18.175: Lecture 6 <u>Borel-Cantelli</u> and strong law

Scott Sheffield

MIT

Weak law of large numbers: characteristic function approach

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

Weak law of large numbers: characteristic function approach

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

Suppose X_i are i.i.d. random variables with mean μ .

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n/n is called the *empirical average* of the first n trials.

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n/n is called the *empirical average* of the first *n* trials.
- We'd guess that when *n* is large, A_n is typically close to μ .

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n is called the *empirical* average of the first n trials.
- We'd guess that when *n* is large, A_n is typically close to μ .
- ▶ Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.

- Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value A_n := X₁+X₂+...+X_n is called the *empirical* average of the first n trials.
- We'd guess that when *n* is large, A_n is typically close to μ .
- Indeed, weak law of large numbers states that for all ε > 0 we have lim_{n→∞} P{|A_n − μ| > ε} = 0.
- Example: as n tends to infinity, the probability of seeing more than .50001n heads in n fair coin tosses tends to zero.

Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- ► Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- ► Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- ► Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- ► In this strange and delightful case A_n actually has the same probability distribution as X.

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- ► Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- ► In this strange and delightful case A_n actually has the same probability distribution as X.
- In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- ► Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- ► In this strange and delightful case A_n actually has the same probability distribution as X.
- In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But weak law holds as long as E[|X|] is finite, so that µ is well defined.

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- ► Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- ► In this strange and delightful case A_n actually has the same probability distribution as X.
- In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But weak law holds as long as E[|X|] is finite, so that µ is well defined.
- One standard proof uses characteristic functions.

• Let X be a random variable.

- Let X be a random variable.
- ► The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- ► The characteristic function of X is defined by φ(t) = φ_X(t) := E[e^{itX}]. Like M(t) except with i thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, φ_{X+Y} = φ_Xφ_Y, just as M_{X+Y} = M_XM_Y, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- But characteristic functions have an advantage: they are well defined at all t for all random variables X.

• Let X be random variable, X_n a sequence of random variables.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (coming later): if

 $\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$

for all t, then X_n converge in law to X.

- Let X be random variable, X_n a sequence of random variables.
- ▶ Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x \in \mathbb{R}$ at which F_X is continuous.
- The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (coming later): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

▶ By this theorem, we can prove weak law of large numbers by showing $\lim_{n\to\infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu}$ for all t. When $\mu = 0$, amounts to showing $\lim_{n\to\infty} \phi_{A_n}(t) = 1$ for all t.

► Moment generating analog: if moment generating functions M_{Xn}(t) are defined for all t and n and, for all t, lim_{n→∞} M_{Xn}(t) = M_X(t), then X_n converge in law to X. 18.175 Letture 6

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.

• Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − µ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- ▶ Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t \frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- ▶ Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t \frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- ▶ Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t \frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.
- By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).

Weak law of large numbers: characteristic function approach

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

Weak law of large numbers: characteristic function approach

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

- ▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0.$
- ▶ Second Borel-Cantelli lemma: If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.

► Theorem: X_n → X in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.

- ► Theorem: X_n → X in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.
- Main idea of proof: Consider event E_n that X_n and X differ by ε. Do the E_n occur i.o.? Use Borel-Cantelli.

Pairwise independence example

▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.

Pairwise independence example

- ▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
- ► Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that VarS_n ≤ ES_n. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \le \operatorname{Var}(S_n)/(\delta ES_n)^2 \to 0,$$

which gives us convergence in probability.

Pairwise independence example

- ▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
- ► Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that VarS_n ≤ ES_n. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \le \operatorname{Var}(S_n)/(\delta ES_n)^2 \to 0,$$

which gives us convergence in probability.

Second, take a smart subsequence. Let n_k = inf{n : ES_n ≥ k²}. Use Borel Cantelli to get a.s. convergence along this subsequence. Check that convergence along this subsequence deterministically implies the non-subsequential convergence.

Weak law of large numbers: characteristic function approach

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

Weak law of large numbers: characteristic function approach

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.

• Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .

•
$$E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$$

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .
- ► The first three terms all have expectation zero. There are ⁿ₂ of the fourth type and n of the last type, each equal to at most K. So E[A⁴_n] ≤ n⁻⁴ (6ⁿ₂) + n)K.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .
- The first three terms all have expectation zero. There are ⁿ₂ of the fourth type and n of the last type, each equal to at most K. So E[A⁴_n] ≤ n⁻⁴ (6ⁿ₂) + n)K.
- ► Thus $E[\sum_{n=1}^{\infty} A_n^4] = \sum_{n=1}^{\infty} E[A_n^4] < \infty$. So $\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.

Suppose X_k are i.i.d. with finite mean. Let Y_k = X_k1_{|X_k|≤k}. Write T_n = Y₁ + ... + Y_n. Claim: X_k = Y_k all but finitely often a.s. so suffices to show T_n/n → μ. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)
- ▶ Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k) / k^2 \le 4E|X_1| < \infty$. How to prove it?

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)
- ► Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k) / k^2 \leq 4E|X_1| < \infty$. How to prove it?
- ▶ **Observe:** $Var(Y_k) \le E(Y_k^2) = \int_0^\infty 2yP(|Y_k| > y)dy \le \int_0^k 2yP(|X_1| > y)dy$. Use Fubini (interchange sum/integral, since everything positive)

$$\sum_{k=1}^{\infty} E(Y_k^2)/k^2 \leq \sum_{k=1}^{\infty} k^{-2} \int_0^{\infty} \mathbb{1}_{(y < k)} 2y P(|X_1| > y) dy =$$

$$\int_0^\infty (\sum_{k=1}^\infty k^{-2} \mathbf{1}_{(y < k)}) 2y P(|X_1| > y) dy.$$

Since $E|X_1| = \int_0^\infty P(|X_1| > y) dy$, complete proof of claim by showing that if $y \ge 0$ then $2y \sum_{k>y} k^{-2} \le 4$.

• Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$
$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_{m}) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_{m}) \sum_{n:k(n) > m} k(n)^{-2}.$$

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_m) \sum_{n:k(n) \ge m} k(n)^{-2}.$$

Sum series:

$$\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 - \alpha^{-2})^{-1} m^{-2}.$$

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)})/k(n)^2$$

$$=\epsilon^{-2}\sum_{n=1}^{\infty}k(n)^{-2}\sum_{m=1}^{k(n)}\operatorname{Var}(Y_m)=\epsilon^{-2}\sum_{m=1}^{\infty}\operatorname{Var}(Y_m)\sum_{n:k(n)\geq m}k(n)^{-2}.$$

- Sum series:
- $\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 \alpha^{-2})^{-1}m^{-2}.$ • Combine computations (observe RHS below is finite):

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_k(n)| > \epsilon k(n)) \le 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E(Y_m^2) m^{-2}.$$

- ► Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)})/k(n)^2$$

$$=\epsilon^{-2}\sum_{n=1}^{\infty}k(n)^{-2}\sum_{m=1}^{k(n)}\operatorname{Var}(Y_m)=\epsilon^{-2}\sum_{m=1}^{\infty}\operatorname{Var}(Y_m)\sum_{n:k(n)\geq m}k(n)^{-2}.$$

- Sum series:
- $\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 \alpha^{-2})^{-1}m^{-2}.$ • Combine computations (observe RHS below is finite):

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_k(n)| > \epsilon k(n)) \le 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E(Y_m^2) m^{-2}$$

Since ϵ is arbitrary, get $(T_{k(n)} - ET_{k(n)})/k(n) \rightarrow 0$ a.s. 18.175 Lecture 6 Conclude by taking α → 1. This finishes the case that the X₁ are a.s. positive.

- Conclude by taking α → 1. This finishes the case that the X₁ are a.s. positive.
- Can extend to the case that X₁ is a.s. positive within infinite mean.

- Conclude by taking α → 1. This finishes the case that the X₁ are a.s. positive.
- Can extend to the case that X₁ is a.s. positive within infinite mean.
- ▶ Generally, can consider X₁⁺ and X₁⁻, and it is enough if one of them has a finite mean.