18.175: Lecture 7

Zero-one laws and maximal inequalities

Scott Sheffield

MIT

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Borel-Cantelli lemmas

▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

Borel-Cantelli lemmas

- ▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.
- ▶ **Second Borel-Cantelli lemma:** If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.

Convergence in probability subsequential a.s. convergence

▶ **Theorem:** $X_n o X$ in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.

Convergence in probability subsequential a.s. convergence

- ▶ **Theorem:** $X_n o X$ in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.
- ▶ Main idea of proof: Consider event E_n that X_n and X differ by ϵ . Do the E_n occur i.o.? Use Borel-Cantelli.

Pairwise independence example

▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.

Pairwise independence example

- ▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
- ▶ Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $VarS_n \leq ES_n$. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \le Var(S_n)/(\delta ES_n)^2 \to 0,$$

which gives us convergence in probability.

Pairwise independence example

- ▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
- ▶ Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that $VarS_n \leq ES_n$. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \le Var(S_n)/(\delta ES_n)^2 \to 0,$$

which gives us convergence in probability.

▶ Second, take a smart subsequence. Let $n_k = \inf\{n : ES_n \ge k^2\}$. Use Borel Cantelli to get a.s. convergence along this subsequence. Check that convergence along this subsequence deterministically implies the non-subsequential convergence.

18.175 Lecture 7

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

General strong law of large numbers

▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.

▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.
- ▶ So we may as well assume E[X] = 0.

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.
- ▶ So we may as well assume E[X] = 0.
- ▶ Key to proof is to bound fourth moments of A_n .

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.
- ▶ So we may as well assume E[X] = 0.
- ▶ Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.
- ▶ So we may as well assume E[X] = 0.
- ▶ Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4} E[S_n^4] = n^{-4} E[(X_1 + X_2 + \ldots + X_n)^4].$
- ▶ Expand $(X_1 + ... + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.
- ▶ So we may as well assume E[X] = 0.
- ▶ Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4} E[S_n^4] = n^{-4} E[(X_1 + X_2 + \ldots + X_n)^4].$
- ▶ Expand $(X_1 + ... + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i^3 X_l^3$ and $X_i^2 X_l^3$ and X_i^4 .
- ▶ The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E[A_n^4] \leq n^{-4} \Big(6\binom{n}{2} + n \Big) K$.

- ▶ Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $Var[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ▶ The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X \mu$ where μ is a constant.
- ▶ So we may as well assume E[X] = 0.
- ▶ Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4} E[S_n^4] = n^{-4} E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + ... + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_i X_k^2$ and $X_i^2 X_i^3$ and $X_i^2 X_i^2$ and X_i^4 .
- ▶ The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E[A_n^4] \leq n^{-4} \Big(6\binom{n}{2} + n \Big) K$.
- ▶ Thus $E[\sum_{n=1}^{\infty} A_n^4] = \sum_{n=1}^{\infty} E[A_n^4] < \infty$. So $\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.

Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)
- ▶ Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to prove it?

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)
- ▶ Claim: $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to prove it?
- ▶ **Observe:** $Var(Y_k) \le E(Y_k^2) = \int_0^\infty 2y P(|Y_k| > y) dy \le \int_0^k 2y P(|X_1| > y) dy$. Use Fubini (interchange sum/integral, since everything positive)

$$\sum_{k=1}^{\infty} E(Y_k^2)/k^2 \le \sum_{k=1}^{\infty} k^{-2} \int_0^{\infty} 1_{(y< k)} 2y P(|X_1| > y) dy =$$
$$\int_0^{\infty} \left(\sum_{k=1}^{\infty} k^{-2} 1_{(y< k)}\right) 2y P(|X_1| > y) dy.$$

Since $E|X_1| = \int_0^\infty P(|X_1| > y) dy$, complete proof of claim by showing that if $y \ge 0$ then $2y \sum_{k>y} k^{-2} \le 4$.

▶ Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?

- ▶ Claim: $\sum_{k=1}^{\infty} Var(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- ► Consider subsequence $k(n) = [\alpha^n]$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$=\epsilon^{-2}\sum_{n=1}^\infty k(n)^{-2}\sum_{m=1}^{k(n)}\mathrm{Var}(Y_m)=\epsilon^{-2}\sum_{m=1}^\infty\mathrm{Var}(Y_m)\sum_{n:k(n)\geq m}k(n)^{-2}.$$

- ▶ Claim: $\sum_{k=1}^{\infty} Var(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence $k(n) = [\alpha^n]$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \text{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \text{Var}(Y_m) \sum_{n: k(n) \ge m} k(n)^{-2}.$$

Sum series:

$$\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 - \alpha^{-2})^{-1} m^{-2}.$$

18.175 Lecture 7

- ▶ Claim: $\sum_{k=1}^{\infty} Var(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- ▶ Consider subsequence $k(n) = [\alpha^n]$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$\infty \qquad k(n) \qquad \infty$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \text{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \text{Var}(Y_m) \sum_{n: k(n) \ge m} k(n)^{-2}.$$

Sum series:

$$\sum_{n:\alpha^n > m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n > m} \alpha^{-2n} \le 4(1 - \alpha^{-2})^{-1} m^{-2}.$$

► Combine computations (observe RHS below is finite):

$$\sum_{k=0}^{\infty} P(|T_{k(n)} - ET_k(n)| > \epsilon k(n)) \le 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{k=0}^{\infty} E(Y_m^2) m^{-2}.$$

18 175 Lecture 7

- ▶ Claim: $\sum_{k=1}^{\infty} \text{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- ▶ Consider subsequence $k(n) = [\alpha^n]$ for arbitrary $\alpha > 1$. Using Chebyshev, if $\epsilon > 0$ then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_m) \sum_{n: k(n) \ge m} k(n)^{-2}.$$
> Sum series:

 $\sum_{n:\alpha^n\geq m} [\alpha^n]^{-2} \leq 4 \sum_{n:\alpha^n\geq m} \alpha^{-2n} \leq 4(1-\alpha^{-2})^{-1}m^{-2}.$ Combine computations (observe RHS below is finite):

$$\sum_{k=0}^{\infty} P(|T_{k(n)} - ET_k(n)| > \epsilon k(n)) \le 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{k=0}^{\infty} E(Y_m^2) m^{-2}.$$

▶ Since ϵ is arbitrary, get $(T_{k(n)} - ET_{k(n)})/k(n) \rightarrow 0$ a.s.

▶ Conclude by taking $\alpha \to 1$. This finishes the case that the X_1 are a.s. positive.

- ▶ Conclude by taking $\alpha \to 1$. This finishes the case that the X_1 are a.s. positive.
- ► Can extend to the case that X₁ is a.s. positive with infinite mean.

- ▶ Conclude by taking $\alpha \to 1$. This finishes the case that the X_1 are a.s. positive.
- ► Can extend to the case that X₁ is a.s. positive with infinite mean.
- ▶ Generally, can consider X_1^+ and X_1^- , and it is enough if one of them has a finite mean.

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Outline

Borel-Cantelli applications

Strong law of large numbers

Kolmogorov zero-one law and three-series theorem

Kolmogorov zero-one law

► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}'_n$.

Kolmogorov zero-one law

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}'_n$.
- ▶ \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.

Kolmogorov zero-one law

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}'_n$.
- $ightharpoonup \mathcal{T}$ is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- ▶ Event that X_n converge to a limit is example of a tail event. Other examples?

Kolmogorov zero-one law

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, \ldots)$ and $\mathcal{T} = \cap_n \mathcal{F}'_n$.
- $ightharpoonup \mathcal{T}$ is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- ▶ Event that X_n converge to a limit is example of a tail event. Other examples?
- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.

- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}$.
- ▶ Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?

- ▶ **Theorem:** If $X_1, X_2,...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0,1\}$.
- ▶ Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?
- ▶ Recall theorem that if A_i are independent π -systems, then σA_i are independent.

- ▶ **Theorem:** If $X_1, X_2,...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0,1\}.$
- ▶ Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A) = P(A \cap A) = P(A)^2$. How do we prove that?
- ▶ Recall theorem that if A_i are independent π -systems, then σA_i are independent.
- ▶ Deduce that $\sigma(X_1, X_2, \ldots, X_n)$ and $\sigma(X_{n+1}, X_{n+1}, \ldots)$ are independent. Then deduce that $\sigma(X_1, X_2, \ldots)$ and $\mathcal T$ are independent, using fact that $\cup_k \sigma(X_1, \ldots, X_k)$ and $\mathcal T$ are π -systems.

Kolmogorov maximal inequality

▶ **Theorem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_i$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

Kolmogorov maximal inequality

▶ **Theorem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_i$. Then

$$P(\max_{1 \le k \le n} |S_k| \ge x) \le x^{-2} \text{Var}(S_n) = x^{-2} E|S_n|^2.$$

► Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.

▶ **Theorem:** Let $X_1, X_2, ...$ be independent and fix A > 0. Write $Y_i = X_i 1_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- ▶ **Theorem:** Let $X_1, X_2, ...$ be independent and fix A > 0. Write $Y_i = X_i 1_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:

- ▶ **Theorem:** Let $X_1, X_2, ...$ be independent and fix A > 0. Write $Y_i = X_i 1_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ $\sum_{n=1}^{\infty} EY_n \text{ converges}$

- ▶ **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i 1_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$

- ▶ **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i 1_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$
- ▶ Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0,1\}$. We just have to show that p=1 when all hypotheses are satisfied (sufficiency of conditions) and p = 0 if any one of them fails (necessity).

- ▶ **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i 1_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$
- ▶ Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0,1\}$. We just have to show that p=1 when all hypotheses are satisfied (sufficiency of conditions) and p = 0 if any one of them fails (necessity).
- ▶ To prove sufficiency, apply Borel-Cantelli to see that probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n , reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.