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Statement of weak law of large numbers

I Suppose Xi are i.i.d. random variables with mean µ.

I Then the value An := X1+X2+...+Xn
n is called the empirical

average of the first n trials.

I We’d guess that when n is large, An is typically close to µ.

I Indeed, weak law of large numbers states that for all ε > 0
we have limn→∞ P{|An − µ| > ε} = 0.

I Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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Extent of weak law

I Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

I Is it always the case that if we define An := X1+X2+...+Xn
n then

An is typically close to some fixed value when n is large?

I What if X is Cauchy?

I In this strange and delightful case An actually has the same
probability distribution as X .

I In particular, the An are not tightly concentrated around any
particular value even when n is very large.

I But weak law holds as long as E [|X |] is finite, so that µ is
well defined.

I One standard proof uses characteristic functions.
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Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I But characteristic functions have an advantage: they are well
defined at all t for all random variables X .
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Continuity theorems

I Let X be random variable, Xn a sequence of random variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I The weak law of large numbers can be rephrased as the
statement that An converges in law to µ (i.e., to the random
variable that is equal to µ with probability one).

I Lévy’s continuity theorem (coming later): if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .
I By this theorem, we can prove weak law of large numbers by

showing limn→∞ φAn(t) = φµ(t) = e itµ for all t. When µ = 0,
amounts to showing limn→∞ φAn(t) = 1 for all t.

I Moment generating analog: if moment generating
functions MXn(t) are defined for all t and n and, for all t,
limn→∞MXn(t) = MX (t), then Xn converge in law to X .
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Proof sketch for weak law of large numbers, finite mean
case

I As above, let Xi be i.i.d. instances of random variable X with
mean zero. Write An := X1+X2+...+Xn

n . Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X − µ. Thus it suffices to prove the
weak law in the mean zero case.

I Consider the characteristic function φX (t) = E [e itX ].
I Since E [X ] = 0, we have φ′X (0) = E [ ∂∂t e

itX ]t=0 = iE [X ] = 0.

I Write g(t) = log φX (t) so φX (t) = eg(t). Then g(0) = 0 and

(by chain rule) g ′(0) = limε→0
g(ε)−g(0)

ε = limε→0
g(ε)
ε = 0.

I Now φAn(t) = φX (t/n)n = eng(t/n). Since g(0) = g ′(0) = 0

we have limn→∞ ng(t/n) = limn→∞ t
g( t

n
)

t
n

= 0 if t is fixed.

Thus limn→∞ eng(t/n) = 1 for all t.
I By Lévy’s continuity theorem, the An converge in law to 0

(i.e., to the random variable that is 0 with probability one).
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I By Lévy’s continuity theorem, the An converge in law to 0
(i.e., to the random variable that is 0 with probability one).

18.175 Lecture 6



Proof sketch for weak law of large numbers, finite mean
case

I As above, let Xi be i.i.d. instances of random variable X with
mean zero. Write An := X1+X2+...+Xn

n . Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X − µ. Thus it suffices to prove the
weak law in the mean zero case.

I Consider the characteristic function φX (t) = E [e itX ].
I Since E [X ] = 0, we have φ′X (0) = E [ ∂∂t e

itX ]t=0 = iE [X ] = 0.

I Write g(t) = log φX (t) so φX (t) = eg(t). Then g(0) = 0 and

(by chain rule) g ′(0) = limε→0
g(ε)−g(0)

ε = limε→0
g(ε)
ε = 0.

I Now φAn(t) = φX (t/n)n = eng(t/n). Since g(0) = g ′(0) = 0

we have limn→∞ ng(t/n) = limn→∞ t
g( t

n
)

t
n

= 0 if t is fixed.

Thus limn→∞ eng(t/n) = 1 for all t.
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Borel-Cantelli lemmas

I First Borel-Cantelli lemma: If
∑∞

n=1 P(An) <∞ then
P(An i.o.) = 0.

I Second Borel-Cantelli lemma: If An are independent, then∑∞
n=1 P(An) =∞ implies P(An i.o.) = 1.
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Convergence in probability subsequential a.s. convergence

I Theorem: Xn → X in probability if and only if for every
subsequence of the Xn there is a further subsequence
converging a.s. to X .

I Main idea of proof: Consider event En that Xn and X differ
by ε. Do the En occur i.o.? Use Borel-Cantelli.
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Pairwise independence example

I Theorem: Suppose A1,A2, . . . are pairwise independent and∑
P(An) =∞, and write Sn =

∑n
i=1 1Ai

. Then the ratio
Sn/ESn tends a.s. to 1.

I Main idea of proof: First, pairwise independence implies
that variances add. Conclude (by checking term by term) that
VarSn ≤ ESn. Then Chebyshev implies

P(|Sn − ESn| > δESn) ≤ Var(Sn)/(δESn)2 → 0,

which gives us convergence in probability.

I Second, take a smart subsequence. Let
nk = inf{n : ESn ≥ k2}. Use Borel Cantelli to get a.s.
convergence along this subsequence. Check that convergence
along this subsequence deterministically implies the
non-subsequential convergence.
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General strong law of large numbers

I Theorem (strong law): If X1,X2, . . . are i.i.d. real-valued
random variables with expectation m and An := n−1

∑n
i=1 Xi

are the empirical means then limn→∞ An = m almost surely.
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Proof of strong law assuming E [X 4] <∞

I Assume K := E [X 4] <∞. Not necessary, but simplifies proof.

I Note: Var[X 2] = E [X 4]− E [X 2]2 ≥ 0, so E [X 2]2 ≤ K .

I The strong law holds for i.i.d. copies of X if and only if it
holds for i.i.d. copies of X − µ where µ is a constant.

I So we may as well assume E [X ] = 0.

I Key to proof is to bound fourth moments of An.

I E [A4
n] = n−4E [S4

n ] = n−4E [(X1 + X2 + . . .+ Xn)4].

I Expand (X1 + . . .+ Xn)4. Five kinds of terms: XiXjXkXl and
XiXjX

2
k and XiX

3
j and X 2

i X
2
j and X 4

i .

I The first three terms all have expectation zero. There are
(n
2

)
of the fourth type and n of the last type, each equal to at

most K . So E [A4
n] ≤ n−4

(
6
(n
2

)
+ n
)
K .

I Thus E [
∑∞

n=1 A
4
n] =

∑∞
n=1 E [A4

n] <∞. So
∑∞

n=1 A
4
n <∞

(and hence An → 0) with probability 1.
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General proof of strong law

I Suppose Xk are i.i.d. with finite mean. Let Yk = Xk1|Xk |≤k .
Write Tn = Y1 + . . .+ Yn. Claim: Xk = Yk all but finitely
often a.s. so suffices to show Tn/n→ µ. (Borel Cantelli,
expectation of positive r.v. is area between cdf and line y = 1)

I Claim:
∑∞

k=1Var(Yk)/k2 ≤ 4E |X1| <∞. How to prove it?
I Observe: Var(Yk) ≤ E (Y 2

k ) =
∫∞
0 2yP(|Yk | > y)dy ≤∫ k

0 2yP(|X1| > y)dy . Use Fubini (interchange sum/integral,
since everything positive)

∞∑
k=1

E (Y 2
k )/k2 ≤

∞∑
k=1

k−2
∫ ∞
0

1(y<k)2yP(|X1| > y)dy =

∫ ∞
0

( ∞∑
k=1

k−21(y<k)

)
2yP(|X1| > y)dy .

Since E |X1| =
∫∞
0 P(|X1| > y)dy , complete proof of claim by

showing that if y ≥ 0 then 2y
∑

k>y k
−2 ≤ 4.
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General proof of strong law

I Claim:
∑∞

k=1Var(Yk)/k2 ≤ 4E |X1| <∞. How to use it?

I Consider subsequence k(n) = [αn] for arbitrary α > 1. Using
Chebyshev, if ε > 0 then

∞∑
n=1

P
(
|Tk(n) − ETk(n)| > εk(n)) ≤ ε−1

∞∑
n=1

Var(Tk(n))/k(n)2

= ε−2
∞∑
n=1

k(n)−2
k(n)∑
m=1

Var(Ym) = ε−2
∞∑

m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2.

I Sum series:∑
n:αn≥m[αn]−2 ≤ 4

∑
n:αn≥m α

−2n ≤ 4(1− α−2)−1m−2.
I Combine computations (observe RHS below is finite):
∞∑
n=1

P(|Tk(n)−ETk(n)| > εk(n)) ≤ 4(1−α−2)−1ε−2
∞∑

m=1

E (Y 2
m)m−2.

I Since ε is arbitrary, get (Tk(n) − ETk(n))/k(n)→ 0 a.s.

18.175 Lecture 6



General proof of strong law

I Claim:
∑∞

k=1Var(Yk)/k2 ≤ 4E |X1| <∞. How to use it?
I Consider subsequence k(n) = [αn] for arbitrary α > 1. Using

Chebyshev, if ε > 0 then

∞∑
n=1

P
(
|Tk(n) − ETk(n)| > εk(n)) ≤ ε−1

∞∑
n=1

Var(Tk(n))/k(n)2

= ε−2
∞∑
n=1

k(n)−2
k(n)∑
m=1

Var(Ym) = ε−2
∞∑

m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2.

I Sum series:∑
n:αn≥m[αn]−2 ≤ 4

∑
n:αn≥m α

−2n ≤ 4(1− α−2)−1m−2.
I Combine computations (observe RHS below is finite):
∞∑
n=1

P(|Tk(n)−ETk(n)| > εk(n)) ≤ 4(1−α−2)−1ε−2
∞∑

m=1

E (Y 2
m)m−2.

I Since ε is arbitrary, get (Tk(n) − ETk(n))/k(n)→ 0 a.s.

18.175 Lecture 6



General proof of strong law

I Claim:
∑∞

k=1Var(Yk)/k2 ≤ 4E |X1| <∞. How to use it?
I Consider subsequence k(n) = [αn] for arbitrary α > 1. Using

Chebyshev, if ε > 0 then

∞∑
n=1

P
(
|Tk(n) − ETk(n)| > εk(n)) ≤ ε−1

∞∑
n=1

Var(Tk(n))/k(n)2

= ε−2
∞∑
n=1

k(n)−2
k(n)∑
m=1

Var(Ym) = ε−2
∞∑

m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2.

I Sum series:∑
n:αn≥m[αn]−2 ≤ 4

∑
n:αn≥m α

−2n ≤ 4(1− α−2)−1m−2.

I Combine computations (observe RHS below is finite):
∞∑
n=1

P(|Tk(n)−ETk(n)| > εk(n)) ≤ 4(1−α−2)−1ε−2
∞∑

m=1

E (Y 2
m)m−2.

I Since ε is arbitrary, get (Tk(n) − ETk(n))/k(n)→ 0 a.s.

18.175 Lecture 6



General proof of strong law

I Claim:
∑∞

k=1Var(Yk)/k2 ≤ 4E |X1| <∞. How to use it?
I Consider subsequence k(n) = [αn] for arbitrary α > 1. Using

Chebyshev, if ε > 0 then

∞∑
n=1

P
(
|Tk(n) − ETk(n)| > εk(n)) ≤ ε−1

∞∑
n=1

Var(Tk(n))/k(n)2

= ε−2
∞∑
n=1

k(n)−2
k(n)∑
m=1

Var(Ym) = ε−2
∞∑

m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2.

I Sum series:∑
n:αn≥m[αn]−2 ≤ 4

∑
n:αn≥m α

−2n ≤ 4(1− α−2)−1m−2.
I Combine computations (observe RHS below is finite):
∞∑
n=1

P(|Tk(n)−ETk(n)| > εk(n)) ≤ 4(1−α−2)−1ε−2
∞∑

m=1

E (Y 2
m)m−2.

I Since ε is arbitrary, get (Tk(n) − ETk(n))/k(n)→ 0 a.s.

18.175 Lecture 6



General proof of strong law

I Claim:
∑∞

k=1Var(Yk)/k2 ≤ 4E |X1| <∞. How to use it?
I Consider subsequence k(n) = [αn] for arbitrary α > 1. Using

Chebyshev, if ε > 0 then

∞∑
n=1

P
(
|Tk(n) − ETk(n)| > εk(n)) ≤ ε−1

∞∑
n=1

Var(Tk(n))/k(n)2

= ε−2
∞∑
n=1

k(n)−2
k(n)∑
m=1

Var(Ym) = ε−2
∞∑

m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2.

I Sum series:∑
n:αn≥m[αn]−2 ≤ 4

∑
n:αn≥m α

−2n ≤ 4(1− α−2)−1m−2.
I Combine computations (observe RHS below is finite):
∞∑
n=1

P(|Tk(n)−ETk(n)| > εk(n)) ≤ 4(1−α−2)−1ε−2
∞∑

m=1

E (Y 2
m)m−2.

I Since ε is arbitrary, get (Tk(n) − ETk(n))/k(n)→ 0 a.s.
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General proof of strong law

I Conclude by taking α→ 1. This finishes the case that the X1

are a.s. positive.

I Can extend to the case that X1 is a.s. positive within infinite
mean.

I Generally, can consider X+
1 and X−1 , and it is enough if one of

them has a finite mean.
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