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Recall Lebesgue integration

I Lebesgue: If you can measure, you can integrate.

I In more words: if (Ω,F) is a measure space with a measure µ
with µ(Ω) <∞ and f : Ω→ R is F-measurable, then try to
define

∫
fdµ.

I Idea: define integral, verify linearity and positivity (a.e.
non-negative functions have non-negative integrals) in 4
cases:

I f takes only finitely many values.
I f is bounded (hint: reduce to previous case by rounding down

or up to nearest multiple of ε for ε→ 0).
I f is non-negative (hint: reduce to previous case by taking

f ∧ N for N →∞).
I f is any measurable function (hint: treat positive/negative

parts separately, difference makes sense if both integrals finite).

I Then extend to case µ(Ω) =∞.
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Recall basic observations

I Theorem: if f and g are integrable then:

I If f ≥ 0 a.s. then
∫
fdµ ≥ 0.

I For a, b ∈ R, have
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

I If g ≤ f a.s. then
∫
gdµ ≤

∫
fdµ.

I If g = f a.e. then
∫
gdµ =

∫
fdµ.

I |
∫
fdµ| ≤

∫
|f |dµ.

I When (Ω,F , µ) = (Rd ,Rd , λ), write
∫
E f (x)dx =

∫
1E fdλ.
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Recall expectation definition

I Given probability space (Ω,F ,P) and random variable X , we
write EX =

∫
XdP. Always defined if X ≥ 0, or if integrals of

max{X , 0} and min{X , 0} are separately finite.

I Since expectation is an integral, we can interpret our basic
properties of integrals (as well as results to come: Jensen’s
inequality, Hölder’s inequality, Fatou’s lemma, monotone
convergence, dominated convergence, etc.) as properties of
expectation.

I EX k is called kth moment of X . Also, if m = EX then
E (X −m)2 is called the variance of X .
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Properties of expectation/integration

I Jensen’s inequality: If µ is probability measure and
φ : R→ R is convex then φ(

∫
fdµ) ≤

∫
φ(f )dµ. If X is

random variable then Eφ(X ) ≥ φ(EX ).

I Main idea of proof: Approximate φ below by linear function
L that agrees with φ at EX .

I Applications: Utility, hedge fund payout functions.

I Hölder’s inequality: Write ‖f ‖p = (
∫
|f |pdµ)1/p for

1 ≤ p <∞. If 1/p + 1/q = 1, then
∫
|fg |dµ ≤ ‖f ‖p‖g‖q.

I Main idea of proof: Rescale so that ‖f ‖p‖g‖q = 1. Use
some basic calculus to check that for any positive x and y we
have xy ≤ xp/p + yq/p. Write x = |f |, y = |g | and integrate
to get

∫
|fg |dµ ≤ 1

p + 1
q = 1 = ‖f ‖p‖g‖q.

I Cauchy-Schwarz inequality: Special case p = q = 2. Gives∫
|fg |dµ ≤ ‖f ‖2‖g‖2. Says that dot product of two vectors is

at most product of vector lengths.
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I Hölder’s inequality: Write ‖f ‖p = (
∫
|f |pdµ)1/p for

1 ≤ p <∞. If 1/p + 1/q = 1, then
∫
|fg |dµ ≤ ‖f ‖p‖g‖q.

I Main idea of proof: Rescale so that ‖f ‖p‖g‖q = 1. Use
some basic calculus to check that for any positive x and y we
have xy ≤ xp/p + yq/p. Write x = |f |, y = |g | and integrate
to get

∫
|fg |dµ ≤ 1

p + 1
q = 1 = ‖f ‖p‖g‖q.

I Cauchy-Schwarz inequality: Special case p = q = 2. Gives∫
|fg |dµ ≤ ‖f ‖2‖g‖2. Says that dot product of two vectors is

at most product of vector lengths.

18.175 Lecture 4



Properties of expectation/integration

I Jensen’s inequality: If µ is probability measure and
φ : R→ R is convex then φ(

∫
fdµ) ≤

∫
φ(f )dµ. If X is

random variable then Eφ(X ) ≥ φ(EX ).

I Main idea of proof: Approximate φ below by linear function
L that agrees with φ at EX .

I Applications: Utility, hedge fund payout functions.
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Bounded convergence theorem

I Bounded convergence theorem: Consider probability
measure µ and suppose |fn| ≤ M a.s. for all n and some fixed
M > 0, and that fn → f in probability (i.e.,
limn→∞ µ{x : |fn(x)− f (x)| > ε} = 0 for all ε > 0). Then∫

fdµ = lim
n→∞

∫
fndµ.

(Build counterexample for infinite measure space using wide
and short rectangles?...)

I Main idea of proof: for any ε, δ can take n large enough so∫
|fn − f |dµ < Mδ + ε.
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Fatou’s lemma

I Fatou’s lemma: If fn ≥ 0 then

lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf
n→∞

fn)dµ.

(Counterexample for opposite-direction inequality using thin
and tall rectangles?)

I Main idea of proof: first reduce to case that the fn are
increasing by writing gn(x) = infm≥n fm(x) and observing that
gn(x) ↑ g(x) = lim infn→∞ fn(x). Then truncate, used
bounded convergence, take limits.
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More integral properties

I Monotone convergence: If fn ≥ 0 and fn ↑ f then∫
fndµ ↑

∫
fdµ.

I Main idea of proof: one direction obvious, Fatou gives other.

I Dominated convergence: If fn → f a.e. and |fn| ≤ g for all
n and g is integrable, then

∫
fndµ→

∫
fdµ.

I Main idea of proof: Fatou for functions g + fn ≥ 0 gives one
side. Fatou for g − fn ≥ 0 gives other.
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Computing expectations

I Change of variables. Measure space (Ω,F ,P). Let X be
random variable in (S ,S) with distribution µ. Then if
f (S ,S)→ (R,R) is measurable we have
Ef (X ) =

∫
S f (y)µ(dy).

I Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.

I Examples: normal, exponential, Bernoulli, Poisson,
geometric...

18.175 Lecture 4



Computing expectations

I Change of variables. Measure space (Ω,F ,P). Let X be
random variable in (S ,S) with distribution µ. Then if
f (S ,S)→ (R,R) is measurable we have
Ef (X ) =

∫
S f (y)µ(dy).

I Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.

I Examples: normal, exponential, Bernoulli, Poisson,
geometric...

18.175 Lecture 4



Computing expectations

I Change of variables. Measure space (Ω,F ,P). Let X be
random variable in (S ,S) with distribution µ. Then if
f (S ,S)→ (R,R) is measurable we have
Ef (X ) =

∫
S f (y)µ(dy).

I Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.

I Examples: normal, exponential, Bernoulli, Poisson,
geometric...

18.175 Lecture 4



Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

18.175 Lecture 4



Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

18.175 Lecture 4



Recall expectation definition

I Given probability space (Ω,F ,P) and random variable X (i.e.,
measurable function X from Ω to R), we write EX =

∫
XdP.

I Expectation is always defined if X ≥ 0 a.s., or if integrals of
max{X , 0} and min{X , 0} are separately finite.
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Strong law of large numbers

I Theorem (strong law): If X1,X2, . . . are i.i.d. real-valued
random variables with expectation m and An := n−1

∑n
i=1 Xi

are the empirical means then limn→∞ An = m almost surely.

I What does i.i.d. mean?

I Answer: independent and identically distributed.

I Okay, but what does independent mean in this context? And
how do you even define an infinite sequence of independent
random variables? Is that even possible? It’s kind of an empty
theorem if it turns out that the hypotheses are never satisfied.
And by the way, what measure space and σ-algebra are we
using? And is the event that the limit exists even measurable
in this σ-algebra? Because if it’s not, what does it mean to
say it has probability one? Also, why do they call it the strong
law? Is there also a weak law?
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Independence of two events/random variables/σ-algebras

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I Two events A and B are independent if
P(A ∩ B) = P(A)P(B).

I Random variables X and Y are independent if for all
C ,D ∈ R, we have
P(X ∈ C ,Y ∈ D) = P(X ∈ C )P(Y ∈ D), i.e., the events
{X ∈ C} and {Y ∈ D} are independent.

I Two σ-fields F and G are independent if A and B are
independent whenever A ∈ F and B ∈ G. (This definition also
makes sense if F and G are arbitrary algebras, semi-algebras,
or other collections of measurable sets.)
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Independence of multiple events/random
variables/σ-algebras

I Say events A1,A2, . . . ,An are independent if for each
I ⊂ {1, 2, . . . , n} we have P(∩i∈IAi ) =

∏
i∈I P(Ai ).

I Question: does pairwise independence imply independence?

I Say random variables X1,X2, . . . ,Xn are independent if for
any measurable sets B1,B2, . . . ,Bn, the events that Xi ∈ Bi

are independent.

I Say σ-algebras F1,F2, . . . ,Fn if any collection of events (one
from each σ-algebra) are independent. (This definition also
makes sense if the Fi are algebras, semi-algebras, or other
collections of measurable sets.)
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Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem
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Independence theorem

I Theorem: If A1,A2, . . . ,An are independent, and each Ai is
a π-system, then σ(A1), . . . , σ(An) are independent.

I Main idea of proof: Apply the π-λ theorem.
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Kolmogorov’s Extension Theorem

I Task: make sense of this statement. Let Ω be the set of
all countable sequences ω = (ω1, ω2, ω3 . . .) of real numbers.
Let F be the smallest σ-algebra that makes the maps ω → ωi

measurable. Let P be the probability measure that makes the
ωi independent identically distributed normals with mean
zero, variance one.

I We could also ask about i.i.d. sequences of coin tosses or i.i.d.
samples from some other space.

I The F described above is the natural product σ-algebra:
smallest σ-algebra generated by the “finite dimensional
rectangles” of form {ω : ωi ∈ (ai , bi ], 1 ≤ i ≤ n}.

I Question: what things are in this σ-algebra? How about the
event that the ωi converge to a limit?
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Kolmogorov’s Extension Theorem

I Kolmogorov extension theorem: If we have consistent
probability measures on (Rn,Rn), then we can extend them
uniquely to a probability measure on RN.

I Proved using semi-algebra variant of Carathéeodory’s
extension theorem.
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