‖21/2,Γ = ‖ϕ‖2L2(Γ) +

∫∫
Γ×Γ

(ϕ(x)− ϕ(y))2

|x− y|d
dx dy

for functions defined on Γ, and denote by H1/2(Γ) the Sobolev space of functions defined on the
boundary Γ for which ‖ · ‖1/2,Γ is finite. The trace theorem for functions in H1(Ω) is one of
the most important and used trace theorems in the theory of partial differential equations. More
general results for traces on boundaries of Lipschitz domains, which involve Lp norms and fractional
derivatives, are due E. Gagliardo [7] (see also [4]). Gagliardo’s theorem, when applied to the case

of H1(Ω) and H1/2(Γ), states that if Ω ⊂ Rd is a Lipschitz domain, then the norm equivalence

‖ϕ‖1/2,Γ h inf{‖u‖1,Ω
∣∣ u|Γ = ϕ}

holds (the right hand side is indeed a norm on H1/2(Γ)). These results are key tools in proving a
priori estimates on the Dirichlet integral of functions with given data on the boundary of a domain
Ω. Roughly speaking, a trace theorem gives a bound on the energy of a harmonic function via norm
of the trace of the function on Γ = ∂Ω. In addition to the classical references given above, further
details on trace theorems and their role in the analysis of PDEs (including the case of Lipschitz
domains) can be found in [15, 17]. There are several analogues of this theorem for finite element
spaces (finite dimensional subspaces of H1(Ω)). For instance, in [16] it is shown that the finite
element discretization of the Laplace-Beltrami operator on the boundary to the one-half power
provides a norm which is equivalent to the H1/2(Γ)-norm. Here we prove energy-only analogues of
the classical trace theorem for graphs (G,Γ) ∈ Gn, using energy semi-norms

|u|2G = 〈LGu, u〉 and |ϕ|2Γ =
∑
p,q∈Γ,
p<q

(ϕ(p)− ϕ(q))2

d2
G(p, q)

.

The energy semi-norm | · |G is a discrete analogue of ‖∇u‖L2(Ω), and the boundary semi-norm

|· |Γ is a discrete analogue of the quantity

∫∫
Γ×Γ

(ϕ(x)− ϕ(y))2

|x− y|2
dx dy. In addition, by connectivity,

| · |G and | · |Γ are norms on the quotient space orthogonal to 1. We aim to prove that for any
ϕ ∈ IRnΓ ,

1

c1
|ϕ|Γ ≤ min

u|Γ=ϕ
|u|G ≤ c2 |ϕ|Γ

for some constants c1, c2 that do not depend on nΓ, n. We begin by proving these results for a
simple class of graphs, and then extend our analysis to more general graphs. Some of the proofs of
the below results are rather technical, and are therefore reserved for the appendix.

3.1. Trace Theorems for a Simple Class of Graphs. Let Gk,` = Ck�P` be the Cartesian
product of the k vertex cycle Ck and the ` vertex path P`, where 4` < k < 2c` for some constant
c ∈ N. The lower bound 4` < k is arbitrary in some sense, but is natural, given that the ratio of
boundary length to in-radius of a convex region is at least 2π. Vertex (i, j) in Gk,` corresponds to
the product of i ∈ Ck and j ∈ P`, i = 1, ..., k, j = 1, ..., `. The boundary of Gk,` is defined to be

Γ = {(i, 1)}ki=1. Let u ∈ Rk×` and ϕ ∈ Rk be functions on Gk,` and Γ, respectively, with u[(i, j)]
denoted by u(i, j) and ϕ[(i, 1)] denoted by ϕ(i). For the remainder of the section, we consider the
natural periodic extension of the vertices (i, j) and the functions u(i, j) and ϕ(i) to the indices
i ∈ Z. In particular, if i 6∈ {1, ..., k}, then (i, j) := (i∗, j), ϕ(i) := ϕ(i∗), and u(i, j) := u(i∗, j),
where i∗ ∈ {1, ..., k} and i∗ = i mod k. Let G∗k,` be the graph resulting from adding to Gk,` all
edges of the form {(i, j), (i − 1, j + 1)} and {(i, j), (i + 1, j + 1)}, i = 1, ..., k, j = 1, ..., ` − 1. We
provide a visual example of Gk,` and G∗k,` in Figure 3. First, we prove a trace theorem for Gk,`.
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We have broken the proof of the trace theorem into two lemmas. Lemma 3.1 shows that the
discrete trace operator is bounded, and Lemma 3.2 shows that it has a continuous right inverse.
Taken together, these lemmas imply our desired result.

Lemma 3.1. Let G = Gk,`, 4` < k < 2c`, c ∈ N, with boundary Γ = {(i, 1)}ki=1. For any u ∈ Rk×`,
the vector ϕ = u|Γ satisfies

|ϕ|Γ ≤ max{
√

3c, 2π} |u|G.

Proof. We can decompose ϕ(p+ h)− ϕ(h) into a sum of differences, given by

ϕ(p+ h)− ϕ(p) =
s−1∑
i=1

u(p+ h, i)− u(p+ h, i+ 1)

+

h∑
i=1

u(p+ i, s)− u(p+ i− 1, s)

+

s−1∑
i=1

u(p, s− i+ 1)− u(p, s− i),

where s =

⌈
h

c

⌉
. By Cauchy-Schwarz,

k∑
p=1

bk/2c∑
h=1

(
ϕ(p+ h)− ϕ(p)

h

)2

≤ 3

k∑
p=1

bk/2c∑
h=1

(
1

h

s−1∑
i=1

u(p+ h, i)− u(p+ h, i+ 1)

)2

+3

k∑
p=1

bk/2c∑
h=1

(
1

h

h∑
i=1

u(p+ i, s)− u(p+ i− 1, s)

)2

+3
k∑
p=1

bk/2c∑
h=1

(
1

h

s−1∑
i=1

u(p, s− i+ 1)− u(p, s− i)

)2

.

We bound the first and the second term separately. The third term is identical to the first. Using
Hardy’s inequality [8, Theorem 326], we can bound the first term by

k∑
p=1

bk/2c∑
h=1

(
1

h

s−1∑
i=1

u(p, i)− u(p, i+ 1)

)2

=
k∑
p=1

∑̀
s=1

(
1

s

s−1∑
i=1

u(p, i)− u(p, i+ 1)

)2 ∑
h:dh/ce=s

1≤h≤bk/2c

s2

h2

≤ 4

k∑
p=1

`−1∑
s=1

(
u(p, s)− u(p, s+ 1)

)2 ∑
h:dh/ce=s

1≤h≤bk/2c

s2

h2
.

We have ∑
h:dh/ce=s

1≤h≤bk/2c

s2

h2
≤ s2

cs∑
i=c(s−1)+1

1

i2
≤ s2(c− 1)

(c(s− 1) + 1)2
≤ 4(c− 1)

(c+ 1)2
≤ 1

2

for s ≥ 2 (c ≥ 3, by definition), and for s = 1,∑
h:dh/ce=1
1≤h≤bk/2c

1

h2
≤
∞∑
i=1

1

i2
=
π2

6
.
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(a) G16,3 = C16�P3 (b) G∗16,3

Figure 3. A visual example of Gk,` and G∗k,` for k = 16, ` = 3. The boundary Γ is
given by the outer (or, by symmetry, inner) cycle.

Therefore, we can bound the first term by

k∑
p=1

bk/2c∑
h=1

(
1

h

s−1∑
i=1

u(p, i)− u(p, i+ 1)

)2

≤ 2π2

3

k∑
p=1

`−1∑
s=1

(
u(p, s)− u(p, s+ 1)

)2
.

For the second term, we have

k∑
p=1

bk/2c∑
h=1

(
1

h

h∑
i=1

u(p+ i, s)− u(p+ i− 1, s)

)2

≤
k∑
p=1

bk/2c∑
h=1

1

h

h∑
i=1

(
u(p+ i, s)− u(p+ i− 1, s)

)2
≤ c

k∑
p=1

∑̀
s=1

(
u(p+ 1, s)− u(p, s)

)2
.

Combining these bounds produces the desired result

|ϕ|Γ ≤ max{
√

3c, 2π} |u|G.
�

In order to show that the discrete trace operator has a continuous right inverse, we need to
produce a provably low-energy extension of an arbitrary function on Γ. Let

a =
1

k

k∑
p=1

ϕ(p) and a(i, j) =
1

2j − 1

j−1∑
h=1−j

ϕ(i+ h).

We consider the extension

(3.1) u(i, j) =
j − 1

`− 1
a+

(
1− j − 1

`− 1

)
a(i, j).

In the appendix (Lemma A.1), we prove the following inverse result for the discrete trace operator.

Lemma 3.2. Let G = Gk,`, 4` < k < 2c`, c ∈ N, with boundary Γ = {(i, 1)}ki=1. For any ϕ ∈ IRk,
the vector u defined by (3.1) satisfies

|u|G ≤
√

2c+
233

9
|ϕ|Γ.

Combining Lemmas 3.1 and 3.2, we obtain our desired trace theorem.
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Theorem 3.3. Let G = Gk,`, 4` < k < 2c`, c ∈ N, with boundary Γ = {(i, 1)}ki=1. For any ϕ ∈ IRk,

1

max{
√

3c, 2π}
|ϕ|Γ ≤ min

u|Γ=ϕ
|u|G ≤

√
2c+

233

9
|ϕ|Γ.

With a little more work, we can prove a similar result for a slightly more general class of graphs.
Using Theorem 3.3, we can almost immediately prove a trace theorem for any graph H satisfying
Gk,` ⊂ H ⊂ G∗k,`. In fact, Lemma 3.1 carries over immediately. In order to prove a new version
of Lemma 3.2, it suffices to bound the energy of u on the edges in G∗k,` not contained in Gk,`. By
Cauchy-Schwarz,

|u|2G∗ = |u|2G +
k∑
i=1

`−1∑
j=1

[
(u(i, j + 1)− u(i− 1, j))2 + (u(i, j + 1)− u(i+ 1, j))2

]

≤ 3
k∑
i=1

∑̀
j=1

(u(i+ 1, j)− u(i, j))2 + 2
k∑
i=1

`−1∑
j=1

(u(i, j + 1)− u(i, j))2,

and therefore Corollary 3.4 follows immediately from the proofs of Lemmas 3.1 and 3.2.

Corollary 3.4. Let H satisfy Gk,` ⊂ H ⊂ G∗k,`, 4` < k < 2c`, c ∈ N, with boundary Γ = {(i, 1)}ki=1.

For any ϕ ∈ IRk,

1

max{
√

3c, 2π}
|ϕ|Γ ≤ min

u|Γ=ϕ
|u|H ≤

√
4c+

475

9
|ϕ|Γ.

3.2. Trace Theorems for General Graphs. In order to extend Corollary 3.4 to more general
graphs, we introduce a graph operation which is similar to in concept an aggregation (a partition
of V into connected subsets) in which the size of aggregates are bounded. In particular, we give
the following definition.

Definition 3.5. The graph H, Gk,` ⊂ H ⊂ G∗k,`, is said to be an M -aggregation of (G,Γ) ∈ Gn if

there exists a partition A = a∗ ∪ {ai,j}j=1,...,`
i=1,...,k of V (G) satisfying

1. G[ai,j ] is connected and |ai,j | ≤M for all i = 1, ..., k, j = 1, ..., `,

2. Γ ⊂
k⋃
i=1

ai,1, and Γ ∩ ai,1 6= ∅ for all i = 1, ..., k,

3. NG(a∗) ⊂ a∗ ∪
k⋃
i=1

ai,`,

4. the aggregation graph of A\a∗, given by (A\a∗, {(ai1,j1 , ai2,j2) |NG(ai1,j1) ∩ ai2,j2 6= 0}), is
isomorphic to H.

We provide a visual example in Figure 4, and, later, in Subsection 3.4, we show that this operation
applies to a fairly large class of graphs. For now, we focus using the above definition to prove trace
theorems for graphs that have an M -aggregation H, for some Gk,` ⊂ H ⊂ G∗k,`.

However, the M -aggregation procedure is not the only operation for which we can control the
behavior of the energy and boundary semi-norms. For instance, the behavior of our semi-norms
under the deletion of some number of edges can be bounded easily if there exists a set of paths of
constant length, with one path between each pair of vertices which are no longer adjacent, such that
no edge is in more than a constant number of these paths. In addition, the behavior of these semi-
norms under the disaggregation of large degree vertices is also relatively well-behaved, see [9] for
details. We give the following result regarding graphs (G,Γ) for which some H, Gk,` ⊂ H ⊂ G∗k,`, is
an M -aggregation of (G,Γ), but note that a large number of minor refinements are possible, such
as the two briefly mentioned in this paragraph.
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(a) graph (G,Γ) (b) partition A (c) G6,2 ⊂
H ⊂ G∗6,2

Figure 4. An example of an M -aggregation. Figure (A) provides a visual repre-
sentation of a graph G, with boundary vertices Γ enlarged. Figure (B) shows a
partition A of G, in which each aggregate (enclosed by dotted lines) has order at
most four. The set a∗ is denoted by a shaded region. Figure (C) shows the aggre-
gation graph H of A\a∗. The graph H satisfies G6,2 ⊂ H ⊂ G∗6,2, and is therefore
a 4-aggregation of (G,Γ).

Theorem 3.6. If H, Gk,` ⊂ H ⊂ G∗k,`, 4` < k < 2c`, c ∈ N, is an M -aggregation of (G,Γ) ∈ Gn,
then for any ϕ ∈ IRnΓ,

1

6M
√
M + 3 max{

√
3c, 2π}

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|G ≤ 28M2
√

3c+ 20 |ϕ|Γ.

The proof of this result is rather technical, and can be found in the appendix (Theorem A.2).

The same proof of Theorem 3.6 also immediately implies a similar result. Let L̃ ∈ IRnΓ×nΓ be the
Laplacian of the complete graph on Γ with weights w(i, j) = d−2

Γ (i, j). The same proof implies the
following.

Corollary 3.7. If H, Gk,` ⊂ H ⊂ G∗k,`, 4` < k < 2c`, c ∈ N, is an M -aggregation of (G,Γ) ∈ Gn,
then for any ϕ ∈ IRnΓ,

1

6M
√
M + 3 max{

√
3c, 2π}

〈L̃ϕ, ϕ〉1/2 ≤ min
u|Γ=ϕ

|u|G ≤ 28M2
√

3c+ 20 〈L̃ϕ, ϕ〉1/2.

3.3. Spectral Equivalence of SΓ and L
1/2
Γ . By Corollary 3.7, and the property 〈ϕ, SΓϕ〉 =

min
u|Γ=ϕ

|u|2G (see Proposition 2.1), in order to prove spectral equivalence between SΓ and L
1/2
Γ , it

suffices to show that L
1/2
Γ and L̃ are spectrally equivalent. This can be done relatively easily, and

leads to a proof of the main result of the section.

Theorem 3.8. If H, Gk,` ⊂ H ⊂ G∗k,`, 4` < k < 2c`, c ∈ N, is an M -aggregation of (G,Γ) ∈ Gn,
then for any ϕ ∈ IRnΓ,

1

36M2(M + 3) max{3c, 4π2}
(

2
3π +

√
2

27

) 〈L1/2
Γ ϕ,ϕ〉 ≤ 〈SΓϕ,ϕ〉 ≤

784M4(3c+ 20)(
1

2π −
√

2
12

) 〈L1/2
Γ ϕ,ϕ〉.

Proof. Let φ(i, j) = min{i− j mod nΓ, j− i mod nΓ}. G[Γ] is a cycle, so L̃(i, j) = −φ(i, j)−2 for
i 6= j. The spectral decomposition of LΓ is well known, namely,

LΓ =

⌊
nΓ
2

⌋∑
k=1

λk(LΓ)

[
xkx

T
k

‖xk‖2
+
yky

T
k

‖yk‖2

]
,
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where λk(LΓ) = 2−2 cos 2πk
nΓ

and xk(j) = sin 2πkj
nΓ

, yk(j) = cos 2πkj
nΓ

, j = 1, ..., nΓ. If nΓ is odd, then

λ(nΓ−1)/2 has multiplicity two, but if nΓ is even, then λnΓ/2 has only multiplicity one, as xnΓ/2 = 0.
If k 6= nΓ/2, we have

‖xk‖2 =

nΓ∑
j=1

sin2

(
2πkj

nΓ

)
=
nΓ

2
− 1

2

nΓ∑
j=1

cos

(
4πkj

nΓ

)
=
nΓ

2
− 1

4

[
sin(2πk(2 + 1

nΓ
))

sin 2πk
nΓ

− 1

]
=
nΓ

2
,

and so ‖yk‖2 =
nΓ

2
as well. If k = nΓ/2, then ‖yk‖2 = nΓ. If nΓ is odd,

L
1/2
Γ (i, j) =

2
√

2

nΓ

nΓ−1

2∑
k=1

[
1− cos

(
2kπ

nΓ

)]1/2 [
sin

(
2πki

nΓ

)
sin

(
2πkj

nΓ

)
− cos

(
2πki

nΓ

)
cos

(
2πkj

nΓ

)]

=
4

nΓ

nΓ−1

2∑
k=1

sin

(
π

2

2k

nΓ

)
cos

(
φ(i, j)π

2k

nΓ

)
=

2

nΓ

nΓ∑
k=0

sin

(
π

2

2k

nΓ

)
cos

(
φ(i, j)π

2k

nΓ

)
,

and if nΓ is even,

L
1/2
Γ (i, j) =

2

nΓ
(−1)i+j +

4

nΓ

nΓ
2
−1∑

k=1

sin

(
π

2

2k

nΓ

)
cos

(
φ(i, j)π

2k

nΓ

)

=
2

nΓ

nΓ∑
k=0

sin

(
π

2

2k

nΓ

)
cos

(
φ(i, j)π

2k

nΓ

)
.

L
1/2
Γ (i, j) is simply the trapezoid rule applied to the integral of sin(π2x) cos(φ(i, j)πx) on the interval

[0, 2]. Therefore,∣∣∣∣L1/2
Γ (i, j) +

2

π(4φ(i, j)2 − 1)

∣∣∣∣ =

∣∣∣∣L1/2
Γ (i, j)−

∫ 2

0
sin
(π

2
x
)

cos (φ(i, j)πx) dx

∣∣∣∣ ≤ 2

3n2
Γ

,

where we have used the fact that if f ∈ C2([a, b]), then∣∣∣∣ ∫ b

a
f(x)dx− f(a) + f(b)

2
(b− a)

∣∣∣∣ ≤ (b− a)3

12
max
ξ∈[a,b]

|f ′′(ξ)|.

Noting that nΓ ≥ 3, it quickly follows that(
1

2π
−
√

2

12

)
〈L̃ϕ, ϕ〉 ≤ 〈L1/2

Γ ϕ,ϕ〉 ≤
(

2

3π
+

√
2

27

)
〈L̃ϕ, ϕ〉.

Combining this result with Corollary 3.7, and noting that 〈ϕ, SΓϕ〉 = |û|2G, where û is the harmonic
extension of ϕ, we obtain the desired result

1

36M2(M + 3) max{3c, 4π2}
(

2
3π +

√
2

27

) 〈L1/2
Γ ϕ,ϕ〉 ≤ 〈SΓϕ,ϕ〉 ≤

584M4(3c+ 14)(
1

2π −
√

2
12

) 〈L1/2
Γ ϕ,ϕ〉.

�

3.4. An Illustrative Example. While the concept of a graph (G,Γ) having some H, Gk,` ⊂
H ⊂ G∗k,`, as an M -aggregation seems somewhat abstract, this simple formulation in itself is quite
powerful. As an example, we illustrate that this implies a trace theorem (and, therefore, spectral
equivalence) for all three-connected planar graphs with bounded face degree (number of edges in the
associated induced cycle) and for which there exists a planar spring embedding with a convex hull
that is not too thin (a bounded distance to Hausdorff distance ratio for the boundary with respect
to some point in the convex hull) and satisfies bounded edge length and small angle conditions.
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Let Gf≤cn be the elements of (G,Γ) ∈ Gn for which every face other than the outer face Γ has at
most c edges. We prove the following theorem1 in the appendix (Theorem A.3).

Theorem 3.9. If there exists a planar spring embedding X of (G,Γ) ∈ Gf≤c1n for which

(1) K = conv ({[XΓ]i,·}nΓ
i=1) satisfies

sup
u∈K

inf
v∈∂K

sup
w∈∂K

‖u− v‖
‖u− w‖

≥ c2 > 0,

(2) X satisfies

max
{i1,i2}∈E
{j1,j2}∈E

‖Xi1,· −Xi2,·‖
‖Xj1,· −Xj2,·‖

≤ c3 and min
i∈V

j1,j2∈N(i)

∠Xj1,·Xi,·Xj2,· ≥ c4 > 0,

then there exists an H, Gk,` ⊂ H ⊂ G∗k,`, ` ≤ k < 2c`, c ∈ N, such that H is an M -aggregation of
(G,Γ) where c and M are constants that depend on c1, c2, c3, and c4.

4. Approximately Energy Minimizing Embeddings

In this section, we make use of the analysis of Section 3 to give theoretical guarantees regarding
approximate solutions to (2.2), which inspires the construction of a natural algorithm to approxi-
mately solve this optimization problem. In addition, we give numerical results for our algorithm.
Though in the previous section we took great care to produce results with explicit constants for
the purpose of illustrating practical usefulness, in what follows we simply suppose that we have the
spectral equivalence

(4.1)
1

c1
〈L1/2

Γ x, x〉 ≤ 〈SΓx, x〉 ≤ c2 〈L1/2
Γ x, x〉,

for all x ∈ IRnΓ and some constants c1 and c2 which are not too large and can be explicitly chosen
based on the results of Section 3.

4.1. Theoretical Guarantees. Again, we note that if the minimal two non-trivial eigenvectors
of SΓ produce a convex embedding, then this is the exact solution of (2.2). However, if this is not
the case, then, by spectral equivalence, we can still make a number of statements.

The convex embedding XC given by

[XC ]j,· =
2

nΓ

(
cos

2πj

nΓ
, sin

2πj

nΓ

)
, j = 1, ..., nΓ,

is the embedding of the two minimal non-trivial eigenvectors of L
1/2
Γ , and therefore,

(4.2) hΓ(XC) ≤ 4c2 sin
π

nΓ
≤ c1c2 min

XΓ∈cl(X )
hΓ(XΓ),

thereby producing a c1c2 approximation guarantee for (2.2).
In addition, we can guarantee that the optimal embedding is largely contained in the subspace

corresponding to the k minimal eigenvalues of L
1/2
Γ when k is a reasonably large constant. In

particular, if X∗Γ minimizes (2.2), and Πi is the `2-orthogonal projection onto the direct sum of the

1The below theorem is shown for ` ≤ k to avoid certain trivial cases involving small n. The same theorem holds
for n sufficiently large and 4` < k, but it should also be noted that the entire analysis of this section also holds for
` ≤ k, albeit with worse constants.
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eigenvectors corresponding to the i minimal non-trivial eigenvalues (counted with multiplicity) of

L
1/2
Γ , then

hΓ(X∗Γ) ≥ Tr
(

[(I −Π2i)X
∗
Γ]T SΓ(I −Π2i)X

∗
Γ

)
≥ 1

c1
Tr
(

[(I −Π2i)X
∗
Γ]T L

1/2
Γ (I −Π2i)X

∗
Γ

)
≥ 2

c1
sin

(
π(i+ 1)

nΓ

)
Tr
(

[(I −Π2i)X
∗
Γ]T (I −Π2`)X

∗
Γ

)
,

and hΓ(X∗Γ) ≤ hΓ(XC), which, by using the property 2x
π ≤ sinx ≤ x for all x ∈

[
0, π2

]
, implies that

Tr
(

[(I −Π2i)X
∗
Γ]T (I −Π2i)X

∗
Γ

)
≤ 2c1c2 sin (π/nΓ)

sin (π(i+ 1)/nΓ)
≤ πc1c2

i+ 1
.

4.2. Algorithmic Considerations. The theoretical analysis of Subsection 4.1 inspires a number
of natural techniques to approximately solve (2.2), such as exhaustively searching the direct sum of
some constant number of low energy eigenspaces of SΓ. However, numerically, it appears that when
the pair (G,Γ) satisfies certain conditions, such as the conditions of Theorem 3.9, the minimal non-
trivial eigenvector pair often produces a convex embedding, and when it does not, the removal of
some small number of boundary vertices produces a convex embedding. If the embedding is almost
convex (i.e., convex after the removal of some small number of vertices), a convex embedding can
be produced by simply moving these vertices so that they are on the boundary and between their
two neighbors.

Given an approximate solution to (2.2), one natural approach simply consists of iteratively ap-
plying a smoothing matrix, such as dI −SΓ, d > ρ(SΓ), or the inverse S−1

Γ defined on the subspace
{x | 〈x,1〉 = 0}, until the matrix XΓ is no longer a convex embedding. In fact, applying this pro-
cedure to XC immediately produces a technique that approximates the optimal solution within a
factor of at least c1c2, and possibly better given smoothing. In order to have the theoretical guar-
antees that result from using XC , and benefit from the possibly nearly-convex Schur complement
low energy embedding, we introduce Algorithm 1.

Algorithm 1 takes a graph (G,Γ) ∈ Gn as input, and first computes the minimal two non-trivial
eigenvectors of the Schur complement, denoted by X. If X is planar and convex, the algorithm
terminates and outputs X, as it has found the exact solution to (2.2). If X is non-planar, then this
embedding is replaced by XC , the minimal two non-trivial eigenvectors of the boundary Laplacian
to the one-half power. If X is planar, but non-convex, then some procedure is applied to transform
X into a convex embedding. The embedding is then shifted so that the origin is the center of mass,
and a change of basis is applied so that XTX = I. However, if hΓ(X) > hΓ(XC), then clearly XC

is a better initial approximation, and we still replace X by XC . We then perform some form of

smoothing to our embedding X, resulting in a new embedding X̂. If X̂ is non-planar, the algorithm

terminates and outputs X. If X̂ is planar, we again apply some procedure to transform X̂ into

a convex embedding, if it is not already convex. Now that we have a convex embedding X̂, we

shift X̂ and apply a change of basis, so that X̂T1 = 0 and X̂T X̂ = I. If hΓ(X̂) < hΓ(X), then

we replace X by X̂ and repeat this smoothing procedure, producing a new X̂, until the algorithm

terminates. If hΓ(X̂) ≥ hΓ(X), then we terminate the algorithm and output X.
It is immediately clear from the statement of the algorithm that the following result holds.

Proposition 4.1. The embedding Xalg of Algorithm 1 satisfies hΓ(Xalg) ≤ c1c2 min
XΓ∈X

hΓ(XΓ).

We now discuss some of the finer details of Algorithm 1. Determining whether an embedding
is planar can be done in near-linear time using the sweep line algorithm [18]. If the embedding is
planar, testing if it is also convex can be done in linear time. One such procedure consists of shifting
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Algorithm 1 Embed the Boundary Γ

X = minimaleigenvectors(G,Γ)
If isplanar(X) = 0,

X ←
{

2

nΓ

(
cos

2πj

nΓ
, sin

2πj

nΓ

)}nΓ

i=1
Else

If isconvex(X) = 1,
Xalg = X
end Algorithm

Else
X ← makeconvex(X)

X ← X −
1nΓ1TnΓ

X

nΓ

solve [XTX]Q = QΛ, Q orthogonal, Λ diagonal

X ← XQΛ−1/2

If hΓ(X) > hΓ

({
2

nΓ

(
cos

2πj

nΓ
, sin

2πj

nΓ

)}nΓ

i=1

)
X ←

{
2

nΓ

(
cos

2πj

nΓ
, sin

2πj

nΓ

)}nΓ

i=1
gap = 1
While gap > 0,

X̂ ← smooth(X)

If isplanar(X̂) = 0,
gap← −1

Else
If isconvex(X̂) = 0,

X̂ ← makeconvex(X̂)

X̂ ← X̂ −
1nΓ1TnΓ

X̂

nΓ

solve [X̂T X̂]Q = QΛ, Q orthogonal, Λ diagonal

X̂ ← X̂QΛ−1/2

gap← hΓ(X)− hΓ(X̂)
If gap > 0

X ← X̂
Xalg = X

the embedding so the origin is the mass center, checking if the angles each vertex makes with the x-
axis are are properly ordered, and then verifying that each vertex xi is not in conv({o, xi−1, xi+1}).
Also, in practice, it is advisable to replace conditions of the form hΓ(X)−hΓ(X̂) > 0 in Algorithm

1 by the condition hΓ(X) − hΓ(X̂) > tol for some small value of tol, in order to ensure that the
algorithm terminates after some finite number of steps.

There are a number of different choices for smoothing procedures and techniques to make a planar
embedding convex. For the numerical experiments that follow, we simply consider the smoothing
operation X ← S−1

Γ X, and make a planar embedding convex by replacing the embedding by its
convex hull, and place vertices equally spaced along each line. For example, if x1 and x5 are vertices
of the convex hull, but x2, x3, x4 are not, then we set x2 = 3/4x1 + 1/4x5, x3 = 1/2x1 + 1/2x5,
and x4 = 1/4x1 + 3/4x5. Given the choices of smoothing and making an embedding convex that
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we have outlined, the version of Algorithm 1 that we are testing has complexity near-linear in n.
The main cost of this procedure is the computations that involve SΓ.

All variants of Algorithm 1 require the repeated application of SΓ or S−1
Γ to a vector in order

to compute the minimal eigenvectors of SΓ (possibly also to perform smoothing). The Schur
complement SΓ is a dense matrix and requires the inversion of a n×n matrix, but can be represented
as the composition of functions of sparse matrices. In practice, SΓ should never be formed explicitly.
Rather, the operation of applying SΓ to a vector x should occur in two steps. First, the sparse
Laplacian system (Lo +Do)y = Ao,Γx should be solved for y, and then the product Sx is given by

SΓx = (LΓ +DΓ)x−ATo,Γy. Each application of SΓ is therefore an O(n log n) procedure (using an

O(n log n) Laplacian solver). The application of the inverse S−1
Γ defined on the subspace {x | 〈x,1〉 =

0} also requires the solution of a Laplacian system. As noted in [21], the action of S−1
Γ on a vector

x ∈ {x | 〈x,1〉 = 0} is given by

S−1
Γ x =

(
0 I

)(Lo +Do −Ao,Γ
−ATo,Γ LΓ +DΓ

)−1(
0
x

)
,

as verified by the computation

SΓ

[
S−1

Γ x
]

= SΓ

(
0 I

) [( I 0

−ATo,Γ(Lo +Do)
−1 I

)(
Lo +Do −Ao,Γ

0 SΓ

)]−1(
0
x

)
= SΓ

(
0 I

)(Lo +Do −Ao,Γ
0 SΓ

)−1( I 0

ATo,Γ(Lo +Do)
−1 I

)(
0
x

)
= SΓ

(
0 I

)(Lo +Do −Ao,Γ
0 SΓ

)−1(
0
x

)
= x.

Given that the application of S−1
Γ has the same complexity as an application SΓ, the inverse power

method is naturally preferred over the shifted power method for smoothing.

4.3. Numerical Results. We perform a number of simple experiments, which illustrate the ben-
efits of using the Schur complement to produce an embedding. In particular, we consider the
same two types of triangulations as in Figure 1, random triangulations of the unit disk and the
3-by-1 rectangle. For each of these two convex bodies, we sample n points uniformly at random
and compute a Delaunay triangulation. For each triangulation, we compute the minimal two non-
trivial eigenvectors of the graph Laplacian LG, and the minimal two non-trivial eigenvectors of the
Schur complement SΓ of the Laplacian LG with respect to the interior vertices V \Γ. The properly
normalized and shifted versions of the Laplacian and Schur complement embeddings are denoted
by Xl and Xs, respectively. We then check whether each of these embeddings of the boundary is
planar. If the embedding is not planar, we note how many edge crossings the embedding has. If
the embedding is planar, we also determine if it is convex, and compute the number of boundary
vertices which are not vertices of the convex hull. If the embedding is planar, but not convex, then
we simply replace it by the embedding corresponding to the convex hull of the original layout (as
mentioned in Subsection 4.2). This convex-adjusted layout of the Laplacian and Schur complement
embeddding (shifted and properly scaled) is denoted by Xlc and Xsc, respectively. The embedding
defined by minimal two non-trivial eigenvectors of the boundary Laplacian LΓ, denoted by XC , is
the typical circular embedding of a cycle (defined in Subsection 4.1). Of course the value hΓ(Xs)
is a lower bound for the minimum of (2.2), and this estimate is exact if Xs is a planar and convex
embedding. The embedding resulting from Algorithm 1 is denoted by Xalg. For each triangulation,
we compute the ratio of hΓ(Xs) to hΓ(Xl), hΓ(Xsc), hΓ(Xalg), hΓ(Xlc), and hΓ(XC), conditional
on each of these layouts being planar. We perform this procedure one hundred times each for both
convex bodies and a range of values of n. We report the results in Table 4.3.
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Unit Circle 3× 1 Rectangle
n = 1250 2500 5000 10000 20000 1250 2500 5000 10000 20000

% Xs 100 100 100 100 100 100 100 98 98 97
planar Xl 100 100 100 100 100 67 67 65 71 67

crossings Xs n/a n/a n/a n/a n/a n/a n/a 0.042 0.062 0.063
per edge Xl n/a n/a n/a n/a n/a 0.143 0.119 0.129 0.132 0.129
# not Xs 0.403 0.478 0.533 0.592 0.645 0.589 0.636 0.689 0.743 0.784
convex Xl 0.001 0 0 0 0 0.397 0.418 0.428 0.443 0.448

Xl 1.026 1.024 1.02 1.017 1.015 1.938 2.143 2.291 2.555 2.861
energy Xsc 1.004 1.004 1.004 1.004 1.003 1.127 1.164 1.208 1.285 1.356
ratio Xalg 1.004 1.004 1.004 1.004 1.003 1.124 1.158 1.204 1.278 1.339

Xlc 1.026 1.0238 1.02 1.017 1.015 1.936 2.163 2.301 2.553 2.861
XC 1.023 1.023 1.02 1.017 1.016 1.374 1.458 1.529 1.676 1.772

Table 1. Numerical results for experiments on Delaunay triangulations of n points
randomly generated in a disk or rectangle. One hundred experiments were performed
for each convex body and choice of n. The row “% planar” gives the percent of the
samples for which the boundary embedding was planar. The row “crossings per
edge” reports the average number of edge crossings per edge, where the average is
taken over all non-planar embeddings. In some cases all one hundred experiments
result in planar embeddings, in which case this entry does not contain a value. The
row “# not convex” reports the average fraction of vertices which are not vertices of
the resulting convex hull. This average is taken over all planar embeddings. The row
“energy ratio” reports the average ratio between the value of the objective function
hΓ(·) for the embedding under consideration and hΓ(Xs). This, again, is an average
over all planar embeddings.

(a) Laplacian Embedding (b) Schur Complement Embedding

Figure 5. An example of the Laplacian embedding Xl vs the (unsmoothed) Schur
complement embedding Xs of the boundary of the Delaunay triangulation of 1250
points randomly generated in a 3 × 1 rectangle. The Laplacian embedding is non-
planar, and far from convex. The Schur complement embedding is planar and almost
a convex embedding.

These numerical results illustrate a number of phenomena. For instance, when considering the
disk both the Laplacian embedding Xl and Schur complement Xs are always planar, usually close
to convex, and their convex versions (Xlc and Xsc) both perform reasonably well compared to the
lower bound hΓ(Xs) for Problem (2.2). The embedding Xalg from Algorithm 1 produced small
improvements over the results of the Schur complement, but this improvement was negligible when
average ratio was rounded to the thousands place. As expected, the LΓ-based embedding XC
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performs well in this instance, as the original embedding of the boundary in the triangulation is
already a circle. Most likely, any graph which possesses a very high level of macroscopic symmetry
shares similar characteristics. However, when we consider the rectangle, the convex version of
the Schur complement embedding has a significantly better performance than the Laplacian-based
embedding. In fact, for a large percentage of the simulations the Laplacian based-embedding Xl

was non-planar, and possessed a relatively large number of average crossings per edge. We give a
visual representation of the typical difference in the Laplacian vs Schur complement embeddings of
the boundary in Figure 5. In addition, in this instance, the smoothing procedure of Algorithm 1
leads to small, but noticeable improvements. Of course, the generic embedding XC performs poorly
in this case, as the embedding does not take into account any of the dynamics of the interior.

The Schur complement embedding clearly outperforms the Laplacian embedding, especially for
triangulations of the rectangle. From this, we can safely conclude that Laplacian embedding is
not a reliable method to embed graphs, and note that, while spectral equivalence does not imply
that the minimal two non-trivial eigenvectors produce a planar, near-convex embedding, practice
illustrates that for well behaved graphs with some level of structure, this is a likely result.
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Appendix A. Technical Trace Theorem Proofs

Lemma A.1. Let G = Gk,`, 4` < k < 2c`, c ∈ N, with boundary Γ = {(i, 1)}ki=1. For any ϕ ∈ IRk,
the vector u defined by (3.1) satisfies

|u|G ≤
√

2c+
233

9
|ϕ|Γ.

Proof. We can decompose |u|2G into two parts, namely,

|u|2G =

k∑
i=1

∑̀
j=1

(u(i+ 1, j)− u(i, j))2 +

k∑
i=1

`−1∑
j=1

(u(i, j + 1)− u(i, j))2.

We bound each sum separately, beginning with the first. We have

u(i+ 1, j)− u(i, j) =

(
1− j − 1

`− 1

)
(a(i+ 1, j)− a(i, j))

=

(
1− j − 1

`− 1

)
ϕ(i+ j)− ϕ(i+ 1− j)

2j − 1
.

Squaring both sides and noting that 4` < k, we have

k∑
i=1

∑̀
j=1

(u(i+ 1, j)− u(i, j))2 ≤
k∑
i=1

∑̀
j=1

[
ϕ(i+ j)− ϕ(i+ 1− j)

2j − 1

]2

≤
k∑
p=1

2`−1∑
h=1

[
ϕ(p+ h)− ϕ(p)

h

]2

≤ |ϕ|2Γ.

We now consider the second sum. Each term can be decomposed as

u(i, j + 1)− u(i, j) =
a− a(i, j)

`− 1
+

(
1− j

`− 1

)
[a(i, j + 1)− a(i, j)],

which leads to the upper bound

k∑
i=1

`−1∑
j=1

(u(i, j + 1)− u(i, j))2 ≤ 2

k∑
i=1

`−1∑
j=1

[
a− a(i, j)

`− 1

]2

+ 2

k∑
i=1

`−1∑
j=1

(a(i, j + 1)− a(i, j))2.
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We estimate these two terms in the previous equation separately, beginning with the first. The
difference a− a(i, j) can be written as

a− a(i, j) =
1

k

k∑
p=1

ϕ(p)− 1

2j − 1

j−1∑
h=1−j

ϕ(i+ h)

=
1

k(2j − 1)

k∑
p=1

j−1∑
h=1−j

ϕ(p)− ϕ(i+ h).

Squaring both sides,

(a− a(i, j))2 =
1

k2(2j − 1)2

 k∑
p=1

j−1∑
h=1−j

ϕ(p)− ϕ(i+ h)

2

≤ 1

k(2j − 1)

k∑
p=1

j−1∑
h=1−j

(ϕ(p)− ϕ(i+ h))2.

Summing over all i and j gives

k∑
i=1

`−1∑
j=1

[
(a− a(i, j))

`− 1

]2

≤ 1

(`− 1)2

k∑
i=1

`−1∑
j=1

1

k(2j − 1)

k∑
p=1

j−1∑
h=1−j

(ϕ(p)− ϕ(i+ h))2

=
k

4(`− 1)2

`−1∑
j=1

1

2j − 1

j−1∑
h=1−j

k∑
i,p=1

(ϕ(p)− ϕ(i+ h))2

k2/4

≤ k

4(`− 1)
|ϕ|2Γ ≤ c|ϕ|2Γ.

This completes the analysis of the first term. For the second term, we have

a(i, j + 1)− a(i, j) =
1

2j + 1

ϕ(i+ j) + ϕ(i− j)− 2

2j − 1

j−1∑
h=1−j

ϕ(i+ h)

 .
Next, we note that∣∣∣∣∣ϕ(i+ j)− 1

2j − 1
ϕ(i)− 2

2j − 1

j−1∑
h=1

ϕ(i+ h)

∣∣∣∣∣ =

∣∣∣∣∣ϕ(i+ j)− ϕ(i)

2j − 1
+ 2

j−1∑
h=1

ϕ(i+ j)− ϕ(i+ h)

2j − 1

∣∣∣∣∣
≤ 2

j−1∑
h=0

|ϕ(i+ j)− ϕ(i+ h)|
2j − 1

,

and, similarly,∣∣∣∣∣ϕ(i− j)− 1

2j − 1
ϕ(i)− 2

2j − 1

j−1∑
h=1

ϕ(i− h)

∣∣∣∣∣ =

∣∣∣∣∣ϕ(i− j)− ϕ(i)

2j − 1
+ 2

j−1∑
h=1

ϕ(i− j)− ϕ(i− h)

2j − 1

∣∣∣∣∣
≤ 2

j−1∑
h=0

|ϕ(i− j)− ϕ(i− h)|
2j − 1

.

Hence,

l−1∑
j=1

(a(i, j+1)−a(i, j))2 ≤
l−1∑
j=1

8

(2j + 1)2

(j−1∑
h=0

|ϕ(i+ j)− ϕ(i+ h)|
2j − 1

)2

+

(
j−1∑
h=0

|ϕ(i− j)− ϕ(i− h)|
2j − 1

)2
 .
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Once we sum over all i, the sum of the first and second term are identical, and therefore

k∑
i=1

l−1∑
j=1

(a(i, j + 1)− a(i, j))2 ≤ 16

k∑
i=1

l−1∑
j=1

(
j−1∑
h=0

|ϕ(i+ j)− ϕ(i+ h)|
(2j − 1)(2j + 1)

)2

.

We have

j−1∑
h=0

|ϕ(i+ j)− ϕ(i+ h)|
(2j − 1)(2j + 1)

≤ 1

3j

i+j−1∑
p=i

|ϕ(i+ j)− ϕ(p)|
j

≤ 1

3j

i+j−1∑
p=i

|ϕ(i+ j)− ϕ(p)|
i+ j − p

,

which implies that

16

k∑
i=1

l−1∑
j=1

(
j−1∑
h=0

|ϕ(i+ j)− ϕ(i+ h)|
(2j − 1)(2j + 1)

)2

≤ 16

9

k∑
i=1

l−1∑
j=1

1

j

i+j−1∑
p=i

|ϕ(i+ j)− ϕ(p)|
i+ j − p

2

≤ 16

9

k+`−1∑
q=1

q−1∑
m=1

(
1

q −m

q−1∑
p=m

|ϕ(q)− ϕ(p)|
q − p

)2

.

Letting r = q −m, s = q − p, and using Hardy’s inequality [8, Theorem 326], we obtain

16

9

k+`−1∑
q=1

q−1∑
m=1

(
1

q −m

q−1∑
p=m

|ϕ(q)− ϕ(p)|
q − p

)2

=
16

9

k+`−1∑
q=1

q−1∑
r=1

(
1

r

r∑
s=1

|ϕ(q)− ϕ(q − s)|
s

)2

≤ 64

9

k+`−1∑
q=1

q−1∑
r=1

[
ϕ(q)− ϕ(q − r)

r

]2

=
32

9

k+`−1∑
q1,q2=1
q1 6=q2

[
ϕ(q1)− ϕ(q2)

q1 − q2

]2

≤ 32

9

k+`−1∑
q1,q2=1
q1 6=q2

[
ϕ(q1)− ϕ(q2)

dG ((q1, 1), (q2, 1))

]2

,

where, if q > k, we associate (q, 1) with (q∗, 1), where q∗ = q mod k and 1 ≤ q∗ ≤ k. The previous
sum consists of some amount of over-counting, with some terms (ϕ(q1) − ϕ(q2))2 appearing eight
times. However, the chosen indexing of the cycle Ck is arbitrary. Therefore, we can average over
all k different choices of ordering that preserve direction. In particular,

k∑
i=1

l−1∑
j=1

(a(i, j + 1)− a(i, j))2 ≤ 32

9k

k−1∑
t=0

k+`−1∑
q1,q2=1
q1 6=q2

[
ϕ(q1 + t)− ϕ(q2 + t)

dG ((q1, 1), (q2, 1))

]2

.

For each choice of t, there are ` − 1 indices which are over-counted by both summations. Let us
consider a specific term corresponding to the indices q1 and q2. If neither of these are over-counted
indices, the term will appear twice. If exactly one is an over-counted index, the term will appear
four times. Finally, if both are over-counted indices, the term will appear eight times. Summing
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over all choices of t any term appears at most 2(k− `) + 8` times, which leads to the upper bound

k∑
i=1

l−1∑
j=1

(a(i, j + 1)− a(i, j))2 ≤ 32

9

2(k − `) + 8`

k
|ϕ|2Γ <

112

9
|ϕ|2Γ.

Combining all our estimates, we obtain the desired result

|u|G ≤
√

2c+
233

9
|ϕ|Γ.

�

Theorem A.2. If H, Gk,` ⊂ H ⊂ G∗k,`, 4` < k < 2c`, c ∈ N, is an M -aggregation of (G,Γ) ∈ Gn,
then for any ϕ ∈ IRnΓ,

1

6M
√
M + 3 max{

√
3c, 2π}

|ϕ|Γ ≤ min
u|Γ=ϕ

|u|G ≤ 28M2
√

3c+ 20 |ϕ|Γ.

Proof. We first prove that there is an extension u of ϕ which satisfies |u|G ≤ c1|ϕ|Γ for some c1.
To do so, we define auxiliary functions û and ϕ̂ on (G∗2k,`,Γ2k,`). Let

ϕ̂(p) =


max

q∈Γ∩a(p+1)/2,1

ϕ(q) if p is odd,

min
q∈Γ∩ap/2,1

ϕ(q) if p is even,

and û be extension (3.1) of ϕ̂. The idea is to upper bound the semi-norm for u by û, for û by ϕ̂
(using Corollary 3.4), and for ϕ̂ by ϕ. On each aggregate ai,j , let u take values between û(2i− 1, j)

and û(2i, j), and let u equal a on a∗. We can decompose |u|2G into

|u|2G =
k∑
i=1

∑̀
j=1

∑
p,q∈ai,j ,
p∼q

(u(p)− u(q))2 +
k∑
i=1

∑̀
j=1

∑
p∈ai,j ,
q∈ai+1,j ,
p∼q

(u(p)− u(q))2

+
k∑
i=1

`−1∑
j=1

∑
p∈ai,j ,

q∈ai−1,j+1,
p∼q

(u(p)− u(q))2 +
k∑
i=1

`−1∑
j=1

∑
p∈ai,j ,

q∈ai+1,j+1,
p∼q

(u(p)− u(q))2

+

k∑
i=1

`−1∑
j=1

∑
p∈ai,j ,
q∈ai,j+1,
p∼q

(u(p)− u(q))2,

and bound each term of |u|2G separately, beginning with the first. The maximum energy semi-norm
of an m vertex graph that takes values in the range [a, b] is bounded above by (m/2)2(b − a)2.
Therefore, ∑

p,q∈ai,j ,
p∼q

(u(p)− u(q))2 ≤ M2

4
(û(2i− 1, j)− û(2i, j))2 .

For the second term,∑
p∈ai,j ,
q∈ai+1,j ,
p∼q

(u(p)− u(q))2 ≤ M2 max
i1∈{2i−1,2i},
i2∈{2i+1,2i+2}

(û(i1, j)− û(i2, j))
2

≤ 3M2
[
(û(2i− 1, j)− û(2i, j))2 + (û(2i, j)− û(2i+ 1, j))2

+(û(2i+ 1, j)− û(2i+ 2, j))2
]
.
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The exact same type of bound holds for the third and fourth terms. For the fifth term,∑
p∈ai,j ,
q∈ai,j+1,
p∼q

(u(p)− u(q))2 ≤M2 max
i1∈{2i−1,2i},
i2∈{2i−1,2i}

(û(i1, j)− û(i2, j + 1))2,

and, unlike terms two, three, and four, this maximum appears in |û|2G∗2k,` . Combining these three

bounds, we obtain

|u|G ≤
√

73M

2
|û|G∗2k,` .

Next, we lower bound |ϕ|Γ by a constant times |ϕ̂|Γ2k,`
. By definition, in Γ ∩ ai,1 there is a vertex

which takes value ϕ̂(2i− 1) and a vertex which takes value ϕ̂(2i). This implies that every term in
|ϕ̂|Γ2k,`

is a term in |ϕ|Γ, with possibly different denominator. Distances between vertices on Γ can
be decreased by at most a factor of 2M on Γ2k,`. In addition, it may be the case that an aggregate

contains only one vertex of Γ, which results in ϕ̂(2i − 1) = ϕ̂(2i). Therefore, a given term in |ϕ|2Γ
could appear four times in |ϕ̂|2Γ2k,`

. Combining these two facts, we immediately obtain the bound

|ϕ̂|Γ2k,`
≤ 4M |ϕ|Γ,

which gives the estimate

|u|G ≤
√

73M

2
|û|G∗2k,` ≤

√
73M

2

√
8c+

475

9
|ϕ̂|Γ2k,`

≤ 28M2
√

3c+ 20 |ϕ|Γ,

where we have slightly increased the constants in the last inequality, for the sake of presentation.
This completes the first half of the proof.

All that remains is to show that for any u, |ϕ|Γ ≤ c2|u|G for some c2. To do so, we define
auxiliary functions ũ and ϕ̃ on (G2k,2`,Γ2k,2`). Let

ũ(i, j) =


max

p∈adi/2e,dj/2e
u(p) if i = j mod 2,

min
p∈adi/2e,dj/2e

u(p) if i 6= j mod 2.

Here, the idea is to lower bound the semi-norm for u by ũ, for ũ by ϕ̃ (using Corollary 3.4), and
for ϕ̃ by ϕ. We can decompose |ũ|2G2k,2`

into

|ũ|2G2k,2`
= 4

k∑
i=1

∑̀
j=1

(ũ(2i− 1, 2j − 1)− ũ(2i, 2j − 1))2

+

k∑
i=1

∑̀
j=1

(ũ(2i, 2j − 1)− ũ(2i+ 1, 2j − 1))2 + (ũ(2i, 2j)− ũ(2i+ 1, 2j))2

+

k∑
i=1

`−1∑
j=1

(ũ(2i− 1, 2j)− ũ(2i− 1, 2j + 1))2 + (ũ(2i, 2j)− ũ(2i, 2j + 1))2,

and bound each term separately, beginning with the first. The minimum squared energy semi-norm
of an m vertex graph that takes value a at some vertex and value b at some vertex is bounded
below by (b− a)2/m. Therefore,

(ũ(2i− 1, 2j − 1)− ũ(2i, 2j − 1))2 ≤M
∑

p,q∈ai,j ,
p∼q

(u(p)− u(q))2.
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For the second term, we first note that

min
i1∈{2i−1,2i},
i2∈{2i+1,2i+2}

(ũ(i1, 2j)− ũ(i2, 2j))
2 ≤

∑
p∈ai,j ,
q∈ai+1,j ,
p∼q

(u(p)− u(q))2.

One can quickly verify by application of Cauchy-Schwarz that

(ũ(2i− 1, 2j)− ũ(2i+ 2, 2j))2 + (ũ(2i, 2j)− ũ(2i+ 1, 2j))2

is bounded above by

3(ũ(2i− 1, 2j)− ũ(2i, 2j))2 + 3(ũ(2i+ 1, 2j)− ũ(2i+ 2, 2j))2 + 4 min
i1∈{2i−1,2i},
i2∈{2i+1,2i+2}

(ũ(i1, 2j)− ũ(i2, 2j))
2.

The technique for the third term is identical to that of the second term. Therefore,

|ũ|G2k,2`
≤ 2
√
M + 3 |u|G.

Next, we upper bound |ϕ|Γ by a constant multiple of |ϕ̃|Γ2k,2`
. We can write |ϕ|2Γ as

|ϕ|2Γ =
k∑
i=1

∑
p,q∈Γ∩ai,1

(ϕ(p)− ϕ(q))2

d2
G(p, q)

+
k−1∑
i1=1

k∑
i2=i1+1

∑
p∈Γ∩ai1,1,
q∈Γ∩ai2,1

(ϕ(p)− ϕ(q))2

d2
G(p, q)

,

and bound each term separately. The first term is bounded by∑
p,q∈Γ∩ai,1

(ϕ(p)− ϕ(q))2

d2
G(p, q)

≤ M2

4
(ϕ̃(2i− 1)− ϕ̃(2i))2.

For the second term, we first note that dG(p, q) ≥ 3dΓ2k,2`
((m1, 1), (m2, 1)) for p ∈ Γ ∩ ai1,1,

q ∈ Γ∩ ai2,1, m1 ∈ {2i1− 1, 2i1}, m2 ∈ {2i2− 1, 2i2}, which allows us to bound the second term by∑
p∈Γ∩ai1,1,
q∈Γ∩ai2,1

(ϕ(p)− ϕ(q))2

d2
G(p, q)

≤ 9M2 max
m1∈{2i1−1,2i1},
m2∈{2i2−1,2i2}

(ϕ̃(m1)− ϕ̃(m2))2

d2
Γ2k,2`

(m1,m2)
.

This immediately implies that

|ϕ|Γ ≤ 3M |ϕ̃|Γ2k,2`
,

and, therefore,

|ϕ|Γ ≤ 3M |ϕ̃|Γ2k,2`
≤ 3M max{

√
3c, 2π}|ũ|G2k,2`

≤ 6M
√
M + 3 max{

√
3c, 2π} |u|G.

This completes the proof. �

Theorem A.3. If there exists a planar spring embedding X of (G,Γ) ∈ Gf≤c1n for which

(1) K = conv ({[XΓ]i,·}nΓ
i=1) satisfies

sup
u∈K

inf
v∈∂K

sup
w∈∂K

‖u− v‖
‖u− w‖

≥ c2 > 0,

(2) X satisfies

max
{i1,i2}∈E
{j1,j2}∈E

‖Xi1,· −Xi2,·‖
‖Xj1,· −Xj2,·‖

≤ c3 and min
i∈V

j1,j2∈N(i)

∠Xj1,·Xi,·Xj2,· ≥ c4 > 0,

then there exists an H, Gk,` ⊂ H ⊂ G∗k,`, ` ≤ k < 2c`, c ∈ N, such that H is an M -aggregation of
(G,Γ) where c and M are constants that depend on c1, c2, c3, and c4.
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Proof. This proof consists of three main parts. First, we will prove some basic properties regarding
the embedding X. Second, we will partition K into subregions, and prove a number of properties
regarding these subregions. Third, we will use these subregions to define a partition of the vertex
set of G, and prove that this partition is an M -aggregation.

The majority of the estimates that follow are not tight, and due to the long nature of this proof,
simplicity is always preferred over improved constants. This proof relies on a sufficiently large
dimension n, so that functions of c1, c2, c3, and c4 are sufficiently small in comparison. If at any
point during the course of the proof this assumption does not hold, then we may conclude that at
least one of these constants depends on n, and may take M = n, thus completing the proof.

We begin by proving a number of preliminary estimates, obtained by simple geometry. The
conditions of the theorem do not depend on the scale or relative location of the embedding X, so,
without loss of generality, we may suppose that the choice of u which maximizes (1) is the origin
o, and that the minimum edge length

min
(i1,i2)∈E

‖Xi1,· −Xi2,·‖ = 1.

We now state a number of basic facts.

Fact 1: The maximum edge length is at most c3.
Fact 2: The diameter of every inner face is at most 1

2c1c3.

Fact 3: The area of each interior face is at least a1 := 1
2 sin c4.

Fact 4: The area of each interior face is at most a2 := 1
4c1c

2
3 cot π

c1
.

Fact 5: G has at least 2
c1
n faces and at most 2n faces.

Fact 6: The area of K is at least 2
c1
a1n and at most 2a2n.

Fact 1 follows from condition (2). Fact 2 is based on the upper bounds c1 on edge lengths and
c3 on number of edges in an inner face. The lower bound in Fact 3 is the area of a triangle with
two sides of length one and internal angle c4, a triangle which is contained, by assumption, in every
inner face. The upper bound in Fact 4 is the area of a regular c1-gon with side lengths c3. Fact
5 follows from Euler’s formula and three-connectedness. Fact 6 is simply an application of Fact 5
and the upper and lower bounds on the area of an inner face.

Using Fact 6, we can upper bound the distance and lower bound the Hausdorff distance (denoted

by dH(·, ·)) between o and ∂K by

d(o, ∂K) ≤
√

2a2n

π
and dH(o, ∂K) ≥

√
2a1n

πc1
.

Combining these inequalities with condition (1), we obtain the estimates

c2

√
2a1n

πc1
≤ d(o, ∂K) ≤

√
2a2n

π
and

√
2a1n

πc1
≤ dH(o, ∂K) ≤ 1

c2

√
2a2n

π
.

Let us write points x ∈ R2 in polar coordinates x = (r, θ). Define ∂Kθ to be the unique x ∈ ∂K
satisfying x = (r, θ), and ∂Kθ1,θ2 to be the shortest curve between ∂Kθ1 and ∂Kθ2 lying entirely in
∂K. The boundary ∂K is contained in the annulus

∂K ⊂

{
x

∣∣∣∣∣ c2

√
2a1n

πc1
≤ ‖x‖ ≤ 1

c2

√
2a2n

π

}
,

and, therefore, by the convexity of K, the angle ∠ o ∂Kθ1 ∂Kθ2 is bounded away from 0 and π, say

0 < c5 ≤ ∠ o ∂Kθ1 ∂Kθ2 ≤ π − c5 < π
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for all |θ1−θ2| ≤ π/4 and some constant c5 that is independent of n. The condition on the distance
between θ1 and θ2 is arbitrary, but avoids having two points on opposite sides of o.

We are now prepared to define a partition of K. Let k, ` ∈ N equal

k =

⌊
c2

c1c3

√
πa1n

2c1

⌋
and ` =

⌊
c2 sin c5

2c1c3

√
a1n

2πc1

⌋
and define

Ki,1 = conv
(
∂K 2π(i−1)

k
, 2πi
k

, 2`−1
2` ∂K 2π(i−1)

k

, 2`−1
2` ∂K 2πi

k

)
, i = 1, ..., k

Ki,j = conv
(

2`−j+1
2` ∂K 2π(i−1)

k

, 2`−j+1
2` ∂K 2πi

k
, 2`−j

2` ∂K 2π(i−1)
k

, 2`−j
2` ∂K 2πi

k

)
, i = 1, ..., k, j = 2, ..., `,

Ka = conv

({
1
2∂K 2πi

k

}k
i=1

)
.

Suppose that k, ` ≥ 3 (if k or ` is less than three, then as previously mentioned, c1, c2, c3, c4 depend
on n, and we are done). The triangles

4 o
[

2`−j+1
2` ∂K 2π(i−1)

k

] [
2`−j+1

2` ∂K 2πi
k

]
and 4 o

[
2`−j

2` ∂K 2π(i−1)
k

] [
2`−j

2` ∂K 2πi
k

]
are similar, and therefore the quadrilaterals Ki,j , j 6= 1, are trapezoids with angles in the range

[c5, π − c5]. By the lower bound d(o, ∂K) ≥ c2

√
2a1n

πc1
and the formula for a chord of a circle, we

can immediately conclude that the length of the sides is at least

d
(

2`−j+1
2` ∂K 2πi

k
, 2`−j

2` ∂K 2πi
k

)
≥
c2

√
2a1n
πc1

2`
and

d
(

2`−j
2` ∂K 2π(i−1)

k

, 2`−j
2` ∂K 2πi

k

)
≥ 2c2

√
2a1n

πc1
sin

π

k
≥ c2

√
2a1n

πc1

π

k
.

Let

xi,j =
[

2`−j+1/2
2` ∂K 2π(i−1)

k

] [
2`−j+1/2

2` ∂K 2πi
k

]
∩
{(

r,
2π(i− 1/2)

k

) ∣∣∣ r > 0

}
, i = 1, ..., k, j = 1, ..., `

serve as a “center” of sorts for each Ki,j . By the same chord argument used above,

d
(

conv
(
{xi,j}`j=1

)
,
[
conv

(
∂K 2πi

k
, 1

2∂K 2πi
k

)
∪ conv

(
∂K 2π(i−1)

k

, 1
2∂K 2π(i−1)

k

)])
≥ c2

√
2a1n

πc1

π

2k
.

In addition, by the formula for the height of a trapezoid and the lower bound on the angles of the
trapezoids, we have

d

([
2`−j+1/2

2` ∂K 2π(i−1)
k

] [
2`−j+1/2

2` ∂K 2πi
k

]
,
[

2`−j
2` ∂K 2π(i−1)

k

] [
2`−j

2` ∂K 2πi
k

])
≥
c2

√
2a1n
πc1

4`
sin c5.

We note that, by the definitions of k and `, both of the above lower bounds is at least c1c3.
We are now prepared to define our aggregation. We will perform an iterative procedure, in

which we grow the aggregates ai,j until we have a partition with our desired properties. First, each
ai,j will be a subset of the set of vertices contained in a face that intersects Ki,j . This condition,
combined with Fact 4, proves that M is a constant depending on c1, c2, c3, c4. That c is a constant
already follows from the definitions of k and `. In addition, this condition, paired with the upper
bound 1

2c1c3 on the diameter of an inner face and the bounds for the trapezoids, guarantees that
non-adjacent aggregates (with respect to G∗k,`) are not connected. This condition also guarantees

that Γ ⊂ ∪ki=1ai,1. All that remains is to show that G[ai,j ] is connected and adjacent aggregates
(with respect to Gk,`) are connected to each other in our resulting aggregation.
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First, let us add to each ai,j all vertices which lie on a face containing the point xi,j (if the
embedding of a vertex or edge does not intersect the point xi,j , then there is only one such face).
By construction, so far G[ai,j ] is connected for all i, j. To connect adjacent aggregates ai,j and
ai,j+1 consider all the faces which intersect the line segment xi,jxi,j+1. Because this set of faces
connects ai,j to ai,j+1, there exists a shortest path P := p1 ... pt, p1 ∈ ai,j , pt ∈ ai,j+1, between ai,j
and ai,j+1 which only uses vertices in the aforementioned faces. Let s be the smallest index such
that Xps,· ∈ Ki,j+1. Add to ai,j the vertices p1, ..., ps−1 and to ai,j+1 the vertices ps, ..., pt, for every
i = 1, ..., k, j = 1, ..., `− 1. In parallel, also perform a similar procedure for all pairs of aggregates
ai,j and ai+1,j by using the union of the line segments

xi,j

[
2`−j+1/2

2` ∂K 2πi
k

]
and

[
2`−j+1/2

2` ∂K 2πi
k

]
xi+1,j

to connect xi,j and xi+1,j . At this point, each G[ai,j ] is still connected, and adjacent aggregates
are connected. However, not all vertices are in an aggregate yet. To complete the proof, perform
a parallel breadth-first search for each ai,j simultaneously and add the vertices of each depth of
this search to each ai,j iteratively, while adhering to the condition that ai,j is a subset of the set of
vertices contained in a face that intersects Ki,j . Once the breadth-first search is complete, add all
remaining vertices to a∗. This completes the proof. �
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