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DeMoivre-Laplace limit theorem

I Let Xi be i.i.d. random variables. Write Sn =
∑n

i=1 Xn.

I Suppose each Xi is 1 with probability p and 0 with probability
q = 1− p.

I DeMoivre-Laplace limit theorem:

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Proof idea: use binomial coefficients and Stirling’s formula.

I Question: Does similar statement hold if Xi are i.i.d. from
some other law?

I Central limit theorem: Yes, if they have finite variance.
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Local p = 1/2 DeMoivre-Laplace limit theorem

I Stirling: n! ∼ nne−n
√

2πn where ∼ means ratio tends to one.

I Theorem: If 2k/
√

2n→ x then
P(S2n = 2k) ∼ (πn)−1/2e−x

2/2.

I Recall P(S2n = 2k) =
( 2n
n+k

)
2−2n = 2−2n (2n)!

(n+k)!(n−k)! .
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Weak convergence

I Let X be random variable, Xn a sequence of random variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Also say that the Fn = FXn converge weakly to F = FX .

I Example: Xi chosen from {−1, 1} with i.i.d. fair coin tosses:
then n−1/2

∑n
i=1 Xi converges in law to a normal random

variable (mean zero, variance one) by DeMoivre-Laplace.

I Example: If Xn is equal to 1/n a.s. then Xn converge weakly
to an X equal to 0 a.s. Note that limn→∞ Fn(0) 6= F (0) in
this case.

I Example: If Xi are i.i.d. then the empirical distributions
converge a.s. to law of X1 (Glivenko-Cantelli).

I Example: Let Xn be the nth largest of 2n + 1 points chosen
i.i.d. from fixed law.
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Convergence results

I Theorem: If Fn → F∞, then we can find corresponding
random variables Yn on a common measure space so that
Yn → Y∞ almost surely.

I Proof idea: Take Ω = (0, 1) and Yn = sup{y : Fn(y) < x}.
I Theorem: Xn =⇒ X∞ if and only if for every bounded

continuous g we have Eg(Xn)→ Eg(X∞).

I Proof idea: Define Xn on common sample space so converge
a.s., use bounded convergence theorem.

I Theorem: Suppose g is measurable and its set of
discontinuity points has µX measure zero. Then Xn =⇒ X∞
implies g(Xn) =⇒ g(X ).

I Proof idea: Define Xn on common sample space so converge
a.s., use bounded convergence theorem.
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Compactness

I Theorem: Every sequence Fn of distribution has subsequence
converging to right continuous nondecreasing F so that
limFn(k)(y) = F (y) at all continuity points of F .

I Limit may not be a distribution function.

I Need a “tightness” assumption to make that the case. Say µn
are tight if for every ε we can find an M so that
µn[−M,M] < ε for all n. Define tightness analogously for
corresponding real random variables or distributions functions.

I Theorem: Every subsequential limit of the Fn above is the
distribution function of a probability measure if and only if the
Fn are tight.
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Total variation norm

I If we have two probability measures µ and ν we define the
total variation distance between them is
||µ− ν|| := supB |µ(B)− ν(B)|.

I Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

I Convergence in total variation norm is much stronger than
weak convergence.
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Legendre transform

I Define Legendre transform (or Legendre dual) of a function
Λ : Rd → R by

Λ∗(x) = sup
λ∈Rd

{(λ, x)− Λ(λ)}.

I Let’s describe the Legendre dual geometrically if d = 1: Λ∗(x)
is where tangent line to Λ of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of Λ, to get all Λ∗ values.

I Is the Legendre dual always convex?
I What is the Legendre dual of x2? Of the function equal to 0

at 0 and ∞ everywhere else?
I How are derivatives of Λ and Λ∗ related?
I What is the Legendre dual of the Legendre dual of a convex

function?
I What’s the higher dimensional analog of rolling the tangent

line?
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Recall: moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [et min{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.
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Recall: moment generating functions for i.i.d. sums

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X .
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Large deviations

I Consider i.i.d. random variables Xi . Can we show that
P(Sn ≥ na)→ 0 exponentially fast when a > E [Xi ]?

I Kind of a quantitative form of the weak law of large numbers.
The empirical average An is very unlikely to ε away from its
expected value (where “very” means with probability less than
some exponentially decaying function of n).
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General large deviation principle

I More general framework: a large deviation principle describes
limiting behavior as n→∞ of family {µn} of measures on
measure space (X ,B) in terms of a rate function I .

I The rate function is a lower-semicontinuous map
I : X → [0,∞]. (The sets {x : I (x) ≤ a} are closed — rate
function called “good” if these sets are compact.)

I DEFINITION: {µn} satisfy LDP with rate function I and
speed n if for all Γ ∈ B,

− inf
x∈Γ0

I (x) ≤ lim inf
n→∞

1

n
logµn(Γ) ≤ lim sup

n→∞

1

n
logµn(Γ) ≤ − inf

x∈Γ
I (x).

I INTUITION: when “near x” the probability density function
for µn is tending to zero like e−I (x)n, as n→∞.

I Simple case: I is continuous, Γ is closure of its interior.
I Question: How would I change if we replaced the measures
µn by weighted measures e(λn,·)µn?

I Replace I (x) by I (x)− (λ, x)? What is infx I (x)− (λ, x)?
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Cramer’s theorem

I Let µn be law of empirical mean An = 1
n

∑n
j=1 Xj for i.i.d.

vectors X1,X2, . . . ,Xn in Rd with same law as X .

I Define log moment generating function of X by

Λ(λ) = ΛX (λ) = logMX (λ) = logEe(λ,X ),

where (·, ·) is inner product on Rd .

I Define Legendre transform of Λ by

Λ∗(x) = sup
λ∈Rd

{(λ, x)− Λ(λ)}.

I CRAMER’S THEOREM: µn satisfy LDP with convex rate
function Λ∗.
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Thinking about Cramer’s theorem

I Let µn be law of empirical mean An = 1
n

∑n
j=1 Xj .

I CRAMER’S THEOREM: µn satisfy LDP with convex rate
function

I (x) = Λ∗(x) = sup
λ∈Rd

{(λ, x)− Λ(λ)},

where Λ(λ) = logM(λ) = Ee(λ,X1).
I This means that for all Γ ∈ B we have this asymptotic lower

bound on probabilities µn(Γ)

− inf
x∈Γ0

I (x) ≤ lim inf
n→∞

1

n
logµn(Γ),

so (up to sub-exponential error) µn(Γ) ≥ e−n infx∈Γ0 I (x).
I and this asymptotic upper bound on the probabilities µn(Γ)

lim sup
n→∞

1

n
logµn(Γ) ≤ − inf

x∈Γ
I (x),

which says (up to subexponential error) µn(Γ) ≤ e−n infx∈Γ I (x).
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Proving Cramer upper bound

I Recall that I (x) = Λ∗(x) = supλ∈Rd{(λ, x)− Λ(λ)}.

I For simplicity, assume that Λ is defined for all x (which
implies that X has moments of all orders and Λ and Λ∗ are
strictly convex, and the derivatives of Λ and Λ′ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that Λ(0) = 0 is a minimum of Λ,
and Λ∗(0) = 0 is a minimum of Λ∗.

I We aim to show (up to subexponential error) that
µn(Γ) ≤ e−n infx∈Γ I (x).

I If Γ were singleton set {x} we could find the λ corresponding
to x , so Λ∗(x) = (x , λ)− Λ(λ). Note then that

Ee(nλ,An) = Ee(λ,Sn) = Mn
X (λ) = enΛ(λ),

and also Ee(nλ,An) ≥ en(λ,x)µn{x}. Taking logs and dividing
by n gives Λ(λ) ≥ 1

n logµn + (λ, x), so that
1
n logµn(Γ) ≤ −Λ∗(x), as desired.

I General Γ: cut into finitely many pieces, bound each piece?
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I If Γ were singleton set {x} we could find the λ corresponding
to x , so Λ∗(x) = (x , λ)− Λ(λ). Note then that

Ee(nλ,An) = Ee(λ,Sn) = Mn
X (λ) = enΛ(λ),

and also Ee(nλ,An) ≥ en(λ,x)µn{x}. Taking logs and dividing
by n gives Λ(λ) ≥ 1

n logµn + (λ, x), so that
1
n logµn(Γ) ≤ −Λ∗(x), as desired.

I General Γ: cut into finitely many pieces, bound each piece?
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Proving Cramer lower bound

I Recall that I (x) = Λ∗(x) = supλ∈Rd{(λ, x)− Λ(λ)}.

I We aim to show that asymptotically µn(Γ) ≥ e−n infx∈Γ0 I (x).

I It’s enough to show that for each given x ∈ Γ0, we have that
asymptotically µn(Γ) ≥ e−nI (x).

I Idea is to weight law of each Xi by e(λ,x) to get a new
measure whose expectation is in the interior of x . In this new
measure, An is “typically” in Γ for large Γ, so the probability is
of order 1.

I But by how much did we have to modify the measure to make
this typical? Aren’t we weighting the law of An by about
e−nI (x) near x?
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