18.175: Lecture 26
 Last lecture

Scott Sheffield

MIT

Outline

Recollections

Strong Markov property

Outline

Recollections

Strong Markov property

More σ-algebra thoughts

- Write $\mathcal{F}_{s}^{o}=\sigma\left(B_{r}: r \leq s\right)$.

More σ-algebra thoughts

- Write $\mathcal{F}_{s}^{o}=\sigma\left(B_{r}: r \leq s\right)$.
- Write $\mathcal{F}_{s}^{+}=\cap_{t>s} \mathcal{F}_{t}^{o}$

More σ-algebra thoughts

- Write $\mathcal{F}_{s}^{o}=\sigma\left(B_{r}: r \leq s\right)$.
- Write $\mathcal{F}_{s}^{+}=\cap_{t>s} \mathcal{F}_{t}^{o}$
- Note right continuity: $\cap_{t>s} \mathcal{F}_{t}^{+}=\mathcal{F}_{s}^{+}$.

More σ-algebra thoughts

- Write $\mathcal{F}_{s}^{o}=\sigma\left(B_{r}: r \leq s\right)$.
- Write $\mathcal{F}_{s}^{+}=\cap_{t>s} \mathcal{F}_{t}^{o}$
- Note right continuity: $\cap_{t>s} \mathcal{F}_{t}^{+}=\mathcal{F}_{s}^{+}$.
- \mathcal{F}_{s}^{+}allows an "infinitesimal peek at future"

Looking ahead

- Expectation equivalence theorem If Z is bounded and measurable then for all $s \geq 0$ and $x \in \mathbb{R}^{d}$ have

$$
E_{x}\left(Z \mid \mathcal{F}_{s}^{+}\right)=E_{x}\left(Z \mid \mathcal{F}_{s}^{o}\right)
$$

Looking ahead

- Expectation equivalence theorem If Z is bounded and measurable then for all $s \geq 0$ and $x \in \mathbb{R}^{d}$ have

$$
E_{x}\left(Z \mid \mathcal{F}_{s}^{+}\right)=E_{x}\left(Z \mid \mathcal{F}_{s}^{o}\right)
$$

- Proof idea: Consider case that $Z=\sum_{i=1}^{m} f_{m}\left(B\left(t_{m}\right)\right)$ and the f_{m} are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.

Looking ahead

- Expectation equivalence theorem If Z is bounded and measurable then for all $s \geq 0$ and $x \in \mathbb{R}^{d}$ have

$$
E_{x}\left(Z \mid \mathcal{F}_{s}^{+}\right)=E_{x}\left(Z \mid \mathcal{F}_{s}^{o}\right)
$$

- Proof idea: Consider case that $Z=\sum_{i=1}^{m} f_{m}\left(B\left(t_{m}\right)\right)$ and the f_{m} are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.
- Observe: If $Z \in \mathcal{F}_{s}^{+}$then $Z=E_{x}\left(Z \mid \mathcal{F}_{s}^{0}\right)$. Conclude that \mathcal{F}_{s}^{+} and \mathcal{F}_{s}^{0} agree up to null sets.

Blumenthal's 0-1 law

- If $A \in \mathcal{F}_{0}^{+}$, then $P(A) \in\{0,1\}$ (if P is probability law for Brownian motion started at fixed value x at time 0).

Blumenthal's 0-1 law

- If $A \in \mathcal{F}_{0}^{+}$, then $P(A) \in\{0,1\}$ (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.

Blumenthal's 0-1 law

- If $A \in \mathcal{F}_{0}^{+}$, then $P(A) \in\{0,1\}$ (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.
- Proof: If we have $A \in \mathcal{F}_{0}^{+}$, then previous theorem implies

$$
1_{A}=E_{x}\left(1_{A} \mid \mathcal{F}_{0}^{+}\right)=E_{x}\left(1_{A} \mid \mathcal{F}_{0}^{o}\right)=P_{x}(A) \quad P_{x} \text { a.s. }
$$

Markov property

- If $s \geq 0$ and Y is bounded and \mathcal{C}-measurable, then for all $x \in \mathbb{R}^{d}$, we have

$$
E_{X}\left(Y \circ \theta_{s} \mid \mathcal{F}_{s}^{+}\right)=E_{B_{s}} Y
$$

where the RHS is function $\phi(x)=E_{x} Y$ evaluated at $x=B_{s}$.

Markov property

- If $s \geq 0$ and Y is bounded and \mathcal{C}-measurable, then for all $x \in \mathbb{R}^{d}$, we have

$$
E_{X}\left(Y \circ \theta_{s} \mid \mathcal{F}_{s}^{+}\right)=E_{B_{s}} Y
$$

where the RHS is function $\phi(x)=E_{x} Y$ evaluated at $x=B_{s}$.

- Proof idea: First establish this for some simple functions Y (depending on finitely many time values) and then use measure theory (monotone class theorem) to extend to general case.

More observations

- If $\tau=\inf \left\{t \geq 0: B_{t}>0\right\}$ then $P_{0}(\tau=0)=1$.

More observations

- If $\tau=\inf \left\{t \geq 0: B_{t}>0\right\}$ then $P_{0}(\tau=0)=1$.
- If $T_{0}=\inf \left\{t>0: B_{t}=0\right\}$ then $P_{0}\left(T_{0}=0\right)=1$.

More observations

- If $\tau=\inf \left\{t \geq 0: B_{t}>0\right\}$ then $P_{0}(\tau=0)=1$.
- If $T_{0}=\inf \left\{t>0: B_{t}=0\right\}$ then $P_{0}\left(T_{0}=0\right)=1$.
- If B_{t} is Brownian motion started at 0 , then so is process defined by $X_{0}=0$ and $X_{t}=t B(1 / t)$. (Proved by checking $E\left(X_{s} X_{t}\right)=s t E(B(1 / s) B(1 / t))=s$ when $s<t$. Then check continuity at zero.)

Outline

Recollections

Strong Markov property

Outline

Recollections

Strong Markov property

Stopping time

- A random variable S taking values in $[0, \infty]$ is a stopping time if for all $t \geq 0$, we have $\{S>t\} \in \mathcal{F}_{t}$.

Stopping time

- A random variable S taking values in $[0, \infty]$ is a stopping time if for all $t \geq 0$, we have $\{S>t\} \in \mathcal{F}_{t}$.
- Distinction between $\{S<t\}$ and $\{S \leq t\}$ doesn't make a difference for a right continuous filtration.

Stopping time

- A random variable S taking values in $[0, \infty]$ is a stopping time if for all $t \geq 0$, we have $\{S>t\} \in \mathcal{F}_{t}$.
- Distinction between $\{S<t\}$ and $\{S \leq t\}$ doesn't make a difference for a right continuous filtration.
- Example: let $S=\inf \left\{t: B_{t} \in A\right\}$ for some open (or closed) set A.

Strong Markov property

- Let $(s, \omega) \rightarrow Y_{s}(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$-measurable. If S is a stopping time, then for all $x \in \mathbb{R}^{d}$

$$
E_{X}\left(Y_{S} \circ \theta_{S} \mid \mathcal{F}_{S}\right)=E_{B(S)} Y_{S} \text { on }\{S<\infty\}
$$

where RHS means function $\phi(x, t)=E_{X} Y_{t}$ evaluated at $x=B(S)$, and $t=S$.

Strong Markov property

- Let $(s, \omega) \rightarrow Y_{s}(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$-measurable. If S is a stopping time, then for all $x \in \mathbb{R}^{d}$

$$
E_{X}\left(Y_{S} \circ \theta_{S} \mid \mathcal{F}_{S}\right)=E_{B(S)} Y_{S} \text { on }\{S<\infty\}
$$

where RHS means function $\phi(x, t)=E_{X} Y_{t}$ evaluated at $x=B(S)$, and $t=S$.

- In fact, similar result holds for more general Markov processes (Feller processes).

Strong Markov property

- Let $(s, \omega) \rightarrow Y_{s}(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$-measurable. If S is a stopping time, then for all $x \in \mathbb{R}^{d}$

$$
E_{X}\left(Y_{S} \circ \theta_{S} \mid \mathcal{F}_{S}\right)=E_{B(S)} Y_{S} \text { on }\{S<\infty\}
$$

where RHS means function $\phi(x, t)=E_{X} Y_{t}$ evaluated at $x=B(S)$, and $t=S$.

- In fact, similar result holds for more general Markov processes (Feller processes).
- Proof idea: First consider the case that S a.s. belongs to an increasing countable sequence (e.g., S is a.s. a multiple of 2^{-n}). Then this essentially reduces to discrete Markov property proof. Then approximate a general stopping time by a discrete time by rounding down to multiple of 2^{-n}. Use some continuity estimates, bounded convergence, monotone class theorem to conclude.

Strong Markov property

- Let $(s, \omega) \rightarrow Y_{s}(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$-measurable. If S is a stopping time, then for all $x \in \mathbb{R}^{d}$

$$
E_{X}\left(Y_{S} \circ \theta_{S} \mid \mathcal{F}_{S}\right)=E_{B(S)} Y_{S} \text { on }\{S<\infty\}
$$

where RHS means function $\phi(x, t)=E_{x} Y_{t}$ evaluated at $x=B(S)$, and $t=S$.

- In fact, similar result holds for more general Markov processes (Feller processes).
- Proof idea: First consider the case that S a.s. belongs to an increasing countable sequence (e.g., S is a.s. a multiple of 2^{-n}). Then this essentially reduces to discrete Markov property proof. Then approximate a general stopping time by a discrete time by rounding down to multiple of 2^{-n}. Use some continuity estimates, bounded convergence, monotone class theorem to conclude.
- Extend optional stopping to continuous martingales similarly.

Continuous martingales

- Question: If B_{t} is a Brownian motion, then is $B_{t}^{2}-t$ a martingale?

Continuous martingales

- Question: If B_{t} is a Brownian motion, then is $B_{t}^{2}-t$ a martingale?
- Question: If B_{t} and \tilde{B}_{t} are independent Brownian motions, then is $B_{t} \tilde{B}_{t}$ a martingale?

Continuous martingales

- Question: If B_{t} is a Brownian motion, then is $B_{t}^{2}-t$ a martingale?
- Question: If B_{t} and \tilde{B}_{t} are independent Brownian motions, then is $B_{t} \tilde{B}_{t}$ a martingale?
- Question: If B_{t} is a martingale, then is $e^{B_{t}-t / 2}$ a martingale?

Continuous martingales

- Question: If B_{t} is a Brownian motion, then is $B_{t}^{2}-t$ a martingale?
- Question: If B_{t} and \tilde{B}_{t} are independent Brownian motions, then is $B_{t} \tilde{B}_{t}$ a martingale?
- Question: If B_{t} is a martingale, then is $e^{B_{t}-t / 2}$ a martingale?
- Question: If B_{t} is a Brownian motion in \mathbb{C} (i.e., real and imaginary parts are independent Brownian motions) and f is an analytic function on \mathbb{C}, is $f\left(B_{t}\right)$ a complex martingale?

Continuous martingales

- Question: If B_{t} is a Brownian motion, then is $B_{t}^{2}-t$ a martingale?
- Question: If B_{t} and \tilde{B}_{t} are independent Brownian motions, then is $B_{t} \tilde{B}_{t}$ a martingale?
- Question: If B_{t} is a martingale, then is $e^{B_{t}-t / 2}$ a martingale?
- Question: If B_{t} is a Brownian motion in \mathbb{C} (i.e., real and imaginary parts are independent Brownian motions) and f is an analytic function on \mathbb{C}, is $f\left(B_{t}\right)$ a complex martingale?
- Question: If B_{t} is a Brownian motion on \mathbb{R}^{d} and f is a harmonic function on \mathbb{R}^{d}, is $f\left(B_{t}\right)$ a martingale?

Continuous martingales

- Question: If B_{t} is a Brownian motion, then is $B_{t}^{2}-t$ a martingale?
- Question: If B_{t} and \tilde{B}_{t} are independent Brownian motions, then is $B_{t} \tilde{B}_{t}$ a martingale?
- Question: If B_{t} is a martingale, then is $e^{B_{t}-t / 2}$ a martingale?
- Question: If B_{t} is a Brownian motion in \mathbb{C} (i.e., real and imaginary parts are independent Brownian motions) and f is an analytic function on \mathbb{C}, is $f\left(B_{t}\right)$ a complex martingale?
- Question: If B_{t} is a Brownian motion on \mathbb{R}^{d} and f is a harmonic function on \mathbb{R}^{d}, is $f\left(B_{t}\right)$ a martingale?
- Question: Suppose B_{t} is a one dimensional Brownian motion, and $g_{t}: \mathbb{C} \rightarrow \mathbb{C}$ is determined by solving the ODE

$$
\frac{\partial}{\partial t} g_{t}(z)=\frac{2}{g_{t}(z)-2 B_{t}}, \quad g_{0}(z)=z
$$

Is $\arg \left(g_{t}(z)-W_{t}\right)$ a martingale?

Farewell... and for future reference..

- Course has reached finite stopping time. Process goes on.

Farewell... and for future reference..

- Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include 18.176 and 18.177. (See also statistics courses 18.655 and 18.657.)

Farewell... and for future reference..

- Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include 18.176 and 18.177. (See also statistics courses 18.655 and 18.657.)
- Probability seminar: Mondays at 4:15.

Farewell... and for future reference..

- Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include 18.176 and 18.177. (See also statistics courses 18.655 and 18.657.)
- Probability seminar: Mondays at 4:15.
- I am happy to help with quals and reading.

Farewell... and for future reference.

- Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include 18.176 and 18.177. (See also statistics courses 18.655 and 18.657.)
- Probability seminar: Mondays at 4:15.
- I am happy to help with quals and reading.
- Talk to other friendly postdocs and faculty in probability: Stéphane Benoist, Vadim Gorin, Alexei Borodin, Philippe Rigollet, Elchanan Borodin, Boris Hanin, Alexey Bufetov, etc.

Farewell... and for future reference.

- Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include 18.176 and 18.177. (See also statistics courses 18.655 and 18.657.)
- Probability seminar: Mondays at 4:15.
- I am happy to help with quals and reading.
- Talk to other friendly postdocs and faculty in probability: Stéphane Benoist, Vadim Gorin, Alexei Borodin, Philippe Rigollet, Elchanan Borodin, Boris Hanin, Alexey Bufetov, etc.
- Thanks for taking the class!

