18.175: Lecture 5 Moment generating functions

Scott Sheffield

MIT

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P : \mathcal{F} \to [0,1]$ is the probability function.

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- σ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- σ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- ▶ **Measure** is function $\mu : \mathcal{F} \to \mathbb{R}$ satisfying $\mu(A) \ge \mu(\emptyset) = 0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint A_i .

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- σ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- ▶ **Measure** is function $\mu : \mathcal{F} \to \mathbb{R}$ satisfying $\mu(A) \ge \mu(\emptyset) = 0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint A_i .
- Measure μ is **probability measure** if $\mu(\Omega) = 1$.

- ▶ **Probability space** is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ -algebra) and $P: \mathcal{F} \to [0,1]$ is the probability function.
- σ -algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- ▶ **Measure** is function $\mu : \mathcal{F} \to \mathbb{R}$ satisfying $\mu(A) \ge \mu(\emptyset) = 0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint A_i .
- ▶ Measure μ is **probability measure** if $\mu(\Omega) = 1$.
- ▶ The **Borel** σ -algebra \mathcal{B} on a topological space is the smallest σ -algebra containing all open sets.

▶ Real random variable is function $X : \Omega \to \mathbb{R}$ such that the preimage of every Borel set is in \mathcal{F} .

- ▶ Real random variable is function $X : \Omega \to \mathbb{R}$ such that the preimage of every Borel set is in \mathcal{F} .
- Note: to prove X is measurable, it is enough to show that the pre-image of every open set is in \mathcal{F} .

- ▶ Real random variable is function $X : \Omega \to \mathbb{R}$ such that the preimage of every Borel set is in \mathcal{F} .
- Note: to prove X is measurable, it is enough to show that the pre-image of every open set is in \mathcal{F} .
- ▶ Can talk about σ -algebra generated by random variable(s): smallest σ -algebra that makes a random variable (or a collection of random variables) measurable.

▶ Lebesgue: If you can measure, you can integrate.

- ▶ Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)

- ▶ Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- ▶ Idea: start with $\mu(\Omega) < \infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:

- ▶ Lebesgue: If you can measure, you can integrate.
- ▶ In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- ▶ Idea: start with $\mu(\Omega) < \infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.

- ▶ Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- ▶ Idea: start with $\mu(\Omega) < \infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \to 0$).

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- ▶ Idea: start with $\mu(\Omega) < \infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \to 0$).
 - ▶ f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \to \infty$).

- ▶ Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ and $f: \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- ▶ Idea: start with $\mu(\Omega) < \infty$ case, then define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \to 0$).
 - ▶ f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \to \infty$).
 - ▶ f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Expectation

▶ Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $EX = \int XdP$. Always defined if $X \geq 0$, or if integrals of $\max\{X,0\}$ and $\min\{X,0\}$ are separately finite.

Expectation

- ▶ Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $EX = \int XdP$. Always defined if $X \ge 0$, or if integrals of $\max\{X,0\}$ and $\min\{X,0\}$ are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.

Expectation

- ▶ Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $EX = \int XdP$. Always defined if $X \ge 0$, or if integrals of $\max\{X,0\}$ and $\min\{X,0\}$ are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.
- ► EX^k is called kth moment of X. Also, if m = EX then $E(X m)^2$ is called the **variance** of X.

▶ **Jensen's inequality:** If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.

- ▶ **Jensen's inequality:** If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- ▶ Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at EX.

- ▶ **Jensen's inequality:** If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- ▶ Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at EX.
- ▶ **Applications:** Utility, hedge fund payout functions.

- ▶ **Jensen's inequality:** If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- ▶ Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at EX.
- ▶ **Applications:** Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.

- ▶ **Jensen's inequality:** If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- ▶ Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at EX.
- ▶ **Applications:** Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.
- ▶ Main idea of proof: Rescale so that $\|f\|_p \|g\|_q = 1$. Use some basic calculus to check that for any positive x and y we have $xy \le x^p/p + y^q/p$. Write x = |f|, y = |g| and integrate to get $\int |fg| d\mu \le \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_p \|g\|_q$.

- ▶ **Jensen's inequality:** If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- ▶ Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at EX.
- ▶ **Applications:** Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.
- ▶ Main idea of proof: Rescale so that $\|f\|_p \|g\|_q = 1$. Use some basic calculus to check that for any positive x and y we have $xy \le x^p/p + y^q/p$. Write x = |f|, y = |g| and integrate to get $\int |fg| d\mu \le \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_p \|g\|_q$.
- ▶ Cauchy-Schwarz inequality: Special case p = q = 2. Gives $\int |fg|d\mu \le ||f||_2 ||g||_2$. Says that dot product of two vectors is at most product of vector lengths.

Bounded convergence theorem

Bounded convergence theorem: Consider *probability* measure μ and suppose $|f_n| \le M$ a.s. for all n and some fixed M > 0, and that $f_n \to f$ in probability (i.e., $\lim_{n\to\infty} \mu\{x: |f_n(x) - f(x)| > \epsilon\} = 0$ for all $\epsilon > 0$). Then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

Bounded convergence theorem

▶ Bounded convergence theorem: Consider *probability* measure μ and suppose $|f_n| \leq M$ a.s. for all n and some fixed M > 0, and that $f_n \to f$ in probability (i.e., $\lim_{n\to\infty} \mu\{x: |f_n(x) - f(x)| > \epsilon\} = 0$ for all $\epsilon > 0$). Then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

▶ Main idea of proof: for any ϵ , δ can take n large enough so $\int |f_n - f| d\mu < M\delta + \epsilon$.

Fatou's lemma

▶ **Fatou's lemma:** If $f_n \ge 0$ then

$$\liminf_{n\to\infty}\int f_n d\mu \geq \int (\liminf_{n\to\infty} f_n) d\mu.$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Fatou's lemma

Fatou's lemma: If $f_n \ge 0$ then

$$\liminf_{n\to\infty}\int f_n d\mu \geq \int \bigl(\liminf_{n\to\infty} f_n\bigr) d\mu.$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

▶ Main idea of proof: first reduce to case that the f_n are increasing by writing $g_n(x) = \inf_{m \geq n} f_m(x)$ and observing that $g_n(x) \uparrow g(x) = \liminf_{n \to \infty} f_n(x)$. Then truncate, used bounded convergence, take limits.

More integral properties

▶ Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

More integral properties

▶ Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

▶ Main idea of proof: one direction obvious, Fatou gives other.

More integral properties

▶ Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

- Main idea of proof: one direction obvious, Fatou gives other.
- ▶ **Dominated convergence:** If $f_n \to f$ a.e. and $|f_n| \le g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.

More integral properties

▶ Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

- ▶ Main idea of proof: one direction obvious, Fatou gives other.
- ▶ **Dominated convergence:** If $f_n \to f$ a.e. and $|f_n| \le g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.
- ▶ Main idea of proof: Fatou for functions $g + f_n \ge 0$ gives one side. Fatou for $g f_n \ge 0$ gives other.

Computing expectations

► Change of variables. Measure space (Ω, \mathcal{F}, P) . Let X be random variable in (S, S) with distribution μ . Then if $f(S, S) \rightarrow (R, \mathcal{R})$ is measurable we have $Ef(X) = \int_S f(y)\mu(dy)$.

Computing expectations

- ▶ Change of variables. Measure space (Ω, \mathcal{F}, P) . Let X be random variable in (S, S) with distribution μ . Then if $f(S, S) \rightarrow (R, \mathcal{R})$ is measurable we have $Ef(X) = \int_S f(y)\mu(dy)$.
- ► Prove by checking for indicators, simple functions, non-negative functions, integrable functions.

Computing expectations

- ► Change of variables. Measure space (Ω, \mathcal{F}, P) . Let X be random variable in (S, S) with distribution μ . Then if $f(S, S) \rightarrow (R, \mathcal{R})$ is measurable we have $Ef(X) = \int_S f(y)\mu(dy)$.
- ► Prove by checking for indicators, simple functions, non-negative functions, integrable functions.
- Examples: normal, exponential, Bernoulli, Poisson, geometric...

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

► Let *X* be a random variable.

- ▶ Let X be a random variable.
- ▶ The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- ▶ Let X be a random variable.
- ▶ The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- ▶ Let X be a random variable.
- ► The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- ▶ When X is discrete, can write $M(t) = \sum_{x} e^{tx} p_X(x)$. So M(t) is a weighted average of countably many exponential functions.

- Let X be a random variable.
- ► The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write $M(t) = \sum_{x} e^{tx} p_X(x)$. So M(t) is a weighted average of countably many exponential functions.
- ▶ When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. So M(t) is a weighted average of a continuum of exponential functions.

- Let X be a random variable.
- ► The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write $M(t) = \sum_{x} e^{tx} p_X(x)$. So M(t) is a weighted average of countably many exponential functions.
- ▶ When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.

- Let X be a random variable.
- ► The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write $M(t) = \sum_{x} e^{tx} p_X(x)$. So M(t) is a weighted average of countably many exponential functions.
- ▶ When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- ▶ If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}$.

- Let X be a random variable.
- ► The **moment generating function** of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write $M(t) = \sum_{x} e^{tx} p_X(x)$. So M(t) is a weighted average of countably many exponential functions.
- ▶ When X is continuous, can write $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- ▶ If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t \min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as $|t| \to \infty$.

▶ Let X be a random variable and $M(t) = E[e^{tX}]$.

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = E[Xe^{tX}].$

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = E[Xe^{tX}].$
- in particular, M'(0) = E[X].

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}].$
- ▶ in particular, M'(0) = E[X].
- Also $M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}E[Xe^{tX}] = E[X^2e^{tX}].$

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = E[Xe^{tX}].$
- ▶ in particular, M'(0) = E[X].
- Also $M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}E[Xe^{tX}] = E[X^2e^{tX}].$
- ▶ So $M''(0) = E[X^2]$. Same argument gives that *n*th derivative of M at zero is $E[X^n]$.

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = E[Xe^{tX}].$
- ▶ in particular, M'(0) = E[X].
- Also $M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}E[Xe^{tX}] = E[X^2e^{tX}].$
- ▶ So $M''(0) = E[X^2]$. Same argument gives that *n*th derivative of M at zero is $E[X^n]$.
- ▶ Interesting: knowing all of the derivatives of M at a single point tells you the moments $E[X^k]$ for all integer $k \ge 0$.

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = E[Xe^{tX}].$
- ▶ in particular, M'(0) = E[X].
- Also $M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}E[Xe^{tX}] = E[X^2e^{tX}].$
- ▶ So $M''(0) = E[X^2]$. Same argument gives that *n*th derivative of M at zero is $E[X^n]$.
- ▶ Interesting: knowing all of the derivatives of M at a single point tells you the moments $E[X^k]$ for all integer $k \ge 0$.
- Another way to think of this: write $e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \dots$

- ▶ Let X be a random variable and $M(t) = E[e^{tX}]$.
- ▶ Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E\left[\frac{d}{dt}(e^{tX})\right] = E[Xe^{tX}].$
- ▶ in particular, M'(0) = E[X].
- Also $M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}E[Xe^{tX}] = E[X^2e^{tX}].$
- ▶ So $M''(0) = E[X^2]$. Same argument gives that *n*th derivative of M at zero is $E[X^n]$.
- ▶ Interesting: knowing all of the derivatives of M at a single point tells you the moments $E[X^k]$ for all integer $k \ge 0$.
- Another way to think of this: write $e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \dots$
- ▶ Taking expectations gives $E[e^{tX}] = 1 + tm_1 + \frac{t^2m_2}{2!} + \frac{t^3m_3}{3!} + \ldots$, where m_k is the kth moment. The kth derivative at zero is m_k .

Let X and Y be independent random variables and Z = X + Y.

- Let X and Y be independent random variables and Z = X + Y.
- ▶ Write the moment generating functions as $M_X(t) = E[e^{tX}]$ and $M_Y(t) = E[e^{tY}]$ and $M_Z(t) = E[e^{tZ}]$.

- Let X and Y be independent random variables and Z = X + Y.
- ▶ Write the moment generating functions as $M_X(t) = E[e^{tX}]$ and $M_Y(t) = E[e^{tY}]$ and $M_Z(t) = E[e^{tZ}]$.
- ▶ If you knew M_X and M_Y , could you compute M_Z ?

- Let X and Y be independent random variables and Z = X + Y.
- ▶ Write the moment generating functions as $M_X(t) = E[e^{tX}]$ and $M_Y(t) = E[e^{tY}]$ and $M_Z(t) = E[e^{tZ}]$.
- ▶ If you knew M_X and M_Y , could you compute M_Z ?
- ▶ By independence, $M_Z(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$ for all t.

- Let X and Y be independent random variables and Z = X + Y.
- ▶ Write the moment generating functions as $M_X(t) = E[e^{tX}]$ and $M_Y(t) = E[e^{tY}]$ and $M_Z(t) = E[e^{tZ}]$.
- ▶ If you knew M_X and M_Y , could you compute M_Z ?
- ▶ By independence, $M_Z(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$ for all t.
- In other words, adding independent random variables corresponds to multiplying moment generating functions.

▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- ▶ If $X_1 ... X_n$ are i.i.d. copies of X and $Z = X_1 + ... + X_n$ then what is M_Z ?

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- ▶ If $X_1 ... X_n$ are i.i.d. copies of X and $Z = X_1 + ... + X_n$ then what is M_Z ?
- ▶ Answer: M_X^n . Follows by repeatedly applying formula above.

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- ▶ If $X_1 ... X_n$ are i.i.d. copies of X and $Z = X_1 + ... + X_n$ then what is M_Z ?
- ▶ Answer: M_X^n . Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.

▶ If Z = aX then can I use M_X to determine M_Z ?

- ▶ If Z = aX then can I use M_X to determine M_Z ?
- ► Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{taX}] = M_X(at)$.

- ▶ If Z = aX then can I use M_X to determine M_Z ?
- Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{taX}] = M_X(at)$.
- ▶ If Z = X + b then can I use M_X to determine M_Z ?

- ▶ If Z = aX then can I use M_X to determine M_Z ?
- ▶ Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{taX}] = M_X(at)$.
- ▶ If Z = X + b then can I use M_X to determine M_Z ?
- ► Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{tX+bt}] = e^{bt}M_X(t)$.

- ▶ If Z = aX then can I use M_X to determine M_Z ?
- ▶ Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{taX}] = M_X(at)$.
- ▶ If Z = X + b then can I use M_X to determine M_Z ?
- ► Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{tX+bt}] = e^{bt}M_X(t)$.
- Latter answer is the special case of $M_Z(t) = M_X(t)M_Y(t)$ where Y is the constant random variable b.

▶ Seems that unless $f_X(x)$ decays superexponentially as x tends to infinity, we won't have $M_X(t)$ defined for all t.

- ▶ Seems that unless $f_X(x)$ decays superexponentially as x tends to infinity, we won't have $M_X(t)$ defined for all t.
- ▶ What is M_X if X is standard Cauchy, so that $f_X(x) = \frac{1}{\pi(1+x^2)}$.

- ▶ Seems that unless $f_X(x)$ decays superexponentially as x tends to infinity, we won't have $M_X(t)$ defined for all t.
- ▶ What is M_X if X is standard Cauchy, so that $f_X(x) = \frac{1}{\pi(1+x^2)}$.
- Answer: $M_X(0) = 1$ (as is true for any X) but otherwise $M_X(t)$ is infinite for all $t \neq 0$.

- ▶ Seems that unless $f_X(x)$ decays superexponentially as x tends to infinity, we won't have $M_X(t)$ defined for all t.
- ▶ What is M_X if X is standard Cauchy, so that $f_X(x) = \frac{1}{\pi(1+x^2)}$.
- Answer: $M_X(0) = 1$ (as is true for any X) but otherwise $M_X(t)$ is infinite for all $t \neq 0$.
- Informal statement: moment generating functions are not defined for distributions with fat tails.

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

▶ Markov's inequality: Let X be non-negative random variable. Fix a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.

- ▶ Markov's inequality: Let X be non-negative random variable. Fix a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{2}$.
- ▶ **Proof:** Consider a random variable Y defined by

$$Y = \begin{cases} a & X \geq a \\ 0 & X < a \end{cases}$$
. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by

a to get Markov's inequality.

- ▶ Markov's inequality: Let X be non-negative random variable. Fix a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ **Proof:** Consider a random variable Y defined by $Y = \begin{cases} a & X \geq a \\ 0 & X < a \end{cases}$. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by a to get Markov's inequality.
- ► Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Markov's inequality: Let X be non-negative random variable. Fix a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ **Proof:** Consider a random variable Y defined by $Y = \begin{cases} a & X \geq a \\ 0 & X < a \end{cases}$. Since $X \geq Y$ with probability one, it follows that $E[X] \geq E[Y] = aP\{X \geq a\}$. Divide both sides by a to get Markov's inequality.
- ► Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

▶ **Proof:** Note that $(X - \mu)^2$ is a non-negative random variable and $P\{|X - \mu| \ge k\} = P\{(X - \mu)^2 \ge k^2\}$. Now apply Markov's inequality with $a = k^2$.

▶ Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.

- ▶ Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

▶ Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

- ▶ Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ▶ Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- ▶ **Markov:** if E[X] is small, then it is not too likely that X is large.

- ▶ Markov's inequality: Let X be non-negative random variable with finite mean. Fix a constant a > 0. Then $P\{X \ge a\} \le \frac{E[X]}{a}$.
- ► Chebyshev's inequality: If X has finite mean μ , variance σ^2 , and k > 0 then

$$P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ▶ Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- ▶ **Markov:** if E[X] is small, then it is not too likely that X is large.
- ▶ **Chebyshev:** if $\sigma^2 = \text{Var}[X]$ is small, then it is not too likely that X is far from its mean.

▶ Suppose X_i are i.i.d. random variables with mean μ .

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.
- ▶ We'd guess that when *n* is large, A_n is typically close to μ .

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.
- ▶ We'd guess that when n is large, A_n is typically close to μ .
- ▶ Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.

- ▶ Suppose X_i are i.i.d. random variables with mean μ .
- ► Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first n trials.
- ▶ We'd guess that when n is large, A_n is typically close to μ .
- ▶ Indeed, weak law of large numbers states that for all $\epsilon > 0$ we have $\lim_{n\to\infty} P\{|A_n \mu| > \epsilon\} = 0$.
- ► Example: as *n* tends to infinity, the probability of seeing more than .50001*n* heads in *n* fair coin tosses tends to zero.

▶ As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.

- ▶ As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

- ▶ As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- ► Similarly, $Var[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$.

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- ► Similarly, $Var[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$.
- ▶ By Chebyshev $P\{|A_n \mu| \ge \epsilon\} \le \frac{\operatorname{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- ▶ By additivity of expectation, $\mathbb{E}[A_n] = \mu$.
- ► Similarly, $Var[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$.
- ▶ By Chebyshev $P\{|A_n \mu| \ge \epsilon\} \le \frac{\operatorname{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.
- No matter how small ϵ is, RHS will tend to zero as n gets large.

 L^2 weak law of large numbers

▶ Say X_i and X_j are uncorrelated if $E(X_iX_j) = EX_iEX_j$.

L^2 weak law of large numbers

- ▶ Say X_i and X_j are uncorrelated if $E(X_iX_j) = EX_iEX_j$.
- ► Chebyshev/Markov argument works whenever variables are uncorrelated (does not actually require independence).

▶ Having "almost uncorrelated" X_i is sometimes enough: just need variance of A_n to go to zero.

- ▶ Having "almost uncorrelated" X_i is sometimes enough: just need variance of A_n to go to zero.
- ▶ Toss αn bins into n balls. How many bins are filled?

- ▶ Having "almost uncorrelated" X_i is sometimes enough: just need variance of A_n to go to zero.
- ▶ Toss αn bins into n balls. How many bins are filled?
- When n is large, the number of balls in the first bin is approximately a Poisson random variable with expectation α.

- ▶ Having "almost uncorrelated" X_i is sometimes enough: just need variance of A_n to go to zero.
- ▶ Toss αn bins into n balls. How many bins are filled?
- ▶ When n is large, the number of balls in the first bin is approximately a Poisson random variable with expectation α .
- ▶ Probability first bin contains no ball is $(1 1/n)^{\alpha n} \approx e^{-\alpha}$.

- ▶ Having "almost uncorrelated" X_i is sometimes enough: just need variance of A_n to go to zero.
- ▶ Toss αn bins into n balls. How many bins are filled?
- When n is large, the number of balls in the first bin is approximately a Poisson random variable with expectation α.
- ▶ Probability first bin contains no ball is $(1 1/n)^{\alpha n} \approx e^{-\alpha}$.
- ▶ We can explicitly compute variance of the number of bins with no balls. Allows us to show that fraction of bins with no balls concentrates about its expectation, which is $e^{-\alpha}$.

How do you extend to random variables without variance?

► Assume X_n are i.i.d. non-negative instances of random variable X with finite mean. Can one prove law of large numbers for these?

How do you extend to random variables without variance?

- ► Assume X_n are i.i.d. non-negative instances of random variable X with finite mean. Can one prove law of large numbers for these?
- ▶ Try truncating. Fix large N and write $A = X1_{X>N}$ and $B = X1_{X\leq N}$ so that X = A + B. Choose N so that EB is very small. Law of large numbers holds for A.

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Outline

Integration

Expectation

Moment generating functions

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- ▶ In this strange and delightful case A_n actually has the same probability distribution as X.

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- ▶ What if *X* is Cauchy?
- ▶ In this strange and delightful case A_n actually has the same probability distribution as X.
- ▶ In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- ▶ What if *X* is Cauchy?
- ▶ In this strange and delightful case A_n actually has the same probability distribution as X.
- ▶ In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But weak law holds as long as E[|X|] is finite, so that μ is well defined.

- ▶ Question: does the weak law of large numbers apply no matter what the probability distribution for *X* is?
- ▶ Is it always the case that if we define $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ then A_n is typically close to some fixed value when n is large?
- ▶ What if *X* is Cauchy?
- ▶ In this strange and delightful case A_n actually has the same probability distribution as X.
- ▶ In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But weak law holds as long as E[|X|] is finite, so that μ is well defined.
- One standard proof uses characteristic functions.

▶ Let *X* be a random variable.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- ▶ And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- ▶ The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with i thrown in.
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ▶ For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- ▶ And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ But characteristic functions have an advantage: they are well defined at all t for all random variables X.

Let X be random variable, X_n a sequence of random variables.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x\in\mathbb{R}$ at which F_X is continuous.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x\in\mathbb{R}$ at which F_X is continuous.
- ▶ The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x\in\mathbb{R}$ at which F_X is continuous.
- ▶ The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (coming later): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- Let X be random variable, X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ at all $x\in\mathbb{R}$ at which F_X is continuous.
- ▶ The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (coming later): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- ▶ By this theorem, we can prove weak law of large numbers by showing $\lim_{n\to\infty} \phi_{A_n}(t) = \phi_{\mu}(t) = e^{it\mu}$ for all t. When $\mu=0$, amounts to showing $\lim_{n\to\infty} \phi_{A_n}(t) = 1$ for all t.
- ▶ Moment generating analog: if moment generating functions $M_{X_n}(t)$ are defined for all t and n and, for all t, $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$, then X_n converge in law to X.

As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X - \mu$. Thus it suffices to prove the weak law in the mean zero case.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0 we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t\frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0 we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t\frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write $A_n := \frac{X_1 + X_2 + \ldots + X_n}{n}$. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of $X \mu$. Thus it suffices to prove the weak law in the mean zero case.
- ▶ Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- ▶ Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0 we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t\frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.
- ▶ By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).