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Kolmogorov zero-one law

» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xnt1,-..) and T = NpF),.
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Kolmogorov zero-one law

» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xnt1,...) and T = Ny F,,.

» T is called the tail o-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn't change
when finitely many X,, are changed.
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Kolmogorov zero-one law

» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xnt1,...) and T = Ny F,,.

» T is called the tail o-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn't change
when finitely many X,, are changed.

» Event that X, converge to a limit is example of a tail event.
Other examples?

» Theorem: If X1, X>, ... are independent and A € T then
P(A) € {0,1}.
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Kolmogorov zero-one law proof idea

» Theorem: If X;, X5, ... are independent and A € T then
P(A) € {0,1}.

18 175 l ecture 8



Kolmogorov zero-one law proof idea

» Theorem: If Xi, X5, ... are independent and A € T then
P(A) € {0,1}.
» Main idea of proof: Statement is equivalent to saying that A

is independent of itself, i.e., P(A) = P(AN A) = P(A)?. How
do we prove that?
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Kolmogorov zero-one law proof idea

» Theorem: If Xi, X5, ... are independent and A € T then
P(A) € {0,1}.

» Main idea of proof: Statement is equivalent to saying that A
is independent of itself, i.e., P(A) = P(AN A) = P(A)?. How
do we prove that?

» Recall theorem that if A; are independent m-systems, then
oA; are independent.
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Kolmogorov zero-one law proof idea

» Theorem: If X;, X5, ... are independent and A € T then
P(A) € {0,1}.

» Main idea of proof: Statement is equivalent to saying that A
is independent of itself, i.e., P(A) = P(AN A) = P(A)?. How
do we prove that?

» Recall theorem that if A; are independent m-systems, then
oA; are independent.

» Deduce that o(Xy, X2, ..., X,) and o(Xp41, Xnt2,...) are
independent. Then deduce that o(Xy, X2,...) and T are

independent, using fact that Ugo (X1, ..., Xk) and T are
m-systems.
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Kolmogorov maximal inequality

» Theorem: Suppose X; are independent with mean zero and
finite variances, and S, = 27:1 X,. Then

S ) < 52 _ 2 2
P(lrgka%(n|5k|_x)_x Var(S,) = x “E|S|

18 175 l ecture 8



Kolmogorov maximal inequality

» Theorem: Suppose X; are independent with mean zero and
finite variances, and S, = 27:1 X,. Then

S ) < 52 _ 2 2
P(lrgka%(n|5k|_x)_x Var(S,) = x “E|S|

» Main idea of proof: Consider first time maximum is
exceeded. Bound below the expected square sum on that
event.
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Kolmogorov three-series theorem

» Theorem: Let X1, Xo,... be independent and fix A > 0.
Write Y; = Xi1(|x;<a)- Then ) X; converges a.s. if and only
if the following are all true:
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Kolmogorov three-series theorem

» Theorem: Let X1, Xo,... be independent and fix A > 0.
Write Y; = Xi1(|x;<a)- Then ) X; converges a.s. if and only
if the following are all true:

> >t P(IX] > A) < o0
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Kolmogorov three-series theorem

» Theorem: Let X1, Xo,... be independent and fix A > 0.
Write Y; = Xi1(|x;<a)- Then ) X; converges a.s. if and only
if the following are all true:

> o1 P(IX0] > A) < 00
» Y2, EY, converges
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Kolmogorov three-series theorem

» Theorem: Let X1, Xo,... be independent and fix A > 0.
Write Y; = Xi1(|x;<a)- Then ) X; converges a.s. if and only
if the following are all true:

> Z;.i1 P(|Xa| > A) < o0
» Y2, EY, converges
» Yoo, Var(Y,) < o
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Kolmogorov three-series theorem

» Theorem: Let X1, Xo,... be independent and fix A > 0.
Write Y; = Xi1(|x;<a)- Then ) X; converges a.s. if and only
if the following are all true:

> Y1 P(IXal > A) <00
» Y2, EY, converges
» Yoo, Var(Y,) < o

» Main ideas behind the proof: Kolmogorov zero-one law
implies that > X; converges with probability p € {0,1}. We
just have to show that p = 1 when all hypotheses are satisfied
(sufficiency of conditions) and p = 0 if any one of them fails
(necessity).
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Kolmogorov three-series theorem

» Theorem: Let X1, Xo,... be independent and fix A > 0.
Write Y; = Xi1(|x;<a)- Then ) X; converges a.s. if and only
if the following are all true:

> Y1 P(IXal > A) <00
» Y2, EY, converges
» Yoo, Var(Y,) < o

» Main ideas behind the proof: Kolmogorov zero-one law
implies that > X; converges with probability p € {0,1}. We
just have to show that p = 1 when all hypotheses are satisfied
(sufficiency of conditions) and p = 0 if any one of them fails
(necessity).

» To prove sufficiency, apply Borel-Cantelli to see that
probability that X, # Y}, i.o. is zero. Subtract means from
Yy, reduce to case that each Y, has mean zero. Apply
Kolmogorov maximal inequality.
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Large deviations
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Recall: moment generating functions

» Let X be a random variable.
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Recall: moment generating functions

» Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].
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Recall: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential
functions.
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Recall: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential
functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_

» If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in ||
as [t] = 0.
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)My(t)
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)My(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M>?
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)My(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M>?

» Answer: My. Follows by repeatedly applying formula above.
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: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)My(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M>?

» Answer: My. Follows by repeatedly applying formula above.

» This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Large deviations

» Consider i.i.d. random variables X;. Want to show that if
#(0) == Mx.(0) = E exp(6X;) is less than infinity for some
6 > 0, then P(S, > na) — 0 exponentially fast when
a> E[X,'].
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Large deviations

» Consider i.i.d. random variables X;. Want to show that if
#(0) == Mx.(0) = E exp(6X;) is less than infinity for some
6 > 0, then P(S, > na) — 0 exponentially fast when
a> E[X,'].

» Kind of a quantitative form of the weak law of large numbers.
The empirical average A, is very unlikely to be € away from
its expected value (where “very” means with probability less
than some exponentially decaying function of n).
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Large deviations

» Consider i.i.d. random variables X;. Want to show that if
#(0) == Mx.(0) = E exp(6X;) is less than infinity for some
6 > 0, then P(S, > na) — 0 exponentially fast when
a> E[X,'].

» Kind of a quantitative form of the weak law of large numbers.
The empirical average A, is very unlikely to be € away from
its expected value (where “very” means with probability less
than some exponentially decaying function of n).

» Write y(a) = limy_, L log P(S, > na). It gives the “rate” of
exponential decay as a function of a.
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DeMoivre-Laplace limit theorem
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S,, = 27:1 Xa.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S,, = Z,'-’:l Xa.
» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

S, —np

lim P{a <

n—o0 \V/npq

< b} — d(b) — d(a).
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
lim Pa < 22 < b} = 0(5) (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.

18 175 l ecture 8



DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard

normal random variable.
Sp—np
\/npq
above or below its mean”.

describes “number of standard deviations that S, is
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.
Sp—np

\/npq

above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard

normal random variable.
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\/npq
above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.

» Question: Does similar statement hold if X; are i.i.d. from
some other law?
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = >"7 ; X,.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard

normal random variable.
Sp—np
\/npq
above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.

» Question: Does similar statement hold if X; are i.i.d. from
some other law?

» Central limit theorem: Yes, if they have finite variance.
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/27wn where ~ means ratio tends to one.
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/27wn where ~ means ratio tends to one.

» Theorem: If 2k/v/2n — x then
P(S2n = 2k) ~ (mn)~1/2e=%*/2,
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/27wn where ~ means ratio tends to one.

» Theorem: If 2k/v/2n — x then
P(S2n = 2k) ~ (mn)~1/2e=%*/2,

> Recall P(Spp = 2k) = (21,)2 2" =2 20 Bl
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Weak convergence
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Weak convergence

» Let X be random variable, X, a sequence of random variables.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

18 175 l ecture 8



Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

18 175 l ecture 8



Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_ Fn(0) # F(0) in
this case.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_o Fn(0) # F(0) in
this case.

» Example: If X; are i.i.d. then the empirical distributions
converge a.s. to law of Xj (Glivenko-Cantelli).
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by DeMoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_o Fn(0) # F(0) in
this case.

» Example: If X; are i.i.d. then the empirical distributions
converge a.s. to law of Xj (Glivenko-Cantelli).

» Example: Let X, be the nth largest of 2n 4+ 1 points chosen
i.i.d. from fixed law.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding

random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

18 175 |l ecture 8



Convergence results
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» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-
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Convergence results
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» Theorem: X;, — X, if and only if for every bounded
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» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-

» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.

» Theorem: Suppose g is measurable and its set of
discontinuity points has px measure zero. Then X, — X
implies g(X,) = g(X).

18 175 |l ecture 8



Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-

» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.

» Theorem: Suppose g is measurable and its set of
discontinuity points has px measure zero. Then X, — X
implies g(X,) = g(X).

» Proof idea: Define X,, on common sample space so converge
a.s., use bounded convergence theorem.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.

> Need a “tightness” assumption to make that the case. Say u,
are tight if for every € we can find an M so that
tn[—M, M] < e for all n. Define tightness analogously for
corresponding real random variables or distributions functions.

18 175 l ecture 8



» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Foy(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.

> Need a “tightness” assumption to make that the case. Say u,
are tight if for every € we can find an M so that

tn[—M, M] < e for all n. Define tightness analogously for
corresponding real random variables or distributions functions.

» Theorem: Every subsequential limit of the F, above is the
distribution function of a probability measure if and only if the
Fp, are tight.
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is

i = v == supg [u(B) — v(B)].
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is
10— ]| = supg |u(B) — (B)|.

> Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is
|l = vl| == supg |(B) — v(B)].

> Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

» Convergence in total variation norm is much stronger than
weak convergence.
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Characteristic functions
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Characteristic functions

» Let X be a random variable.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.

> And ¢.x(t) = ¢x(at) just as Max(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"gbg(m)(O).

» But characteristic functions have an advantage: they are well
defined at all t for all random variables X.
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» By this theorem, we can prove the weak law of large numbers
by showing limp_,oo da,(t) = ¢,(t) = €™ for all t. In the
special case that p = 0, this amounts to showing
limp—soo @4, (t) =1 for all ¢.

» Moment generating analog: if moment generating
functions My (t) are defined for all t and n and

limp—0o Mx, (t) = Mx(t) for all t, then X, converge in law to
X.
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