18.175: Lecture 9

More large deviations
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S,, = 27:1 Xa.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S,, = Z,'-’:l Xa.
» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

S, —np

lim P{a <

n—o0 \V/npq

< b} — d(b) — d(a).
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
lim Pa < 22 < b} = 0(5) (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:
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above or below its mean”.

describes “number of standard deviations that S, is
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.
Sp—np

\/npq

above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
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» Proof idea: use binomial coefficients and Stirling’s formula.

» Question: Does similar statement hold if X; are i.i.d. from
some other law?
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = >"7 ; X,.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard

normal random variable.
Sp—np
\/npq
above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.

» Question: Does similar statement hold if X; are i.i.d. from
some other law?

» Central limit theorem: Yes, if they have finite variance.
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/27wn where ~ means ratio tends to one.
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/27wn where ~ means ratio tends to one.

» Theorem: If 2k/v/2n — x then
P(S2n = 2k) ~ (mn)~1/2e=%*/2,
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/27wn where ~ means ratio tends to one.

» Theorem: If 2k/v/2n — x then
P(S2n = 2k) ~ (mn)~1/2e=%*/2,

> Recall P(Spp = 2k) = (21,)2 2" =2 20 Bl
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DeMoivre-Laplace limit theorem
Weak convergence
Legendre transform

Large deviations
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Weak convergence
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Weak convergence

» Let X be random variable, X, a sequence of random variables.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_ Fn(0) # F(0) in
this case.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_o Fn(0) # F(0) in
this case.

» Example: If X; are i.i.d. then the empirical distributions
converge a.s. to law of Xj (Glivenko-Cantelli).
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_o Fn(0) # F(0) in
this case.

» Example: If X; are i.i.d. then the empirical distributions
converge a.s. to law of Xj (Glivenko-Cantelli).

» Example: Let X, be the nth largest of 2n 4+ 1 points chosen
i.i.d. from fixed law.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding

random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.
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» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-

18 175 l ecture O



Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

» Theorem: X;, — X, if and only if for every bounded
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» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-

» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.

» Theorem: Suppose g is measurable and its set of
discontinuity points has px measure zero. Then X, — X
implies g(X,) = g(X).
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-

» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.

» Theorem: Suppose g is measurable and its set of
discontinuity points has px measure zero. Then X, — X
implies g(X,) = g(X).

» Proof idea: Define X,, on common sample space so converge
a.s., use bounded convergence theorem.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.

> Need a “tightness” assumption to make that the case. Say u,
are tight if for every € we can find an M so that
tn[—M, M] < e for all n. Define tightness analogously for
corresponding real random variables or distributions functions.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Foy(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.

> Need a “tightness” assumption to make that the case. Say u,
are tight if for every € we can find an M so that

tn[—M, M] < e for all n. Define tightness analogously for
corresponding real random variables or distributions functions.

» Theorem: Every subsequential limit of the F, above is the
distribution function of a probability measure if and only if the
Fp, are tight.
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is

i = v == supg [u(B) — v(B)].
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is
10— ]| = supg |u(B) — (B)|.

> Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is
|l = vl| == supg |(B) — v(B)].

> Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

» Convergence in total variation norm is much stronger than
weak convergence.
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DeMoivre-Laplace limit theorem
Weak convergence
Legendre transform

Large deviations
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function
A:RY - R by

N*(x) = sup {(\, x) — A(N)}.
pYan
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(A, x) = A(A)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function
A:RY - R by
N*(x) = sup {(A, x) = A(A)}.
AERY
» Let's describe the Legendre dual geometrically if d = 1: A*(x)

is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the

graph of A, to get all A* values.
> |s the Legendre dual always convex?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

18 175 l ecture O



Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
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is where tangent line to A of slope x intersects the real axis.
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graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

» How are derivatives of A and A* related?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

» How are derivatives of A and A* related?

» What is the Legendre dual of the Legendre dual of a convex
function?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function
A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERA
» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.
> |s the Legendre dual always convex?
» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?
» How are derivatives of A and A* related?
» What is the Legendre dual of the Legendre dual of a convex
function?
» What's the higher dimensional analog of rolling the tangent
line?
18 175 l ecture O
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Large deviations
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Recall: moment generating functions

» Let X be a random variable.
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Recall: moment generating functions

» Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].
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Recall: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential
functions.
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Recall: moment generating functions
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» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].
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is a weighted average of countably many exponential
functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_

» If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in ||
as [t] = 0.
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg.
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Large deviations

» Consider i.i.d. random variables X;. Can we show that
P(S, > na) — 0 exponentially fast when a > E[X;]?
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Large deviations

» Consider i.i.d. random variables X;. Can we show that
P(Sn > na) — 0 exponentially fast when a > E[X]?

» Kind of a quantitative form of the weak law of large numbers.
The empirical average A, is very unlikely to € away from its
expected value (where “very” means with probability less than
some exponentially decaying function of n).
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

- mﬁ I(x) < I|m mf— log pn(T) < I|m sup Iog,u,,(r) < —inf I(x).
x€ xel
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» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.
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» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
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function called “good” if these sets are compact.)
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for up is tending to zero like /()" as n — .
» Simple case: / is continuous, I is closure of its interior.

18 175 l ecture O



General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

1
— inf I(x) <liminf = log un(l") < I|m sup Iog,u,,(r) < —inf I(x).
Xero n—oo N XEF

» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .

» Simple case: / is continuous, I is closure of its interior.

» Question: How would / change if we replaced the measures
fin by weighted measures e(A™) ;2
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

_Xig() I(x) < Iim)i()rlf%logun( ) < I|m sup Iog,u,,(r) < —;r;frl(x).
» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .
» Simple case: / is continuous, I is closure of its interior.
» Question: How would / change if we replaced the measures
fin by weighted measures e(A™) ;2
» Replace I(x) by I(x) — (A, x)? What is inf, /(x) — (A, x)?
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Cramer’s theorem

» Let i, be law of empirical mean A, = %ZJ’-’ZI X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.
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Cramer’s theorem

» Let i, be law of empirical mean A, = %ZJ’-’ZI X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
/\()\) = Ax()\) = log MX()\) — |Og]Ee()\,X)’

where (-, -) is inner product on RY.
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Cramer’s theorem

» Let i, be law of empirical mean A, = %Z}’Zl X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
/\()\) = Ax()\) = log MX()\) — |Og]Ee()\,X)’

where (-, -) is inner product on RY.
» Define Legendre transform of A by

N(x) = sup {(0) = A}
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Cramer’s theorem

» Let i, be law of empirical mean A, = %Z}’Zl X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
/\()\) = Ax()\) = log MX()\) — |Og]Ee()\,X)’

where (-, -) is inner product on RY.

» Define Legendre transform of A by

N(x) = sup {(0) = A}

» CRAMER’S THEOREM: p, satisfy LDP with convex rate
function A*.
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Thinking about Cramer's theorem

» Let u, be law of empirical mean A, = %ZJ":IXJ
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Thinking about Cramer's theorem

» Let u, be law of empirical mean A, = %ZJ"ZIXJ
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function

I(x) = N'(x) = ASEUB;{(/\,X) - AN}

where A(\) = log M()\) = Ee(X1),
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Thinking about Cramer's theorem

» Let u, be law of empirical mean A, = %ZJ'-’ZI X;.
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function

I(x) = N'(x) = Aseu]gd{(/\,X) - AN}

where A(\) = log M()\) = Ee(X1),
» This means that for all ' € B we have this asymptotic lower
bound on probabilities 1i,(I)
1
— inf I(x) < liminf = log un(I),
o8, 160 < mnf 7 tog n(T)

so (up to sub-exponential error) p,() > e~ "Mfxero /()
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Thinking about Cramer’s theorem

» Let u, be law of empirical mean A, = %ZJ'-’ZI X;.
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function
I(x) = N*(x) = sup {(A, x) = A(A)},
AERY
where A(\) = log M()\) = Ee(X1),
» This means that for all ' € B we have this asymptotic lower
bound on probabilities 1i,(I)
1
— inf I(x) < liminf = log un(I),
o8, 160 < mnf 7 tog n(T)
so (up to sub-exponential error) p,() > e~ "Mfxero /()
» and this asymptotic upper bound on the probabilities 1,(I")
limsup — L Iog,u,,(r) — inf /(x),
xelr

n—o0

which says (up to subexponential error) p,(IN) < e —ninfer 104,
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).

» If I were singleton set {x} we could find the A corresponding
to x, so A*(x) = (x,A) — A(A). Note then that

Ee(mAn) — EeltSn) — M3 (\) = e”A(’\),

and also Ee(mAn) > en(Ax), £x1 . Taking logs and dividing
by n gives A(A) > Llog pun + (X, x), so that

1 * :

+log () < —A*(x), as desired.
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).

» If I were singleton set {x} we could find the A corresponding
to x, so A*(x) = (x,A) — A(A). Note then that

Ee(mAn) — EeltSn) — M3 (\) = e”A(’\),

and also Ee(mAn) > en(Ax), £x1 . Taking logs and dividing
by n gives A(A) > Llog pun + (X, x), so that
L log pn(l) < —A*(x), as desired.

» General I': cut into finitely many pieces, bound each piece?
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{ (A, x) — A(A)}.
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{ (A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /()
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{ (A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /()

» It's enough to show that for each given x € I'?, we have that
asymptotically pi,(F) > e~ "),
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{ (A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /()

» It's enough to show that for each given x € I'?, we have that
asymptotically pi,(F) > e~ "),

> ldea is to weight law of each X; by e(**) to get a new

measure whose expectation is in the interior of x. In this new

measure, A, is “typically” in " for large I', so the probability is

of order 1.
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{ (A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /()

» It's enough to show that for each given x € I'?, we have that
asymptotically pi,(F) > e~ "),

> ldea is to weight law of each X; by e(**) to get a new

measure whose expectation is in the interior of x. In this new

measure, A, is “typically” in " for large I', so the probability is

of order 1.

» But by how much did we have to modify the measure to make
this typical? Aren't we weighting the law of A, by about
e~ ") near x?
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