18.175: Lecture 9
 More large deviations

Scott Sheffield

MIT
18.175 Lecture 9

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations
18.175 Lecture 9

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations
18.175 Lecture 9

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".
- Proof idea: use binomial coefficients and Stirling's formula.

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".
- Proof idea: use binomial coefficients and Stirling's formula.
- Question: Does similar statement hold if X_{i} are i.i.d. from some other law?

DeMoivre-Laplace limit theorem

- Let X_{i} be i.i.d. random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".
- Proof idea: use binomial coefficients and Stirling's formula.
- Question: Does similar statement hold if X_{i} are i.i.d. from some other law?
- Central limit theorem: Yes, if they have finite variance.

Local $p=1 / 2$ DeMoivre-Laplace limit theorem

- Stirling: $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$ where \sim means ratio tends to one.

Local $p=1 / 2$ DeMoivre-Laplace limit theorem

- Stirling: $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$ where \sim means ratio tends to one.
- Theorem: If $2 k / \sqrt{2 n} \rightarrow x$ then $P\left(S_{2 n}=2 k\right) \sim(\pi n)^{-1 / 2} e^{-x^{2} / 2}$.

Local $p=1 / 2$ DeMoivre-Laplace limit theorem

- Stirling: $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$ where \sim means ratio tends to one.
- Theorem: If $2 k / \sqrt{2 n} \rightarrow x$ then $P\left(S_{2 n}=2 k\right) \sim(\pi n)^{-1 / 2} e^{-x^{2} / 2}$.
- Recall $P\left(S_{2 n}=2 k\right)=\binom{2 n}{n+k} 2^{-2 n}=2^{-2 n} \frac{(2 n)!}{(n+k)!(n-k)!}$.

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations
18.175 Lecture 9

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations

18.175 Lecture 9

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- Also say that the $F_{n}=F_{X_{n}}$ converge weakly to $F=F_{X}$.

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- Also say that the $F_{n}=F_{X_{n}}$ converge weakly to $F=F_{X}$.
- Example: X_{i} chosen from $\{-1,1\}$ with i.i.d. fair coin tosses: then $n^{-1 / 2} \sum_{i=1}^{n} X_{i}$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- Also say that the $F_{n}=F_{X_{n}}$ converge weakly to $F=F_{X}$.
- Example: X_{i} chosen from $\{-1,1\}$ with i.i.d. fair coin tosses: then $n^{-1 / 2} \sum_{i=1}^{n} X_{i}$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- Example: If X_{n} is equal to $1 / n$ a.s. then X_{n} converge weakly to an X equal to 0 a.s. Note that $\lim _{n \rightarrow \infty} F_{n}(0) \neq F(0)$ in this case.

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- Also say that the $F_{n}=F_{X_{n}}$ converge weakly to $F=F_{X}$.
- Example: X_{i} chosen from $\{-1,1\}$ with i.i.d. fair coin tosses: then $n^{-1 / 2} \sum_{i=1}^{n} X_{i}$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- Example: If X_{n} is equal to $1 / n$ a.s. then X_{n} converge weakly to an X equal to 0 a.s. Note that $\lim _{n \rightarrow \infty} F_{n}(0) \neq F(0)$ in this case.
- Example: If X_{i} are i.i.d. then the empirical distributions converge a.s. to law of X_{1} (Glivenko-Cantelli).

Weak convergence

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- Also say that the $F_{n}=F_{X_{n}}$ converge weakly to $F=F_{X}$.
- Example: X_{i} chosen from $\{-1,1\}$ with i.i.d. fair coin tosses: then $n^{-1 / 2} \sum_{i=1}^{n} X_{i}$ converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- Example: If X_{n} is equal to $1 / n$ a.s. then X_{n} converge weakly to an X equal to 0 a.s. Note that $\lim _{n \rightarrow \infty} F_{n}(0) \neq F(0)$ in this case.
- Example: If X_{i} are i.i.d. then the empirical distributions converge a.s. to law of X_{1} (Glivenko-Cantelli).
- Example: Let X_{n} be the nth largest of $2 n+1$ points chosen i.i.d. from fixed law.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $\operatorname{Eg}\left(X_{n}\right) \rightarrow \operatorname{Eg}\left(X_{\infty}\right)$.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.
- Theorem: Suppose g is measurable and its set of discontinuity points has μ_{X} measure zero. Then $X_{n} \Longrightarrow X_{\infty}$ implies $g\left(X_{n}\right) \Longrightarrow g(X)$.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.
- Theorem: Suppose g is measurable and its set of discontinuity points has μ_{X} measure zero. Then $X_{n} \Longrightarrow X_{\infty}$ implies $g\left(X_{n}\right) \Longrightarrow g(X)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.
- Limit may not be a distribution function.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say μ_{n} are tight if for every ϵ we can find an M so that $\mu_{n}[-M, M]<\epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say μ_{n} are tight if for every ϵ we can find an M so that $\mu_{n}[-M, M]<\epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.
- Theorem: Every subsequential limit of the F_{n} above is the distribution function of a probability measure if and only if the F_{n} are tight.

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is

$$
\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)| .
$$

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is
$\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)|$.
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is
$\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)|$.
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- Convergence in total variation norm is much stronger than weak convergence.

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations
18.175 Lecture 9

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations

18.175 Lecture 9

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- Let's describe the Legendre dual geometrically if $d=1: \Lambda^{*}(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ^{*} values.

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- Let's describe the Legendre dual geometrically if $d=1: \Lambda^{*}(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ^{*} values.
- Is the Legendre dual always convex?

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- Let's describe the Legendre dual geometrically if $d=1: \Lambda^{*}(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ^{*} values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x^{2} ? Of the function equal to 0 at 0 and ∞ everywhere else?

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- Let's describe the Legendre dual geometrically if $d=1: \Lambda^{*}(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ^{*} values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x^{2} ? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^{*} related?

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- Let's describe the Legendre dual geometrically if $d=1: \Lambda^{*}(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ^{*} values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x^{2} ? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^{*} related?
- What is the Legendre dual of the Legendre dual of a convex function?

Legendre transform

- Define Legendre transform (or Legendre dual) of a function $\Lambda: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- Let's describe the Legendre dual geometrically if $d=1: \Lambda^{*}(x)$ is where tangent line to Λ of slope x intersects the real axis. We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ^{*} values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x^{2} ? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^{*} related?
- What is the Legendre dual of the Legendre dual of a convex function?
- What's the higher dimensional analog of rolling the tangent line?

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations
18.175 Lecture 9

Outline

DeMoivre-Laplace limit theorem

Weak convergence

Legendre transform

Large deviations
18.175 Lecture 9

Recall: moment generating functions

- Let X be a random variable.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.
- If $b>0$ and $t>0$ then

$$
E\left[e^{t X}\right] \geq E\left[e^{t \min \{X, b\}}\right] \geq P\{X \geq b\} e^{t b} .
$$

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.
- If $b>0$ and $t>0$ then $E\left[e^{t X}\right] \geq E\left[e^{t \min \{X, b\}}\right] \geq P\{X \geq b\} e^{t b}$.
- If X takes both positive and negative values with positive probability then $M(t)$ grows at least exponentially fast in $|t|$ as $|t| \rightarrow \infty$.

Recall: moment generating functions for i.i.d. sums

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$

Recall: moment generating functions for i.i.d. sums

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?

Recall: moment generating functions for i.i.d. sums

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}.

Large deviations

- Consider i.i.d. random variables X_{i}. Can we show that $P\left(S_{n} \geq n a\right) \rightarrow 0$ exponentially fast when $a>E\left[X_{i}\right]$?

Large deviations

- Consider i.i.d. random variables X_{i}. Can we show that $P\left(S_{n} \geq n a\right) \rightarrow 0$ exponentially fast when $a>E\left[X_{i}\right]$?
- Kind of a quantitative form of the weak law of large numbers. The empirical average A_{n} is very unlikely to ϵ away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map
$I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{\Gamma}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,
$-\inf _{x \in \Gamma^{\Gamma}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)$.
- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.
- Simple case: I is continuous, Γ is closure of its interior.

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.
- Simple case: I is continuous, Γ is closure of its interior.
- Question: How would I change if we replaced the measures μ_{n} by weighted measures $e^{(\lambda n, \cdot)} \mu_{n}$?

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{\Gamma}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.
- Simple case: I is continuous, Γ is closure of its interior.
- Question: How would I change if we replaced the measures μ_{n} by weighted measures $e^{(\lambda n, \cdot)} \mu_{n}$?
- Replace $I(x)$ by $I(x)-(\lambda, x)$? What is $\inf _{x} I(x)-(\lambda, x)$?

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.
- Define \log moment generating function of X by

$$
\Lambda(\lambda)=\Lambda_{X}(\lambda)=\log M_{X}(\lambda)=\log \mathbb{E} e^{(\lambda, X)}
$$

where (\cdot, \cdot) is inner product on \mathbb{R}^{d}.

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.
- Define \log moment generating function of X by

$$
\Lambda(\lambda)=\Lambda_{X}(\lambda)=\log M_{X}(\lambda)=\log \mathbb{E} e^{(\lambda, X)}
$$

where (\cdot, \cdot) is inner product on \mathbb{R}^{d}.

- Define Legendre transform of Λ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.
- Define log moment generating function of X by

$$
\Lambda(\lambda)=\Lambda_{X}(\lambda)=\log M_{X}(\lambda)=\log \mathbb{E} e^{(\lambda, X)}
$$

where (\cdot, \cdot) is inner product on \mathbb{R}^{d}.

- Define Legendre transform of Λ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function Λ^{*}.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function

$$
I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

where $\Lambda(\lambda)=\log M(\lambda)=\mathbb{E} e^{\left(\lambda, X_{1}\right)}$.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function

$$
I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

where $\Lambda(\lambda)=\log M(\lambda)=\mathbb{E} e^{\left(\lambda, X_{1}\right)}$.

- This means that for all $\Gamma \in \mathcal{B}$ we have this asymptotic lower bound on probabilities $\mu_{n}(\Gamma)$

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma),
$$

so (up to sub-exponential error) $\mu_{n}(\Gamma) \geq e^{-n \inf _{x \in \Gamma^{0}} I(x)}$.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function

$$
I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

where $\Lambda(\lambda)=\log M(\lambda)=\mathbb{E} e^{\left(\lambda, X_{1}\right)}$.

- This means that for all $\Gamma \in \mathcal{B}$ we have this asymptotic lower bound on probabilities $\mu_{n}(\Gamma)$

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma)
$$

so (up to sub-exponential error) $\mu_{n}(\Gamma) \geq e^{-n \inf _{x \in \Gamma^{0}} I(x)}$.

- and this asymptotic upper bound on the probabilities $\mu_{n}(\Gamma)$

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

which says (up to subexponential error) $\mu_{n}(\Gamma) \leq e^{-n \inf _{x \in \bar{\Gamma}} I(x)}$.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.
- We aim to show (up to subexponential error) that $\mu_{n}(\Gamma) \leq e^{-n i n f_{x \in \bar{\Gamma}} l(x)}$.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.
- We aim to show (up to subexponential error) that $\mu_{n}(\Gamma) \leq e^{-n i n f_{x \in \bar{\Gamma}} /(x)}$.
- If Γ were singleton set $\{x\}$ we could find the λ corresponding to x, so $\Lambda^{*}(x)=(x, \lambda)-\Lambda(\lambda)$. Note then that

$$
\mathbb{E} e^{\left(n \lambda, A_{n}\right)}=\mathbb{E} e^{\left(\lambda, S_{n}\right)}=M_{X}^{n}(\lambda)=e^{n \Lambda(\lambda)},
$$

and also $\mathbb{E} e^{\left(n \lambda, A_{n}\right)} \geq e^{n(\lambda, x)} \mu_{n}\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \geq \frac{1}{n} \log \mu_{n}+(\lambda, x)$, so that $\frac{1}{n} \log \mu_{n}(\Gamma) \leq-\Lambda^{*}(x)$, as desired.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.
- We aim to show (up to subexponential error) that $\mu_{n}(\Gamma) \leq e^{-n i n f_{x \in \bar{\Gamma}} /(x)}$.
- If Γ were singleton set $\{x\}$ we could find the λ corresponding to x, so $\Lambda^{*}(x)=(x, \lambda)-\Lambda(\lambda)$. Note then that

$$
\mathbb{E} e^{\left(n \lambda, A_{n}\right)}=\mathbb{E} e^{\left(\lambda, S_{n}\right)}=M_{X}^{n}(\lambda)=e^{n \Lambda(\lambda)},
$$

and also $\mathbb{E} e^{\left(n \lambda, A_{n}\right)} \geq e^{n(\lambda, x)} \mu_{n}\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \geq \frac{1}{n} \log \mu_{n}+(\lambda, x)$, so that $\frac{1}{n} \log \mu_{n}(\Gamma) \leq-\Lambda^{*}(x)$, as desired.

- General Γ : cut into finitely many pieces, bound each piece?

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \inf _{x \in \Gamma^{0}} I(x)}$.

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \text { inf }_{x \in \Gamma^{0}} /(x)}$.
- It's enough to show that for each given $x \in \Gamma^{0}$, we have that asymptotically $\mu_{n}(\Gamma) \geq e^{-n l(x)}$.

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \text { inf }_{x \in \Gamma^{0}} /(x)}$.
- It's enough to show that for each given $x \in \Gamma^{0}$, we have that asymptotically $\mu_{n}(\Gamma) \geq e^{-n I(x)}$.
- Idea is to weight law of each X_{i} by $e^{(\lambda, x)}$ to get a new measure whose expectation is in the interior of x. In this new measure, A_{n} is "typically" in Γ for large Γ, so the probability is of order 1 .

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \text { inf }_{x \in \Gamma^{0}} /(x)}$.
- It's enough to show that for each given $x \in \Gamma^{0}$, we have that asymptotically $\mu_{n}(\Gamma) \geq e^{-n I(x)}$.
- Idea is to weight law of each X_{i} by $e^{(\lambda, x)}$ to get a new measure whose expectation is in the interior of x. In this new measure, A_{n} is "typically" in Γ for large Γ, so the probability is of order 1 .
- But by how much did we have to modify the measure to make this typical? Aren't we weighting the law of A_{n} by about $e^{-n l(x)}$ near x ?

