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Kolmogorov zero-one law

I Consider sequence of random variables Xn on some probability
space. Write F ′n = σ(Xn,Xn+1, . . .) and T = ∩nF ′n.

I T is called the tail σ-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn’t change
when finitely many Xn are changed.

I Event that Xn converge to a limit is example of a tail event.
Other examples?

I Theorem: If X1,X2, . . . are independent and A ∈ T then
P(A) ∈ {0, 1}.
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Kolmogorov zero-one law proof idea

I Theorem: If X1,X2, . . . are independent and A ∈ T then
P(A) ∈ {0, 1}.

I Main idea of proof: Statement is equivalent to saying that A
is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)2. How
do we prove that?

I Recall theorem that if Ai are independent π-systems, then
σAi are independent.

I Deduce that σ(X1,X2, . . . ,Xn) and σ(Xn+1,Xn+2, . . .) are
independent. Then deduce that σ(X1,X2, . . .) and T are
independent, using fact that ∪kσ(X1, . . . ,Xk) and T are
π-systems.
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Kolmogorov maximal inequality

I Theorem: Suppose Xi are independent with mean zero and
finite variances, and Sn =

∑n
i=1 Xn. Then

P( max
1≤k≤n

|Sk | ≥ x) ≤ x−2Var(Sn) = x−2E |Sn|2.

I Main idea of proof: Consider first time maximum is
exceeded. Bound below the expected square sum on that
event.
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Kolmogorov three-series theorem

I Theorem: Let X1,X2, . . . be independent and fix A > 0.
Write Yi = Xi1(|Xi |≤A). Then

∑
Xi converges a.s. if and only

if the following are all true:

I
∑∞

n=1 P(|Xn| > A) <∞
I
∑∞

n=1 EYn converges
I
∑∞

n=1 Var(Yn) <∞
I Main ideas behind the proof: Kolmogorov zero-one law

implies that
∑

Xi converges with probability p ∈ {0, 1}. We
just have to show that p = 1 when all hypotheses are satisfied
(sufficiency of conditions) and p = 0 if any one of them fails
(necessity).

I To prove sufficiency, apply Borel-Cantelli to see that
probability that Xn 6= Yn i.o. is zero. Subtract means from
Yn, reduce to case that each Yn has mean zero. Apply
Kolmogorov maximal inequality.
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Recall: moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [etmin{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.
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Recall: moment generating functions for i.i.d. sums

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Large deviations

I Consider i.i.d. random variables Xi . Want to show that if
φ(θ) := MXi

(θ) = E exp(θXi ) is less than infinity for some
θ > 0, then P(Sn ≥ na)→ 0 exponentially fast when
a > E [Xi ].

I Kind of a quantitative form of the weak law of large numbers.
The empirical average An is very unlikely to be ε away from
its expected value (where “very” means with probability less
than some exponentially decaying function of n).

I Write γ(a) = limn→∞
1
n logP(Sn ≥ na). It gives the “rate” of

exponential decay as a function of a.
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DeMoivre-Laplace limit theorem

I Let Xi be i.i.d. random variables. Write Sn =
∑n

i=1 Xn.

I Suppose each Xi is 1 with probability p and 0 with probability
q = 1− p.

I DeMoivre-Laplace limit theorem:

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

I Here Φ(b)− Φ(a) = P{a ≤ Z ≤ b} when Z is a standard
normal random variable.

I Sn−np√
npq describes “number of standard deviations that Sn is

above or below its mean”.

I Proof idea: use binomial coefficients and Stirling’s formula.

I Question: Does similar statement hold if Xi are i.i.d. from
some other law?

I Central limit theorem: Yes, if they have finite variance.
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Local p = 1/2 DeMoivre-Laplace limit theorem

I Stirling: n! ∼ nne−n
√

2πn where ∼ means ratio tends to one.

I Theorem: If 2k/
√

2n→ x then
P(S2n = 2k) ∼ (πn)−1/2e−x

2/2.

I Recall P(S2n = 2k) =
( 2n
n+k

)
2−2n = 2−2n (2n)!

(n+k)!(n−k)! .
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Weak convergence

I Let X be random variable, Xn a sequence of random variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I Also say that the Fn = FXn converge weakly to F = FX .

I Example: Xi chosen from {−1, 1} with i.i.d. fair coin tosses:
then n−1/2

∑n
i=1 Xi converges in law to a normal random

variable (mean zero, variance one) by DeMoivre-Laplace.

I Example: If Xn is equal to 1/n a.s. then Xn converge weakly
to an X equal to 0 a.s. Note that limn→∞ Fn(0) 6= F (0) in
this case.

I Example: If Xi are i.i.d. then the empirical distributions
converge a.s. to law of X1 (Glivenko-Cantelli).

I Example: Let Xn be the nth largest of 2n + 1 points chosen
i.i.d. from fixed law.
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Convergence results

I Theorem: If Fn → F∞, then we can find corresponding
random variables Yn on a common measure space so that
Yn → Y∞ almost surely.

I Proof idea: Take Ω = (0, 1) and Yn = sup{y : Fn(y) < x}.
I Theorem: Xn =⇒ X∞ if and only if for every bounded

continuous g we have Eg(Xn)→ Eg(X∞).

I Proof idea: Define Xn on common sample space so converge
a.s., use bounded convergence theorem.

I Theorem: Suppose g is measurable and its set of
discontinuity points has µX measure zero. Then Xn =⇒ X∞
implies g(Xn) =⇒ g(X ).

I Proof idea: Define Xn on common sample space so converge
a.s., use bounded convergence theorem.
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Compactness

I Theorem: Every sequence Fn of distribution has subsequence
converging to right continuous nondecreasing F so that
limFn(k)(y) = F (y) at all continuity points of F .

I Limit may not be a distribution function.

I Need a “tightness” assumption to make that the case. Say µn
are tight if for every ε we can find an M so that
µn[−M,M] < ε for all n. Define tightness analogously for
corresponding real random variables or distributions functions.

I Theorem: Every subsequential limit of the Fn above is the
distribution function of a probability measure if and only if the
Fn are tight.
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Total variation norm

I If we have two probability measures µ and ν we define the
total variation distance between them is
||µ− ν|| := supB |µ(B)− ν(B)|.

I Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

I Convergence in total variation norm is much stronger than
weak convergence.

18.175 Lecture 8



Total variation norm

I If we have two probability measures µ and ν we define the
total variation distance between them is
||µ− ν|| := supB |µ(B)− ν(B)|.

I Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

I Convergence in total variation norm is much stronger than
weak convergence.

18.175 Lecture 8



Total variation norm

I If we have two probability measures µ and ν we define the
total variation distance between them is
||µ− ν|| := supB |µ(B)− ν(B)|.

I Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

I Convergence in total variation norm is much stronger than
weak convergence.

18.175 Lecture 8



Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

18.175 Lecture 8



Outline

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

18.175 Lecture 8



Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I But characteristic functions have an advantage: they are well
defined at all t for all random variables X .
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Continuity theorems

I Lévy’s continuity theorem: if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .

I By this theorem, we can prove the weak law of large numbers
by showing limn→∞ φAn(t) = φµ(t) = e itµ for all t. In the
special case that µ = 0, this amounts to showing
limn→∞ φAn(t) = 1 for all t.

I Moment generating analog: if moment generating
functions MXn(t) are defined for all t and n and
limn→∞MXn(t) = MX (t) for all t, then Xn converge in law to
X .
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