18.175: Lecture 9 More large deviations

Scott Sheffield

MIT

Weak convergence

Legendre transform

Large deviations

Weak convergence

Legendre transform

Large deviations

• Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- **Proof idea:** use binomial coefficients and Stirling's formula.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- **Proof idea:** use binomial coefficients and Stirling's formula.
- Question: Does similar statement hold if X_i are i.i.d. from some other law?

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- **Proof idea:** use binomial coefficients and Stirling's formula.
- Question: Does similar statement hold if X_i are i.i.d. from some other law?
- Central limit theorem: Yes, if they have finite variance.

Local p = 1/2 DeMoivre-Laplace limit theorem

• Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.

- Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
- **Theorem:** If $2k/\sqrt{2n} \to x$ then $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.

- Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
- **Theorem:** If $2k/\sqrt{2n} \to x$ then $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.
- Recall $P(S_{2n} = 2k) = \binom{2n}{n+k} 2^{-2n} = 2^{-2n} \frac{(2n)!}{(n+k)!(n-k)!}$.

Weak convergence

Legendre transform

Large deviations

Weak convergence

Legendre transform

Large deviations

• Let X be random variable, X_n a sequence of random variables.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- Example: If X_n is equal to 1/n a.s. then X_n converge weakly to an X equal to 0 a.s. Note that lim_{n→∞} F_n(0) ≠ F(0) in this case.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- ▶ **Example:** If X_n is equal to 1/n a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n\to\infty} F_n(0) \neq F(0)$ in this case.
- ► **Example:** If X_i are i.i.d. then the empirical distributions converge a.s. to law of X₁ (Glivenko-Cantelli).

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- ▶ **Example:** If X_n is equal to 1/n a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n\to\infty} F_n(0) \neq F(0)$ in this case.
- ► **Example:** If X_i are i.i.d. then the empirical distributions converge a.s. to law of X₁ (Glivenko-Cantelli).
- **Example:** Let X_n be the *n*th largest of 2n + 1 points chosen i.i.d. from fixed law.

▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.

- **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.
- ► Theorem: Suppose g is measurable and its set of discontinuity points has µ_X measure zero. Then X_n ⇒ X_∞ implies g(X_n) ⇒ g(X).

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.
- ► Theorem: Suppose g is measurable and its set of discontinuity points has µ_X measure zero. Then X_n ⇒ X_∞ implies g(X_n) ⇒ g(X).
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.

Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.

- Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.
- Limit may not be a distribution function.

- Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say µ_n are tight if for every ε we can find an M so that µ_n[−M, M] < ε for all n. Define tightness analogously for corresponding real random variables or distributions functions.</p>

- Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say µ_n are **tight** if for every ε we can find an M so that µ_n[−M, M] < ε for all n. Define tightness analogously for corresponding real random variables or distributions functions.</p>
- ▶ **Theorem:** Every subsequential limit of the *F_n* above is the distribution function of a probability measure if and only if the *F_n* are tight.

If we have two probability measures μ and ν we define the total variation distance between them is $||μ - ν|| := sup_B |μ(B) - ν(B)|.$

- If we have two probability measures μ and ν we define the total variation distance between them is $||μ ν|| := sup_B |μ(B) ν(B)|.$
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.

- If we have two probability measures μ and ν we define the total variation distance between them is $||μ ν|| := sup_B |μ(B) ν(B)|.$
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- Convergence in total variation norm is much stronger than weak convergence.
DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations

Define Legendre transform (or Legendre dual) of a function
 Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.

Define Legendre transform (or Legendre dual) of a function
 Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^* related?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^* related?
- What is the Legendre dual of the Legendre dual of a convex function?

▶ Define **Legendre transform** (or Legendre dual) of a function $\Lambda : \mathbb{R}^d \to \mathbb{R}$ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^* related?
- What is the Legendre dual of the Legendre dual of a convex function?
- What's the higher dimensional analog of rolling the tangent line?

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations

• Let X be a random variable.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as |t| → ∞.

• We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?

- We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n .

• Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \rightarrow 0$ exponentially fast when $a > E[X_i]$?

- Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \rightarrow 0$ exponentially fast when $a > E[X_i]$?
- ► Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

INTUITION: when "near x" the probability density function for µ_n is tending to zero like e^{-I(x)n}, as n→∞.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near *x*" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- **Simple case:** *I* is continuous, Γ is closure of its interior.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near x" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- **Simple case:** *I* is continuous, Γ is closure of its interior.
- Question: How would *I* change if we replaced the measures μ_n by weighted measures e^(λn,·)μ_n?

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- INTUITION: when "near x" the probability density function for µ_n is tending to zero like e^{-I(x)n}, as n→∞.
- **Simple case:** *I* is continuous, Γ is closure of its interior.
- **Question:** How would *I* change if we replaced the measures μ_n by weighted measures $e^{(\lambda n, \cdot)}\mu_n$?
- Replace I(x) by $I(x) (\lambda, x)$? What is $\inf_x I(x) (\lambda, x)$?

Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.

- Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

- Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of A by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$ for i.i.d. vectors X_1, X_2, \dots, X_n in \mathbb{R}^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of Λ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function Λ*.

Thinking about Cramer's theorem

• Let
$$\mu_n$$
 be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
Thinking about Cramer's theorem

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \},$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

Thinking about Cramer's theorem

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

This means that for all Γ ∈ B we have this asymptotic lower bound on probabilities μ_n(Γ)

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

Thinking about Cramer's theorem

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

This means that for all Γ ∈ B we have this asymptotic lower bound on probabilities μ_n(Γ)

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

• and this **asymptotic upper bound** on the probabilities $\mu_n(\Gamma)$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x),$$

which says (up to subexponential error) $\mu_n(\Gamma) \leq e^{-n \inf_{x \in \overline{\Gamma}} I(x)}$.

• Recall that
$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.
- If Γ were singleton set {x} we could find the λ corresponding to x, so Λ*(x) = (x, λ) − Λ(λ). Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} \ge e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by *n* gives $\Lambda(\lambda) \ge \frac{1}{n}\log\mu_n + (\lambda,x)$, so that $\frac{1}{n}\log\mu_n(\Gamma) \le -\Lambda^*(x)$, as desired.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.
- If Γ were singleton set {x} we could find the λ corresponding to x, so Λ*(x) = (x, λ) − Λ(λ). Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} \ge e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by *n* gives $\Lambda(\lambda) \ge \frac{1}{n}\log\mu_n + (\lambda,x)$, so that $\frac{1}{n}\log\mu_n(\Gamma) \le -\Lambda^*(x)$, as desired.

General Γ: cut into finitely many pieces, bound each piece?

18.175 Lecture 9

• Recall that
$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\}.$$

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-nI(x)}$.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-nI(x)}$.
- Idea is to weight law of each X_i by e^(λ,x) to get a new measure whose expectation is in the interior of x. In this new measure, A_n is "typically" in Γ for large Γ, so the probability is of order 1.

- ► Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-nI(x)}$.
- Idea is to weight law of each X_i by e^(λ,x) to get a new measure whose expectation is in the interior of x. In this new measure, A_n is "typically" in Γ for large Γ, so the probability is of order 1.
- But by how much did we have to modify the measure to make this typical? Aren't we weighting the law of A_n by about e^{-nl(x)} near x?