18.175: Lecture 6

Borel-Cantelli and strong law

Scott Sheffield
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Weak law of large numbers: characteristic function approach
Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

18 175 l ecture 6



Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

18 175 l ecture 6



Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.

18 175 l ecture 6



Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.

» Indeed, weak law of large numbers states that for all ¢ > 0
we have lim,_oo P{|As — u| > €} = 0.
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.

» Indeed, weak law of large numbers states that for all ¢ > 0
we have lim,_o P{|An — | > €} =0.

» Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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Extent of weak law

» Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?
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Extent of weak law

» Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

> Is it always the case that if we define A, := X1+X2tatXn thep

A, is typically close to some fixed value when n is large?
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Extent of weak law

» Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?
> Is it always the case that if we define A, := X1+X2tatXn thep
A, is typically close to some fixed value when n is large?

» What if X is Cauchy?
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Extent of weak law

Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

— X1+X2++Xn then
n

v

v

Is it always the case that if we define A, :
A, is typically close to some fixed value when n is large?
What if X is Cauchy?

In this strange and delightful case A, actually has the same
probability distribution as X.

v

v
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Extent of weak law

Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

— X1+X2++Xn then
n

v

> Is it always the case that if we define A, :
A, is typically close to some fixed value when n is large?

» What if X is Cauchy?

> In this strange and delightful case A, actually has the same
probability distribution as X.

» In particular, the A, are not tightly concentrated around any
particular value even when n is very large.
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Extent of weak law

Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

— X1+X2++Xn then
n

v

> Is it always the case that if we define A, :
A, is typically close to some fixed value when n is large?

» What if X is Cauchy?

> In this strange and delightful case A, actually has the same
probability distribution as X.

» In particular, the A, are not tightly concentrated around any
particular value even when n is very large.

» But weak law holds as long as E[|X]] is finite, so that y is
well defined.

18 175 l ecture 6



Extent of weak law

v

Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

Is it always the case that if we define A, := X1+X2tatXn thep

A, is typically close to some fixed value when n is large?
What if X is Cauchy?

In this strange and delightful case A, actually has the same
probability distribution as X.

In particular, the A, are not tightly concentrated around any
particular value even when n is very large.

But weak law holds as long as E[|X]|] is finite, so that y is
well defined.

One standard proof uses characteristic functions.
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Characteristic functions

» Let X be a random variable.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition et = cos(t) + isin(t).
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Characteristic functions

Let X be a random variable.

v

v

The characteristic function of X is defined by

B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
Recall that by definition et = cos(t) + isin(t).
Characteristic functions are similar to moment generating
functions in some ways.

v

v
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.

> And ¢.x(t) = ¢x(at) just as Max(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"gbg(m)(O).
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.

> And ¢.x(t) = ¢x(at) just as Max(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"gbg(m)(O).

» But characteristic functions have an advantage: they are well
defined at all t for all random variables X.
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Continuity theorems

» Let X be random variable, X, a sequence of random variables.

18 175 l ecture 6



Continuity theorems

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.
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Continuity theorems

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

» The weak law of large numbers can be rephrased as the
statement that A, converges in law to u (i.e., to the random
variable that is equal to p with probability one).
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Continuity theorems

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

» The weak law of large numbers can be rephrased as the
statement that A, converges in law to u (i.e., to the random
variable that is equal to p with probability one).

» Lévy’s continuity theorem (coming later): if

Jim_ Px,(t) = ¢x(t)

for all t, then X,, converge in law to X.
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Continuity theorems

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

» The weak law of large numbers can be rephrased as the
statement that A, converges in law to u (i.e., to the random
variable that is equal to p with probability one).

» Lévy’s continuity theorem (coming later): if

lim_ Px,(t) = ¢x(t)

for all t, then X,, converge in law to X.

» By this theorem, we can prove weak law of large numbers by
showing lim,—o0 4, (t) = ¢,(t) = e for all t. When p =0,
amounts to showing lim,_, ¢a,(t) =1 for all ¢.

» Moment generating analog: if moment generating
functions My, (t) are defined for all t and n and, for all t,
limp— 00 Mx, (t) = Mx(t), then X, converge in law to X.
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.

» Consider the characteristic function ¢x(t) = E[e™X].

> Since E[X] =0, we have ¢ (0) = E[£e™];—o = iE[X] = 0.
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.

» Consider the characteristic function ¢x(t) = E[e™X].

> Since E[X] =0, we have ¢ (0) = E[£e™];—o = iE[X] = 0.

» Write g(t) = log ¢x(t) so ¢x(t) = e&(t). Then g(0) =0 and

(by chain rule) g’(0) = lim._o M = lime_o @ = 0.
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.

» Consider the characteristic function ¢x(t) = E[e™X].

> Since E[X] =0, we have ¢ (0) = E[£e™];—o = iE[X] = 0.

> Write g(t) = log ¢x(t) so ¢x(t) = e8(1). Then g(0) = 0 and
(by chain rule) g’(0) = lim._o M = lime_o0 @ =0.

> Now ¢a,(t) = dx(t/n)" = e™(t/). Since g(0) = g'(0) = 0
we have lim,_o ng(t/n) = limp_ 00 tg(j) = 0 if t is fixed.

Thus lim,_o e"€t/" =1 for all ¢.
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.

» Consider the characteristic function ¢x(t) = E[e™X].

> Since E[X] =0, we have ¢ (0) = E[£e™];—o = iE[X] = 0.

> Write g(t) = log ¢x(t) so ¢x(t) = e8(1). Then g(0) = 0 and
(by chain rule) g’(0) = lim._o M = lime_o0 @ =0.

> Now ¢a,(t) = dx(t/n)" = e™(t/). Since g(0) = g'(0) = 0
we have lim,_o ng(t/n) = limp_ 00 £8%) — 0/if ¢ is fixed.

T
Thus lim,_o e"€t/" =1 for all ¢.

> By Lévy's continuity theorem, the A, converge in law to 0
(i.e., to the random variable that is 0 with probability one).

18 175 l ecture 6




Weak law of large numbers: characteristic function approach
Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers
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Laws of large numbers: Borel-Cantelli applications
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Borel-Cantelli lemmas

» First Borel-Cantelli lemma: If > °, P(A,) < oo then
P(A, i.0.)=0.
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Borel-Cantelli lemmas

» First Borel-Cantelli lemma: If > °, P(A,) < oo then
P(A, i.0.)=0.

» Second Borel-Cantelli lemma: If A, are independent, then
Y021 P(An) = oo implies P(Ap i.0.) = 1.

18 175 l ecture 6



Convergence in probability subsequential a.s. convergence

» Theorem: X,, — X in probability if and only if for every
subsequence of the X, there is a further subsequence
converging a.s. to X.
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Convergence in probability subsequential a.s. convergence

» Theorem: X,, — X in probability if and only if for every
subsequence of the X, there is a further subsequence
converging a.s. to X.

» Main idea of proof: Consider event E, that X, and X differ
by €. Do the E, occur i.o.? Use Borel-Cantelli.
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Pairwise independence example

» Theorem: Suppose Aj, Ay, ... are pairwise independent and
> P(An) = o0, and write S, = Y"1 ; 14,. Then the ratio
Sn/ESy tends ass. to 1.
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Pairwise independence example

» Theorem: Suppose Aj, Ay, ... are pairwise independent and
> P(An) = o0, and write S, = Y"1 ; 14,. Then the ratio
Sn/ESy tends ass. to 1.

» Main idea of proof: First, pairwise independence implies
that variances add. Conclude (by checking term by term) that
VarS, < ES,. Then Chebyshev implies

P(|Sn — ESn| > 6ES,) < Var(S,)/(3ES,)* — 0,

which gives us convergence in probability.
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Pairwise independence example

» Theorem: Suppose Aj, Ay, ... are pairwise independent and
> P(An) = o0, and write S, = Y"1 ; 14,. Then the ratio
Sn/ESy tends ass. to 1.

» Main idea of proof: First, pairwise independence implies

that variances add. Conclude (by checking term by term) that
VarS, < ES,. Then Chebyshev implies

P(|Sn — ESn| > 6ES,) < Var(S,)/(3ES,)* — 0,

which gives us convergence in probability.

» Second, take a smart subsequence. Let
ne = inf{n: ES, > k®}. Use Borel Cantelli to get a.s.
convergence along this subsequence. Check that convergence
along this subsequence deterministically implies the
non-subsequential convergence.
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Weak law of large numbers: characteristic function approach
Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

18 175 |l ecture 6



Strong law of large numbers
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General strong law of large numbers

» Theorem (strong law): If X1, X5, ... are i.i.d. real-valued
random variables with expectation m and A, :=n"1>°7  X;
are the empirical means then lim,_., A, = m almost surely.
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Proof of strong law assuming E[X*] < oo

» Assume K := E[X*] < co. Not necessary, but simplifies proof.
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» Assume K := E[X*] < co. Not necessary, but simplifies proof.

» Note: Var[X?] = E[X*] — E[X?]2 >0, so E[X?]?> < K.

» The strong law holds for i.i.d. copies of X if and only if it
holds for i.i.d. copies of X — i where p is a constant.

18 175 l ecture 6



Proof of strong law assuming E[X*] < oo
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Proof of strong law assuming E[X*] < oo

» Assume K := E[X*] < co. Not necessary, but simplifies proof.
Note: Var[X?] = E[X*] — E[X?]*> >0, so E[X?]? < K.

The strong law holds for i.i.d. copies of X if and only if it
holds for i.i.d. copies of X — i where p is a constant.

v

v

v

So we may as well assume E[X] = 0.

» Key to proof is to bound fourth moments of A,.
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Proof of strong law assuming E[X*] < oo

» Assume K := E[X*] < co. Not necessary, but simplifies proof.

» Note: Var[X?] = E[X*] — E[X?]2 >0, so E[X?]?> < K.

» The strong law holds for i.i.d. copies of X if and only if it
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» The strong law holds for i.i.d. copies of X if and only if it
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» So we may as well assume E[X] = 0.

» Key to proof is to bound fourth moments of A,.
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XiX;Xg and X;X? and X?X? and X;'.

18 175 l ecture 6



Proof of strong law assuming E[X*] < oo

» Assume K := E[X*] < co. Not necessary, but simplifies proof.

» Note: Var[X?] = E[X*] — E[X?]2 >0, so E[X?]?> < K.

» The strong law holds for i.i.d. copies of X if and only if it
holds for i.i.d. copies of X — i where p is a constant.

» So we may as well assume E[X] = 0.

» Key to proof is to bound fourth moments of A,.

» E[AY = n"tE[SH] = n*E[(X1 + Xo + ...+ Xp)*].

» Expand (X1 + ...+ X,)*. Five kinds of terms: XiXjXi X and
XiX;Xg and X;X? and X?X? and X;'.

» The first three terms all have expectation zero. There are (g)
of the fourth type and n of the last type, each equal to at

most K. So E[A%] < n*(6(3) + n) K.
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Proof of strong law assuming E[X*] < oo

» Assume K := E[X*] < co. Not necessary, but simplifies proof.

» Note: Var[X?] = E[X*] — E[X?]2 >0, so E[X?]?> < K.

» The strong law holds for i.i.d. copies of X if and only if it
holds for i.i.d. copies of X — i where p is a constant.

» So we may as well assume E[X] = 0.

» Key to proof is to bound fourth moments of A,.

» E[AY = n"tE[SH] = n*E[(X1 + Xo + ...+ Xp)*].

» Expand (X1 + ...+ X,)*. Five kinds of terms: XiXjXi X and
XiX;Xg and X;X? and X?X? and X;'.

» The first three terms all have expectation zero. There are (g)

of the fourth type and n of the last type, each equal to at
most K. So E[A%] < n*(6(3) + n) K.

> Thus E[3-02 ARl = 3202 E[A7] < oo So 3007 A < o0
(and hence A, — 0) with probability 1.
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General proof of strong law

» Suppose X are i.i.d. with finite mean. Let Yi = X1 x,|<«-
Write T, = Y1+ ...+ Y,. Claim: X, = Y all but finitely
often a.s. so suffices to show T,/n — p. (Borel Cantelli,
expectation of positive r.v. is area between cdf and line y = 1)
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General proof of strong law

» Suppose X are i.i.d. with finite mean. Let Yi = X1 x,|<«-
Write T, = Y1+ ...+ Y,. Claim: X, = Y all but finitely
often a.s. so suffices to show T,/n — p. (Borel Cantelli,
expectation of positive r.v. is area between cdf and line y = 1)

» Claim: Y 72, Var(Yy)/k? < 4E|X1| < co. How to prove it?

» Observe: Var(Yy) < E(Y2) = [;°2yP(|Yk| > y)dy <
fo 2yP(|X1| > y)dy. Use Fubini (interchange sum/integral,
since everything positive)

SCE(YR) /K<Y K2 /0 1, <2yP(1X] > y)dy =
k=1 k=1

/0 O k1 cny)2vP(1Xa] > y)dy

k=1

Since E|Xi| = [y° P(|X1] > y)dy, complete proof of claim by
showing that if y > 0 then 2y >, k™ 2 <4
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General proof of strong law

» Claim: 72, Var(Yx)/k? < 4E|Xi| < co. How to use it?
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General proof of strong law

» Claim: 72, Var(Yx)/k? < 4E|Xi| < co. How to use it?
» Consider subsequence k(n) = [a"] for arbitrary o > 1. Using
Chebyshev, if € > 0 then

> P(IT(ny = ETi(m)| > €k(n) 12Var Ti(ny)/ k(n)?
n=1

n=1
00 k(n)

2Zk n)—2 Z Var(Yp,) = ¢ 2 Z Var(Y, Z k(n)~2.

n:k(n)>m
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General proof of strong law

» Claim: 72, Var(Yx)/k? < 4E|Xi| < co. How to use it?
» Consider subsequence k(n) = [a"] for arbitrary o > 1. Using
Chebyshev, if € > 0 then

> P(IT(ny = ETi(m)| > €k(n) 12Var Ti(ny)/ k(n)?
n=1 n=1
oo k(n)
2Zk n)~ 2ZVar(Ym)_e 22:\7211" Z k(n)~2.
n:k(n)>m

» Sum series:
Zn:a”Zm[an]72 < 4Zn:a"2m a72n < 4(1 - 0f2)*1m*2.
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General proof of strong law

» Claim: 72, Var(Yx)/k? < 4E|Xi| < co. How to use it?
» Consider subsequence k(n) = [a"] for arbitrary o > 1. Using
Chebyshev, if € > 0 then

> P(IT(ny = ETi(m)| > €k(n) 12Var Ti(ny)/ k(n)?
n=1 n=1
oo k(n)
2Zk n)~ 2ZVar(Ym)_e 2Z\/'ar Z k(n)~2.
n:k(n)>m

» Sum series:

Zn:a”>m[an]72 S 4'Z:n:cu">m a72n S 4(1 - 0f2)*1m*2.
» Combine computations (observe RHS below is finite):

> P(| Tuny—ETi(n)] > ek(n)) < 4(1—a2) 12 Y " E(YZ)m ™2
n=1
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General proof of strong law

» Claim: 72, Var(Yx)/k? < 4E|Xi| < co. How to use it?
» Consider subsequence k(n) = [a"] for arbitrary o > 1. Using
Chebyshev, if € > 0 then

> P(IT(ny = ETi(m)| > €k(n) 12Var Ti(ny)/ k(n)?
n=1 n=1
oo k(n)
2Zk n)~ 2ZVar(Ym)_e 2Z\/'ar Z k(n)~2.
n:k(n)>m

» Sum series:

Zn:a”>m[an]72 S 4'Z:n:cu">m a72n S 4(1 - 0f2)*1m*2.
» Combine computations (observe RHS below is finite):

> P(I Tumy—ETi(n)] > ek(n)) < 4(1—a2) 12D " E(YZ)m ™2,
n=1

> Since € is arbitrary, get (Ty(n) — ETk(n))/k(n) — 0 ass.
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General proof of strong law

» Conclude by taking o — 1. This finishes the case that the X
are a.s. positive.
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General proof of strong law

» Conclude by taking o — 1. This finishes the case that the X
are a.s. positive.

» Can extend to the case that Xj is a.s. positive within infinite
mean.
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General proof of strong law

» Conclude by taking o — 1. This finishes the case that the X
are a.s. positive.

» Can extend to the case that Xj is a.s. positive within infinite
mean.

> Generally, can consider Xl+ and X;, and it is enough if one of
them has a finite mean.
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