18.175: Lecture 3 Integration

Scott Sheffield

MIT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Random variables

Integration

Expectation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Random variables

Integration

Expectation

Recall definitions

Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F → [0, 1] is the probability function.

Recall definitions

Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F → [0, 1] is the probability function.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, F) a measure space.

Recall definitions

- Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F → [0, 1] is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, F) a measure space.
- Measure is function µ : F → ℝ satisfying µ(A) ≥ µ(∅) = 0 for all A ∈ F and countable additivity: µ(∪_iA_i) = ∑_i µ(A_i) for disjoint A_i.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Recall definitions

- Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F → [0, 1] is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, F) a measure space.
- Measure is function µ : F → ℝ satisfying µ(A) ≥ µ(∅) = 0 for all A ∈ F and countable additivity: µ(∪_iA_i) = ∑_i µ(A_i) for disjoint A_i.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

• Measure μ is **probability measure** if $\mu(\Omega) = 1$.

Recall definitions

- Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F → [0, 1] is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, F) a measure space.
- Measure is function µ : F → ℝ satisfying µ(A) ≥ µ(∅) = 0 for all A ∈ F and countable additivity: µ(∪_iA_i) = ∑_i µ(A_i) for disjoint A_i.
- Measure μ is **probability measure** if $\mu(\Omega) = 1$.
- The Borel σ-algebra B on a topological space is the smallest σ-algebra containing all open sets.

Defining random variables

Random variable is a *measurable* function from (Ω, F) to (ℝ, B). That is, a function X : Ω → ℝ such that the preimage of every set in B is in F. Say X is F-measurable.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Random variable is a *measurable* function from (Ω, F) to (ℝ, B). That is, a function X : Ω → ℝ such that the preimage of every set in B is in F. Say X is F-measurable.
- ► Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in *F*?

- Random variable is a *measurable* function from (Ω, F) to (ℝ, B). That is, a function X : Ω → ℝ such that the preimage of every set in B is in F. Say X is F-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in *F*?
- Theorem: If X⁻¹(A) ∈ F for all A ∈ A and A generates S, then X is a measurable map from (Ω, F) to (S, S).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Random variable is a *measurable* function from (Ω, F) to (ℝ, B). That is, a function X : Ω → ℝ such that the preimage of every set in B is in F. Say X is F-measurable.
- ▶ Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in *F*?
- Theorem: If X⁻¹(A) ∈ F for all A ∈ A and A generates S, then X is a measurable map from (Ω, F) to (S, S).
- Can talk about σ-algebra generated by random variable(s): smallest σ-algebra that makes a random variable (or a collection of random variables) measurable.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Random variable is a *measurable* function from (Ω, F) to (ℝ, B). That is, a function X : Ω → ℝ such that the preimage of every set in B is in F. Say X is F-measurable.
- ▶ Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in *F*?
- Theorem: If X⁻¹(A) ∈ F for all A ∈ A and A generates S, then X is a measurable map from (Ω, F) to (S, S).
- Can talk about σ-algebra generated by random variable(s): smallest σ-algebra that makes a random variable (or a collection of random variables) measurable.
- Example of random variable: indicator function of a set. Or sum of finitely many indicator functions of sets.

- Random variable is a *measurable* function from (Ω, F) to (ℝ, B). That is, a function X : Ω → ℝ such that the preimage of every set in B is in F. Say X is F-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in *F*?
- Theorem: If X⁻¹(A) ∈ F for all A ∈ A and A generates S, then X is a measurable map from (Ω, F) to (S, S).
- Can talk about σ-algebra generated by random variable(s): smallest σ-algebra that makes a random variable (or a collection of random variables) measurable.
- Example of random variable: indicator function of a set. Or sum of finitely many indicator functions of sets.
- Let F(x) = F_X(x) = P(X ≤ x) be distribution function for X.
 Write f = f_X = F'_X for density function of X.

Examples of possible random variable laws

What functions can be distributions of random variables?

Examples of possible random variable laws

- What functions can be distributions of random variables?
- Non-decreasing, right-continuous, with lim_{x→∞} F(x) = 1 and lim_{x→-∞} F(x) = 0.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Examples of possible random variable laws

- What functions can be distributions of random variables?
- Non-decreasing, right-continuous, with lim_{x→∞} F(x) = 1 and lim_{x→-∞} F(x) = 0.
- Other examples of distribution functions: uniform on [0, 1], exponential with rate λ, standard normal, Cantor set measure.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Examples of possible random variable laws

- What functions can be distributions of random variables?
- Non-decreasing, right-continuous, with lim_{x→∞} F(x) = 1 and lim_{x→-∞} F(x) = 0.
- Other examples of distribution functions: uniform on [0, 1], exponential with rate λ, standard normal, Cantor set measure.
- ► Can also define distribution functions for random variables that are a.s. integers (like Poisson or geometric or binomial random variables, say). How about for a ratio of two independent Poisson random variables? (This is a random rational with a dense support on [0, ∞).)

Examples of possible random variable laws

- What functions can be distributions of random variables?
- Non-decreasing, right-continuous, with lim_{x→∞} F(x) = 1 and lim_{x→-∞} F(x) = 0.
- Other examples of distribution functions: uniform on [0, 1], exponential with rate λ, standard normal, Cantor set measure.
- ► Can also define distribution functions for random variables that are a.s. integers (like Poisson or geometric or binomial random variables, say). How about for a ratio of two independent Poisson random variables? (This is a random rational with a dense support on [0, ∞).)
- ► Higher dimensional density functions analogously defined.

Other properties

 Compositions of measurable maps between measure spaces are measurable.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Compositions of measurable maps between measure spaces are measurable.
- If X₁,..., X_n are random variables in ℝ, defined on the same measure space, then (X₁,..., X_n) is a random variable in ℝⁿ.

- Compositions of measurable maps between measure spaces are measurable.
- If X₁,..., X_n are random variables in ℝ, defined on the same measure space, then (X₁,..., X_n) is a random variable in ℝⁿ.
- Sums and products of finitely many random variables are random variables. If X_i is countable sequence of random variables, then inf_n X_n is a random variable. Same for lim inf, sup, lim sup.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ □ □ ● ● ●

- Compositions of measurable maps between measure spaces are measurable.
- If X₁,..., X_n are random variables in ℝ, defined on the same measure space, then (X₁,..., X_n) is a random variable in ℝⁿ.
- Sums and products of finitely many random variables are random variables. If X_i is countable sequence of random variables, then inf_n X_n is a random variable. Same for lim inf, sup, lim sup.
- Given infinite sequence of random variables, consider the event that they converge to a limit. Is this a measurable event?

- Compositions of measurable maps between measure spaces are measurable.
- If X₁,..., X_n are random variables in ℝ, defined on the same measure space, then (X₁,..., X_n) is a random variable in ℝⁿ.
- Sums and products of finitely many random variables are random variables. If X_i is countable sequence of random variables, then inf_n X_n is a random variable. Same for lim inf, sup, lim sup.
- Given infinite sequence of random variables, consider the event that they converge to a limit. Is this a measurable event?
- Yes. If it has measure one, we say sequence converges almost surely.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Random variables

Integration

Expectation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Random variables

Integration

Expectation

Lebesgue integration

► Lebesgue: If you can measure, you can integrate.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞ and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞ and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞ and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞ and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - *f* takes only finitely many values.
 - *f* is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of *e* for *e* → 0).

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞ and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - ▶ *f* is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
 - ▶ *f* is non-negative (hint: reduce to previous case by taking $f \land N$ for $N \to \infty$).

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞ and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - *f* takes only finitely many values.
 - *f* is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of *e* for *e* → 0).
 - ▶ *f* is non-negative (hint: reduce to previous case by taking $f \land N$ for $N \to \infty$).
 - f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).

イロト 不得下 イヨト イヨト 二日

Lebesgue integration

• Can we extend previous discussion to case $\mu(\Omega) = \infty$?

Lebesgue integration

• Can we extend previous discussion to case $\mu(\Omega) = \infty$?

Theorem: if *f* and *g* are integrable then:

Lebesgue integration

• Can we extend previous discussion to case $\mu(\Omega) = \infty$?

Theorem: if *f* and *g* are integrable then:

• If
$$f \ge 0$$
 a.s. then $\int f d\mu \ge 0$.

Lebesgue integration

- Can we extend previous discussion to case $\mu(\Omega) = \infty$?
- **Theorem:** if *f* and *g* are integrable then:
 - If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
 - For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu$.

(日) (四) (三) (三) (三)

Lebesgue integration

- Can we extend previous discussion to case $\mu(\Omega) = \infty$?
- **Theorem:** if *f* and *g* are integrable then:
 - If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
 - For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$.

• If $g \leq f$ a.s. then $\int g d\mu \leq \int f d\mu$.

Lebesgue integration

- Can we extend previous discussion to case $\mu(\Omega) = \infty$?
- **Theorem:** if *f* and *g* are integrable then:
 - If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
 - For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- If $g \leq f$ a.s. then $\int g d\mu \leq \int f d\mu$.
- If g = f a.e. then $\int g d\mu = \int f d\mu$.

Lebesgue integration

- Can we extend previous discussion to case $\mu(\Omega) = \infty$?
- **Theorem:** if *f* and *g* are integrable then:

▶ If
$$f \ge 0$$
 a.s. then $\int fd\mu \ge 0$.
▶ For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu$.
▶ If $g \le f$ a.s. then $\int gd\mu \le \int fd\mu$.
▶ If $g = f$ a.e. then $\int gd\mu = \int fd\mu$.
▶ $|\int fd\mu| \le \int |f|d\mu$.

Lebesgue integration

- Can we extend previous discussion to case $\mu(\Omega) = \infty$?
- **Theorem:** if *f* and *g* are integrable then:
 - If $f \ge 0$ a.s. then $\int fd\mu \ge 0$. • For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu$. • If $g \le f$ a.s. then $\int gd\mu \le \int fd\mu$. • If g = f a.e. then $\int gd\mu = \int fd\mu$. • $|\int fd\mu| \le \int |f|d\mu$.
- When $(\Omega, \mathcal{F}, \mu) = (\mathbb{R}^d, \mathcal{R}^d, \lambda)$, write $\int_E f(x) dx = \int 1_E f d\lambda$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Random variables

Integration

Expectation

18.175 Lecture 3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Random variables

Integration

Expectation

18.175 Lecture 3

Expectation

Given probability space (Ω, F, P) and random variable X, we write EX = ∫ XdP. Always defined if X ≥ 0, or if integrals of max{X,0} and min{X,0} are separately finite.

イロト イロト イヨト イヨト 二日

Expectation

- Given probability space (Ω, F, P) and random variable X, we write EX = ∫ XdP. Always defined if X ≥ 0, or if integrals of max{X,0} and min{X,0} are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.

Expectation

- Given probability space (Ω, F, P) and random variable X, we write EX = ∫ XdP. Always defined if X ≥ 0, or if integrals of max{X,0} and min{X,0} are separately finite.
- Since expectation is an integral, we can interpret our basic properties of integrals (as well as results to come: Jensen's inequality, Hölder's inequality, Fatou's lemma, monotone convergence, dominated convergence, etc.) as properties of expectation.
- EX^k is called *k*th moment of *X*. Also, if m = EX then $E(X m)^2$ is called the **variance** of *X*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Properties of expectation/integration

▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.

Properties of expectation/integration

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Properties of expectation/integration

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Applications: Utility, hedge fund payout functions.

Properties of expectation/integration

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Applications: Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.

Properties of expectation/integration

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.
- Applications: Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.
- Main idea of proof: Rescale so that ||f||_p||g||_q = 1. Use some basic calculus to check that for any positive x and y we have xy ≤ x^p/p + y^q/p. Write x = |f|, y = |g| and integrate to get ∫ |fg|dµ ≤ ¹/_p + ¹/_q = 1 = ||f||_p||g||_q.

Properties of expectation/integration

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.
- Applications: Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.
- Main idea of proof: Rescale so that ||f||_p||g||_q = 1. Use some basic calculus to check that for any positive x and y we have xy ≤ x^p/p + y^q/p. Write x = |f|, y = |g| and integrate to get ∫ |fg|dµ ≤ 1/p + 1/q = 1 = ||f||_p||g||_q.
- Cauchy-Schwarz inequality: Special case p = q = 2. Gives ∫ |fg|dµ ≤ ||f||₂||g||₂. Says that dot product of two vectors is at most product of vector lengths.

18.175 Lecture 3

Bounded convergence theorem

▶ Bounded convergence theorem: Consider probability measure μ and suppose $|f_n| \le M$ a.s. for all *n* and some fixed M > 0, and that $f_n \to f$ in probability (i.e., $\lim_{n\to\infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$ for all $\epsilon > 0$). Then

$$\int f d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

.

Bounded convergence theorem

▶ Bounded convergence theorem: Consider probability measure μ and suppose $|f_n| \le M$ a.s. for all *n* and some fixed M > 0, and that $f_n \to f$ in probability (i.e., $\lim_{n\to\infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$ for all $\epsilon > 0$). Then

$$\int f d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

▶ Main idea of proof: for any ϵ , δ can take *n* large enough so $\int |f_n - f| d\mu < M\delta + \epsilon$.

Fatou's lemma

Fatou's lemma: If $f_n \ge 0$ then

$$\liminf_{n\to\infty}\int f_nd\mu\geq\int (\liminf_{n\to\infty}f_n)d\mu.$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Fatou's lemma

Fatou's lemma: If $f_n \ge 0$ then

$$\liminf_{n\to\infty}\int f_nd\mu\geq\int (\liminf_{n\to\infty}f_n)d\mu.$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Main idea of proof: first reduce to case that the f_n are increasing by writing g_n(x) = inf_{m≥n} f_m(x) and observing that g_n(x) ↑ g(x) = lim inf_{n→∞} f_n(x). Then truncate, used bounded convergence, take limits.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

More integral properties

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

More integral properties

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

• Main idea of proof: one direction obvious, Fatou gives other.

More integral properties

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

•

$$\int f_n d\mu \uparrow \int f d\mu.$$

- Main idea of proof: one direction obvious, Fatou gives other.
- ▶ **Dominated convergence:** If $f_n \to f$ a.e. and $|f_n| \le g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

More integral properties

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

- Main idea of proof: one direction obvious, Fatou gives other.
- ▶ **Dominated convergence:** If $f_n \to f$ a.e. and $|f_n| \le g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.
- ► Main idea of proof: Fatou for functions g + f_n ≥ 0 gives one side. Fatou for g f_n ≥ 0 gives other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Computing expectations

Change of variables. Measure space (Ω, F, P). Let X be random variable in (S, S) with distribution µ. Then if f(S, S) → (R, R) is measurable we have Ef(X) = ∫_S f(y)µ(dy).

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Computing expectations

Change of variables. Measure space (Ω, F, P). Let X be random variable in (S, S) with distribution µ. Then if f(S, S) → (R, R) is measurable we have Ef(X) = ∫_S f(y)µ(dy).

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

 Prove by checking for indicators, simple functions, non-negative functions, integrable functions.

Computing expectations

- Change of variables. Measure space (Ω, F, P). Let X be random variable in (S, S) with distribution µ. Then if f(S, S) → (R, R) is measurable we have Ef(X) = ∫_S f(y)µ(dy).
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.
- Examples: normal, exponential, Bernoulli, Poisson, geometric...

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで