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More σ-algebra thoughts

I Write Fo
s = σ(Br : r ≤ s).

I Write F+
s = ∩t>sFo

t

I Note right continuity: ∩t>sF+
t = F+

s .

I F+
s allows an “infinitesimal peek at future”
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Looking ahead

I Expectation equivalence theorem If Z is bounded and
measurable then for all s ≥ 0 and x ∈ Rd have

Ex(Z |F+
s ) = Ex(Z |Fo

s ).

I Proof idea: Consider case that Z =
∑m

i=1 fm(B(tm)) and the
fm are bounded and measurable. Kind of obvious in this case.
Then use same measure theory as in Markov property proof to
extend general Z .

I Observe: If Z ∈ F+
s then Z = Ex(Z |Fo

s ). Conclude that F+
s

and Fo
s agree up to null sets.
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Blumenthal’s 0-1 law

I If A ∈ F+
0 , then P(A) ∈ {0, 1} (if P is probability law for

Brownian motion started at fixed value x at time 0).

I There’s nothing you can learn from infinitesimal neighborhood
of future.

I Proof: If we have A ∈ F+
0 , then previous theorem implies

1A = Ex(1A|F+
0 ) = Ex(1A|Fo

0 ) = Px(A) Pxa.s.
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Markov property

I If s ≥ 0 and Y is bounded and C-measurable, then for all
x ∈ Rd , we have

Ex(Y ◦ θs |F+
s ) = EBsY ,

where the RHS is function φ(x) = ExY evaluated at x = Bs .

I Proof idea: First establish this for some simple functions Y
(depending on finitely many time values) and then use
measure theory (monotone class theorem) to extend to
general case.
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More observations

I If τ = inf{t ≥ 0 : Bt > 0} then P0(τ = 0) = 1.

I If T0 = inf{t > 0 : Bt = 0} then P0(T0 = 0) = 1.

I If Bt is Brownian motion started at 0, then so is process
defined by X0 = 0 and Xt = tB(1/t). (Proved by checking
E (XsXt) = stE (B(1/s)B(1/t)) = s when s < t. Then check
continuity at zero.)
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Stopping time

I A random variable S taking values in [0,∞] is a stopping
time if for all t ≥ 0, we have {S > t} ∈ Ft .

I Distinction between {S < t} and {S ≤ t} doesn’t make a
difference for a right continuous filtration.

I Example: let S = inf{t : Bt ∈ A} for some open (or closed)
set A.
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Strong Markov property

I Let (s, ω)→ Ys(ω) be bounded and R× C-measurable. If S
is a stopping time, then for all x ∈ Rd

Ex(YS ◦ θS |FS) = EB(S)YS on {S <∞},

where RHS means function φ(x , t) = ExYt evaluated at
x = B(S), and t = S .

I In fact, similar result holds for more general Markov processes
(Feller processes).

I Proof idea: First consider the case that S a.s. belongs to an
increasing countable sequence (e.g., S is a.s. a multiple of
2−n). Then this essentially reduces to discrete Markov
property proof. Then approximate a general stopping time by
a discrete time by rounding down to multiple of 2−n. Use
some continuity estimates, bounded convergence, monotone
class theorem to conclude.

I Extend optional stopping to continuous martingales similarly.
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Continuous martingales

I Question: If Bt is a Brownian motion, then is B2
t − t a

martingale?

I Question: If Bt and B̃t are independent Brownian motions,
then is BtB̃t a martingale?

I Question: If Bt is a martingale, then is eBt−t/2 a martingale?
I Question: If Bt is a Brownian motion in C (i.e., real and

imaginary parts are independent Brownian motions) and f is
an analytic function on C, is f (Bt) a complex martingale?

I Question: If Bt is a Brownian motion on Rd and f is a
harmonic function on Rd , is f (Bt) a martingale?

I Question: Suppose Bt is a one dimensional Brownian motion,
and gt : C→ C is determined by solving the ODE

∂

∂t
gt(z) =

2

gt(z)− 2Bt
, g0(z) = z .

Is arg(gt(z)−Wt) a martingale?
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Farewell... and for future reference..

I Course has reached finite stopping time. Process goes on.

I Future probability graduate courses include 18.176 and
18.177. (See also statistics courses 18.655 and 18.657.)

I Probability seminar: Mondays at 4:15.

I I am happy to help with quals and reading.

I Talk to other friendly postdocs and faculty in probability:
Stéphane Benoist, Vadim Gorin, Alexei Borodin, Philippe
Rigollet, Elchanan Borodin, Boris Hanin, Alexey Bufetov, etc.

I Thanks for taking the class!
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