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Graph disaggregation is a technique used to address the high cost of computation
for power law graphs on parallel processors. The few high-degree vertices are broken
into multiple small-degree vertices, in order to allow for more efficient computation in
parallel. In particular, we consider computations involving the graph Laplacian, which
has significant applications, including diffusion mapping and graph partitioning, among
others. We prove results regarding the spectral approximation of the Laplacian of the
original graph by the Laplacian of the disaggregated graph. In addition, we construct
an alternate disaggregation operator whose eigenvalues interlace those of the original
Laplacian. Using this alternate operator, we construct a uniform preconditioner for the
original graph Laplacian.
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1. Introduction

A variety of real-world graphs, including web networks [1], social networks [15],
and bioinformatics networks [10], exhibit a degree power law. Namely, the fraction
of nodes of degree k, denoted by P (k), follows a power distribution of the form
P (k) ∼ k−γ , where γ is typically in the range 2 < γ < 3. Networks of this vari-
ety are often referred to as scale-free networks. The pairing of a few high-degree
vertices with many low-degree vertices on large scale-free networks makes compu-
tations such as Laplacian matrix-vector products and solving linear and eigenvalue
equations challenging. The computation of the minimal nontrivial eigenpair can be-
come prohibitively expensive. This eigenpair has many important applications, such
as diffusion mapping and graph partitioning [2, 13, 16, 17].

Breaking the few high degree nodes into multiple smaller degree nodes is a way
to address this issue, especially when large-scale parallel computers are available.
This technique, called graph disaggregation, was introduced by Kuhlemann and
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Figure 1.1. Example of disaggregation: original graph (left); disaggregate using cycle (middle); disaggregate

using clique (right).

Vassilevski [6, 11]. In this process, each of the high-degree vertices of the network
is replaced by a graph, such as a cycle or a clique, where each incident edge of the
original node now connects to a node of the cycle or clique (see Figure 1.1).

Independently, Lee, Peng, and Spielman investigated the concept of graph dis-
aggregation, referred to as vertex splitting, in the setting of combinatorial spectral
sparsifiers [12]. They proved results for graphs disaggregated from complete graphs
and expanders, and used the Schur complement of the disaggregated Laplacian
with respect to the disaggregated vertices to approximate the original Laplacian.
The basic motivating assumption in such constructions is that the spectral struc-
ture of the graph Laplacian induced by the disaggregated graph approximates the
spectral structure of the original graph well.

In [6, 11] Kuhlemann and Vassilevski took a numerical approach. We extend,
expand upon, and prove precise and rigorous theoretical results regarding this tech-
nique. First, we look at the case of a single disaggregated vertex and establish
bounds on the error in spectral approximation with respect to the Laplacians of the
original and disaggregated graph, as well as results related to the Cheeger constant.
We investigate a conjecture made in [11] and give strong theoretical evidence that
it does not hold in general. Then, we treat the more general case of disaggregation
of multiple vertices and prove analogous results. Finally, we construct an alterna-
tive disaggregation operator whose eigenvalues interlace with those of the original
graph Laplacian, and, hence, provide excellent approximation to the spectrum of
the latter. We then use this new disaggregation operator to construct a uniform
preconditioner for the graph Laplacian of the original graph. We prove that the
preconditioned graph Laplacian can be made arbitrarily close to the identity opera-
tor if we require that the weights of the internal disaggregated edges are sufficiently
large.

2. Single Vertex Disaggregation

Let us restrict ourselves to the class of weighted, connected, undirected graphs with
no self-loops, denoted by G. Consider a graph G = (V,E, ω) ∈ G, |V | = n. Let
e = (i, j) denote an edge that connects vertices i and j, and 〈·, ·〉 and ‖ · ‖ denote
the standard `2-inner product and the corresponding induced norm. The associated
graph Laplacian L ∈ Rn×n is given by

〈Lu,v〉 =
∑

e=(i,j)∈E

ωe(ui − uj)(vi − vj), ωe = (−lij),
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where we denote the (i, j)-th element of L by lij . Without loss of generality, let us
disaggregate the last vertex vn of the graph G. Then, the Laplacian can be written
in the following block form

L =

(
L0 −ln
−lTn δn

)
,

where δi is the weighted degree of vertex vi defined as δi =
∑

e=(i,j)∈E ωe. Because
the graph is connected, the associated Laplacian L has eigenvalues

0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L)

and corresponding eigenvectors

1n = ϕ(1)(L),ϕ(2)(L), · · · ,ϕ(n)(L), where 1n = (1, · · · , 1︸ ︷︷ ︸
n

)T .

The eigenpair
(
λ2(L),ϕ(2)(L)

)
has special significance, and therefore λ2(L) is re-

ferred to as the algebraic connectivity, denoted a(G), and ϕ(2)(L) is referred to as
the Fiedler vector.

We can also write a given nontrivial eigenpair (λ(L),ϕ(L)), λ(L) 6= 0, ‖ϕ(L)‖ = 1,
in block notation, namely

ϕ(L) =

(
ϕ0

ϕn

)
.

We have the relations

〈ϕ0,1n0
〉+ ϕn = 0,

L0ϕ0 − ϕnln = λ(L)ϕ0,

δnϕn − lTnϕ0 = λ(L)ϕn,

where n0 = n − 1. Suppose that the vertex vn is disaggregated into d vertices,
with an unspecified connected structure between the disaggregated elements. We
will denote this graph by GD. This induces a disaggregated graph Laplacian LD ∈
RN×N , N = n0 + d, with eigenvalues 0 = λ1(LD) < λ2(LD) ≤ · · · ≤ λN (LD) and
corresponding eigenvectors 1N = ϕ(1)(LD),ϕ(2)(LD), · · · ,ϕ(N)(LD). We can write
LD in block form

LD =

(
L0 −L0n

−LT0n Ln

)
.

We have the relations

δn = lTn1n0
,

LT0n1n0
= Ln1d,

ln = L01n0
= L0n1d.

3



October 30, 2016 Linear and Multilinear Algebra gLMAguide

Let us introduce the prolongation matrix P : Rn → RN ,

P =

(
In0×n0

0
0 1d

)
. (2.1)

The following result is immediate.

Lemma 1 Let L and LD be the graph Laplacian of the original graph G ∈ G and
the disaggregated graph GD ∈ G, respectively. If P is defined as (2.1), then we have

L = P TLDP.

We aim to show that the algebraic connectivity of LD is bounded away from the
algebraic connectivity of the original graph L. To do so, suppose we have an eigenpair
(λ,ϕ) of the Laplacian of the original graph G. We prolongate the eigenvector
ϕ to the disaggregated graph GD and obtain an approximate eigenvector by the
procedure

ϕ̃ = Pϕ− s1N =

(
ϕ0

ϕn1d

)
− s1N , where s =

d− 1

N
ϕn. (2.2)

This gives 〈ϕ̃,1N 〉 = 0.
We consider ϕ̃ to be an approximation of ϕ on the non-trivial eigenspace of the

disaggregated operator LD. We have the following relation between the eigenvalue
λ of L and the Rayleigh quotient of ϕ̃ with respect to LD.

Lemma 2 Let (λ,ϕ), ‖ϕ‖ = 1, be an eigenpair of the graph Laplacian L associated
with a graph G ∈ G, and ϕ̃ be defined by (2.2). We have

RQ(ϕ̃) :=
〈LDϕ̃, ϕ̃〉
〈ϕ̃, ϕ̃〉

=
λ

1 + (d−1)n
N ϕ2

n

.

Proof. We have

〈ϕ̃, ϕ̃〉 = 〈Pϕ− s1N , Pϕ− s1N 〉 = 〈Pϕ, Pϕ〉 − 2s〈Pϕ,1N 〉+ s2〈1N ,1N 〉
= 〈ϕ0,ϕ0〉+ ϕ2

n〈1d,1d〉 − 2s (〈ϕ0,1n0
〉+ ϕn〈1d,1d〉) + s2N

= 〈ϕ0,ϕ0〉+ ϕ2
n + (d− 1)ϕ2

n − 2s(d− 1)ϕn + s2N

= 1 +

[
(d− 1)− 2

(d− 1)2

N
+

(d− 1)2

N

]
ϕ2
n

= 1 +
(d− 1)n

N
ϕ2
n

and

〈LDϕ̃, ϕ̃〉 = 〈LD(Pϕ− s1N ), Pϕ− s1N 〉
= 〈LDPϕ, Pϕ〉 − 2s〈LD1N , Pϕ〉+ s2〈LD1N ,1N 〉
= 〈P TLDPϕ,ϕ〉 = 〈Lϕ,ϕ〉 = λ.

This completes the proof.

4
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The following result quickly follows by applying Lemma 2 to the Fielder vector.

Theorem 1 Let ϕ = (ϕ0, ϕn)T , ‖ϕ‖ = 1, be the Fiedler vector of the graph Lapla-
cian L associated with a graph G ∈ G. Let LD be the graph Laplacian corresponding
to the disaggregated graph GD ∈ G resulting from disaggregating one vertex into
d > 1 vertices. We have

a(G)

a(GD)
≥ 1 +

(d− 1)n

N
ϕ2
n.

Proof. Noting that ϕ̃ is orthogonal to 1N , we have

a(GD) ≤ 〈LDϕ̃, ϕ̃〉
〈ϕ̃, ϕ̃〉

=
λ

1 + (d−1)n
N ϕ2

n

=
a(G)

1 + (d−1)n
N ϕ2

n

,

which completes the proof.

If the characteristic value of the disaggregated vertex is non-zero, then the alge-
braic connectivity of the disaggregated graph stays bounded away from that of the
original graph, independent of the structure of Ln. Therefore, as the weight on the
internal edges approaches infinity, the approximation stays bounded away.

In [11], the authors made the following conjecture.

Conjecture 1 Under certain conditions the Laplacian eigenvalues of the graph
Laplacian of the disaggregated graph approximate the eigenvalues of the graph Lapla-
cian of the original graph, provided that the weight on the internal edges of the
disaggregation is chosen to be large enough.

Theorem 1 directly implies that Conjecture 1 is false when the characteristic value
of the disaggregated vertex is non-zero. Though there exist examples of graphs with
characteristic values equal to zero for some vertices [18], this often implies some
sort of symmetry of the graph. Theoretical results regarding the non-existence of
vertices with zero characteristic value in random graphs do not exist, though it is
well know that almost all finite graphs are asymmetric [8].

We also have the following result, providing an estimate of how close the approx-
imation ϕ̃ is to the invariant subspace with respect to LD.

Lemma 3 Let L and LD be the graph Laplacian of the original graph G ∈ G and
the disaggregated graph GD ∈ G, respectively, and ϕ̃ be defined by (2.2). We have

‖LDϕ̃− RQ(ϕ̃)ϕ̃‖ ≤

(
‖LT0n(1n0

−ϕ0/ϕn)‖+

√
dn(d+ n)

N
λ+

dn

N
λ|ϕn|

)
|ϕn|.

Proof. We recall that

‖ϕ̃‖ =

(
1 +

(d− 1)n

N
ϕ2
n

)1/2

5
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and

|λ− RQ(ϕ̃)| =
(d−1)n
N ϕ2

n

1 + (d−1)n
N ϕ2

n

λ.

We also have

LDϕ̃ = LD (Pϕ− s1N ) = LDPϕ =

(
L0ϕ0 − ϕnL0n1d
ϕnLn1d − LT0nϕ0

)
=

(
L0ϕ0 − ϕnln

LT0n(ϕn1n0
−ϕ0)

)
= λPϕ+

(
0

LT0n(ϕn1n0
−ϕ0)− λϕn1d

)
= λϕ̃+ sλ1N +

(
0

LT0n(ϕn1n0
−ϕ0)− λϕn1d

)
= λϕ̃+

λϕn
N

[
(d− 1)

(
10

0

)
− n

(
0
1d

)]
+

(
0

LT0n(ϕn1n0
−ϕ0)

)
,

giving

‖LDϕ̃− RQ(ϕ̃)ϕ̃‖ ≤ ‖LDϕ̃− λϕ̃‖+ |λ− RQ(ϕ̃)|‖ϕ̃‖

≤ ‖LT0n(ϕn1n0
−ϕ0)‖+

√
(d− 1)2n0 + dn2

N
|ϕn|λ+

(d−1)n
N√

1 + (d−1)n
N ϕ2

n

ϕ2
nλ

≤

(
‖LT0n(1n0

−ϕ0/ϕn)‖+

√
dn(d+ n)

N
λ+

dn

N
λ|ϕn|

)
|ϕn|.

In many applications, we are only concerned with minimal Laplacian eigenpairs.
For minimal eigenvalues of scale-free graphs, we have λ = O(1) and ϕn = O(N−1/2).
In this way, often the largest source of error comes from the term ‖LT0n(ϕn1n0

−ϕ0)‖.
Heuristically, the error of this term is typically best controlled when d is relatively
small and each new disaggregate is connected to roughly the same number of exterior
vertices.

Next, we consider how disaggregation affects the eigenvalues of the random walk
Laplacian. This gives us insight into how the Cheeger constant changes after disag-
gregating a vertex. Suppose we have an eigenpair (ν,φ) of the random walk graph
Laplacian D−1L, where D is the degree matrix of G, namely

D = diag(δ1, δ2, · · · , δn).

By similarity, ν is also an eigenvalue of the normalized Laplacian D−1/2LD−1/2. In
addition, (ν,φ) is also an eigenpair of the generalized eigenvalue problem Lφ = νDφ
and the eigenvalues ν can be characterized by the Courant-Fischer minmax values
of the generalized Rayleigh quotient, i.e.

〈Lx,x〉
〈Dx,x〉

, 0 6= x ∈ Rn.

Since D is symmetric positive definite, we can define the inner product 〈x,y〉D :=
〈Dx,y〉 and it induces a norm ‖x‖D :=

√
〈x,x〉D. Noting that D−1L is symmetric

6
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with respect to 〈·, ·〉D, we naturally normalize the eigenvectors φ such that ‖φ‖D = 1
and they are orthogonal with each other with respect to 〈·, ·〉D. Let DD be the
weighted degree matrix of GD. In order to obtain an approximate eigenvector of the
matrix D−1

D LD, we prolongate φ as follows

φ̃ = Pφ− s1N , where s =
〈Pφ,1N 〉DD

〈1N ,1N 〉DD

, 〈x,y〉DD
:= 〈DDx,y〉. (2.3)

Here s is chosen such that 〈φ̃,1N 〉DD
= 0. We may write DD in the following way

DD = diag(δD1 , · · · , δDn0
, δDn , δ

D
n+1, · · · , δDN )

= diag(δD1 , · · · , δDn0
, δn, δn+1, · · · , δN ) + diag(0, · · · , 0, dexn , dexn+1, · · · , dexN )

=: D1
D +Dex

D ,

where δi and δDi are the weighted degrees of vertex vi on the original and disaggre-
gated graph, respectively. Moreover, dexi = δDi − δi, i = n, n + 1, · · · , N . We may
also rewrite the shift s as

s =
〈Pφ,1N 〉DD

〈1N ,1N 〉DD

=

∑N
i=n d

ex
i φn∑N

i=1 δ
D
i

.

Let ωtotal(H) denote the total weights of a graph H, and let Ga be the disaggregated

local subgraph. Similarly, we consider φ̃ as an approximation of the eigenvectors of
the matrix D−1

D LD. In fact, we have the following lemma.

Theorem 2 Let (ν,φ), ‖φ‖D = 1 be an eigenpair of D−1L associated with a simply

connected graph G and φ̃ be defined by (2.3). We have

〈LDφ̃, φ̃〉
〈DDφ̃, φ̃〉

=
ν

1 + 2ωtotal(G)ωtotal(Ga)
ωtotal(GD) φ2

n

, (2.4)

and, therefore,

νD2 = αν2, α =

(
1 +

2ωtotal(G)ωtotal(Ga)

ωtotal(GD)
φ2
n

)−1

≤ 1. (2.5)

Proof. We have

〈LDφ̃, φ̃〉 = 〈LD(Pφ− s1N ), Pφ− s1N 〉 = 〈LDPφ, Pφ〉 = 〈Lφ,φ〉 = ν

7
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and

〈DDφ̃, φ̃〉 = 〈DDPφ, Pφ〉 − s〈DD1N , Pφ〉
= 〈D1

DPφ, Pφ〉+ 〈Dex
D Pφ, Pφ〉 − s〈DD1N , Pφ〉

= 〈Dφ,φ〉+
N∑
i=n

dexi φ
2
n −

(∑N
i=n d

ex
i φn

)2

∑N
i δ

D
i

= 1 +

(∑N
i δ

D
i −

∑N
i=n d

ex
i

)∑N
i=n d

ex
i∑N

i δ
D
i

φ2
n

= 1 +
(
∑n

i=1 δi)
(∑N

i=n d
ex
i

)
∑N

i=1 δ
D
i

φ2
n.

Noting that
∑N

i=1 δi = 2ωtotal(G),
∑N

i=1 δ
D
i = 2ωtotal(GD), and

∑N
i=n d

ex
i =

2ωtotal(Ga), we obtain (2.4). Moreover, (2.5) follows directly from (2.4).

The Cheeger constant of a weighted graph is defined as follows [4, 9]

h(G) = min
∅6=U⊂V

|E(U, Ū)|
min(vol(U), vol(Ū))

,

where

Ū = V \U, vol(U) =
∑
i∈U

δi, |E(U, Ū)| =
∑

e=(i,j)∈E
i∈U,j∈Ū

ωe.

Due to the Cheeger inequality [4, 9], the Cheeger constant h(G) and ν2 are related
as follows

1−
√

1− h(G)2 ≤ ν2 ≤ 2h(G). (2.6)

Theorem 3 For the Cheeger constant of the original graph G ∈ G and the disag-
gregated graph GD ∈ G, we have

h(GD) ≤
√

1− (1− 2αh(G))2,

where α is defined by (2.5). If h(G) ≥ 4α
4α2+1 , then h(GD) ≤ h(G).

Proof. Based on (2.6) and (2.5), we have

h(GD) ≤
√

1− (1− νD2 )2 =
√

1− (1− αν2)2 ≤
√

1− (1− 2αh(G))2.

Basic algebra shows that h(GD) ≤ h(G) if h(G) ≥ 4α
4α2+1 .

8
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3. Graph Disaggregation

We now move on to the more general case of multiple disaggregated vertices. With-
out loss of generality, for a graph Laplacian L ∈ Rn×n, suppose we are disaggregating
the first m vertices. This gives us the disaggregated Laplacian LD ∈ RN×N . Here,
N is the number of vertices in the disaggregated graph, given by

N = n−m+

m∑
k=1

dk = n−m+ nd, nd =

m∑
k=1

dk.

Note that we have m groups of vertices associated with the disaggregation, which
we can also number consecutively

{1, . . . , N} = {1, . . . , d1︸ ︷︷ ︸
d1

, . . . d1 + 1, . . . , d1 + d2︸ ︷︷ ︸
d2

, . . . , nd + 1, . . . , N}. (3.1)

Similar to the case of a single disaggregated vertex, we can establish a relationship
between L and LD through a prolongation matrix P : Rn → RN , given by

P =

(
Pm 0
0 In0×n0

)
, where n0 = (n−m). (3.2)

Here, Pm ∈ Rnd×m, and

Pm =


1d1 0 . . . 0
0 1d2 . . . 0
...

...
...

...
0 0 . . . 1dm

 .

Note that P TmPm = diag(d1, . . . dm). We have the following lemma, which can be
easily verified by simple algebraic calculation.

Lemma 4 Let L and LD be the graph Laplacian of the original graph G ∈ G and
the disaggregated graph GD ∈ G, respectively. If P is defined as (3.2), then we have

L = P TLDP. (3.3)

If we look at the disaggregated graph Laplacian LD directly, we can obtain a
similar bound on the algebraic connectivity as shown in Theorem 1. Let (λ,ϕ) be
an eigenpair of L. We can define an approximated eigenvector of LD by prolongating
ϕ as follows

ϕ̃ = Pϕ− s1N , where s =
1

N

m∑
i=1

(di − 1)ϕi. (3.4)

It is easy to check that 〈ϕ̃,1N 〉 = 0. Now we have the following lemma about the
Rayleigh quotient of ϕ̃ with respect to LD.

9
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Lemma 5 Let (λ,ϕ) be an eigenpair of the graph Laplacian L associated with a
simply connected graph G and ϕ̃ be defined by (3.4). We have

RQ(ϕ̃) :=
〈LDϕ̃, ϕ̃〉
〈ϕ̃, ϕ̃〉

≤ λ

1 + 1
N

∑m
i=1(di − 1)(n+ nd −mdi)ϕ2

i

.

Moreover, if for dmax
i = maxi di, we have n+ nd −mdmax

i > 0, then RQ(ϕ̃) < λ.

Proof. We note that

〈LDϕ̃, ϕ̃〉 = 〈LD(Pϕ− s1N ), Pϕ− s1N 〉 = 〈LDPϕ, Pϕ〉 − 2s〈LD1N , Pϕ〉+ s2〈LD1N ,1N 〉
= 〈P TLDPϕ,ϕ〉 = 〈Lϕ,ϕ〉 = λ.

Denoting ϕ by ϕ = (ϕ1, ϕ2, · · · , ϕm,ϕ0)T , we have

〈ϕ̃, ϕ̃〉 = 〈Pϕ− s1N , Pϕ− s1N 〉 = 〈Pϕ, Pϕ〉 − 2s〈Pϕ,1N 〉+ s2〈1N ,1N 〉

= 〈ϕ0,ϕ0〉+

m∑
i=1

ϕ2
i 〈1di ,1di〉 − 2s

(
〈ϕ0,1n0

〉+

m∑
i=1

ϕi〈1di ,1di〉

)
+ s2N

= 〈ϕ0,ϕ0〉+

m∑
i=1

ϕ2
i +

m∑
i=1

(di − 1)ϕ2
i − 2s

m∑
i=1

(di − 1)ϕi + s2N

= 1 +
m∑
i=1

(di − 1)ϕ2
i −

1

N

(
m∑
i=1

(di − 1)ϕi

)2

≥ 1 +
m∑
i=1

(di − 1)ϕ2
i −

m

N

m∑
i=1

(di − 1)2ϕ2
i

= 1 +
m∑
i=1

(di − 1)
N −m(di − 1)

N
ϕ2
i

= 1 +
1

N

m∑
i=1

(di − 1)(n+ nd −mdi)ϕ2
i .

This completes the proof.

From the Rayleigh quotient and applying the above lemma to the Fielder vector,
we have the following theorem concerning the algebraic connectivity.

Theorem 4 Let ϕ be the Fiedler vector of the graph Laplacian L associated with
a graph G ∈ G and LD be the graph Laplacian corresponding to the disaggregated
graph GD ∈ G. Suppose we have disaggregated m vertices and each of those vertices
are disaggregated into di > 1 vertices, i = 1, 2, · · · ,m. We have

a(G)

a(GD)
≥ 1 +

1

N

m∑
i=1

(di − 1)(n+ nd −mdi)ϕ2
i .

Proof. The proof is similar to the proof of Theorem 1 and uses Lemma 5.

10
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It is possible to perform a more careful estimate, using the fact that disaggregating
m vertices at once is equivalent to disaggregating m vertices one by one. Denote
n0 = n and ni = ni−1 − 1 + di, i = 1, 2, · · · ,m. Note that ni = n − i +

∑i
k=1 dk,

i = 1, 2, · · · ,m and N = nm. Recursively applying Theorem 1, we have the following
result.

Theorem 5 Let ϕ be the Fiedler vector of the graph Laplacian L associated with a
graph G ∈ G and LD be the graph Laplacian corresponding to the disaggregated graph
GD ∈ G. Suppose we disaggregated m vertices and each of those are disaggregated
into di > 1 vertices, i = 1, 2, · · · ,m. We have

a(G)

a(GD)
≥
∏(

1 +
(di − 1)ni−1

ni
ϕ2
i

)
.

Proof. Let GiD be the resulting graph after disaggregating the i-th vertex in the

graph Gi−1
D and note that GD = GmD . We have

a(G)

a(GD)
=

a(G)

a(G1
D)
×
a(G1

D)

a(G2
D)
× · · · ×

a(Gm−1
D )

a(GmD)
.

The result follows immediately from applying Theorem 1 on each pair of graphs GiD
and Gi+1

D .

Remark 1 A direct consequence of Theorem 5 is a(GD) ≤ a(G).

Similarly, we also have the following result concerning the minimal eigenvalue of
the random walk Laplacian after disaggregating several vertices. Denote G0

D = G,
and denote the graph after disaggregating vertex i by GiD. Note that GmD = GD. The
local subgraph corresponding to disaggregating vertex i is denoted by Gia.

Theorem 6 Let ν2 be the second smallest eigenvalue of the random walk Laplacian
associated with a graph G ∈ G and νD2 be the second smallest eigenvalue of the
random walk Laplacian corresponding to the disaggregated graph GD ∈ G. Suppose
we disaggregated m vertices and each of them are disaggregated into di > 1 vertices,
i = 1, 2, . . . ,m. We have

ν2

νD2
≥

m∏
i=1

(
1 +

2ωtotal(G
i−1
D )ωtotal(G

i
a)

ωtotal(G
i
D)

φ2
i

)
.

Consequently, we have νD2 = αν2, where

α :=

[
m∏
i=1

(
1 +

2ωtotal(G
i−1
D )ωtotal(G

i
a)

ωtotal(G
i
D)

φ2
i

)]−1

≤ 1. (3.5)

Proof. The result follows by applying Theorem 2 recursively.

Based on the estimates on the eigenvalues of normalized graph Laplacian, we can
estimate the Cheeger constants as follows.

11
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Theorem 7 For the Cheeger constant of the original graph G and the disaggregated
and simply connected graph GD, we have

h(GD) ≤
√

1− (1− 2αh(G))2,

where α is defined by (3.5). If h(G) ≥ 4α
4α2+1 , then h(GD) ≤ h(G).

Proof. The proof is the same as the proof of Theorem 3.

4. Preconditioning Using Disaggregated Graph

We first aim to show eigenvalue interlacing between L and a new matrix, which is
obtained by scaling LD appropriately. We can rescale P by introducing P̃ = DsP ,
where

Ds = diag(d
−1/2
1 Id1×d1 , . . . , d

−1/2
m Idm×dm , In0×n0) (4.1)

is a diagonal scaling matrix, giving us P̃ T P̃ = I. Based on the scaled prolongation,
we are able to show the eigenvalues of diagonal scaled matrix

L̃D := D−1
s LDD

−1
s (4.2)

interlaces with L. First, let us recall the interlacing theorem.

Theorem 8 (Interlacing Theorem [5], Vol. 1, Chap. I) Let S ∈ Rn×m be such that
STS = Im×m, m < n and let B ∈ Rn×n be symmetric, with eigenvalues λ1 ≤ λ2 ≤
... ≤ λn. Define A = STBS and let A have eigenvalues µ1 ≤ µ2 ≤ ... ≤ µm. Then
λi ≤ µi ≤ λn−m+i.

From here, we have the following.

Theorem 9 Let L have eigenvalues λ1(L) ≤ λ2(L) ≤ ... ≤ λn(L) and L̃D =

D−1
s LDD

−1
s have eigenvalues λ1(L̃D) ≤ λ2(L̃D) ≤ ... ≤ λN (L̃D). Then

λi(L̃D) ≤ λi(L) ≤ λN−n+i(L̃D).

Proof. From the above Lemma, we have

L = P TLDP = P TDsD
−1
s LDD

−1
s DsP = P̃ TD−1

s LDD
−1
s P̃ = P̃ T L̃DP̃ .

As P̃ T P̃ = In×n, by the Interlacing Theorem 8, the eigenvalues of L and L̃D inter-
lace.

We now discuss how to use the disaggregated graph GD to solve the graph Lapla-
cian on the original graph G. Here, we will use L̃D as the auxiliary problem and
design a preconditioner based on the Fictitious Space Lemma [14] and auxiliary

space framework [20]. Because L and L̃D are both symmetric positive semi-definite,
we first state the refined version of the Fictitious Space Lemma proposed in [7].

12
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Theorem 10 (Theorem 6.3 and 6.4 in [7]) Let Ṽ and V be two Hilbert spaces and

Π : Ṽ 7→ V be a surjective map. Suppose that Ã : Ṽ 7→ Ṽ ′ and A : V 7→ V ′ are
symmetric semi-definite operators. Moreover, suppose

Π(N(Ã)) = N(A), (4.3)

‖Π ṽ‖A ≤ c1‖ṽ‖Ã, ∀ ṽ ∈ Ṽ , (4.4)

for any v ∈ V there exists ṽ ∈ Ṽ such that Π ṽ = v and ‖ṽ‖Ã ≤ c0‖v‖A, (4.5)

then for any symmetric positive definite operator B̃ : Ṽ ′ 7→ Ṽ , we have that for
B = Π B̃ΠT ,

κ(BA) ≤
(
c1

c0

)2

κ(B̃Ã).

Applying the above theory to our disaggregation framework, we take A = L,
Ã = L̃D, and Π = P̃ T . Noting that the null space of L̃D is spanned by Ds1N , we
have

P̃ TDs1N = P TD2
s1N = 1n

which verifies (4.3). Naturally, P̃ T is surjective. Using a preconditioner B̃D of L̃D,
we can define a preconditioner

B = P̃ T B̃DP̃

for L. We give the following results concerning the quality of the preconditioner B.

Corollary 1 Let L be the graph Laplacian corresponding to the graph G ∈ G and
LD be the graph Laplacian corresponding to the disaggregated graph GD ∈ G. Let Ds

be defined by (4.1) and L̃D be defined by (4.2). If

‖P̃ T ṽ‖L ≤ c1‖ṽ‖L̃D
, ∀ ṽ ∈ Ṽ (4.6)

and for any v ∈ V , there exist a ṽ ∈ Ṽ such that P̃ T ṽ = v and

‖ṽ‖L̃D
≤ c0‖v‖L. (4.7)

Then for the preconditioner B = P̃ T B̃DP̃ , we have

κ(BL) ≤
(
c1

c0

)2

κ(B̃DL̃D).

We need to verify that conditions (4.6) and (4.7) hold for P̃ = DsP . For condition

(4.7), we choose ṽ = P̃ Tv for any v ∈ V , giving P̃ T ṽ = P̃ T P̃v = v since P̃ T P̃ = I.
Note that

‖ṽ‖2
L̃D

= 〈L̃DP̃v, P̃v〉 = ‖v‖2L, (4.8)

13
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which implies condition (4.7) holds with c0 = 1.
To show that condition (4.6) holds, we use the following result.

Lemma 6 Let L ∈ Rn×n be the graph Laplacian corresponding to a graph G ∈ G
with n vertices. For all i ∈ {1, . . . , n} and u ∈ Rn we have

1

n
(u,1n)− (u, ei) =

1

n
(L−1

i 1n, Lu),

where Li = (L+ eie
T
i ).

Proof. First, we note that for all i ∈ {1, . . . , n} the matrices Li are invertible,
because they all are irreducibly diagonally dominant M -matrices. We refer to
Varga [19] for this classical result.

Next, observe that Li1n = ei, and hence, L−1
i ei = 1n. Therefore, we have that

(L−1
i 1n, Lu) = (L−1

i 1n, (Li − eieTi )u) = (1n,u)− (u, ei)(L
−1
i 1n, ei)

= (1n,u)− (u, ei)(1n, L
−1
i ei) = (1n,u)− (u, ei)(1n,1n).

As (1n,1n) = n, this completes the proof.

The result shown in Lemma 6 is also found in [3, Lemma 3.2], but is included for
completeness.

Let Gka = (V k
a , E

k
a , ω

k
a), k = 1, 2, · · · ,m, be the m local subgraphs created by

disaggregating each of the m vertices. We now apply Lemma 6 to Gka = (V k
a , E

k
a , ω

k
a),

k = 1, 2, · · · ,m, with u = ṽk, the restriction of ṽ on Gka. For j ∈ V k
a , we have,

ṽj =
1

dk

∑
p∈V k

a

ṽp −
1

dk
〈L−1

k,j1dk , Lkṽk〉, (4.9)

where Lk is the unweighted graph Laplacian of the local graph Gka and Lk,j is

defined in accordance with Lemma 6: Lk,j = Lk + ekj

(
ekj

)T
, for j ∈ V k

a . Setting

W j
k := 1

d2k
‖L−1

k,j1dk‖
2
Lk

, j ∈ V k
a , and denoting

E0
D := {e = (i, j) ∈ ED, i, j ∈ V 0},

E1
D := {e = (i, j) ∈ ED, i ∈ V 0, j ∈ V k

a , k = 1, 2, · · · ,m},
E2
D := {e = (i, j) ∈ ED, i ∈ V k

a , j ∈ V `
a , k, ` = 1, 2, · · · ,m, k 6= `},

we are ready to present the following lemma related to the condition (4.6).

Lemma 7 For each disaggregated local subgraph Gka, if, for an edge e′ = (p, q) ∈ Eka ,
we assign a weight ωe′ such that

ωe′ ≥We′ := (1+ε−1)

 ∑
e=(i,j)∈E1

D

i∈V 0, j∈V k
a

ωeW
j
k + 2

m∑
`=1

 ∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωeW
i
k +

∑
e=(i,j)∈E2

D

i∈V `
a , j∈V k

a

ωeW
j
k


 ,

(4.10)

14
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then we have

‖P̃ T ṽ‖2L ≤ (1 + ε)‖ṽ‖2
L̃D
, ∀ ṽ ∈ Ṽ , (4.11)

where ε > 0.

Proof. The proof is quite tedious, and, therefore, is left to Appendix A.

Lemma 7 shows that the constant c1 can be made arbitrarily close to 1 if the
weights on the internal edges of the disaggregation are chosen to be large enough.
As an immediate consequence, we have the following theorem for the preconditioner
B.

Theorem 11 Under the assumptions of Corollary 1 and Lemma 7, for the precon-
ditioner B = P̃ T B̃DP̃ , we have

κ(BL) ≤ (1 + ε)κ(B̃DL̃D). (4.12)

Proof. The relation (4.12) follows from Corollary 1 since c0 = 1 in (4.8) and c1 =
(1 + ε)1/2 in Lemma 7.

Finally, since L̃D := D−1
s LDD

−1
s , if we have a preconditioner BD for LD and

define B̃D = DsLDDs, then it is easy to verify that κ(B̃DL̃D) = κ(BDLD). We
have the following theorem showing that the preconditioned operator BL has a
condition number comparable to the condition number of BDLD.

Theorem 12 Under the assumptions of Corollary 1 and Lemma 7 and let B̃D =
DsBDDs, for the preconditioner B = P̃ T B̃DP̃ , we have

κ(BL) ≤ (1 + ε)κ(BDLD). (4.13)

Proof. (4.13) follows from Theorem 11 and the fact that κ(B̃DL̃D) = κ(BDLD).

Clearly, Theorems 4.12 and 4.13 imply that, when the weights on the internal
edges of the disaggregation are chosen to be large enough, preconditioners for dis-
aggregated graph provide effective preconditioners for the original graph, which
indirectly supports the technique suggested in [11].
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Appendix A. Proof of Lemma 7

We denote ũ = P̃ T P̃ ṽ, and we have,

‖P̃ T ṽ‖2L = 〈L̃Dũ, ũ〉 =
∑

e=(i,j)∈ED

ωe(ũi − ũj)2

=
∑

e=(i,j)∈E0
D

ωe(ũi − ũj)2 +
m∑
k=1

∑
e=(i,j)∈Ek

a

ωe(ũi − ũj)2

+
∑

e=(i,j)∈E1
D

ωe(ũi − ũj)2 +
∑

e=(i,j)∈E2
D

ωe (ũi − ũj)2

=: I0 + I1 + I2.

Here, we have set I0 =
∑

e=(i,j)∈E0
D
ωe (ṽi − ṽj)2,

I1 =
m∑
k=1

∑
e=(i,j)∈E1

D

i∈V 0, j∈V k
a

ωe

ṽi − 1

dk

∑
p∈V k

a

ṽp

2

,

and

I2 =

m∑
k=1

m∑
`=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωe

 1

dk

∑
p∈V k

a

ṽp −
1

d`

∑
q∈V `

a

ṽq

2

.

Next, we estimate I1 and I2 on the right-hand side. For e = (i, j) ∈ E1
D, i ∈ V 0

and j ∈ V k
a , using (4.9), we haveṽi − 1

dk

∑
p∈V k

a

ṽp

2

=

(
ṽi − ṽj −

1

dk
〈L−1

k,j1dk , Lkṽk〉
)2

≤ (1 + ε) (ṽi − ṽj)2 +
(
1 + ε−1

) 1

d2
k

‖L−1
k,j1dk‖

2
Lk
‖ṽk‖2Lk

= (1 + ε) (ṽi − ṽj)2 +
∑

e′=(p,q)∈Ek
a

[(
1 + ε−1

)
W j
k

]
(ṽp − ṽq)2 .

16



October 30, 2016 Linear and Multilinear Algebra gLMAguide

Then

I1 ≤
m∑
k=1

∑
e=(i,j)∈E1

D

i∈V 0, j∈V k
a

ωe

(1 + ε) (ṽi − ṽj)2 +
∑

e′=(p,q)∈Ek
a

[(
1 + ε−1

)
W j
k

]
(ṽp − ṽq)2


= (1 + ε)

m∑
k=1

∑
e=(i,j)∈E1

D

i∈V 0, j∈V k
a

ωe (ṽi − ṽj)2

+
m∑
k=1

∑
e′=(p,q)∈Ek

a

(1 + ε−1)
∑

e=(i,j)∈E1
D

i∈V 0, j∈V k
a

ωeW
j
k

 (ṽp − ṽq)2 .

Next, using (4.9), for e = (i, j) ∈ E2
D, i ∈ V k

a and j ∈ V `
a we have 1

dk

∑
p∈V k

a

ṽp −
1

d`

∑
q∈V `

a

ṽq

2

=

(
ṽi − ṽj +

1

dk
〈L−1

k,i1dk , Lkṽk〉 −
1

d`
〈L−1

`,j 1d` , L`ṽ`〉
)2

≤ (1 + ε) (ṽi − ṽj)2 + 2(1 + ε−1)
1

d2
k

‖L−1
k,i1dk‖

2
Lk
‖ṽk‖2Lk

+ 2(1 + ε−1)
1

d2
`

‖L−1
`,j 1d`‖L`

‖ṽ`‖2L`

= (1 + ε) (ṽi − ṽj)2 +
∑

e′=(p,q)∈Ek
a

[
2
(
1 + ε−1

)
W i
k

]
(ṽp − ṽq)2

+
∑

e′=(p,q)∈E`
a

[
2
(
1 + ε−1

)
W j
`

]
(ṽp − ṽq)2 .

Then

I2 ≤
m∑
k=1

m∑
`=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωe

(1 + ε) (ṽi − ṽj)2 +
∑

e′=(p,q)∈Ek
a

[
2
(
1 + ε−1

)
W i
k

]
(ṽp − ṽq)2

+
∑

e′=(p,q)∈E`
a

[
2
(
1 + ε−1

)
W j
`

]
(ṽp − ṽq)2

 .
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Therefore, we have

I2 ≤ (1 + ε)

m∑
k=1

m∑
`=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωe (ṽi − ṽj)2

+

m∑
k=1

∑
e′=(p,q)∈Ek

a


m∑
l=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

2(1 + ε−1)ωeW
i
k

 (ṽp − ṽq)2

+
m∑
`=1

∑
e′=(p,q)∈E`

a


m∑
k=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

2(1 + ε−1)ωeW
j
`

 (ṽp − ṽq)2 .

Hence,

I2 ≤ (1 + ε)
m∑
k=1

m∑
`=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωe (ṽi − ṽj)2

+
m∑
k=1

∑
e′=(p,q)∈Ek

a

2(1 + ε−1)


m∑
`=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωeW
i
k +

m∑
`=1

∑
e=(i,j)∈E2

D

i∈V `
a , j∈V k

a

ωeW
j
k


 (ṽp − ṽq)2 .

Now, we use the definition of We′ (4.10) and the estimates on I1 and I2 to obtain
that

‖P̃ T ṽ‖2L ≤
∑
e∈E0

D

ωe (ṽi − ṽj)2 + (1 + ε)
m∑
k=1

∑
e=(i,j)∈E1

D

i∈V 0, j∈V k
a

ωe (ṽi − ṽj)2

+(1 + ε)

m∑
k=1

m∑
`=1

∑
e=(i,j)∈E2

D

i∈V k
a , j∈V `

a

ωe (ṽi − ṽj)2 +

m∑
k=1

∑
e′=(p,q)∈Ek

a

We′ (ṽp − ṽq)2 .

Due to (4.10), we have that ωe′ ≥We′ and (4.11) follows. This completes the proof.
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[1] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[2] Stephen Barnard and Horst Simon. Fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and Experi-
ence, 6(2):101–117, 1994.

[3] James Brannick, Yao Chen, Johannes Kraus, and Ludmil Zikatanov. Algebraic mul-

18



October 30, 2016 Linear and Multilinear Algebra gLMAguide

tilevel preconditioners for the graph Laplacian based on matching in graphs. SIAM
Journal on Numerical Analysis, 51(3):1805–1827, 2013.

[4] Fan Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.
[5] Richard Courant and David Hilbert. Methoden der mathematischen Physik. Berlin,

1924.
[6] Pasqua D’Ambra and Panayot Vassilevski. Compatible matching adaptive AMG pre-

conditioners for Laplacian matrices on general graphs. Tech. Rep. LLNL-TR-676601,
Lawrence Livermore National Laboratory, 2015.

[7] Blanca Ayuso de Dios, Franco Brezzi, L. Donatella Marini, Jinchao Xu, and Ludmil T.
Zikatanov. A simple preconditioner for a discontinuous Galerkin method for the Stokes
problem. Journal of Scientific Computing, 58(3):517–547, 2014.
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