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Abstract

Determinantal Point Processes (DPPs) are a fam-
ily of probabilistic models that have a repulsive
behavior, and lend themselves naturally to many
tasks in machine learning where returning a di-
verse set of objects is important. While there are
fast algorithms for sampling, marginalization and
conditioning, much less is known about learn-
ing the parameters of a DPP. Our contribution
is twofold: (i) we establish the optimal sam-
ple complexity achievable in this problem and
show that it is governed by a natural parameter,
which we call the cycle sparsity; (ii) we propose
a provably fast combinatorial algorithm that im-
plements the method of moments efficiently and
achieves optimal sample complexity. Finally, we
give experimental results that confirm our theo-
retical findings.

1. Introduction

Determinantal Point Processes (DPPs) are a family of prob-
abilistic models that arose from the study of quantum me-
chanics (Macchi, 1975) and random matrix theory (Dyson,
1962). Following the seminal work of Kulesza and Taskar
(Kulesza & Taskar, 2012), discrete DPPs have found nu-
merous applications in machine learning, including in doc-
ument and timeline summarization (Lin & Bilmes, 2012;
Yao et al., 2016), image search (Kulesza & Taskar, 2011;
Affandi et al., 2014) and segmentation (Lee et al., 2016),
audio signal processing (Xu & Ou, 2016), bioinformat-
ics (Batmanghelich et al., 2014) and neuroscience (Snoek
et al., 2013). What makes such models appealing is that
they exhibit repulsive behavior and lend themselves nat-
urally to tasks where returning a diverse set of objects is
important.

One way to define a DPP is through an N x N symmet-
ric positive semidefinite matrix K, called a kernel, whose
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eigenvalues are bounded in the range [0, 1]. Then the DPP
associated with K, which we denote by DPP(K), is the
distribution on Y C [N] = {1,..., N} that satisfies, for
any J C [N],

P[J C Y] = det(K,),

where K ; is the principal submatrix of K indexed by the
set J. The graph induced by K is the graph G = ([N], E)
on the vertex set [/V] that connects 4, j € [N] if and only if
Ki; #0.

There are fast algorithms for sampling (or approximately
sampling) from DPP(K) (Deshpande & Rademacher,
2010; Rebeschini & Karbasi, 2015; Li et al., 2016b;a).
Marginalizing the distribution on a subset I C [/N] and con-
ditioning on the event that J C Y both result in new DPPs
and closed form expressions for their kernels are known
(Borodin & Rains, 2005).

There has been much less work on the problem of learning
the parameters of a DPP. A variety of heuristics have been
proposed, including Expectation-Maximization (Gillenwa-
ter et al., 2014), MCMC (Affandi et al., 2014), and fixed
point algorithms (Mariet & Sra, 2015). All of these attempt
to solve a nonconvex optimization problem, and no guaran-
tees on their statistical performance are known. Recently,
Brunel et al. (Brunel et al., 2017) studied the rate of esti-
mation achieved by the maximum likelihood estimator, but
the question of efficient computation remains open.

Apart from positive results on sampling, marginalization
and conditioning, most provable results about DPPs are ac-
tually negative. It is conjectured that the maximum like-
lihood estimator is NP-hard to compute (Kulesza, 2012).
Actually, approximating the mode of size k£ of a DPP to
within a ¢* factor is known to be NP-hard for some ¢ > 1
(Civril & Magdon-Ismail, 2009; Summa et al., 2015). The
best known algorithms currently obtain a e* 4-o(k) approx-
imation factor (Nikolov, 2015; Nikolov & Singh, 2016).

In this work, we bypass the difficulties associated with
maximum likelihood estimation by using the method of mo-
ments to achieve optimal sample complexity. We introduce
a parameter ¢, which we call the cycle sparsity of the graph
induced by the kernel K, which governs the number of mo-
ments that need to be considered and, thus, the sample com-
plexity. Moreover, we use a refined version of Horton’s al-
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gorithm (Horton, 1987; Amaldi et al., 2010) to implement
the method of moments in polynomial time.

The cycle sparsity of a graph is the smallest integer ¢ so
that the cycles of length at most ¢ yield a basis for the cy-
cle space of the graph. Even though there are in general
exponentially many cycles in a graph to consider, Horton’s
algorithm constructs a minimum weight cycle basis and,
in doing so, also reveals the parameter ¢ together with a
collection of at most ¢ induced cycles spanning the cycle
space.

We use such cycles in order to construct our method of mo-
ments estimator. For any fixed ¢ > 2, our overall algorithm
has sample complexity

C

n= O((E)% +

for some constant C' > 1 and runs in time polynomial in
n and N, and learns the parameters up to an additive ¢
with high probability. The (C'/a)?* term corresponds to
the number of samples needed to recover the signs of the
entries in K. We complement this result with a minimax
lower bound (Theorem 2) to show that this sample com-
plexity is in fact near optimal. In particular, we show that
there is an infinite family of graphs with cycle sparsity ¢
(namely length ¢ cycles) on which any algorithm requires
at least (C’) "2 samples to recover the signs of the entries
of K for some constant C’ > 1. Finally, we show experi-
mental results that confirm many quantitative aspects of our
theoretical predictions. Together, our upper bounds, lower
bounds, and experiments present a nuanced understanding
of which DPPs can be learned provably and efficiently.

log N
a2e? )

2. Estimation of the Kernel
2.1. Model and definitions

Let Y3,...,Y, be n independent copies of Y ~ DPP(K),
for some unknown kernel K such that 0 < K =< Iy.
It is well known that K is identified by DPP(K) only
up to flips of the signs of its rows and columns: If K’
is another symmetric matrix with 0 < K’ =< Iy, then
DPP(K')=DPP(K) if and only if K’ = DK D for some
D € Dy, where Dy denotes the class of all N x N di-
agonal matrices with only 1 and —1 on their diagonals
(Kulesza, 2012, Theorem 4.1). We call such a transform
a D -similarity of K.

In view of this equivalence class, we define the following
pseudo-distance between kernels K and K':

AN 7
p(K,K)—DleanN\DKD K|,

where for any matrix K, |K|. = max; jeiny | K ;| de-
notes the entrywise sup-norm.

For any S C [N], we write Ag = det(Kg), where Kg
denotes the |S| x |.S| submatrix of K obtained by keeping
rows and colums with indices in S. Note that for 1 < ¢ #
7 < N, we have the following relations:

K;;=PlieY], Ay =P, i} C Y],

and |K; ;| = \/KijJ- — Ay, jy- Therefore, the princi-
pal minors of size one and two of K determine K up to the
sign of its off-diagonal entries. In fact, for any K, there
exists an ¢ depending only on the graph G induced by K,
such that K can be recovered up to a Dy -similarity with
only the knowledge of its principal minors of size at most
£. We will show that this £ is exactly the cycle sparsity.

2.2. DPPs and graphs

In this section, we review some of the interplay between
graphs and DPPs that plays a key role in the definition of
our estimator.

We begin by recalling some standard graph theoretic no-
tions. Let G = ([N], E), |[E| = m. A cycle C of G is
any connected subgraph in which each vertex has even de-
gree. Each cycle C' is associated with an incidence vec-
tor © € GF(2)™ such that x. = 1 if e is an edge in
C and z. = 0 otherwise. The cycle space C of G is
the subspace of GF'(2)™ spanned by the incidence vec-
tors of the cycles in G. The dimension v of the cycle
space is called cyclomatic number, and it is well known
that vg := m — N + £(G), where k(G) denotes the num-
ber of connected components of G.

Recall that a simple cycle is a graph where every vertex
has either degree two or zero and the set of vertices with
degree two form a connected set. A cycle basis is a basis
of C C GF(2)™ such that every element is a simple cycle.
It is well known that every cycle space has a cycle basis of
induced cycles.

Definition 1. The cycle sparsity of a graph G is the mini-
mal ¢ for which G admits a cycle basis of induced cycles of
length at most £, with the convention that { = 2 whenever
the cycle space is empty. A corresponding cycle basis is
called a shortest maximal cycle basis.

A shortest maximal cycle basis of the cycle space was also
studied for other reasons by (Chickering et al., 1995). We
defer a discussion of computing such a basis to Section 4.

For any subset S C [N], denote by Gx(S) = (S, E(S5))
the subgraph of Gk induced by S. A matching of G (.S)
is a subset M C FE(S) such that any two distinct edges in
M are not adjacent in G(S). The set of vertices incident
to some edge in M is denoted by V(M). We denote by
M(S) the collection of all matchings of G (S). Then,
if Gi(9) is an induced cycle, we can write the principal
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minor Ag = det(Kg) as follows:

NN | | g
MeM(S) {i,j}eM igV (M)
+2 x (=1)i5I+t H Kij. (1)
{i.J}EE(S)

Others have considered the relationship between the princi-
pal minors of K and recovery of DPP(K'). There has been
work regarding the symmetric principal minor assignment
problem, namely the problem of computing a matrix given
an oracle that gives any principal minor in constant time
(Rising et al., 2015).

In our setting, we can approximate the principal minors of
K by empirical averages. However the accuracy of our
estimator deteriorates with the size of the principal minor,
and we must therefore estimate the smallest possible princi-
pal minors in order to achieve optimal sample complexity.
Here, we prove a new result, namely, that the smallest ¢
such that all the principal minors of K are uniquely deter-
mined by those of size at most £ is exactly the cycle sparsity
of the graph induced by K.

Proposition 1. Let K € RVN*N be a symmetric matrix,
G be the graph induced by K, and { > 3 be some integer.
The kernel K is completely determined up to D n-similarity
by its principal minors of size at most £ if and only if the
cycle sparsity of Gk is at most (.

Proof. Note first that all the principal minors of K com-
pletely determine K up to a Dy -similarity (Rising et al.,
2015, Theorem 3.14). Moreover, recall that principal mi-
nors of degree at most 2 determine the diagonal entries of
K as well as the magnitude of its off-diagonal entries. In
particular, given these principal minors, one only needs to
recover the signs of the off-diagonal entries of K. Let the
sign of cycle C in K be the product of the signs of the
entries of K corresponding to the edges of C.

Suppose G i has cycle sparsity £ and let (C1,...,C,) bea
cycle basis of Gx where each C;, i € [v] is an induced cy-
cle of length at most £. By (1), the sign of any C;, i € [v] is
completely determined by the principal minor Ag, where
S is the set of vertices of C; and is such that |S| < /.
Moreover, for ¢ € [v], let z; € GF(2)™ denote the inci-
dence vector of C;. By definition, the incidence vector x of
any cycle C'is given by > ., x; for some subset Z C [v].
The sign of C' is then given by the product of the signs of
Ci,i € T and thus by corresponding principal minors. In
particular, the signs of all cycles are determined by the prin-
cipal minors Ag with |S| < £. In turn, by Theorem 3.12
in (Rising et al., 2015), the signs of all cycles completely
determine K, up to a D -similarity.

Next, suppose the cycle sparsity of G is at least £ + 1,

and let C; be the subspace of GF'(2)™ spanned by the in-
duced cycles of length at most ¢ in Gg. Let z1,...,x, be
a basis of C, made of the incidence column vectors of in-
duced cycles of length at most £ in G i and form the matrix
A € GF(2)™*¥ by concatenating the x;’s. Since C,; does
not span the cycle space of Gk, v < vg,, < m. Hence,
the rank of A is less than m, so the null space of AT is
non trivial. Let Z be the incidence column vector of an in-
duced cycle C' that is not in Cy, and let b € GL(2)™ with
ATh=0,h #0and z"h = 1. These three conditions are
compatible because C' ¢ C,. We are now in a position to
define an alternate kernel K as follows: Let K, = K; ;
and | K] ;| = |K; 4| for all 4, j € [N]. We define the signs
of the off-diagonal entries of K’ as follows: For all edges
e = {i,5},1 # j, sgn(K.) = sgn(K,) if he = 0 and
sgn(K!) = —sgn(K.) otherwise. We now check that K
and K’ have the same principal minors of size at most £
but differ on a principal minor of size larger than ¢. To that
end, let « be the incidence vector of a cycle C in C; so that
x = Aw for some w € GL(2)". Thus the sign of C in K
is given by

[T &e=cv=" [ K

e:xr.=1 e:xr.=1
T AT
_ w A'h ’ /
=D II &= 11 &
e:xe=1 e:xe=1

because AT h = 0. Therefore, the sign of any C' € C; is
the same in K and K’. Now, let S C [N] with | S| < ¢, and
let G = Gk = Gy, be the graph corresponding to Kg
(or, equivalently, to K§). For any induced cycle C in G,
C is also an induced cycle in G and its length is at most
L. Hence, C € Cy and the sign of C' is the same in K and
K’. By (Rising et al., 2015, Theorem 3.12), det(Kg) =
det(KY). Next observe that the sign of C in K is given by

I =" [[ k.=- [[ K.

e:Te=1 e:Te=1 e:xe=1

Note also that since C' is an induced cycle of G = Gk,
the above quantity is nonzero. Let S be the set of vertices
in C. By (1) and the above display, we have det(Kg) #
det(K g) Together with (Rising et al., 2015, Theorem
3.14), it yields K # DK'D forall D € Dy. O

2.3. Definition of the Estimator

Our procedure is based on the previous result and can be
summarized as follows. We first estimate the diagonal en-
tries (i.e., the principal minors of size one) of K by the
method of moments. By the same method, we estimate the
principal minors of size two of K, and we deduce estimates
of the magnitude of the off-diagonal entries. To use these
estimates to deduce an estimate G of G K, we make the
following assumption on the kernel K.
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Assumption 1. Fix o € (0,1). Forall1 < i < j < N,
either K; j = 0, or |K; ;| > o

Finally, we find a shortest maximal cycle basis of é’, and
we set the signs of our non-zero off-diagonal entry esti-
mates by using estimators of the principal minors induced
by the elements of the basis, again obtained by the method
of moments.

. 1<
For S C [N],set Ag = — Z lscy,, and define
n C
p=1
and  Bij = KiK;; — A

K= Ay Ay

where K;; and B; ; are our estimators of K;; and Kfj,

respectively.

Define G = ([N ] E) where, for i # j, {i,j} € F if and
only if B; g 2 102, The graph G is our estimator of G .

Let {017 vy

cycle space of G. Let §; C [N] be the subset of vertices of
Ciforl <i< V. We define

H=hy — Y oM I By [ Kis

MeM(S;) {ijreM igV (M)

C’,,é} be a shortest maximal cycle basis of the

for 1 < ¢ < v, Inlight of (1), for large enough n, this
quantity should be close to
I ki

{i,j}€E(S;)
We note that this definition is only symbolic in nature, and
computing I:[l in this fashion is extremely inefficient. In-
stead, to compute it in practice, we will use the determinant
of an auxiliary matrix, computed via a matrix factorization.
Namely, let us define the matrix X € RYXN such that
Kii=Ki,forl <i<N,and K;; = B;'”. We have

H; =2 x (—1)lSil+1

detKSi _ Z (,1)|M\ H H Km
MeM {i,j}eM igV (M)
_ |5'¢\+1 H1/2
+2x ( 1) H Bi’j )
{i,5YeE(S;)

so that we may equivalently write

1)\S1zl+1 H leé2

{i,j}€E(S:)

Hy=Ag —det(Kg)+2x (-

Finally, let 7 = |E|. Set the matrix A € GF(2)"¢*™
with i-th row representing C; in GF(2)™, 1 < i < vg,
b= (b1,...,b,) € GF(2)"e with b; = J[sgn(H;) + 1],
1<i<wvg,andletx € GF(2)™ be a solution to the linear
system Ax = b if a solution exists, x = 1,, otherwise.

We define f(” = 0if {i,j} ¢ Fand K;; = K;; =
(22451 — )B 12 for all {i,j} € E.

2.4. Geometry

The main result of this subsection is the following lemma
which relates the quality of estimation of K in terms of p
to the quality of estimation of the principal minors Ag.
Lemma 1. Let K satisfy Assumption I, and let ¢ be the
cycle sparsity of G Let e > 0. If |[Ag — Ag| < & for all
S C [N]with |S| < 2 and if |As — Ag| < (a/4)!5| for all
S C [N]with3 < |S| < ¢, then

p(K,K) < 4e/a.

Proof. We can bound |Bi7j — Kl2 ;|, namely,

B,J < (K“—i—az/lﬁ)( 3, —1-042/16)
ngj—f—a /4

and
Bij > (Kii — o?/16)(K;; — a®/16) —
> K}, —3a°/16,

(A{i,j} + a2/16)

giving | B; ; — Kf]| < o?/4. Thus, we can correctly deter-
mine whether K; ; = 0 or |K; ;| > o, yielding G = G.
In particular, the cycle basis C’l, el C'Vé of Gis a cycle
basis of G. Let 1 < i < vg. Denote by t = (oz/4)|si‘.
We have

< ‘As —Ag |+ IM(S;)] max [(1 +4tm)‘s il — 1}

< (a/4)'S1 4+ |M(S)] [(1+ 4081 1]
< (a/9)5l 41 <|5| {IS ID 1 TS 15

< (a/4)5 £ a4p (2'F —1)(@I5 — 1)
< (a/4)15i1 4 221501

<2al%1 < |Hy),

where, for positive integers p < ¢, we denote by
T(¢,p) = P . (9).  Therefore, we can deter-
mine the sigq of the product H{z‘,j}eE(Si) K;; for.ev-
ery element in the cycle basis and recover the signs
of the non-zero off-diagonal entries of K; ;. Hence,

p(K,K) = maxi<; j<n ‘|f(z‘,j — |Kijl|-

For + = j,

"f(i,j — |sz|‘ = |K771 — For ¢ # ] with
{i,j} € E = E,

2 . .
w" < 4e, yielding

K17| S E.

one can easily show that

4e
NS B R S

W
™

|B1/2 |Kz

which completes the proof. O
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We are now in a position to establish a sufficient sample
size to estimate K within distance €.

Theorem 1. Let K satisfy Assumption 1, and let £ be the

cycle sparsity of Gi. Let € > 0. For any A > 0, there
exists C > 0 such that

1 4. 2¢
ﬂZC<a252 (&) )1ogN,

yields ,o(ff, K) < e with probability at least 1 — N~4,

Proof. Using the previous lemma, and applying a union
bound,

P [p(K',K) > 5} < Z P [|A5 —Ag| > a€/4}

[S]<2
+ > ]P’{|A57A5| > (a/4)l5\}
2<|8|<e
2 _ 2.2 _ 2¢
< 2NZe—na’e /8+2N€+16 2n(a/4) ’
2
where we used Hoeffding’s inequality. O

3. Information theoretic lower bound

We prove an information-theoretic lower bound that holds
already if G is an {-cycle. Let D(K||K’) and H(K, K')
denote respectively the Kullback-Leibler divergence and
the Hellinger distance between DPP(K') and DPP(K").

Lemma 2. Forn € {—,+}, let K" be the { x { matrix with
elements given by

1/2 ifj=i
o ifj=itl

0 otherwise

Then, for any o < 1/8, it holds

D(K|K') < 4(6a)¢,  and H(K,K') < (8a%)*.

Proof. Tt is straightforward to see that

20t if J =[]

det(K+
(KJ) 0 else

—det(K;) = {

If Y is sampled from DPP(K™), we denote by p,(S) =
PlY = 5], for S C [{]. It follows from the inclusion-
exclusion principle that for all S C [/],

p+(S) —p_(S) = Z (—1)VI(det K}, —detKg ;)
JC[e\S
= (=1)""15l(det K+ —det K~) =

3)

+2af

where |J| denotes the cardinality of J. The inclusion-
exclusion principle also yields that p, (S) = |det(K" —
Ig)| for all S C [I], where I stands for the ¢ x ¢ diago-
nal matrix with ones on its entries (é,4) for ¢ ¢ S, zeros
elsewhere.

Denote by D(K||K ™) the Kullback Leibler divergence
between DPP(K ) and DPP(K ~):

S)
D(K*|K~ )1 <+( >
|| SCZ[]IM og » (S)
p* S) —p_(S))
Sce]
¢ M
<20 ) ldet(k- — 1oy ¥
sCle

by (3). Using the fact that 0 < « < 1/8 and the Gershgorin
circle theorem, we conclude that the absolute value of all
eigenvalues of K" — g are between 1/4 and 3/4. Thus we
obtain from (4) the bound D(K ™ ||K~) < 4(6a)".

Using the same arguments as above, the Hellinger distance
H(K™, K~) between DPP(K™) and DPP(K ~) satisfies

2
KK = 3 ( p+(J) ~p-(J) )
JClf] \/p-l— '] + \/p
4042Z
< Z _ 2)@
JCe]
which completes the proof. O

The sample complexity lower bound now follows from
standard arguments.

Theorem 2. Let0 < e < a <1/8and3 < { < N. There
exists a constant C > 0 such that if

8¢ log(N/¢) logN
ns C( 2¢ (6cr)t g2 )’
then the following holds: for any estimator K based on n
samples, there exists a kernel K that satisfies Assumption I
and such that the cycle sparsity of G is £ and for which
p(K, K) > e with probability at least 1/3.

Proof. Recall the notation of Lemma 2. First consider the
N x N block diagonal matrix K (resp. K') where its first
block is Kt (resp. K ) and its second block is Iy _¢. By a
standard argument, the Hellinger distance H, (K, K') be-
tween the product measures DPP(K)®™ and DPP(K’)®™
satisfies

H2 (K, K')

B (1 H2<K7 K/) n 0425
2 A 2% 8¢

) = (-
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which yields the first term in the desired lower bound.

Next, by padding with zeros, we can assume that L = N /¢
is an integer. Let K(9) be a block diagonal matrix where
each block is KT (using the notation of Lemma 2). For
j = 1,...,L, define the N x N block diagonal matrix
K as the matrix obtained from K (©) by replacing its jth
block with K~ (again using the notation of Lemma 2).

Since DPP(K(9)) is the product measure of L lower di-
mensional DPPs that are each independent of each other,
using Lemma 2 we have D(K || K(?)) < 4(60)*. Hence,
by Fano’s lemma (see, e.g., Corollary 2.6 in (Tsybakov,
2009)), the sample complexity to learn the kernel of a DPP
within a distance € < « is

*(Yoar)

which yields the second term.

The third term follows from considering Ky = (1/2)1y
and letting K; be obtained from K, by adding ¢ to
the jth entry along the diagonal. It is easy to see that
D(K;||Ko) < 8¢%. Hence, a second application of Fano’s
lemma yields that the sample complexity to learn the kernel
of a DPP within a distance ¢ is Q(IO%V) O

The third term in the lower bound is the standard parametric
term and is unavoidable in order to estimate the magnitude
of the coefficients of K. The other terms are more interest-
ing. They reveal that the cycle sparsity of G ik, namely, ¢,
plays a key role in the task of recovering the sign pattern of
K. Moreover the theorem shows that the sample complex-
ity of our method of moments estimator is near optimal.

4. Algorithms
4.1. Horton’s algorithm

We first give an algorithm to compute the estimator K
defined in Section 2. A well-known algorithm of Hor-
ton (Horton, 1987) computes a cycle basis of minimum
total length in time O(m>N). Subsequently, the running
time was improved to O(m?N/ log N) time (Amaldi et al.,
2010). Also, it is known that a cycle basis of minimum total
length is a shortest maximal cycle basis (Chickering et al.,
1995). Together, these results imply the following.

Lemma 3. Let G = ([N, E), |E| = m. There is an
algorithm to compute a shortest maximal cycle basis in
O(m?2N/log N) time.

In addition, we recall the following standard result re-
garding the complexity of Gaussian elimination (Golub &
Van Loan, 2012).

Algorithm 1 Compute Estimator K

Input: samples Y7, ..., Y,,, parameter a > 0.

Compute Ag forall |S| < 2.

Set K;; = Agy for1 <i < N.

Compute é” forl <i<j<N.

Form K € RV*N and G = ([N], E).

Compute a shortest maximal cycle basis {01, ..., Dy, }.
Compute AS forl <i< Va

Compute C’S using det f{s forl << Ve

Construct A € GF(2)"¢*™, b € GF(2)"¢.

Solve Az = b using Gaussian elimination.

Set K, ; = K, = (225, —1)B}?, forall {i, j} € E.

L2V

Lemmad. Letr A € GF(2)"*™, b € GF(2)". Then Gaus-
sian elimination will find a vector x € GF(2)™ such that
Az = b or conclude that none exists in O(v*m) time.

We give our procedure for computing the estimator K in
Algorithm 1. In the following theorem, we bound the run-
ning time of Algorithm 1 and establish an upper bound on
the sample complexity needed to solve the recovery prob-
lem as well as the sample complexity needed to compute
an estimate K that is close to K.

Theorem 3. Let K € RNXN be a symmetric matrix satis-
fing 0 = K = I, and satisfying Assumption 1. Let G be
the graph induced by K and ¢ be the cycle sparsity of G.
Let Y1, ..., Y, be samples from DPP(K) and 6 € (0,1). If

log(N*+1/6)
(a/2)*

then with probability at least 1 — 0, Algorithm I computes
an estimator K which recovers the signs of K up to a Dy -
similarity and satisfies

. log(4N*+1/6)\ "/
p(K,K) < é (80g(/6)) (5)

bl

n
in O(m? + nN?) time.

Proof. (5) follows directly from (2) in the proof of Theo-
rem 1. That same proof also shows that with probability
at least 1 — 4, the support of Gk and the signs of K are
recovered up to a D-similarity. What remains is to up-
per bound the worst case run time of Algorithm 1. We
will perform this analysis line by line. Initializing K re-
quires O(N?) operations. Computing Ag for all subsets
|S| < 2 requires O(n.N'?) operations. Setting K ; requires
O(N) operations. Computing Ei,j forl <i<j<N
requires O(N2) operations. Forming K requires O(N2)
operations. Forming G'i requires O(IN?) operations. By
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Lemma 3, computing a shortest maximal cycle basis re-
quires O(mN) operations. Constructing the subsets S;,
1 <i < g, requires O(mN) operations. Computing As,
for 1 < i < vg requires O(nm) operations. Computing
Cs, using det(K[S;]) for 1 < i < v¢ requires O(me?)
operations, where a factorization of each K [S;] is used to
compute each determinant in O(¢3) operations. Construct-
ing A and b requires O(m/{) operations. By Lemma 4,
finding a solution x using Gaussian elimination requires
O(m?) operations. Setting IA(i)j for all edges {i,j} € E
requires O(m) operations. Put this all together, Algorithm
1 runs in O(m?® + nN?) time. O

4.2. Chordal Graphs

Here we show that it is possible to obtain faster algorithms
by exploiting the structure of G . Specifically, in the case
where G chordal, we give an O(m) time algorithm to
determine the signs of the off-diagonal entries of the es-
timator K, resulting in an improved overall runtime of
O(m + nN?). Recall that a graph G = ([N], E) is said
to be chordal if every induced cycle in G is of length three.
Moreover, a graph G = ([IN], E) has a perfect elimina-
tion ordering (PEO) if there exists an ordering of the ver-
tex set {v1, ..., v } such that, for all 7, the graph induced
by {v;} U{v;|{i,j} € E,j > i} is a clique. It is well
known that a graph is chordal if and only if it has a PEO. A
PEO of a chordal graph with m edges can be computed in
O(m) operations using lexicographic breadth-first search
(Rose et al., 1976).

Lemma 5. Let G = ([N], E), be a chordal graph and
{v1,...,vn} be a PEO. Given i, let i* = min{j|j >
i,{vi,v;} € E}. Then the graph G' = ([N], E'), where
E' = {{v;, vi*}}f\:K(G), is a spanning forest of G.

Proof. We first show that there are no cycles in G’. Sup-
pose to the contrary, that there is an induced cycle C' of
length & on the vertices {v;,, ..., v;, }. Let v be the vertex
of smallest index. Then v is connected to two other vertices
in the cycle of larger index. This is a contradiction to the
construction.

What remains is to show that |[E'| = N — x(G). It suffices
to prove the case x(G) = 1. Suppose to the contrary, that
there exists a vertex v;, ¢ < N, with no neighbors of larger
index. Let P be the shortest path in G from v; to vy. By
connectivity, such a path exists. Let v be the vertex of
smallest index in the path. However, it has two neighbors
in the path of larger index, which must be adjacent to each
other. Therefore, there is a shorter path. O

Now, given the chordal graph Gk induced by K and the
estimates of principal minors of size at most three, we pro-
vide an algorithm to determine the signs of the edges of

Algorithm 2 Compute Signs of Edges in Chordal Graph
Input: Gx = ([N], E) chordal, Ag for |S| < 3.

Compute a PEO {v1,...,vn }.

Compute the spanning forest G’ = ([N], E).

Set all edges in E’ to have positive sign.

Compute C'{i7j7i*} forall {i,j} € E\ E',j <.

Order edges E \ E' = {ey,...,e,} such that ¢ > j if
maxe; < maxe;.

Visit edges in sorted order and for e = {4, j}, j > i, set

sen({i. ) = sen(C iny) sen({i i) sen(,7°)).

Gk, or, equivalently, the off-diagonal entries of K.

Theorem 4. If G is chordal, Algorithm 2 correctly deter-
mines the signs of the edges of Gk in O(m) time.

Proof. We will simultaneously perform a count of the op-
erations and a proof of the correctness of the algorithm.
Computing a PEO requires O(m) operations. Computing
the spanning forest requires O(m) operations. The edges
of the spanning tree can be given arbitrary sign, because it
is a cycle-free graph. This assigns a sign to two edges of
each 3-cycle. Computing each CA’{Z«_, j,i+} requires a constant
number of operations because ¢ = 3, requiring a total of
O(m — N) operations. Ordering the edges requires O(m)
operations. Setting the signs of each remaining edge re-
quires O(m) operations. O

Therefore, when G is chordal, the ove:rall complexity
required by our algorithm to compute K is reduced to
O(m + nN?).

5. Experiments

Here we present experiments to supplement the theoretical
results of the paper. We test our algorithm on two types
of random matrices. First, we consider the matrix K €

RY*N corresponding to the cycle on N vertices,
1 1
K=-I+-A
2 + 477

where A is symmetric and has non-zero entries only on the
edges of the cycle, either +1 or —1, each with probability
1/2. By the Gershgorin circle theorem, 0 < K < I. Next,
we consider the matrix K € RV*Y corresponding to the
clique on N vertices,

1 1
K=-I+——A,
2 4/N
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where A is symmetric and has all entries either +1 or —1,
each with probability 1/2. It is well known that —2v/N <
A < 2+v/N with high probability, implying 0 < K < I.

For both cases and for a range of values of matrix dimen-
sion N and samples n, we run our algorithm on 50 ran-
domly generated instances. We record the proportion of
trials where we recover the graph induced by K, and the
proportion of the trials where we recover both the graph
and correctly determine the signs of the entries.

In Figure 1, the shade of each box represents the propor-
tion of trials where recovery was successful for a given pair
N,n. A completely white box corresponds to zero success
rate, black to a perfect success rate.

The plots corresponding to the cycle and the clique are
telling. We note that for the clique, recovering the spar-
sity pattern and recovering the signs of the off-diagonal en-
tries come hand-in-hand. However, for the cycle, there is
a noticeable gap between the number of samples required
to recover the sparsity pattern and the number of samples
required to recover the signs of the off-diagonal entries.
This empirically confirms the central role that cycle spar-
sity plays in parameter estimation, and further corroborates
our theoretical results.

6. Conclusion and open questions

In this paper, we gave the first provable guarantees for
learning the parameters of a DPP. Our upper and lower
bounds reveal the key role played by the parameter ¢, which
is the cycle sparsity of graph induced by the kernel of the
DPP. Our estimator does not need to know ¢ beforehand,
but can adapt to the instance. Moreover, our procedure
outputs an estimate of ¢, which could potentially be used
for further inference questions such as testing and confi-
dence intervals. An interesting open question is whether
on a graph by graph basis, the parameter ¢ exactly deter-
mines the optimal sample complexity. Moreover when the
number of samples is too small, can we exactly characterize
which signs can be learned correctly and which cannot (up
to a similarity transformation by D)? Such results would
lend new theoretical insights into the output of algorithms
for learning DPPs, and which individual parameters in the
estimate we can be confident about and which we cannot.
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Figure 1: Plots of the proportion of successive graph recov-
ery, and graph and sign recovery, for random matrices with
cycle and clique graph structure, respectively. The darker
the box, the higher the proportion of trials that were recov-
ered successfully.
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