18.175: Lecture 8

DeMoivre-Laplace and weak convergence

Scott Sheffield

MIT

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

Consider sequence of random variables X_n on some probability space. Write F'_n = σ(X_n, X_{n+1},...) and T = ∩_nF'_n.

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?
- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$

▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

Kolmogorov zero-one law proof idea

- **Theorem:** If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$
- ► Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)². How do we prove that?

Kolmogorov zero-one law proof idea

- **Theorem:** If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$
- ► Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)². How do we prove that?
- Recall theorem that if A_i are independent π-systems, then *σ*A_i are independent.

- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$
- ► Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)². How do we prove that?
- Recall theorem that if A_i are independent π-systems, then σA_i are independent.
- Deduce that σ(X₁, X₂,..., X_n) and σ(X_{n+1}, X_{n+2},...) are independent. Then deduce that σ(X₁, X₂,...) and T are independent, using fact that ∪_kσ(X₁,..., X_k) and T are π-systems.

▶ **Theorem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_n$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

▶ **Theorem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_n$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑X_i converges a.s. if and only if the following are all true:

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑X_i converges a.s. if and only if the following are all true:

•
$$\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑ X_i converges a.s. if and only if the following are all true:

$$\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

•
$$\sum_{n=1}^{\infty} EY_n$$
 converges

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑ X_i converges a.s. if and only if the following are all true:

$$\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

$$\sum_{n=1}^{\infty} EY_n \text{ converges}$$

•
$$\sum_{n=1}^{\infty} \operatorname{Var}(Y_n) < \infty$$

- **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i \mathbb{1}_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$
- Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that p = 1 when all hypotheses are satisfied (sufficiency of conditions) and p = 0 if any one of them fails (necessity).

- **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i \mathbb{1}_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$
- Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that p = 1 when all hypotheses are satisfied (sufficiency of conditions) and p = 0 if any one of them fails (necessity).
- To prove sufficiency, apply Borel-Cantelli to see that probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n , reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

• Let X be a random variable.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as |t| → ∞.

▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$

Recall: moment generating functions for i.i.d. sums

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?

Recall: moment generating functions for i.i.d. sums

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n . Follows by repeatedly applying formula above.

Recall: moment generating functions for i.i.d. sums

- We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n . Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.

• Consider i.i.d. random variables X_i . Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$.

- Consider i.i.d. random variables X_i . Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$.
- ► Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to be ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

- Consider i.i.d. random variables X_i . Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$.
- ► Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to be ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).
- Write γ(a) = lim_{n→∞} ¹/_n log P(S_n ≥ na). It gives the "rate" of exponential decay as a function of a.
Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

• Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- **Proof idea:** use binomial coefficients and Stirling's formula.

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 − p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- **Proof idea:** use binomial coefficients and Stirling's formula.
- Question: Does similar statement hold if X_i are i.i.d. from some other law?

- Let X_i be i.i.d. random variables. Write $S_n = \sum_{i=1}^n X_n$.
- Suppose each X_i is 1 with probability p and 0 with probability q = 1 p.
- DeMoivre-Laplace limit theorem:

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

- Here Φ(b) − Φ(a) = P{a ≤ Z ≤ b} when Z is a standard normal random variable.
- $\frac{S_n np}{\sqrt{npq}}$ describes "number of standard deviations that S_n is above or below its mean".
- **Proof idea:** use binomial coefficients and Stirling's formula.
- Question: Does similar statement hold if X_i are i.i.d. from some other law?
- Central limit theorem: Yes, if they have finite variance.

Local p = 1/2 DeMoivre-Laplace limit theorem

• Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.

- Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
- **Theorem:** If $2k/\sqrt{2n} \to x$ then $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.

- Stirling: $n! \sim n^n e^{-n} \sqrt{2\pi n}$ where \sim means ratio tends to one.
- **Theorem:** If $2k/\sqrt{2n} \to x$ then $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.
- Recall $P(S_{2n} = 2k) = \binom{2n}{n+k} 2^{-2n} = 2^{-2n} \frac{(2n)!}{(n+k)!(n-k)!}$.

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

• Let X be random variable, X_n a sequence of random variables.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- ▶ **Example:** If X_n is equal to 1/n a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n\to\infty} F_n(0) \neq F(0)$ in this case.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- ▶ **Example:** If X_n is equal to 1/n a.s. then X_n converge weakly to an X equal to 0 a.s. Note that $\lim_{n\to\infty} F_n(0) \neq F(0)$ in this case.
- ► **Example:** If X_i are i.i.d. then the empirical distributions converge a.s. to law of X₁ (Glivenko-Cantelli).

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Also say that the $F_n = F_{X_n}$ converge weakly to $F = F_X$.
- ► Example: X_i chosen from {-1,1} with i.i.d. fair coin tosses: then n^{-1/2} ∑_{i=1}ⁿ X_i converges in law to a normal random variable (mean zero, variance one) by DeMoivre-Laplace.
- Example: If X_n is equal to 1/n a.s. then X_n converge weakly to an X equal to 0 a.s. Note that lim_{n→∞} F_n(0) ≠ F(0) in this case.
- ► **Example:** If X_i are i.i.d. then the empirical distributions converge a.s. to law of X₁ (Glivenko-Cantelli).
- **Example:** Let X_n be the *n*th largest of 2n + 1 points chosen i.i.d. from fixed law.

▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.
- ► Theorem: Suppose g is measurable and its set of discontinuity points has µ_X measure zero. Then X_n ⇒ X_∞ implies g(X_n) ⇒ g(X).

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \implies X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \rightarrow Eg(X_\infty)$.
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.
- ► Theorem: Suppose g is measurable and its set of discontinuity points has µ_X measure zero. Then X_n ⇒ X_∞ implies g(X_n) ⇒ g(X).
- Proof idea: Define X_n on common sample space so converge a.s., use bounded convergence theorem.

Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.

- Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.
- Limit may not be a distribution function.

- Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say µ_n are tight if for every ε we can find an M so that µ_n[−M, M] < ε for all n. Define tightness analogously for corresponding real random variables or distributions functions.</p>

- Theorem: Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that lim F_{n(k)}(y) = F(y) at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say µ_n are tight if for every ε we can find an M so that µ_n[−M, M] < ε for all n. Define tightness analogously for corresponding real random variables or distributions functions.</p>
- ▶ **Theorem:** Every subsequential limit of the *F_n* above is the distribution function of a probability measure if and only if the *F_n* are tight.

If we have two probability measures μ and ν we define the total variation distance between them is $||μ - ν|| := sup_B |μ(B) - ν(B)|.$

- If we have two probability measures μ and ν we define the total variation distance between them is $||μ ν|| := sup_B |μ(B) ν(B)|.$
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.

- If we have two probability measures μ and ν we define the total variation distance between them is $||μ ν|| := sup_B |μ(B) ν(B)|.$
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- Convergence in total variation norm is much stronger than weak convergence.

Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions
Kolmogorov zero-one law and three-series theorem

Large deviations

DeMoivre-Laplace limit theorem

Weak convergence

Characteristic functions

18.175 Lecture 8

• Let X be a random variable.

- Let X be a random variable.
- ► The characteristic function of X is defined by
 φ(t) = φ_X(t) := E[e^{itX}]. Like M(t) except with i thrown in.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- But characteristic functions have an advantage: they are well defined at all t for all random variables X.

Lévy's continuity theorem: if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

Lévy's continuity theorem: if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

By this theorem, we can prove the weak law of large numbers by showing lim_{n→∞} φ_{An}(t) = φ_µ(t) = e^{itµ} for all t. In the special case that µ = 0, this amounts to showing lim_{n→∞} φ_{An}(t) = 1 for all t.

Lévy's continuity theorem: if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- ▶ By this theorem, we can prove the weak law of large numbers by showing $\lim_{n\to\infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu}$ for all t. In the special case that $\mu = 0$, this amounts to showing $\lim_{n\to\infty} \phi_{A_n}(t) = 1$ for all t.
- Moment generating analog: if moment generating functions $M_{X_n}(t)$ are defined for all t and n and $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$ for all t, then X_n converge in law to X.