18.175: Lecture 5

Moment generating functions

Scott Sheffield

MIT

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
18.175 Lecture 5

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- Measure μ is probability measure if $\mu(\Omega)=1$.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- Measure μ is probability measure if $\mu(\Omega)=1$.
- The Borel σ-algebra \mathcal{B} on a topological space is the smallest σ-algebra containing all open sets.

Recall definitions

- Real random variable is function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every Borel set is in \mathcal{F}.

Recall definitions

- Real random variable is function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every Borel set is in \mathcal{F}.
- Note: to prove X is measurable, it is enough to show that the pre-image of every open set is in \mathcal{F}.

Recall definitions

- Real random variable is function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every Borel set is in \mathcal{F}.
- Note: to prove X is measurable, it is enough to show that the pre-image of every open set is in \mathcal{F}.
- Can talk about σ-algebra generated by random variable(s): smallest σ-algebra that makes a random variable (or a collection of random variables) measurable.

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: start with $\mu(\Omega)<\infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: start with $\mu(\Omega)<\infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: start with $\mu(\Omega)<\infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: start with $\mu(\Omega)<\infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: start with $\mu(\Omega)<\infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.
- f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
18.175 Lecture 5

Expectation

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.

Expectation

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.

Expectation

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.
- $E X^{k}$ is called k th moment of X. Also, if $m=E X$ then $E(X-m)^{2}$ is called the variance of X.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.
- Main idea of proof: Rescale so that $\|f\|_{p}\|g\|_{q}=1$. Use some basic calculus to check that for any positive x and y we have $x y \leq x^{p} / p+y^{q} / p$. Write $x=|f|, y=|g|$ and integrate to get $\int|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.
- Main idea of proof: Rescale so that $\|f\|_{p}\|g\|_{q}=1$. Use some basic calculus to check that for any positive x and y we have $x y \leq x^{p} / p+y^{q} / p$. Write $x=|f|, y=|g|$ and integrate to get $\int|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}$.
- Cauchy-Schwarz inequality: Special case $p=q=2$. Gives $\int|f g| d \mu \leq\|f\|_{2}\|g\|_{2}$. Says that dot product of two vectors is at most product of vector lengths.

Bounded convergence theorem

- Bounded convergence theorem: Consider probability measure μ and suppose $\left|f_{n}\right| \leq M$ a.s. for all n and some fixed $M>0$, and that $f_{n} \rightarrow f$ in probability (i.e., $\lim _{n \rightarrow \infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ for all $\left.\epsilon>0\right)$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

Bounded convergence theorem

- Bounded convergence theorem: Consider probability measure μ and suppose $\left|f_{n}\right| \leq M$ a.s. for all n and some fixed $M>0$, and that $f_{n} \rightarrow f$ in probability (i.e., $\lim _{n \rightarrow \infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ for all $\left.\epsilon>0\right)$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

- Main idea of proof: for any ϵ, δ can take n large enough so $\int\left|f_{n}-f\right| d \mu<M \delta+\epsilon$.

Fatou's lemma

- Fatou's lemma: If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Fatou's lemma

- Fatou's lemma: If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

- Main idea of proof: first reduce to case that the f_{n} are increasing by writing $g_{n}(x)=\inf _{m \geq n} f_{m}(x)$ and observing that $g_{n}(x) \uparrow g(x)=\lim \inf _{n \rightarrow \infty} f_{n}(x)$. Then truncate, used bounded convergence, take limits.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.
- Dominated convergence: If $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.
- Dominated convergence: If $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.
- Main idea of proof: Fatou for functions $g+f_{n} \geq 0$ gives one side. Fatou for $g-f_{n} \geq 0$ gives other.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.
- Examples: normal, exponential, Bernoulli, Poisson, geometric...

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
18.175 Lecture 5

Moment generating functions

- Let X be a random variable.

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.
- If $b>0$ and $t>0$ then

$$
E\left[e^{t X}\right] \geq E\left[e^{t \min \{X, b\}}\right] \geq P\{X \geq b\} e^{t b}
$$

Moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.
- If $b>0$ and $t>0$ then $E\left[e^{t X}\right] \geq E\left[e^{t \min \{X, b\}}\right] \geq P\{X \geq b\} e^{t b}$.
- If X takes both positive and negative values with positive probability then $M(t)$ grows at least exponentially fast in $|t|$ as $|t| \rightarrow \infty$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.
- in particular, $M^{\prime}(0)=E[X]$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.
- in particular, $M^{\prime}(0)=E[X]$.
- Also $M^{\prime \prime}(t)=\frac{d}{d t} M^{\prime}(t)=\frac{d}{d t} E\left[X e^{t X}\right]=E\left[X^{2} e^{t X}\right]$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.
- in particular, $M^{\prime}(0)=E[X]$.
- Also $M^{\prime \prime}(t)=\frac{d}{d t} M^{\prime}(t)=\frac{d}{d t} E\left[X e^{t X}\right]=E\left[X^{2} e^{t X}\right]$.
- So $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Same argument gives that nth derivative of M at zero is $E\left[X^{n}\right]$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.
- in particular, $M^{\prime}(0)=E[X]$.
- Also $M^{\prime \prime}(t)=\frac{d}{d t} M^{\prime}(t)=\frac{d}{d t} E\left[X e^{t X}\right]=E\left[X^{2} e^{t X}\right]$.
- So $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Same argument gives that nth derivative of M at zero is $E\left[X^{n}\right]$.
- Interesting: knowing all of the derivatives of M at a single point tells you the moments $E\left[X^{k}\right]$ for all integer $k \geq 0$.

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.
- in particular, $M^{\prime}(0)=E[X]$.
- Also $M^{\prime \prime}(t)=\frac{d}{d t} M^{\prime}(t)=\frac{d}{d t} E\left[X e^{t X}\right]=E\left[X^{2} e^{t X}\right]$.
- So $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Same argument gives that nth derivative of M at zero is $E\left[X^{n}\right]$.
- Interesting: knowing all of the derivatives of M at a single point tells you the moments $E\left[X^{k}\right]$ for all integer $k \geq 0$.
- Another way to think of this: write

$$
e^{t X}=1+t X+\frac{t^{2} X^{2}}{2!}+\frac{t^{3} X^{3}}{3!}+\ldots
$$

Moment generating functions actually generate moments

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(t)=\frac{d}{d t} E\left[e^{t X}\right]=E\left[\frac{d}{d t}\left(e^{t X}\right)\right]=E\left[X e^{t X}\right]$.
- in particular, $M^{\prime}(0)=E[X]$.
- Also $M^{\prime \prime}(t)=\frac{d}{d t} M^{\prime}(t)=\frac{d}{d t} E\left[X e^{t X}\right]=E\left[X^{2} e^{t X}\right]$.
- So $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Same argument gives that nth derivative of M at zero is $E\left[X^{n}\right]$.
- Interesting: knowing all of the derivatives of M at a single point tells you the moments $E\left[X^{k}\right]$ for all integer $k \geq 0$.
- Another way to think of this: write $e^{t X}=1+t X+\frac{t^{2} X^{2}}{2!}+\frac{t^{3} X^{3}}{3!}+\ldots$.
- Taking expectations gives $E\left[e^{t X}\right]=1+t m_{1}+\frac{t^{2} m_{2}}{2!}+\frac{t^{3} m_{3}}{3!}+\ldots$, where m_{k} is the k th moment. The k th derivative at zero is m_{k}.

Moment generating functions for independent sums

- Let X and Y be independent random variables and $Z=X+Y$.

Moment generating functions for independent sums

- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.

Moment generating functions for independent sums

- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.
- If you knew M_{X} and M_{Y}, could you compute M_{Z} ?

Moment generating functions for independent sums

- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.
- If you knew M_{X} and M_{Y}, could you compute M_{Z} ?
- By independence, $M_{Z}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t Y}\right]=$ $E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)$ for all t.

Moment generating functions for independent sums

- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.
- If you knew M_{X} and M_{Y}, could you compute M_{Z} ?
- By independence, $M_{Z}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t Y}\right]=$ $E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)$ for all t.
- In other words, adding independent random variables corresponds to multiplying moment generating functions.

Moment generating functions for sums of i.i.d. random variables

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$

Moment generating functions for sums of i.i.d. random variables

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?

Moment generating functions for sums of i.i.d. random

 variables- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}. Follows by repeatedly applying formula above.

Moment generating functions for sums of i.i.d. random

 variables- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}. Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.

Other observations

- If $Z=a X$ then can I use M_{X} to determine M_{Z} ?

Other observations

- If $Z=a X$ then can I use M_{X} to determine M_{Z} ?
- Answer: Yes. $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t a X}\right]=M_{X}(a t)$.

Other observations

- If $Z=a X$ then can I use M_{X} to determine M_{Z} ?
- Answer: Yes. $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{\operatorname{ta} X}\right]=M_{X}(a t)$.
- If $Z=X+b$ then can I use M_{X} to determine M_{Z} ?

Other observations

- If $Z=a X$ then can I use M_{X} to determine M_{Z} ?
- Answer: Yes. $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{\operatorname{ta} X}\right]=M_{X}(a t)$.
- If $Z=X+b$ then can I use M_{X} to determine M_{Z} ?
- Answer: Yes. $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t X+b t}\right]=e^{b t} M_{X}(t)$.

Other observations

- If $Z=a X$ then can I use M_{X} to determine M_{Z} ?
- Answer: Yes. $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t a X}\right]=M_{X}(a t)$.
- If $Z=X+b$ then can I use M_{X} to determine M_{Z} ?
- Answer: Yes. $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t X+b t}\right]=e^{b t} M_{X}(t)$.
- Latter answer is the special case of $M_{Z}(t)=M_{X}(t) M_{Y}(t)$ where Y is the constant random variable b.

Existence issues

- Seems that unless $f_{X}(x)$ decays superexponentially as x tends to infinity, we won't have $M_{X}(t)$ defined for all t.

Existence issues

- Seems that unless $f_{X}(x)$ decays superexponentially as x tends to infinity, we won't have $M_{X}(t)$ defined for all t.
- What is M_{X} if X is standard Cauchy, so that $f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.

Existence issues

- Seems that unless $f_{X}(x)$ decays superexponentially as x tends to infinity, we won't have $M_{X}(t)$ defined for all t.
- What is M_{X} if X is standard Cauchy, so that $f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
- Answer: $M_{X}(0)=1$ (as is true for any X) but otherwise $M_{X}(t)$ is infinite for all $t \neq 0$.

Existence issues

- Seems that unless $f_{X}(x)$ decays superexponentially as x tends to infinity, we won't have $M_{X}(t)$ defined for all t.
- What is M_{X} if X is standard Cauchy, so that $f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}$.
- Answer: $M_{X}(0)=1$ (as is true for any X) but otherwise $M_{X}(t)$ is infinite for all $t \neq 0$.
- Informal statement: moment generating functions are not defined for distributions with fat tails.

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Markov's and Chebyshev's inequalities

- Markov's inequality: Let X be non-negative random variable. Fix $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

Markov's and Chebyshev's inequalities

- Markov's inequality: Let X be non-negative random variable. Fix $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Proof: Consider a random variable Y defined by
$Y=\left\{\begin{array}{ll}a & X \geq a \\ 0 & X<a\end{array}\right.$. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y]=a P\{X \geq a\}$. Divide both sides by a to get Markov's inequality.

Markov's and Chebyshev's inequalities

- Markov's inequality: Let X be non-negative random variable. Fix $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Proof: Consider a random variable Y defined by $Y=\left\{\begin{array}{ll}a & X \geq a \\ 0 & X<a\end{array}\right.$. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y]=a P\{X \geq a\}$. Divide both sides by a to get Markov's inequality.
- Chebyshev's inequality: If X has finite mean μ, variance σ^{2}, and $k>0$ then

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

Markov's and Chebyshev's inequalities

- Markov's inequality: Let X be non-negative random variable. Fix $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Proof: Consider a random variable Y defined by $Y=\left\{\begin{array}{ll}a & X \geq a \\ 0 & X<a\end{array}\right.$. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y]=a P\{X \geq a\}$. Divide both sides by a to get Markov's inequality.
- Chebyshev's inequality: If X has finite mean μ, variance σ^{2}, and $k>0$ then

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

- Proof: Note that $(X-\mu)^{2}$ is a non-negative random variable and $P\{|X-\mu| \geq k\}=P\left\{(X-\mu)^{2} \geq k^{2}\right\}$. Now apply Markov's inequality with $a=k^{2}$.

Markov and Chebyshev: rough idea

- Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.

Markov and Chebyshev: rough idea

- Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Chebyshev's inequality: If X has finite mean μ, variance σ^{2}, and $k>0$ then

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

Markov and Chebyshev: rough idea

- Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Chebyshev's inequality: If X has finite mean μ, variance σ^{2}, and $k>0$ then

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

Markov and Chebyshev: rough idea

- Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Chebyshev's inequality: If X has finite mean μ, variance σ^{2}, and $k>0$ then

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- Markov: if $E[X]$ is small, then it is not too likely that X is large.

Markov and Chebyshev: rough idea

- Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant $a>0$. Then $P\{X \geq a\} \leq \frac{E[X]}{a}$.
- Chebyshev's inequality: If X has finite mean μ, variance σ^{2}, and $k>0$ then

$$
P\{|X-\mu| \geq k\} \leq \frac{\sigma^{2}}{k^{2}}
$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- Markov: if $E[X]$ is small, then it is not too likely that X is large.
- Chebyshev: if $\sigma^{2}=\operatorname{Var}[X]$ is small, then it is not too likely that X is far from its mean.

Statement of weak law of large numbers

- Suppose X_{i} are i.i.d. random variables with mean μ.

Statement of weak law of large numbers

- Suppose X_{i} are i.i.d. random variables with mean μ.
- Then the value $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ is called the empirical average of the first n trials.

Statement of weak law of large numbers

- Suppose X_{i} are i.i.d. random variables with mean μ.
- Then the value $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ is called the empirical average of the first n trials.
- We'd guess that when n is large, A_{n} is typically close to μ.

Statement of weak law of large numbers

- Suppose X_{i} are i.i.d. random variables with mean μ.
- Then the value $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ is called the empirical average of the first n trials.
- We'd guess that when n is large, A_{n} is typically close to μ.
- Indeed, weak law of large numbers states that for all $\epsilon>0$ we have $\lim _{n \rightarrow \infty} P\left\{\left|A_{n}-\mu\right|>\epsilon\right\}=0$.

Statement of weak law of large numbers

- Suppose X_{i} are i.i.d. random variables with mean μ.
- Then the value $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ is called the empirical average of the first n trials.
- We'd guess that when n is large, A_{n} is typically close to μ.
- Indeed, weak law of large numbers states that for all $\epsilon>0$ we have $\lim _{n \rightarrow \infty} P\left\{\left|A_{n}-\mu\right|>\epsilon\right\}=0$.
- Example: as n tends to infinity, the probability of seeing more than $.50001 n$ heads in n fair coin tosses tends to zero.

Proof of weak law of large numbers in finite variance case

- As above, let X_{i} be i.i.d. random variables with mean μ and write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$.

Proof of weak law of large numbers in finite variance case

- As above, let X_{i} be i.i.d. random variables with mean μ and write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$.
- By additivity of expectation, $\mathbb{E}\left[A_{n}\right]=\mu$.

Proof of weak law of large numbers in finite variance case

- As above, let X_{i} be i.i.d. random variables with mean μ and write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$.
- By additivity of expectation, $\mathbb{E}\left[A_{n}\right]=\mu$.
- Similarly, $\operatorname{Var}\left[A_{n}\right]=\frac{n \sigma^{2}}{n^{2}}=\sigma^{2} / n$.

Proof of weak law of large numbers in finite variance case

- As above, let X_{i} be i.i.d. random variables with mean μ and write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$.
- By additivity of expectation, $\mathbb{E}\left[A_{n}\right]=\mu$.
- Similarly, $\operatorname{Var}\left[A_{n}\right]=\frac{n \sigma^{2}}{n^{2}}=\sigma^{2} / n$.
- By Chebyshev $P\left\{\left|A_{n}-\mu\right| \geq \epsilon\right\} \leq \frac{\operatorname{Var}\left[A_{n}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}$.

Proof of weak law of large numbers in finite variance case

- As above, let X_{i} be i.i.d. random variables with mean μ and write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$.
- By additivity of expectation, $\mathbb{E}\left[A_{n}\right]=\mu$.
- Similarly, $\operatorname{Var}\left[A_{n}\right]=\frac{n \sigma^{2}}{n^{2}}=\sigma^{2} / n$.
- By Chebyshev $P\left\{\left|A_{n}-\mu\right| \geq \epsilon\right\} \leq \frac{\operatorname{Var}\left[A_{n}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}$.
- No matter how small ϵ is, RHS will tend to zero as n gets large.

L^{2} weak law of large numbers

- Say X_{i} and X_{j} are uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$.

L^{2} weak law of large numbers

- Say X_{i} and X_{j} are uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$.
- Chebyshev/Markov argument works whenever variables are uncorrelated (does not actually require independence).

What else can you do with just variance bounds?

- Having "almost uncorrelated" X_{i} is sometimes enough: just need variance of A_{n} to go to zero.

What else can you do with just variance bounds?

- Having "almost uncorrelated" X_{i} is sometimes enough: just need variance of A_{n} to go to zero.
- Toss αn bins into n balls. How many bins are filled?

What else can you do with just variance bounds?

- Having "almost uncorrelated" X_{i} is sometimes enough: just need variance of A_{n} to go to zero.
- Toss αn bins into n balls. How many bins are filled?
- When n is large, the number of balls in the first bin is approximately a Poisson random variable with expectation α.

What else can you do with just variance bounds?

- Having "almost uncorrelated" X_{i} is sometimes enough: just need variance of A_{n} to go to zero.
- Toss αn bins into n balls. How many bins are filled?
- When n is large, the number of balls in the first bin is approximately a Poisson random variable with expectation α.
- Probability first bin contains no ball is $(1-1 / n)^{\alpha n} \approx e^{-\alpha}$.

What else can you do with just variance bounds?

- Having "almost uncorrelated" X_{i} is sometimes enough: just need variance of A_{n} to go to zero.
- Toss αn bins into n balls. How many bins are filled?
- When n is large, the number of balls in the first bin is approximately a Poisson random variable with expectation α.
- Probability first bin contains no ball is $(1-1 / n)^{\alpha n} \approx e^{-\alpha}$.
- We can explicitly compute variance of the number of bins with no balls. Allows us to show that fraction of bins with no balls concentrates about its expectation, which is $e^{-\alpha}$.

How do you extend to random variables without variance?

- Assume X_{n} are i.i.d. non-negative instances of random variable X with finite mean. Can one prove law of large numbers for these?

How do you extend to random variables without variance?

- Assume X_{n} are i.i.d. non-negative instances of random variable X with finite mean. Can one prove law of large numbers for these?
- Try truncating. Fix large N and write $A=X 1_{X>N}$ and $B=X 1_{X \leq N}$ so that $X=A+B$. Choose N so that $E B$ is very small. Law of large numbers holds for A.

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration
 Expectation
 Moment generating functions
 Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ then A_{n} is typically close to some fixed value when n is large?

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ then A_{n} is typically close to some fixed value when n is large?
- What if X is Cauchy?

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ then A_{n} is typically close to some fixed value when n is large?
- What if X is Cauchy?
- In this strange and delightful case A_{n} actually has the same probability distribution as X.

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ then A_{n} is typically close to some fixed value when n is large?
- What if X is Cauchy?
- In this strange and delightful case A_{n} actually has the same probability distribution as X.
- In particular, the A_{n} are not tightly concentrated around any particular value even when n is very large.

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ then A_{n} is typically close to some fixed value when n is large?
- What if X is Cauchy?
- In this strange and delightful case A_{n} actually has the same probability distribution as X.
- In particular, the A_{n} are not tightly concentrated around any particular value even when n is very large.
- But weak law holds as long as $E[|X|]$ is finite, so that μ is well defined.

Extent of weak law

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ then A_{n} is typically close to some fixed value when n is large?
- What if X is Cauchy?
- In this strange and delightful case A_{n} actually has the same probability distribution as X.
- In particular, the A_{n} are not tightly concentrated around any particular value even when n is very large.
- But weak law holds as long as $E[|X|]$ is finite, so that μ is well defined.
- One standard proof uses characteristic functions.

Characteristic functions

- Let X be a random variable.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a} X(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- But characteristic functions have an advantage: they are well defined at all t for all random variables X.

Continuity theorems

- Let X be random variable, X_{n} a sequence of random variables.

Continuity theorems

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.

Continuity theorems

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- The weak law of large numbers can be rephrased as the statement that A_{n} converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

Continuity theorems

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- The weak law of large numbers can be rephrased as the statement that A_{n} converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (coming later): if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

Continuity theorems

- Let X be random variable, X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- The weak law of large numbers can be rephrased as the statement that A_{n} converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (coming later): if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- By this theorem, we can prove weak law of large numbers by showing $\lim _{n \rightarrow \infty} \phi_{A_{n}}(t)=\phi_{\mu}(t)=e^{i t \mu}$ for all t. When $\mu=0$, amounts to showing $\lim _{n \rightarrow \infty} \phi_{A_{n}}(t)=1$ for all t.
- Moment generating analog: if moment generating functions $M_{X_{n}}(t)$ are defined for all t and n and, for all t, $\lim _{n \rightarrow \infty} M_{X_{n}}(t)=M_{X}(t)$, then X_{n} converge in law to X.

Proof sketch for weak law of large numbers, finite mean case

- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.

Proof sketch for weak law of large numbers, finite mean case

- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_{X}(t)=E\left[e^{i t X}\right]$.

Proof sketch for weak law of large numbers, finite mean

 case- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_{X}(t)=E\left[e^{i t X}\right]$.
- Since $E[X]=0$, we have $\phi_{X}^{\prime}(0)=E\left[\frac{\partial}{\partial t} e^{i t X}\right]_{t=0}=i E[X]=0$.

Proof sketch for weak law of large numbers, finite mean

case

- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_{X}(t)=E\left[e^{i t X}\right]$.
- Since $E[X]=0$, we have $\phi_{X}^{\prime}(0)=E\left[\frac{\partial}{\partial t} e^{i t X}\right]_{t=0}=i E[X]=0$.
- Write $g(t)=\log \phi_{X}(t)$ so $\phi_{X}(t)=e^{g(t)}$. Then $g(0)=0$ and (by chain rule) $g^{\prime}(0)=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)-g(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)}{\epsilon}=0$.

Proof sketch for weak law of large numbers, finite mean

case

- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_{X}(t)=E\left[e^{i t X}\right]$.
- Since $E[X]=0$, we have $\phi_{X}^{\prime}(0)=E\left[\frac{\partial}{\partial t} e^{i t X}\right]_{t=0}=i E[X]=0$.
- Write $g(t)=\log \phi_{X}(t)$ so $\phi_{X}(t)=e^{g(t)}$. Then $g(0)=0$ and (by chain rule) $g^{\prime}(0)=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)-g(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)}{\epsilon}=0$.
- Now $\phi_{A_{n}}(t)=\phi_{X}(t / n)^{n}=e^{n g(t / n)}$. Since $g(0)=g^{\prime}(0)=0$ we have $\lim _{n \rightarrow \infty} n g(t / n)=\lim _{n \rightarrow \infty} t \frac{g\left(\frac{t}{n}\right)}{\frac{t}{n}}=0$ if t is fixed. Thus $\lim _{n \rightarrow \infty} e^{n g(t / n)}=1$ for all t.

Proof sketch for weak law of large numbers, finite mean

case

- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_{X}(t)=E\left[e^{i t X}\right]$.
- Since $E[X]=0$, we have $\phi_{X}^{\prime}(0)=E\left[\frac{\partial}{\partial t} e^{i t X}\right]_{t=0}=i E[X]=0$.
- Write $g(t)=\log \phi_{X}(t)$ so $\phi_{X}(t)=e^{g(t)}$. Then $g(0)=0$ and (by chain rule) $g^{\prime}(0)=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)-g(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)}{\epsilon}=0$.
- Now $\phi_{A_{n}}(t)=\phi_{X}(t / n)^{n}=e^{n g(t / n)}$. Since $g(0)=g^{\prime}(0)=0$ we have $\lim _{n \rightarrow \infty} n g(t / n)=\lim _{n \rightarrow \infty} t \frac{g\left(\frac{t}{n}\right)}{\frac{t}{n}}=0$ if t is fixed. Thus $\lim _{n \rightarrow \infty} e^{n g(t / n)}=1$ for all t.

Proof sketch for weak law of large numbers, finite mean

case

- As above, let X_{i} be i.i.d. instances of random variable X with mean zero. Write $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X-\mu$. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_{X}(t)=E\left[e^{i t X}\right]$.
- Since $E[X]=0$, we have $\phi_{X}^{\prime}(0)=E\left[\frac{\partial}{\partial t} e^{i t X}\right]_{t=0}=i E[X]=0$.
- Write $g(t)=\log \phi_{X}(t)$ so $\phi_{X}(t)=e^{g(t)}$. Then $g(0)=0$ and (by chain rule) $g^{\prime}(0)=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)-g(0)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{g(\epsilon)}{\epsilon}=0$.
- Now $\phi_{A_{n}}(t)=\phi_{X}(t / n)^{n}=e^{n g(t / n)}$. Since $g(0)=g^{\prime}(0)=0$ we have $\lim _{n \rightarrow \infty} n g(t / n)=\lim _{n \rightarrow \infty} t \frac{g\left(\frac{t}{n}\right)}{\frac{t}{n}}=0$ if t is fixed. Thus $\lim _{n \rightarrow \infty} e^{n g(t / n)}=1$ for all t.
- By Lévy's continuity theorem, the A_{n} converge in law to 0 (i.e., to the random variable that is 0 with probability one).

