18.175: Lecture 4

Expectation properties, law of large numbers statement, and Kolmogorov's extension theorem

Scott Sheffield

MIT

Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

18.175 Lecture 4

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.
- f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then try to define $\int f d \mu$.
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.
- f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).
- Then extend to case $\mu(\Omega)=\infty$.

Recall basic observations

- Theorem: if f and g are integrable then:

Recall basic observations

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.

Recall basic observations

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.

Recall basic observations

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.

Recall basic observations

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.
- If $g=f$ a.e. then $\int g d \mu=\int f d \mu$.

Recall basic observations

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.
- If $g=f$ a.e. then $\int g d \mu=\int f d \mu$.
- $\left|\int f d \mu\right| \leq \int|f| d \mu$.

Recall basic observations

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.
- If $g=f$ a.e. then $\int g d \mu=\int f d \mu$.
- $\left|\int f d \mu\right| \leq \int|f| d \mu$.
- When $(\Omega, \mathcal{F}, \mu)=\left(\mathbb{R}^{d}, \mathcal{R}^{d}, \lambda\right)$, write $\int_{E} f(x) d x=\int 1_{E} f d \lambda$.

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.
- $E X^{k}$ is called k th moment of X. Also, if $m=E X$ then $E(X-m)^{2}$ is called the variance of X.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.
- Main idea of proof: Rescale so that $\|f\|_{p}\|g\|_{q}=1$. Use some basic calculus to check that for any positive x and y we have $x y \leq x^{p} / p+y^{q} / p$. Write $x=|f|, y=|g|$ and integrate to get $\int|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.
- Main idea of proof: Rescale so that $\|f\|_{p}\|g\|_{q}=1$. Use some basic calculus to check that for any positive x and y we have $x y \leq x^{p} / p+y^{q} / p$. Write $x=|f|, y=|g|$ and integrate to get $\int|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}$.
- Cauchy-Schwarz inequality: Special case $p=q=2$. Gives $\int|f g| d \mu \leq\|f\|_{2}\|g\|_{2}$. Says that dot product of two vectors is at most product of vector lengths.

Bounded convergence theorem

- Bounded convergence theorem: Consider probability measure μ and suppose $\left|f_{n}\right| \leq M$ a.s. for all n and some fixed $M>0$, and that $f_{n} \rightarrow f$ in probability (i.e., $\lim _{n \rightarrow \infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ for all $\left.\epsilon>0\right)$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

Bounded convergence theorem

- Bounded convergence theorem: Consider probability measure μ and suppose $\left|f_{n}\right| \leq M$ a.s. for all n and some fixed $M>0$, and that $f_{n} \rightarrow f$ in probability (i.e., $\lim _{n \rightarrow \infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ for all $\left.\epsilon>0\right)$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

- Main idea of proof: for any ϵ, δ can take n large enough so $\int\left|f_{n}-f\right| d \mu<M \delta+\epsilon$.

Fatou's lemma

- Fatou's lemma: If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Fatou's lemma

- Fatou's lemma: If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

- Main idea of proof: first reduce to case that the f_{n} are increasing by writing $g_{n}(x)=\inf _{m \geq n} f_{m}(x)$ and observing that $g_{n}(x) \uparrow g(x)=\lim \inf _{n \rightarrow \infty} f_{n}(x)$. Then truncate, used bounded convergence, take limits.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.
- Dominated convergence: If $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.
- Dominated convergence: If $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.
- Main idea of proof: Fatou for functions $g+f_{n} \geq 0$ gives one side. Fatou for $g-f_{n} \geq 0$ gives other.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.
- Examples: normal, exponential, Bernoulli, Poisson, geometric...

Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

18.175 Lecture 4

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X (i.e., measurable function X from Ω to \mathbb{R}), we write $E X=\int X d P$.

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X (i.e., measurable function X from Ω to \mathbb{R}), we write $E X=\int X d P$.
- Expectation is always defined if $X \geq 0$ a.s., or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.

Strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.

Strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.
- What does i.i.d. mean?

Strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.
- What does i.i.d. mean?
- Answer: independent and identically distributed.

Strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.
- What does i.i.d. mean?
- Answer: independent and identically distributed.
- Okay, but what does independent mean in this context? And how do you even define an infinite sequence of independent random variables? Is that even possible? It's kind of an empty theorem if it turns out that the hypotheses are never satisfied. And by the way, what measure space and σ-algebra are we using? And is the event that the limit exists even measurable in this σ-algebra? Because if it's not, what does it mean to say it has probability one? Also, why do they call it the strong law? Is there also a weak law?

Independence of two events/random variables/ σ-algebras

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.

Independence of two events/random variables/ σ-algebras

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.

Independence of two events/random variables/ σ-algebras

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.
- Random variables X and Y are independent if for all $C, D \in \mathcal{R}$, we have $P(X \in C, Y \in D)=P(X \in C) P(Y \in D)$, i.e., the events $\{X \in C\}$ and $\{Y \in D\}$ are independent.

Independence of two events/random variables/ σ-algebras

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.
- Random variables X and Y are independent if for all $C, D \in \mathcal{R}$, we have $P(X \in C, Y \in D)=P(X \in C) P(Y \in D)$, i.e., the events $\{X \in C\}$ and $\{Y \in D\}$ are independent.
- Two σ-fields \mathcal{F} and \mathcal{G} are independent if A and B are independent whenever $A \in \mathcal{F}$ and $B \in \mathcal{G}$. (This definition also makes sense if \mathcal{F} and \mathcal{G} are arbitrary algebras, semi-algebras, or other collections of measurable sets.)

Independence of multiple events/random variables/ σ-algebras

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.

Independence of multiple events/random variables/ σ-algebras

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.
- Question: does pairwise independence imply independence?

Independence of multiple events/random variables/ σ-algebras

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.
- Question: does pairwise independence imply independence?
- Say random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if for any measurable sets $B_{1}, B_{2}, \ldots, B_{n}$, the events that $X_{i} \in B_{i}$ are independent.

Independence of multiple events/random variables/ σ-algebras

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.
- Question: does pairwise independence imply independence?
- Say random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if for any measurable sets $B_{1}, B_{2}, \ldots, B_{n}$, the events that $X_{i} \in B_{i}$ are independent.
- Say σ-algebras $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$ if any collection of events (one from each σ-algebra) are independent. (This definition also makes sense if the \mathcal{F}_{i} are algebras, semi-algebras, or other collections of measurable sets.)

Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

Outline

Lebesgue integration and expectation

Stating the law of large numbers

Kolmogorov extension theorem

Independence theorem

- Theorem: If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ are independent, and each \mathcal{A}_{i} is a π-system, then $\sigma\left(\mathcal{A}_{1}\right), \ldots, \sigma\left(\mathcal{A}_{n}\right)$ are independent.

Independence theorem

- Theorem: If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ are independent, and each \mathcal{A}_{i} is a π-system, then $\sigma\left(\mathcal{A}_{1}\right), \ldots, \sigma\left(\mathcal{A}_{n}\right)$ are independent.
- Main idea of proof: Apply the $\pi-\lambda$ theorem.

Kolmogorov's Extension Theorem

- Task: make sense of this statement. Let Ω be the set of all countable sequences $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3} \ldots\right)$ of real numbers. Let \mathcal{F} be the smallest σ-algebra that makes the maps $\omega \rightarrow \omega_{i}$ measurable. Let P be the probability measure that makes the ω_{i} independent identically distributed normals with mean zero, variance one.

Kolmogorov's Extension Theorem

- Task: make sense of this statement. Let Ω be the set of all countable sequences $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3} \ldots\right)$ of real numbers. Let \mathcal{F} be the smallest σ-algebra that makes the maps $\omega \rightarrow \omega_{i}$ measurable. Let P be the probability measure that makes the ω_{i} independent identically distributed normals with mean zero, variance one.
- We could also ask about i.i.d. sequences of coin tosses or i.i.d. samples from some other space.

Kolmogorov's Extension Theorem

- Task: make sense of this statement. Let Ω be the set of all countable sequences $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3} \ldots\right)$ of real numbers. Let \mathcal{F} be the smallest σ-algebra that makes the maps $\omega \rightarrow \omega_{i}$ measurable. Let P be the probability measure that makes the ω_{i} independent identically distributed normals with mean zero, variance one.
- We could also ask about i.i.d. sequences of coin tosses or i.i.d. samples from some other space.
- The \mathcal{F} described above is the natural product σ-algebra: smallest σ-algebra generated by the "finite dimensional rectangles" of form $\left\{\omega: \omega_{i} \in\left(a_{i}, b_{i}\right], 1 \leq i \leq n\right\}$.

Kolmogorov's Extension Theorem

- Task: make sense of this statement. Let Ω be the set of all countable sequences $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3} \ldots\right)$ of real numbers. Let \mathcal{F} be the smallest σ-algebra that makes the maps $\omega \rightarrow \omega_{i}$ measurable. Let P be the probability measure that makes the ω_{i} independent identically distributed normals with mean zero, variance one.
- We could also ask about i.i.d. sequences of coin tosses or i.i.d. samples from some other space.
- The \mathcal{F} described above is the natural product σ-algebra: smallest σ-algebra generated by the "finite dimensional rectangles" of form $\left\{\omega: \omega_{i} \in\left(a_{i}, b_{i}\right], 1 \leq i \leq n\right\}$.
- Question: what things are in this σ-algebra? How about the event that the ω_{i} converge to a limit?

Kolmogorov's Extension Theorem

- Kolmogorov extension theorem: If we have consistent probability measures on $\left(\mathbb{R}^{n}, \mathcal{R}^{n}\right)$, then we can extend them uniquely to a probability measure on $\mathcal{R}^{\mathbb{N}}$.

Kolmogorov's Extension Theorem

- Kolmogorov extension theorem: If we have consistent probability measures on $\left(\mathbb{R}^{n}, \mathcal{R}^{n}\right)$, then we can extend them uniquely to a probability measure on $\mathcal{R}^{\mathbb{N}}$.
- Proved using semi-algebra variant of Carathéeodory's extension theorem.

