18.175: Lecture 7

Zero-one laws and maximal inequalities

Scott Sheffield

MIT

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

18.175 Lecture 7

Borel-Cantelli lemmas

- First Borel-Cantelli Iemma: If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then $P\left(A_{n}\right.$ i.o. $)=0$.

Borel-Cantelli lemmas

- First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then $P\left(A_{n}\right.$ i.o. $)=0$.
- Second Borel-Cantelli lemma: If A_{n} are independent, then $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ implies $P\left(A_{n}\right.$ i.o. $)=1$.

Convergence in probability subsequential a.s. convergence

- Theorem: $X_{n} \rightarrow X$ in probability if and only if for every subsequence of the X_{n} there is a further subsequence converging a.s. to X.

Convergence in probability subsequential a.s. convergence

- Theorem: $X_{n} \rightarrow X$ in probability if and only if for every subsequence of the X_{n} there is a further subsequence converging a.s. to X.
- Main idea of proof: Consider event E_{n} that X_{n} and X differ by ϵ. Do the E_{n} occur i.o.? Use Borel-Cantelli.

Pairwise independence example

- Theorem: Suppose A_{1}, A_{2}, \ldots are pairwise independent and $\sum P\left(A_{n}\right)=\infty$, and write $S_{n}=\sum_{i=1}^{n} 1_{A_{i}}$. Then the ratio $S_{n} / E S_{n}$ tends a.s. to 1 .

Pairwise independence example

- Theorem: Suppose A_{1}, A_{2}, \ldots are pairwise independent and $\sum P\left(A_{n}\right)=\infty$, and write $S_{n}=\sum_{i=1}^{n} 1_{A_{i}}$. Then the ratio $S_{n} / E S_{n}$ tends a.s. to 1 .
- Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $\operatorname{Var} S_{n} \leq E S_{n}$. Then Chebyshev implies

$$
P\left(\left|S_{n}-E S_{n}\right|>\delta E S_{n}\right) \leq \operatorname{Var}\left(S_{n}\right) /\left(\delta E S_{n}\right)^{2} \rightarrow 0
$$

which gives us convergence in probability.

Pairwise independence example

- Theorem: Suppose A_{1}, A_{2}, \ldots are pairwise independent and $\sum P\left(A_{n}\right)=\infty$, and write $S_{n}=\sum_{i=1}^{n} 1_{A_{i}}$. Then the ratio $S_{n} / E S_{n}$ tends a.s. to 1 .
- Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $\operatorname{Var} S_{n} \leq E S_{n}$. Then Chebyshev implies

$$
P\left(\left|S_{n}-E S_{n}\right|>\delta E S_{n}\right) \leq \operatorname{Var}\left(S_{n}\right) /\left(\delta E S_{n}\right)^{2} \rightarrow 0
$$

which gives us convergence in probability.

- Second, take a smart subsequence. Let $n_{k}=\inf \left\{n: E S_{n} \geq k^{2}\right\}$. Use Borel Cantelli to get a.s. convergence along this subsequence. Check that convergence along this subsequence deterministically implies the non-subsequential convergence.

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

18.175 Lecture 7

General strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of A_{n}.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of A_{n}.
- $E\left[A_{n}^{4}\right]=n^{-4} E\left[S_{n}^{4}\right]=n^{-4} E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]$.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of A_{n}.
- $E\left[A_{n}^{4}\right]=n^{-4} E\left[S_{n}^{4}\right]=n^{-4} E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]$.
- Expand $\left(X_{1}+\ldots+X_{n}\right)^{4}$. Five kinds of terms: $X_{i} X_{j} X_{k} X_{l}$ and $X_{i} X_{j} X_{k}^{2}$ and $X_{i} X_{j}^{3}$ and $X_{i}^{2} X_{j}^{2}$ and X_{i}^{4}.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of A_{n}.
- $E\left[A_{n}^{4}\right]=n^{-4} E\left[S_{n}^{4}\right]=n^{-4} E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]$.
- Expand $\left(X_{1}+\ldots+X_{n}\right)^{4}$. Five kinds of terms: $X_{i} X_{j} X_{k} X_{l}$ and $X_{i} X_{j} X_{k}^{2}$ and $X_{i} X_{j}^{3}$ and $X_{i}^{2} X_{j}^{2}$ and X_{i}^{4}.
- The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E\left[A_{n}^{4}\right] \leq n^{-4}\left(6\binom{n}{2}+n\right) K$.

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2} \geq 0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of A_{n}.
- $E\left[A_{n}^{4}\right]=n^{-4} E\left[S_{n}^{4}\right]=n^{-4} E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]$.
- Expand $\left(X_{1}+\ldots+X_{n}\right)^{4}$. Five kinds of terms: $X_{i} X_{j} X_{k} X_{l}$ and $X_{i} X_{j} X_{k}^{2}$ and $X_{i} X_{j}^{3}$ and $X_{i}^{2} X_{j}^{2}$ and X_{i}^{4}.
- The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E\left[A_{n}^{4}\right] \leq n^{-4}\left(6\binom{n}{2}+n\right) K$.
- Thus $E\left[\sum_{n=1}^{\infty} A_{n}^{4}\right]=\sum_{n=1}^{\infty} E\left[A_{n}^{4}\right]<\infty$. So $\sum_{n=1}^{\infty} A_{n}^{4}<\infty$ (and hence $A_{n} \rightarrow 0$) with probability 1 .

General proof of strong law

- Suppose X_{k} are i.i.d. with finite mean. Let $Y_{k}=X_{k} 1_{\left|X_{k}\right| \leq k}$. Write $T_{n}=Y_{1}+\ldots+Y_{n}$. Claim: $X_{k}=Y_{k}$ all but finitely often a.s. so suffices to show $T_{n} / n \rightarrow \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y=1$)

General proof of strong law

- Suppose X_{k} are i.i.d. with finite mean. Let $Y_{k}=X_{k} 1_{\left|X_{k}\right| \leq k}$. Write $T_{n}=Y_{1}+\ldots+Y_{n}$. Claim: $X_{k}=Y_{k}$ all but finitely often a.s. so suffices to show $T_{n} / n \rightarrow \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y=1$)
- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to prove it?

General proof of strong law

- Suppose X_{k} are i.i.d. with finite mean. Let $Y_{k}=X_{k} 1_{\left|X_{k}\right| \leq k}$. Write $T_{n}=Y_{1}+\ldots+Y_{n}$. Claim: $X_{k}=Y_{k}$ all but finitely often a.s. so suffices to show $T_{n} / n \rightarrow \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line $y=1$)
- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to prove it?
- Observe: $\operatorname{Var}\left(Y_{k}\right) \leq E\left(Y_{k}^{2}\right)=\int_{0}^{\infty} 2 y P\left(\left|Y_{k}\right|>y\right) d y \leq$ $\int_{0}^{k} 2 y P\left(\left|X_{1}\right|>y\right) d y$. Use Fubini (interchange sum/integral, since everything positive)

$$
\begin{gathered}
\sum_{k=1}^{\infty} E\left(Y_{k}^{2}\right) / k^{2} \leq \sum_{k=1}^{\infty} k^{-2} \int_{0}^{\infty} 1_{(y<k)} 2 y P\left(\left|X_{1}\right|>y\right) d y= \\
\int_{0}^{\infty}\left(\sum_{k=1}^{\infty} k^{-2} 1_{(y<k)}\right) 2 y P\left(\left|X_{1}\right|>y\right) d y
\end{gathered}
$$

Since $E\left|X_{1}\right|=\int_{0}^{\infty} P\left(\left|X_{1}\right|>y\right) d y$, complete proof of claim by showing that if $y \geq 0$ then $2 y \sum_{k>y} k^{-2} \leq 4$.

General proof of strong law

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to use it?

General proof of strong law

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to use it?
- Consider subsequence $k(n)=\left[\alpha^{n}\right]$ for arbitrary $\alpha>1$. Using Chebyshev, if $\epsilon>0$ then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\epsilon k(n)\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}\left(T_{k(n)}\right) / k(n)^{2} \\
& =\epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)=\epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2} .
\end{aligned}
$$

General proof of strong law

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to use it?
- Consider subsequence $k(n)=\left[\alpha^{n}\right]$ for arbitrary $\alpha>1$. Using Chebyshev, if $\epsilon>0$ then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\epsilon k(n)\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}\left(T_{k(n)}\right) / k(n)^{2} \\
& =\epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)=\epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2} .
\end{aligned}
$$

- Sum series:

$$
\sum_{n: \alpha^{n} \geq m}\left[\alpha^{n}\right]^{-2} \leq 4 \sum_{n: \alpha^{n} \geq m} \alpha^{-2 n} \leq 4\left(1-\alpha^{-2}\right)^{-1} m^{-2} .
$$

General proof of strong law

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to use it?
- Consider subsequence $k(n)=\left[\alpha^{n}\right]$ for arbitrary $\alpha>1$. Using Chebyshev, if $\epsilon>0$ then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\epsilon k(n)\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}\left(T_{k(n)}\right) / k(n)^{2} \\
& =\epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)=\epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2} .
\end{aligned}
$$

- Sum series:

$$
\sum_{n: \alpha^{n} \geq m}\left[\alpha^{n}\right]^{-2} \leq 4 \sum_{n: \alpha^{n} \geq m} \alpha^{-2 n} \leq 4\left(1-\alpha^{-2}\right)^{-1} m^{-2} .
$$

- Combine computations (observe RHS below is finite):

$$
\sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k}(n)\right|>\epsilon k(n)\right) \leq 4\left(1-\alpha^{-2}\right)^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E\left(Y_{m}^{2}\right) m^{-2}
$$

General proof of strong law

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}\left(Y_{k}\right) / k^{2} \leq 4 E\left|X_{1}\right|<\infty$. How to use it?
- Consider subsequence $k(n)=\left[\alpha^{n}\right]$ for arbitrary $\alpha>1$. Using Chebyshev, if $\epsilon>0$ then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k(n)}\right|>\epsilon k(n)\right) \leq \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}\left(T_{k(n)}\right) / k(n)^{2} \\
& =\epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)=\epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2} .
\end{aligned}
$$

- Sum series:

$$
\sum_{n: \alpha^{n} \geq m}\left[\alpha^{n}\right]^{-2} \leq 4 \sum_{n: \alpha^{n} \geq m} \alpha^{-2 n} \leq 4\left(1-\alpha^{-2}\right)^{-1} m^{-2} .
$$

- Combine computations (observe RHS below is finite):

$$
\sum_{n=1}^{\infty} P\left(\left|T_{k(n)}-E T_{k}(n)\right|>\epsilon k(n)\right) \leq 4\left(1-\alpha^{-2}\right)^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E\left(Y_{m}^{2}\right) m^{-2}
$$

Since ϵ is arbitrary, get $\left(T_{k(n)}-E T_{k(n)}\right) / k(n) \rightarrow 0$ a.s.

General proof of strong law

- Conclude by taking $\alpha \rightarrow 1$. This finishes the case that the X_{1} are a.s. positive.

General proof of strong law

- Conclude by taking $\alpha \rightarrow 1$. This finishes the case that the X_{1} are a.s. positive.
- Can extend to the case that X_{1} is a.s. positive with infinite mean.

General proof of strong law

- Conclude by taking $\alpha \rightarrow 1$. This finishes the case that the X_{1} are a.s. positive.
- Can extend to the case that X_{1} is a.s. positive with infinite mean.
- Generally, can consider X_{1}^{+}and X_{1}^{-}, and it is enough if one of them has a finite mean.

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem
18.175 Lecture 7

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.
- \mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_{n} are changed.

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.
- \mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_{n} are changed.
- Event that X_{n} converge to a limit is example of a tail event. Other examples?

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.
- \mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_{n} are changed.
- Event that X_{n} converge to a limit is example of a tail event. Other examples?
- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.
- Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A)=P(A \cap A)=P(A)^{2}$. How do we prove that?

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.
- Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A)=P(A \cap A)=P(A)^{2}$. How do we prove that?
- Recall theorem that if \mathcal{A}_{i} are independent π-systems, then σA_{i} are independent.

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.
- Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A)=P(A \cap A)=P(A)^{2}$. How do we prove that?
- Recall theorem that if \mathcal{A}_{i} are independent π-systems, then σA_{i} are independent.
- Deduce that $\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\sigma\left(X_{n+1}, X_{n+1}, \ldots\right)$ are independent. Then deduce that $\sigma\left(X_{1}, X_{2}, \ldots\right)$ and \mathcal{T} are independent, using fact that $\cup_{k} \sigma\left(X_{1}, \ldots, X_{k}\right)$ and \mathcal{T} are π-systems.

Kolmogorov maximal inequality

- Theorem: Suppose X_{i} are independent with mean zero and finite variances, and $S_{n}=\sum_{i=1}^{n} X_{n}$. Then

$$
P\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{Var}\left(S_{n}\right)=x^{-2} E\left|S_{n}\right|^{2}
$$

Kolmogorov maximal inequality

- Theorem: Suppose X_{i} are independent with mean zero and finite variances, and $S_{n}=\sum_{i=1}^{n} X_{n}$. Then

$$
P\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{Var}\left(S_{n}\right)=x^{-2} E\left|S_{n}\right|^{2}
$$

- Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.

Kolmogorov three-series theorem

- Theorem: Let X_{1}, X_{2}, \ldots be independent and fix $A>0$. Write $Y_{i}=X_{i} 1_{\left(\left|X_{i}\right| \leq A\right)}$. Then $\sum X_{i}$ converges a.s. if and only if the following are all true:

Kolmogorov three-series theorem

- Theorem: Let X_{1}, X_{2}, \ldots be independent and fix $A>0$. Write $Y_{i}=X_{i} 1_{\left(\left|X_{i}\right| \leq A\right)}$. Then $\sum X_{i}$ converges a.s. if and only if the following are all true:
- $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>A\right)<\infty$

Kolmogorov three-series theorem

- Theorem: Let X_{1}, X_{2}, \ldots be independent and fix $A>0$. Write $Y_{i}=X_{i} 1_{\left(\left|X_{i}\right| \leq A\right)}$. Then $\sum X_{i}$ converges a.s. if and only if the following are all true:
- $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>A\right)<\infty$
$-\sum_{n=1}^{\infty} E Y_{n}$ converges

Kolmogorov three-series theorem

- Theorem: Let X_{1}, X_{2}, \ldots be independent and fix $A>0$. Write $Y_{i}=X_{i} 1_{\left(\left|X_{i}\right| \leq A\right)}$. Then $\sum X_{i}$ converges a.s. if and only if the following are all true:
- $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>A\right)<\infty$
$-\sum_{n=1}^{\infty} E Y_{n}$ converges
$-\sum_{n=1}^{\infty} \operatorname{Var}\left(Y_{n}\right)<\infty$

Kolmogorov three-series theorem

- Theorem: Let X_{1}, X_{2}, \ldots be independent and fix $A>0$. Write $Y_{i}=X_{i} 1_{\left(\left|X_{i}\right| \leq A\right)}$. Then $\sum X_{i}$ converges a.s. if and only if the following are all true:
- $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>A\right)<\infty$
- $\sum_{n=1}^{n=1} E Y_{n}$ converges
- $\sum_{n=1}^{\infty} \operatorname{Var}\left(Y_{n}\right)<\infty$
- Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_{i}$ converges with probability $p \in\{0,1\}$. We just have to show that $p=1$ when all hypotheses are satisfied (sufficiency of conditions) and $p=0$ if any one of them fails (necessity).

Kolmogorov three-series theorem

- Theorem: Let X_{1}, X_{2}, \ldots be independent and fix $A>0$. Write $Y_{i}=X_{i} 1_{\left(\left|X_{i}\right| \leq A\right)}$. Then $\sum X_{i}$ converges a.s. if and only if the following are all true:
- $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>A\right)<\infty$
- $\sum_{n=1}^{n=1} E Y_{n}$ converges
- $\sum_{n=1}^{\infty} \operatorname{Var}\left(Y_{n}\right)<\infty$
- Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_{i}$ converges with probability $p \in\{0,1\}$. We just have to show that $p=1$ when all hypotheses are satisfied (sufficiency of conditions) and $p=0$ if any one of them fails (necessity).
- To prove sufficiency, apply Borel-Cantelli to see that probability that $X_{n} \neq Y_{n}$ i.o. is zero. Subtract means from Y_{n}, reduce to case that each Y_{n} has mean zero. Apply Kolmogorov maximal inequality.

