# 18.175: Lecture 24 Brownian motion

Scott Sheffield

MIT



18.175 Lecture 24

#### Outline

Brownian motion properties and construction

Markov property, Blumenthal's 0-1 law

#### Outline

Brownian motion properties and construction

Markov property, Blumenthal's 0-1 law

▶ Brownian motion is real-valued process  $B_t$ ,  $t \ge 0$ .

- ▶ Brownian motion is real-valued process  $B_t$ ,  $t \ge 0$ .
- ▶ Independent increments: If  $t_0 < t_1 < t_2 ...$  then  $B(t_0), B(t_1 t_0), B(t_2 t_1), ...$  are independent.

- ▶ Brownian motion is real-valued process  $B_t$ ,  $t \ge 0$ .
- ▶ Independent increments: If  $t_0 < t_1 < t_2 ...$  then  $B(t_0), B(t_1 t_0), B(t_2 t_1), ...$  are independent.
- ▶ Gaussian increments: If  $s, t \ge 0$  then B(s + t) B(s) is normal with variance t.

- ▶ Brownian motion is real-valued process  $B_t$ ,  $t \ge 0$ .
- ▶ Independent increments: If  $t_0 < t_1 < t_2 ...$  then  $B(t_0), B(t_1 t_0), B(t_2 t_1), ...$  are independent.
- ▶ Gaussian increments: If  $s, t \ge 0$  then B(s + t) B(s) is normal with variance t.
- **Continuity:** With probability one,  $t \rightarrow B_t$  is continuous.

- ▶ Brownian motion is real-valued process  $B_t$ ,  $t \ge 0$ .
- ▶ Independent increments: If  $t_0 < t_1 < t_2 ...$  then  $B(t_0), B(t_1 t_0), B(t_2 t_1), ...$  are independent.
- ▶ Gaussian increments: If  $s, t \ge 0$  then B(s + t) B(s) is normal with variance t.
- ▶ **Continuity:** With probability one,  $t \rightarrow B_t$  is continuous.
- ▶ Hmm... does this mean we need to use a  $\sigma$ -algebra in which the event " $B_t$  is continuous" is a measurable?

- ▶ Brownian motion is real-valued process  $B_t$ ,  $t \ge 0$ .
- ▶ Independent increments: If  $t_0 < t_1 < t_2 ...$  then  $B(t_0), B(t_1 t_0), B(t_2 t_1), ...$  are independent.
- ▶ Gaussian increments: If  $s, t \ge 0$  then B(s + t) B(s) is normal with variance t.
- ▶ **Continuity:** With probability one,  $t \rightarrow B_t$  is continuous.
- ▶ Hmm... does this mean we need to use a  $\sigma$ -algebra in which the event " $B_t$  is continuous" is a measurable?
- ▶ Suppose  $\Omega$  is set of all functions of t, and we use smallest  $\sigma$ -field that makes each  $B_t$  a measurable random variable... does that fail?

▶ Translation invariance: is  $B_{t_0+t} - B_{t_0}$  a Brownian motion?

- ▶ Translation invariance: is  $B_{t_0+t} B_{t_0}$  a Brownian motion?
- ▶ Brownian scaling: fix c, then  $B_{ct}$  agrees in law with  $c^{1/2}B_t$ .

- ▶ Translation invariance: is  $B_{t_0+t} B_{t_0}$  a Brownian motion?
- ▶ Brownian scaling: fix c, then  $B_{ct}$  agrees in law with  $c^{1/2}B_t$ .
- ▶ Another characterization: B is jointly Gaussian,  $EB_s = 0$ ,  $EB_sB_t = s \land t$ , and  $t \rightarrow B_t$  a.s. continuous.

► Can define joint law of B<sub>t</sub> values for any finite collection of values.

- Can define joint law of B<sub>t</sub> values for any finite collection of values.
- ▶ Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in  $\sigma$ -field  $\mathcal{F}_0$  generated by cylinder sets.

- Can define joint law of B<sub>t</sub> values for any finite collection of values.
- ▶ Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in  $\sigma$ -field  $\mathcal{F}_0$  generated by cylinder sets.
- ▶ But not enough to get a.s. continuity.

- Can define joint law of B<sub>t</sub> values for any finite collection of values.
- ▶ Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in  $\sigma$ -field  $\mathcal{F}_0$  generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.

- Can define joint law of B<sub>t</sub> values for any finite collection of values.
- ▶ Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in  $\sigma$ -field  $\mathcal{F}_0$  generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- ▶ We can use the Kolmogorov continuity theorem (next slide).

- Can define joint law of B<sub>t</sub> values for any finite collection of values.
- ▶ Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in  $\sigma$ -field  $\mathcal{F}_0$  generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- We can use the Kolmogorov continuity theorem (next slide).
- ► Can prove Hölder continuity using similar estimates (see problem set).

- Can define joint law of B<sub>t</sub> values for any finite collection of values.
- ▶ Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in  $\sigma$ -field  $\mathcal{F}_0$  generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- ▶ We can use the Kolmogorov continuity theorem (next slide).
- Can prove Hölder continuity using similar estimates (see problem set).
- Can extend to higher dimensions: make each coordinate independent Brownian motion.

#### Continuity theorem

▶ Kolmogorov continuity theorem: Suppose  $E|X_s-X_t|^{\beta} \leq K|t-s|^{1+\alpha}$  where  $\alpha,\beta>0$ . If  $\gamma<\alpha/\beta$  then with probability one there is a constant  $C(\omega)$  so that  $|X(q)-X(r)|\leq C|q-r|^{\gamma}$  for all  $q,r\in\mathbb{Q}_2\cap[0,1]$ .

#### Continuity theorem

- ▶ Kolmogorov continuity theorem: Suppose  $E|X_s X_t|^{\beta} \le K|t s|^{1+\alpha}$  where  $\alpha, \beta > 0$ . If  $\gamma < \alpha/\beta$  then with probability one there is a constant  $C(\omega)$  so that  $|X(q) X(r)| \le C|q r|^{\gamma}$  for all  $q, r \in \mathbb{Q}_2 \cap [0, 1]$ .
- ▶ **Proof idea:** First look at values at all multiples of  $2^{-0}$ , then at all multiples of  $2^{-1}$ , then multiples of  $2^{-2}$ , etc.

#### Continuity theorem

- ▶ Kolmogorov continuity theorem: Suppose  $E|X_s X_t|^{\beta} \le K|t s|^{1+\alpha}$  where  $\alpha, \beta > 0$ . If  $\gamma < \alpha/\beta$  then with probability one there is a constant  $C(\omega)$  so that  $|X(q) X(r)| \le C|q r|^{\gamma}$  for all  $q, r \in \mathbb{Q}_2 \cap [0, 1]$ .
- ▶ **Proof idea:** First look at values at all multiples of  $2^{-0}$ , then at all multiples of  $2^{-1}$ , then multiples of  $2^{-2}$ , etc.
- At each stage we can draw a nice piecewise linear approximation of the process. How much does the approximation change in supremum norm (or some other Hölder norm) on the *i*th step? Can we say it probably doesn't change very much? Can we say the sequence of approximations is a.s. Cauchy in the appropriate normed spaced?

## Continuity theorem proof

▶ Kolmogorov continuity theorem: Suppose  $E|X_s-X_t|^{\beta} \leq K|t-s|^{1+\alpha}$  where  $\alpha,\beta>0$ . If  $\gamma<\alpha/\beta$  then with probability one there is a constant  $C(\omega)$  so that  $|X(q)-X(r)|\leq C|q-r|^{\gamma}$  for all  $q,r\in\mathbb{Q}_2\cap[0,1]$ .

## Continuity theorem proof

- ▶ Kolmogorov continuity theorem: Suppose  $E|X_s X_t|^{\beta} \le K|t s|^{1+\alpha}$  where  $\alpha, \beta > 0$ . If  $\gamma < \alpha/\beta$  then with probability one there is a constant  $C(\omega)$  so that  $|X(q) X(r)| \le C|q r|^{\gamma}$  for all  $q, r \in \mathbb{Q}_2 \cap [0, 1]$ .
- Argument from Durrett (Pemantle): Write

$$G_n = \{|X(i/2^n) - X((i-1)/2^n)|\} \le C|q-r|^{\lambda} \text{ for } 0 < i \le 2^n\}.$$

#### Continuity theorem proof

- ▶ Kolmogorov continuity theorem: Suppose  $E|X_s X_t|^{\beta} \le K|t s|^{1+\alpha}$  where  $\alpha, \beta > 0$ . If  $\gamma < \alpha/\beta$  then with probability one there is a constant  $C(\omega)$  so that  $|X(q) X(r)| \le C|q r|^{\gamma}$  for all  $q, r \in \mathbb{Q}_2 \cap [0, 1]$ .
- Argument from Durrett (Pemantle): Write

$$G_n = \{|X(i/2^n) - X((i-1)/2^n)|\} \le C|q-r|^{\lambda} \text{ for } 0 < i \le 2^n\}.$$

► Chebyshev implies  $P(|Y| > a) \le a^{-\beta} E|Y|^{\beta}$ , so if  $\lambda = \alpha - \beta\gamma > 0$  then

$$P(G_n^c) \leq 2^n \cdot 2^{n\beta\gamma} \cdot E|X(j2^{-n})|^{\beta} = K2^{-n\lambda}.$$

▶ Brownian motion is Hölder continuous for any  $\gamma < 1/2$  (apply theorem with  $\beta = 2m, \alpha = m - 1$ ).

- ▶ Brownian motion is Hölder continuous for any  $\gamma < 1/2$  (apply theorem with  $\beta = 2m, \alpha = m 1$ ).
- Brownian motion is almost surely not differentiable.

- ▶ Brownian motion is Hölder continuous for any  $\gamma < 1/2$  (apply theorem with  $\beta = 2m, \alpha = m 1$ ).
- ▶ Brownian motion is almost surely not differentiable.
- Brownian motion is almost surely not Lipschitz.

- ▶ Brownian motion is Hölder continuous for any  $\gamma < 1/2$  (apply theorem with  $\beta = 2m, \alpha = m 1$ ).
- Brownian motion is almost surely not differentiable.
- Brownian motion is almost surely not Lipschitz.
- ▶ Kolmogorov-Centsov theorem applies to higher dimensions (with adjusted exponents). One can construct a.s. continuous functions from  $\mathbb{R}^n$  to  $\mathbb{R}$ .

#### Outline

Brownian motion properties and construction

Markov property, Blumenthal's 0-1 law

#### Outline

Brownian motion properties and construction

Markov property, Blumenthal's 0-1 law

• Write  $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$ .

- Write  $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$ .
- lacksquare Write  $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$

- Write  $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$ .
- Write  $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- ▶ Note right continuity:  $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$ .

- Write  $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$ .
- Write  $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- ▶ Note right continuity:  $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$ .
- $\triangleright$   $\mathcal{F}_s^+$  allows an "infinitesimal peek at future"

## Markov property

▶ If  $s \ge 0$  and Y is bounded and  $\mathcal{C}$ -measurable, then for all  $x \in \mathbb{R}^d$ , we have

$$E_{\mathsf{X}}(\mathsf{Y} \circ \theta_{\mathsf{S}} | \mathcal{F}_{\mathsf{S}}^{+}) = E_{\mathsf{B}_{\mathsf{S}}} \mathsf{Y},$$

where the RHS is function  $\phi(x) = E_x Y$  evaluated at  $x = B_s$ .

### Markov property

▶ If  $s \ge 0$  and Y is bounded and  $\mathcal{C}$ -measurable, then for all  $x \in \mathbb{R}^d$ , we have

$$E_{\mathsf{x}}(\mathsf{Y} \circ \theta_{\mathsf{s}} | \mathcal{F}_{\mathsf{s}}^{+}) = E_{\mathsf{B}_{\mathsf{s}}} \mathsf{Y},$$

where the RHS is function  $\phi(x) = E_x Y$  evaluated at  $x = B_s$ .

▶ **Proof idea:** First establish this for some simple functions *Y* (depending on finitely many time values) and then use measure theory (monotone class theorem) to extend to general case.

## Looking ahead

**Expectation equivalence theorem** If Z is bounded and measurable then for all  $s \ge 0$  and  $x \in \mathbb{R}^d$  have

$$E_{\mathsf{x}}(Z|\mathcal{F}_{\mathsf{s}}^{+}) = E_{\mathsf{x}}(Z|\mathcal{F}_{\mathsf{s}}^{\mathsf{o}}).$$

## Looking ahead

▶ Expectation equivalence theorem If Z is bounded and measurable then for all  $s \ge 0$  and  $x \in \mathbb{R}^d$  have

$$E_x(Z|\mathcal{F}_s^+) = E_x(Z|\mathcal{F}_s^o).$$

▶ **Proof idea:** Consider case that  $Z = \sum_{i=1}^m f_m(B(t_m))$  and the  $f_m$  are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.

### Looking ahead

▶ Expectation equivalence theorem If Z is bounded and measurable then for all  $s \ge 0$  and  $x \in \mathbb{R}^d$  have

$$E_x(Z|\mathcal{F}_s^+) = E_x(Z|\mathcal{F}_s^o).$$

- ▶ **Proof idea:** Consider case that  $Z = \sum_{i=1}^m f_m(B(t_m))$  and the  $f_m$  are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.
- ▶ **Observe:** If  $Z \in \mathcal{F}_s^+$  then  $Z = E_x(Z|\mathcal{F}_s^o)$ . Conclude that  $\mathcal{F}_s^+$  and  $\mathcal{F}_s^o$  agree up to null sets.

#### Blumenthal's 0-1 law

▶ If  $A \in \mathcal{F}_0^+$ , then  $P(A) \in \{0,1\}$  (if P is probability law for Brownian motion started at fixed value x at time 0).

#### Blumenthal's 0-1 law

- ▶ If  $A \in \mathcal{F}_0^+$ , then  $P(A) \in \{0,1\}$  (if P is probability law for Brownian motion started at fixed value x at time 0).
- ► There's nothing you can learn from infinitesimal neighborhood of future.

#### Blumenthal's 0-1 law

- ▶ If  $A \in \mathcal{F}_0^+$ , then  $P(A) \in \{0,1\}$  (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.
- ▶ **Proof:** If we have  $A \in \mathcal{F}_0^+$ , then previous theorem implies

$$1_A = E_x(1_A|\mathcal{F}_0^+) = E_x(1_A|\mathcal{F}_0^o) = P_x(A) \quad P_x \text{a.s.}$$

### More observations

• If  $\tau = \inf\{t \ge 0 : B_t > 0\}$  then  $P_0(\tau = 0) = 1$ .

### More observations

- ▶ If  $\tau = \inf\{t \ge 0 : B_t > 0\}$  then  $P_0(\tau = 0) = 1$ .
- ▶ If  $T_0 = \inf\{t > 0 : B_t = 0\}$  then  $P_0(T_0 = 0) = 1$ .

#### More observations

- ▶ If  $\tau = \inf\{t \ge 0 : B_t > 0\}$  then  $P_0(\tau = 0) = 1$ .
- ▶ If  $T_0 = \inf\{t > 0 : B_t = 0\}$  then  $P_0(T_0 = 0) = 1$ .
- If  $B_t$  is Brownian motion started at 0, then so is process defined by  $X_0 = 0$  and  $X_t = tB(1/t)$ . (Proved by checking  $E(X_sX_t) = stE(B(1/s)B(1/t)) = s$  when s < t. Then check continuity at zero.)

# Continuous martingales

What can we say about continuous martingales?

# Continuous martingales

- ▶ What can we say about continuous martingales?
- ▶ Do they all kind of look like Brownian motion?